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Unresolved sources of gravitational waves can create a stochastic gravitational wave background
(SGWB) which may have intrinsic or extrinsic anisotropies. The angular power spectrum is a well-suited
estimator for characterizing diffuse anisotropic distributions in the sky. Here we estimate the first model-
independent all-sky all-frequency SGWB angular power spectra in the 20–1726 Hz frequency range from
the third observing run (O3) of the Advanced LIGO and Advanced Virgo detectors. We develop a method
to use the spectrum’s signal-to-noise ratio as the detection statistic and show that the shape of the
distribution of the statistic obtained from the data agrees with the analytical model with a modified value of
the parameter. Since we find the data to be consistent with noise, 95% confidence Bayesian upper limits are
set on the angular power spectra, ranging from C1=2

l ≤ ð3.0 × 10−9–0.73Þ sr−1. We also introduce a method
to combine the narrow band angular power spectra to obtain estimators for broadband SGWB. These results
can directly constrain theoretical models that predict the SGWB angular power spectra and for estimating
or constraining the corresponding parameters. In addition, the results and the techniques introduced in this
work can be useful for performing correlation-based searches, for instance, with electromagnetic
observations.
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I. INTRODUCTION

While more than 90 compact binary coalescences are
being cataloged [1,2], the search for other kinds of
gravitational wave (GW) sources is continuing with great
enthusiasm. The stochastic gravitational wave background
is one of the potential sources for detection in the coming
years with the network of ground-based GWobservatories.
The observed rates of compact binary mergers suggest that
the dominant contribution to this background will likely be
from the superposition of signals from such mergers
throughout the Universe [3,4]. Along with the mergers
of black holes and neutron stars, many different sources
will contribute to the astrophysical stochastic gravitational
wave background (SGWB), e.g., inspiraling binaries,
supernova explosions, and spinning neutron stars.
It has been shown that the energy flux from all

astrophysical sources (resolved and unresolved) is not
constant across the sky and depends on the direction of

observation [5–14]. Several factors result in such anisot-
ropies: the specific distribution of astrophysical SGWB
sources, anisotropy accumulated along the line-of-sight,
gravitational lensing, redshift-space distortions, and dipole
anisotropy induced by the observer’s peculiar velocity. The
stochastic directional radiometer search can provide infor-
mation on the angular content of the SGWB in the form of a
skymap (pixel basis) or its spherical harmonic (SpH)
coefficients. The anisotropic SGWB search is expected
to be powerful in identifying and characterizing the
individual contributors to the total stochastic back-
ground [15,16].
The anisotropic SGWB searches estimate the GWenergy

density (usually in the units of critical density needed
for a flat universe) per unit frequency while retaining the
directional information Ωðf;ΘÞ. The standard, so far, has
been to perform the search and present results for cases
where Ωðf;ΘÞ is assumed to follow a power law frequency
variation (a model-dependent approach). Sky maps have
been produced for all the observing runs of the advanced
ground-based interferometric detectors [17]. While these
maps are created in pixel and SpH bases to probe localized
and diffuse sources, employing cross-correlation-
based algorithms, the underlying algebra and numerical
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implementation remain different [18–20]. Consequently,
there was a need to produce sky maps on both bases.
Recently, it has been shown that these manifestly redundant
methods could be unified into a single analysis that can
probe very different scales and demonstrate unification
using real data [21,22].
Previous anisotropic SGWBsearcheswere either targeted

(pointing in one direction) and narrow band (considering
many different frequencies) or all-sky (looking in all
directions) but broadband (averaging over all frequencies).
Hence it had limited prospects of detecting an unknown
narrow band anisotropic SGWB. To mitigate this, the
directional search must be conducted separately across all
narrow frequency bins. This demands a lot of computational
power. However, exploiting a temporal symmetry in the
map-making algebra, the conventional searches can bemade
a few hundred times faster through the data folding
mechanism [23]. Recently, together with a PYTHON-based
map-making pipeline, PyStoch, the traditional analysis was
made hundreds of times faster and opened up the possibility
of performing an extremely efficient search looking in all the
directions and at all frequencies (all-sky all-frequency
[ASAF]) [21,24]. Recently this method was implemented,
for the first time, on the data from LIGO-Virgo-KAGRA’s
first three observational runs [25]. Other efforts have been
towards the same goal [22,26].
The ASAF search targets SGWB from unknown signals

in narrow frequency bins (producing sky maps at each
frequency bin considered in the analysis), providing a
sensitive tool for discovering any persistent source which
does not conform to the assumptions made by template-
based (matched filtering type) searches. One can then find
the pixels in the maps containing statistically significant
outliers, which can, for example, be followed up with a
more sensitive search. While one can also derive the SpH
coefficients of the narrow band maps, the method to find
candidates for diffuse sources (for which the SpH basis is
more suitable) needed to be carried out. Unlike compact
binary mergers, the many narrow band sources, e.g.,
extragalactic young and millisecond pulsars, may undergo
negligible frequency evolution over observing timescales.
This could lead to a frequency-dependent angular power
spectrum due to a distinct source population. This requires
coming up with an appropriate detection statistic, along
with its expected probability distribution. This paper
presents the angular power spectra of the anisotropic
SGWB at every frequency bin using data from the third
observing run of Advanced LIGO [27] and Advanced
Virgo [28] detectors. We assign significance to the data
using the angular power spectra statistic after obtaining the
distribution of its noise background. A narrow band
estimator like this is manifestly independent of the fre-
quency spectral model. These estimates will complement
the current efforts in understanding the anisotropies asso-
ciated with the SGWB.

The paper is organized as follows: In Sec. II, we discuss
the approach to map the anisotropy of SGWB in a SpH
basis and compute the angular power spectra for narrow
band background. Then, the details of the analysis and
results are presented in Sec. III. Finally, the article is
summarized in Sec. IV along with future prospects of the
search.

II. METHOD

The SGWB is characterized by its dimensionless spec-
trum defined in terms of a frequency and direction-
dependent form as

ΩGWðf;ΘÞ ¼
f
ρc

dρGWðf;ΘÞ
df

; ð1Þ

where dρGW is the GW energy density contained in the f
and f þ df frequency range, Θ represents the directions on
the sky, and ρc is the critical energy density needed to close
the Universe. In the past broadband searches for SGWB
anisotropy [17], it was assumed that one could factorize the
above spectrum into a frequency-dependent part HðfÞ and
a direction-dependent part PðΘÞ. The frequency depend-
ence of the spectrum through HðfÞ is typically assumed to
take a power-law form consistent with the most canonical
models for SGWB. As mentioned in the recent all-sky all-
frequency radiometer search [25], one can unfetter this
assumption by performing a narrow band search, as it is
inherently model independent. Following the past con-
ventions [29], one can rewrite the above equation as

ΩGWðf;ΘÞ ¼
2π2

3H2
0

f3Pðf;ΘÞ; ð2Þ

where H0 is the Hubble constant taken to be H0 ¼
67.8 km s−1 Mpc−1 [30] and Pðf;ΘÞ records the angular
variation of the one-sided power spectral density of the
SGWB. It is shown in the literature that, for a diffuse
background, the SpH basis is a better choice for the
searches. A method for obtaining maximum likelihood
(ML) sky maps in SpH basis was developed and tested in
Thrane et al. [20] and Suresh et al. [21]. Using the SpH
basis, it is possible to expand and map the direction and
frequency-dependent Pðf;ΘÞ component in terms of
spherical harmonics Ylm as

Pðf;ΘÞ ¼
Xlmax

l¼0

Xl
m¼−l

PlmðfÞYlmðΘÞ; ð3Þ

wherePlmðfÞ are the SpH coefficients. Ideally, the value of
the highest l mode should be lmax ¼ ∞, but in practice, it
is limited by the angular resolution achieved by the detector
network as
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lmax ¼
2πdf
c

; ð4Þ

where d is the baseline length and c is the speed of the
light [20,31,32].
For a statistically isotropic Gaussian background,1 the

mean, P̄, defined as [33]

hPlmðfÞiU ¼
ffiffiffiffiffiffi
4π

p
P̄ðfÞδl0; ð5Þ

and the covariance is defined as

Cov½PlmðfÞPl0m0 ðfÞ�U ¼
�
2π2f3

3H2
0

�−2
ClðfÞδll0δmm0 ; ð6Þ

which provides a complete statistical description of the
anisotropic sky. Otherwise, though the statistical description
provided by ClðfÞ is incomplete, the information can be
useful to measure power at different angular scales and
identify deviations from noise, which can be useful for
detecting anisotropic distributions. The average h·iU is
evaluated over an ensemble of the Universe. ClðfÞ is the
angular power spectrum of the sky. We define the observed
angular power spectrum using the SpH coefficients as [20]

C̃lðfÞ ¼
�
2π2f3

3H2
0

�
2 1

2lþ 1

Xl
m¼−l

jPlmðfÞj2; ð7Þ

which is an unbiased estimator of the true angular power
spectrum, ClðfÞ. ClðfÞ has units of sr−2.
We are interested in estimating the narrow band angular

power spectrum in this paper. For that, we start with the
cross-spectral density of the data [24], sI1;2

ðtÞ, from a pair
of GW detectors (I1 and I2),

CIðt; fÞ ¼ 2

τ
s̃�I1

ðt; fÞs̃I2
ðt; fÞ; ð8Þ

where s̃I1;2
ðt; fÞ are the short-term Fourier transform of

sI1;2
ðtÞ of a segment centered at time twith duration τ and f

are (positive and negative) frequencies. The expectation of
the cross-spectral density is given by [21]

hCIðt; fÞiN ¼
X
lm

γIft;lmPlmðfÞ; ð9Þ

where the average h·iN is evaluated over an ensemble of the
noise realizations and γIft;lm is the generalized overlap
reduction function [34,35], which accounts for the mis-
match between the response functions of the detectors and
the delay in signal arrival times, defined as

γIft;lm ¼
Z
S2
dΘγIft;ΘYlmðΘÞ: ð10Þ

To measure the anisotropy PlmðfÞ, the radiometer
algorithm uses the ML estimator as the statistic [20].
The model-independent SpH coefficients that maximize
the likelihood function are given by [20,25]

P̂lmðfÞ ¼ Γ−1
lm;l0m0 ðfÞXl0m0 ðfÞ; ð11Þ

where

XlmðfÞ ¼ τΔf
X
I t

γI�ft;lmC
Iðt; fÞ

PI1
ðt; fÞPI2

ðt; fÞ ð12Þ

and

Γlm;l0m0 ðfÞ ¼ τΔf
X
It

γI�ft;lmγ
I
ft;l0m0

PI1
ðt; fÞPI2

ðt; fÞ : ð13Þ

The ASAF SpH dirty map shown in Eq. (12) denotes the
SGWB anisotropic sky observed through the antenna
response pattern of the detector pair used to form the
baseline I . In this equation, PI1;2

ðt; fÞ denotes the one-
sided noise power spectra of the detector output for the time
segment t. The covariance matrix of the dirty map in the
weak signal limit is given in Eq. (13), and it is often called
the Fisher information matrix.
The ML estimators of the angular and frequency dis-

tribution of the SGWB power, given in Eq. (11), are usually
referred to as the clean maps since they are estimators of the
actual GW sky, obtained by deconvolving the detector
responses from the dirty maps. As evident from the
equation, the deconvolution demands the computation of
the inverse of the Fisher information matrix to obtain the
clean map. However, in practice, the Fisher matrix is poorly
conditioned due to the diffraction limit and blind directions
of the detector or detector network. Consequently, one must
regularize the Fisher matrix before the inversion. Even
though many techniques [20,29,36] can be used to regu-
larize the matrix,2 in this work, we use the singular value
decomposition (SVD) method, which has been proposed
and tested for the SGWB searches in Thrane et al. [20].
Note that this regularization introduces a bias in our
estimators. The bias can be estimated if the power dis-
tribution is known, which is not the case for most
astrophysical scenarios. The Fisher matrix at every fre-
quency bin is Hermitian, which is evident from its
definition, so its SVD takes the form

1The Gaussianity of the background can be achieved by
satisfying certain criterion at any angular resolution by increasing
the observation time [5,8].

2Regularization techniques include cutting off the eigenvalues
of the Fisher matrix at some specific lmax values, getting a matrix
with reduced rank by modifying the eigenvalues, and only
considering the diagonal components of the Fisher matrix
ignoring all off-diagonal correlations.
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ΓðfÞ ¼ USV†; ð14Þ

where U and V are unitary matrices and S is a diagonal
matrix whose nonzero elements are the real and positive
eigenvalues of the Fisher matrix, arranged in descending
order. To condition the matrix, a threshold Smin is chosen.
The choice is made by considering the proper trade-off
between the quality of the deconvolution and the increase
in numerical noise from less sensitive modes. Any values
below this cutoff are considered too small, and we replace
them with infinity. This is to prevent the inverted noise from
the corresponding insensitive modes. Now, one can write
the inverse of regularized Fisher matrix, which is obtained
using the modified matrix SR as

Γ−1
R ðfÞ ¼ VS−1

R U†: ð15Þ

By multiplying the inverted-regularized Fisher matrix with
the dirty map, one can obtain the estimators of the SpH
coefficients:

P̂lmðfÞ ¼ ðΓ−1
R Þlm;l0m0 ðfÞXl0m0 ðfÞ; ð16Þ

and their uncertainty can be written as [20]

σlmðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½P̂lmðfÞ�

q
; ð17Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Γ−1

R ðfÞΓðfÞΓ−1
R ðfÞ�lm;lm

q
: ð18Þ

One can use the above clean map in the SpH basis to
construct the unbiased3 estimator of the narrow band
angular power spectrum [20],

ĈlðfÞ ¼
�
2π2f3

3H2
0

�
2 1

2lþ 1

X
m

½jP̂lmðfÞj2

− ½Γ−1
R ΓΓ−1

R �lm;lmðfÞ�: ð19Þ

Similar to the clean map, one can write the covariance
matrix of the above angular power spectrum estimator as

ΣðfÞ≡ Σll0 ðfÞ ¼
�
2π2f3

3H2
0

�
4 2

ð2lþ 1Þð2l0 þ 1Þ
×
X
m;m0

jΓ−1
R ΓΓ−1

R j2lm;l0m0 ðfÞ; ð20Þ

whose diagonal elements are the measures of the standard
deviations of the estimators of the angular power spectrum,

i.e., σCl
ðfÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣllðfÞ
p

(see Appendix A 1 for the

derivation). Given that we have both the angular power
spectra and the uncertainty associated with each measure-
ment, we can define the signal-to-noise ratio (SNR) as

ρlðfÞ ¼
ĈlðfÞ
σCl

ðfÞ : ð21Þ

The exact analytic expression for the probability density
function (PDF) of SNR, ρlðfÞ, is nontrivial to derive as, in
practice, the noise corresponding to differentmmodes have
different variances, and the correlation between different l
modes introduces further complexities. Nevertheless,
here we assume that the clean SpH coefficients are
uncorrelated and the noise for each m mode for a given
l mode is white, i.e.,

½Γ−1
R ΓΓ−1

R �lm;l0m0 ðfÞ ¼ σ2lðfÞδll0δmm0 : ð22Þ

Then the SNR can be written as

ρlðfÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2lþ 1Þp X
m

½jρlmðfÞj2 − 1�; ð23Þ

where ρlm is SNR of clean SpH coefficients P̂lmðfÞ.
Following the central limit theorem, it can be assumed to
follow a normal distribution in the noise-only case. Then
the PDF for SNR ρlðfÞ is a chi-squared distribution with
degrees off freedom (DOF) of k ¼ 2lþ 1 as

Pðy ¼ ρlðfÞÞdy ¼
ffiffiffiffiffi
2k

p
χ2kðy

ffiffiffiffiffi
2k

p
þ kÞdy: ð24Þ

In the next section, we show that the shape of this
analytical model matches the numerically obtained distri-
bution with a modified DOF. The difference between
modified DOF keff and true DOF k indicates the deviation
from our assumption of uncorrelated and white noise
modes. (See Appendix A 2 for the details.)
In this work, ρlðfÞ is used as the detection statistic to

assign significance to the data, and in case of no detection,
we set constraints on narrow band angular power spec-
tra ClðfÞ.

III. IMPLEMENTATION AND ANALYSIS

To perform the search, we analyze time-series data from
the third (O3) observing run of the Advanced LIGO [27]
Hanford (H) and Livingston (L) detectors and the
Advanced Virgo (V) detector. We first apply time and
frequency domain data quality cuts, identically as was done
in Abbott et al. [25]. The cleaned data is then folded to one
sidereal day, which utilizes the temporal symmetry in the
map-making algorithm [23]. Folding reduced the compu-
tation cost by a factor equal to the total number of sidereal
days of coincident quality data. This reduction was critical
for performing this analysis. The folded datasets for the first
three observing runs of Advanced LIGO and Advanced

3The expected bias due to noise covariance is subtracted;
however, some bias remains due to regularized deconvolution. As
mentioned before, this could not be accounted for if the expected
source angular power spectra were a priori unknown.
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Virgo detectors are publicly available [37]. Next, the
narrow band (1 Hz bandwidth) dirty maps and the
Fisher information matrices in the SpH basis are computed
for the frequency range 20–1726 Hz using the PyStoch code
[21,24]. This pipeline brought additional computational
advantages and the power of HEALPix [38,39], which was
also crucial for this analysis.

A. Monopole

For an isotropic background, the dimensionless energy
density parameter, ΩGWðf;ΘÞ ¼ ΩGWðfÞ is related to the
monopole coefficient P00ðfÞ as [20]

ΩGWðfÞ ¼
2π2

3H2
0

f3
ffiffiffiffiffiffi
4π

p
P00ðfÞ; ð25Þ

since the contribution from all higher multipoles is zero
when integrated over the whole sky. We present a com-
parison of the estimator obtained in this analysis (ASAF-
SpH) and the results from narrow band isotropic searches4

in Fig. 1 [40]. The results are in good agreement. The ML
estimator and its error bar for a broadband background can
be obtained by combining the dirty maps and the Fisher
matrix as

Xlm ¼
X
f

HðfÞXlmðfÞ ð26Þ

and

Γlm;l0m0 ¼
X
f

H2ðfÞΓlm;l0m0 ðfÞ; ð27Þ

and using Eqs. (11), (17), (25) with lmax ¼ 0 for an
isotropic background. The broadband background is
expected to follow a power law spectrum defined as
HðfÞ ¼ HðfrefÞðf=frefÞα−3, where α is the spectral index
and fref is the most sensitive frequency of the observing
band which is chosen to be 25 Hz. A comparison is shown
in Table I. The match between these (model-dependent)
results proves the consistency of converting pixel basis
maps to SpH basis maps.

B. Narrow band higher multipoles

Though the primordial background is expected to be
isotropic, there are possibilities of anisotropies being
produced later in the Universe. In the next step, we analyze
the data to find the signatures of narrow band anisotropic
SGWB. We invert the Fisher information matrix and obtain
the clean unbiased estimators for the angular power
spectrum using Eqs. (19)–(21).

We define the angular power spectrum in terms of the
dirty map as

D̂lðfÞ ¼
1

2lþ 1

X
m

jXlmðfÞj2; ð28Þ

whose expected value can be written as a convolution
equation as

hD̂liN;U ≈
X
l0
All0

��
2π2f3

3H2
0

�−2
Cl0 þ 4πP2δl00

�
þ Nl;

ð29Þ
where All0 ¼ 1

2lþ1

P
mm0 jΓlm;l0m0 j2 can be called a bias or

response matrix in analogy to cosmic microwave back-
ground (CMB) analysis [41] that represents the correlation
between modes, and Nl ¼ 1

2lþ1

P
m Γlm;lm is the noise

angular power spectrum (see Appendix A 3 for details). We
use A matrix to qualitatively measure the detector response
to two harmonic modes l and l0 at a frequency f and the
correlation between them. In Fig. 2, the examples for the

FIG. 1. The ML estimator of monopole (ASAF-SpH; lmax ¼ 0)
as a function of frequency (green line) and its uncertainty
compared with the error bars (orange scatter) of the estimator
obtained from O3 isotropic analysis (red line) [40] using the HL
baseline.

TABLE I. Broadband isotropic search results derived from the
ASAF-SpH monopole term (with the stricter notching) using the
O3 HL dataset. Results from the previous LVK O3 analyses are
also added to the table for a direct comparison. The three spectral
indices used in the search are denoted by α.

Broadband results: HL baseline

α Ω̂GW;isoð×10−9Þ
ASAF-SpH ISO [40]

0 2.4� 8.6 −2.1� 8.2
2=3 0.55� 6.5 −3.4� 6.1
3 −0.56� 1.0 −1.3� 0.9

4The error bar σ00ðfÞ is multiplied with the normalization
constant given in Eq. (25) and the square root of the number of
unnotched bins in each frequency bin to account for the differ-
ence in frequency resolution used in analyses.

ANGULAR POWER SPECTRA OF ANISOTROPIC STOCHASTIC … PHYS. REV. D 108, 023011 (2023)

023011-5



frequencies 40.5 and 200.5 Hz are shown. We use a bias or
response matrix to find the suitable angular scale given a
frequency with a maximum up to lmax ¼ 15 to estimate the
significance of detection and the upper limits. The base-
line’s sensitivity to higher modes increases as frequency
increases, and beyond the diffraction limit, it again starts to
decrease but has significant sensitivity for around 3–4 extra
modes [42]. Hence, lmax is defined as the point where the
response fall by 10−5 of the maximum. This value is chosen
such that the modes lower than the diffraction limit have a
sensitivity of the same order. The upper limit of lmax ¼ 15
is chosen based on the most sensitive frequency of the O3
HL baseline, around ∼200 Hz [25]. Also, the harmonic
modes are severely correlated as shown in Fig. 2 through
correlation matrix and singular value spectrum. The inver-
sion of the Fisher matrix Γ is performed by setting the
condition number to 100 for ignoring insensitive modes.5

In the next step, we find the detection significance of each
mode against the null hypothesis (that is, no signal presence,
noise only). The null distribution is obtained using random
time shift technique [25]: the time-series data from one
detector is shifted by ∼1–2 s with respect to the other
detector’s data to remove any coherence, and the estimators
of the angular power spectra are computed by repeating the
identical procedure. The distribution of SNRs is shown in
Fig. 3, where the frequency samples are treated as inde-
pendent samples for each mode. We note that the null
distribution of SNR, the estimators of the angular power
spectra, is no longer Gaussian. We find the best-fit DOF for
the approximated PDF by minimizing the inverse-noise
weighted mean-squared-error fitting to the time-shifted data
(see Appendix A 4). Then, we calculate the SNR threshold
for a global p value of 5%. The approximated PDF is
consistent with the time-shifted data within three-sigma
Poisson error bars. The zero-lag data is also broadly
consistent with the time-shifted data. A few candidates in
zero-lag data have SNR above the threshold, which can be
due to statistical fluctuations or coupling between the
harmonic modes. This interpretation seems reasonable
because when we plot the joint histogram of all samples,
the zero-lag data is observed to be consistent with the time-
shifted data (see Fig. 4). While the p value obtained from
Fig. 4 will not be precise, it will give an idea when to
consider an observed multipole moment as a potential
outlier. A more rigorous p value can then be obtained by

FIG. 2. The matrix plots on the left present the measure of the detector response, A, and the expected correlation between the SpH
modes measured using HL baseline at frequencies 40.5 and 200.5 Hz, respectively. The correlation is quantified by the ratio
rll0 ¼ All0ffiffiffiffiffiffiffiffiffiffiffiffiffi

AllAl0l0
p . The correlation and detector response is found to be a function of frequency. The right plot depicts the singular value

spectrum for the Fisher matrix, Γ, obtained with the HL and HLV baselines. It shows that including the Virgo baseline slightly improves
the ill-conditioned nature of the matrix.

5The condition number is chosen to be 100 such that we do not
discard too many modes, on the other hand the noise fluctuations
should not increase much. Also, as shown in the singular value
plot (right panel of Fig. 2), the first knee structure is covered by
condition number of 100. If we increase it to 1000, many more
insensitive modes will start contributing, which we want to avoid.
If we lower it to 10, then too few modes will contribute, which is
also not desirable. In fact, we ran the analysis for condition
number 10 and 1000 as well and did not find any outliers. In
practice, the choice may depend on the kind of source distribution
one is looking for and may need to run the analysis for different
values of the condition number.
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going back to Fig. 3 for the specific multipole. We
set the Bayesian upper limit with 95% confidence
marginalized over calibration uncertainty. The upper
limits set on C1=2

l for each l as a function of frequency
are presented in Fig. 4. The analytical expression of the
likelihood for Cl is nontrivial due to colored correlated
noise. Hence the Bayesian posteriors are constructed
using Monte Carlo sampling from multivariate normal
distribution for SpH coefficients and marginalized
over calibration uncertainty. The upper limit lies in range
3.0 × 10−9–0.73 sr−1.

We conclude this part after comparing our results with
predictions from a theoretical model for anisotropy of the
SGWB created by the population of compact binary
mergers. Capurri et al. [13] predicts the isotropic term
and angular power spectrum for anisotropy at the reference
frequency 65 Hz after removing the foreground sources
detected by aLIGO/Virgo detectors. For the harmonic
modes 2 ≤ l ≤ 4, the isotropic term and the angular power

spectrum lie in the range Ω̄GW ∼ 10−9 and 1.5 × 10−7 ≲
lðlþ1ÞC̃l

2π ≲ 10−6 for the binary black hole population.

FIG. 3. Histogram of SNRs obtained using the zero-lag (blue) and time-shifted (pink) data from the third observing run of Advanced
LIGO and Advanced Virgo (HLV) detectors. Here, for each harmonic mode, the frequency samples are treated as independent samples
for the statistic. The solid black line represents the approximate PDF with effective DOF keff ¼ 2leff þ 1 best fitted to the samples
obtained by the time-shifted run. The zero-lag and time-shifted data is broadly consistent with the approximated distribution of SNRs
within three-sigma (yellow color) Poisson error bars for lower harmonic modes but deviate at higher modes. The frequencies for
maximum SNR in the zero-lag run are indicated in the histogram. The black dashed line depicts the SNR threshold for the global p value
0.05 given approximated PDF.
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Our upper limits are related to the predicted quantities as

C1=2
l ¼ Ω̄GW

4π

ffiffiffiffiffiffi
C̃l

p
. As expected, due to the dominated

detector noise, our upper limits at 65 Hz, 8.4 × 10−8 ≤
C1=2
l ≤ 7.6 × 10−8 sr−1 are higher than the predicted

anisotropy 3.2 × 10−14 ≲ C1=2
l ≲ 4.5 × 10−14 sr−1 by sev-

eral of orders. As the detector network grows with
improved sensitivity, we may be able to detect [43] the
anisotropy with the third-generation detectors such as the
Einstein Telescope [44].

C. Broadband higher multipoles

The angular power spectrum for a broadband SGWB
with known spectral index can be obtained by adding
narrow band dirty maps for the SpH coefficients and its
covariance matrices with suitable weights, as was done in
Abbott et al. [17] [see Eqs. (26) and (27)]. We will refer this
method as “standard method” further. It may also be of
interest to derive these estimators for broadband angular
power spectrum C using the narrow band angular power
spectrum’s estimators.
We attempt this problem with the assumption of additive

multivariate Gaussian noise in the harmonic domain, i.e.,
ĈðfÞ≡ ĈlðfÞ is a random vector which obeys the multi-
variate Gaussian distribution6 with covariance matrix ΣðfÞ,
the joint PDF (log-likelihood) using the estimator ĈlðfÞ
from multiple frequency bins is given as

−2 lnL¼
X
f

½ĈðfÞ−w2ðfÞC� ·Σ−1ðfÞ · ½ĈðfÞ−w2ðfÞC�;

ð30Þ

where wðfÞ ¼ ðf=frefÞα−3 is the usual weight for each
frequency bin. The ML estimator for the broadband angular
power spectrum C in terms of narrow band estimators is
given as

Ĉ ¼
�X

f

w4ðfÞI · Σ−1ðfÞ · I
�

−1

×

�X
f

w2ðfÞI · Σ−1ðfÞ · ĈðfÞ
�
; ð31Þ

and its covariance matrix as�X
f

w4ðfÞI · Σ−1ðfÞ · I
�

−1
; ð32Þ

where I is a square identity matrix with dimension lmax.
In Fig. 5, the broadband estimators for three spectral

indices α ¼ ½0; 2=3; 3� are presented for the HL baseline
only. We note that the estimated broadband angular power
spectra obtained by combining narrow band angular power
spectra lie within ∼2-sigma error bars compared to the
estimators obtained by combining the narrow band dirty
maps. The error bars obtained by our method are observed
to be smaller at lower harmonics (say l ¼ ½0; 5�), but for
harmonics l ¼ ½6; 15� and spectral index α ¼ 3, the error
bars are quite in agreement. The difference in the estimators
and their error bars are expected to be the cumulative effect
of the Gaussian approximation and the nontrivial

FIG. 4. Left: joint histogram of the SNR samples obtained using the zero-lag (ZL; blue) and time-shifted (TS; pink) data from the third
observing run of Advanced LIGO and Advanced Virgo (HLV) detectors. The solid black line represents a fitted approximated PDF with
leff ¼ 1.82. The vertical dashed lines show the SNR threshold for the global p value 5% and 1%, respectively. Right panel:
95% confidence Bayesian upper limits set on the angular power spectrum ðC95%

l Þ1=2 with units sr−1 for all frequencies and all harmonic
modes are shown. The horizontal gaps are the notched frequencies.

6The Gaussian noise assumption may be valid at higher
harmonic modes due to central limit theorem. The exact ana-
lytical expression for the PDF can be further explored. Here, we
prescribe the treatment of combining narrow band estimators to
obtain the estimators for a broadband background.
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modification of singular modes during the regularization.
We have presented a scheme to combine the estimators.
However, the multivariate Gaussian likelihood may not be a
good approximation at lower l values. It could be a good
approximation at higher l due to increased DOF because of
the central limit theorem. This issue is left for further
exploration.

IV. CONCLUSIONS

We present the first narrow band (1 Hz) angular power
spectra ClðfÞ by analyzing data from the third observing
run of the Advanced LIGO and Advanced Virgo detectors.
It aims to probe extended narrow band sources of the
SGWB. We do not find any significant signature of narrow
band SGWB. We set the 95% confidence Bayesian upper
limits on the narrow band ClðfÞ, which may be helpful to
constrain astrophysical and cosmological models.
We start by deriving the estimator for the isotropic

component (lmax ¼ 0) for a narrow band and broadband
statistically isotropic background and find the results to be
consistent with the standard isotropic search. Then we
estimate the narrow band angular power spectra, which
involve the inversion of the Fisher-information matrix (the
deconvolution problem). Here, we have implemented the
SVD-based regularization scheme with a reasonable choice
of the condition number. We also note that the detector’s
sensitivity to higher modes increases as the signal fre-
quency increases. Hence, we set a threshold on analyzed
harmonic modes for a given frequency (diffraction limit)
before performing an inversion.
The clean angular power spectrum estimators are still

correlated, which creates hurdles in obtaining an analytical
expression for the likelihood function. Since we used the
SNR of ClðfÞ as the detection statistic, we attempted to get
the PDF for SNR with the assumption that no signal is
present and the modes are uncorrelated. The approximated
distribution is found to be consistent with the noise

realization obtained by the timeshift method (but with
modified DOF obtained by fitting the realization). There is
a possibility of improvement in approximating the PDF,
which is left for future exploration. In the absence of any
significant signal, we set Bayesian upper limits on the
angular power spectra with 95% confidence lying in the
range C1=2

l ≤ ð3.1 × 10−9–0.76Þ sr−1.
We have also presented a method to obtain the angular

power spectrum for a broadband stochastic background by
combining narrow band estimators. The optimal combina-
tion requires an analytical expression for the likelihood. We
have assumed it to be the multivariate Gaussian distribu-
tion. This approximation may be accurate for higher
harmonic modes due to the central limit theorem. The
broadband angular power spectra obtained by combining
narrow band angular power spectra lie within 2-sigma error
bars compared to the estimators obtained by combining the
narrow band dirty maps.
The monopole estimator and two-point correlation

function provide a complete description of a statistically
isotropic Gaussian background which may be the case for
the early Universe background and the background created
by distant extragalactic sources. The SGWB from galactic
sources may violate this isotropic condition, but performing
a targeted search for the galactic plane [45] and subtracting
it from the observed sky may provide a practical solution. It
was predicted that the angular power spectrum for the
astrophysical background is non-Gaussian, particularly for
late-Universe sources, due to nonlinear dynamics of gravi-
tational clustering [33,46]. In this case, analyzing higher-
order statistics, such as bispectrum, trispectrum, etc., can
provide more complete description. We leave this work for
future exploration.
During the estimation of the uncertainty in the angular

power spectrum, we have ignored the contribution from the
shot noise [33,47]. The shot noise arises from the transient
nature of the source and may not be important for the

FIG. 5. The ML estimators and their uncertainties (two sigma) for the broadband angular power spectrum with fref ¼ 25 Hz and
spectral index α ¼ 0; 2=3, 3 obtained from combining the narrow band angular power spectrum (orange) and compared with the
standard method (blue) of combing the dirty maps for the SpH coefficients.
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continuous GW sources, e.g., GWs due mountains on the
pulsars. Since the current GW detectors are operating in
detector noise dominating regime, the treatment of the shot
noise is left safely for future work.
The techniques and results presented here can not only

help constrain the theoretical models that predict the
angular power spectrum for the source, but they can also
be useful for cross-correlation studies involving, e.g., sky
maps from electromagnetic observations such as CMB
anisotropy, galaxy count surveys, and gravitational lensing
surveys.

This research has made use of data or software obtained
from the Gravitational Wave Open Science Center [48], a
service of LIGO Laboratory, the LIGO Scientific
Collaboration, the Virgo Collaboration, and KAGRA.
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APPENDIX: USEFUL DERIVATIONS

The dirty map in SpH basis can be written as [20]

X ¼ Γ ·P þ n; Xlm ¼ Γlm;l0m0Pl0m0 þ nlm; ðA1Þ

where n and P are column matrices having the SpH
coefficients of the additive Gaussian noise, fnlmg, and
SGWB sky map, fPlmg, respectively, as elements:

hniN ¼ 0 and hnn†iN ≈ Γ; ðA2Þ

hXiN ¼ Γ ·P and hXX†iN − hXiNhX†iN ≈Γ; ðA3Þ

where h·iN is the ensemble average over noise realizations.
The additive noise n is expected to follow a multivariate
Gaussian distribution. The statistical properties of the clean
map are given as

hP̂iN ¼ ðΓ−1
R ΓÞ ·P and

hP̂P̂†iN − hP̂iNhP̂†iN ≈ Γ−1
R ΓΓ−1

R : ðA4Þ

Note that the regularized clean map is a “biased” estimator
of the true SGWB SpH coefficient, and harmonic
modes are correlated. Then, the unbiased angular power
spectrum [see Eq. (19)] can be obtained similarly as in
Thrane et al. [20] by subtracting the bias due to noise
covariance.

1. Covariance matrix for Ĉl

Σll0 ¼ hĈlĈl0 iN;U − hĈliN;UhĈl0 iN;U: ðA5Þ

We simplify the first term in the above expression

(define N ¼ ð2π2f3
3H2

0

Þ2):
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hĈlĈl0 iN;U¼
N 2

ð2lþ1Þð2l0þ1Þ
� Xl

m¼−l
½jP̂lmj2−ðΓ−1

R ·Γ ·Γ−1
R Þlm;lm�

Xl0

m0¼−l0
½jP̂l0m0 j2−ðΓ−1

R ·Γ ·Γ−1
R Þl0m0;l0m0 �

�
N;U

;

ð2lþ1Þð2l0þ1Þ
N 2

hĈlĈl0 i¼
� Xl

m¼−l

Xl0
m0¼−l0

jP̂lmj2jP̂l0m0 j2
�

N;U
−

Xl
m¼−l

ðΓ−1
R ·Γ ·Γ−1

R Þlm;lm

Xl0
m0¼−l0

hjP̂l0m0 j2iN;U

−
Xl0

m0¼−l0
ðΓ−1

R ·Γ ·Γ−1
R Þl0m0;l0m0

Xl
m¼−l

hjP̂lmj2iN;U

þ
Xl
m¼−l

ðΓ−1
R ·Γ ·Γ−1

R Þlm;lm

Xl0
m0¼−l0

ðΓ−1
R ·Γ ·Γ−1

R Þl0m0;l0m0 : ðA6Þ

Simplifying the second term,

ð2lþ 1Þð2l0 þ 1Þ
N 2

hĈliN;UhĈl0 iN;U ¼
Xl
m¼−l

hjP̂lmj2iN;U

Xl0
m0¼−l0

hjP̂l0m0 j2iN;U −
Xl0

m0¼−l0
hjP̂l0m0 j2iN;U

Xl
m¼−l

ðΓ−1
R · Γ · Γ−1

R Þlm;lm

−
Xl
m¼−l

hjP̂lmj2iN;U

Xl0
m0¼−l0

ðΓ−1
R · Γ · Γ−1

R Þl0m0;l0m0

þ
Xl
m¼−l

ðΓ−1
R · Γ · Γ−1

R Þlm;lm

Xl0
m0¼−l0

ðΓ−1
R · Γ · Γ−1

R Þl0m0;l0m0 : ðA7Þ

Hence,

ð2lþ 1Þð2l0 þ 1Þ
N 2

Σll0 ¼
� Xl

m¼−l

Xl0
m0¼−l0

jP̂lmj2jP̂l0m0 j2
�

N;U
−

Xl
m¼−l

hjP̂lmj2iN;U

Xl0
m0¼−l0

hjP̂l0m0 j2iN;U: ðA8Þ

Then simplifying the first term in the rhs of the above equation (in the weak signal limit),

� Xl
m¼−l

Xl0
m0¼−l0

jP̂lmj2jP̂l0m0 j2
�

N;U
¼

� Xl
m¼−l

Xl0
m0¼−l0

jðP̂lm − PlmÞ þ Plmj2jP̂l0m0 − Pl0m0 þ Pl0m0 j2
�

N;U
ðA9Þ

≈
X
mm0

hjP̂lm − Plmj2jP̂l0m0 − Pl0m0 j2iN;U þ
X
mm0

hjPlmj2Pl0m0 j2iU

þ
X
mm0

ðΓ−1
R · Γ · Γ−1

R Þl0m0;l0m0 hjPlmj2iU þ
X
mm0

ðΓ−1
R · Γ · Γ−1

R Þlm;lmhjPl0m0 j2iU

þ
X
mm0

4R½ðΓ−1
R · Γ · Γ−1

R Þlm;l0m0 hPlmP�
l0m0 iU�: ðA10Þ

Also, using Wick’s theorem for the Gaussian random variables [52],X
mm0

hjP̂lm−Plmj2jP̂l0m0 −Pl0m0 j2iN;U≈
X
mm0

ðΓ−1
R ·Γ ·Γ−1

R Þlm;lmðΓ−1
R ·Γ ·Γ−1

R Þl0m0;l0m0 þ
X
mm0

2jðΓ−1
R ·Γ ·Γ−1

R Þlm;l0m0 j2: ðA11Þ

Solving for the second part of Eq. (A8) and using Eq. (A4),

Xl
m¼−l

hjP̂lmj2iN;U

Xl0
m0¼−l0

hjP̂l0m0 j2iN;U ¼
Xl
m¼−l

½hjPlmj2iU þ ðΓ−1
R ·Γ ·Γ−1

R Þlm;lm�
Xl0

m0¼−l0
½hjPl0m0 j2iU þ ðΓ−1

R ·Γ ·Γ−1
R Þlm;l0m0 �:

ðA12Þ
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Putting all pieces together

ð2lþ 1Þð2l0 þ 1Þ
N 2

Σll0 ≈
X
mm0

hjPlmj2Pl0m0 j2iU −
X
m

hjPlmj2iU
X
m

hjPl0m0 j2iU

þ
X
mm0

4R½ðΓ−1
R · Γ · Γ−1

R Þlm;l0m0 hPlmP�
l0m0 iU� þ

X
mm0

2jðΓ−1
R · Γ · Γ−1

R Þlm;l0m0 j2; ðA13Þ

≈ ð2lþ 1Þ2Var½N −1C̃l�Uδll0 þ
X
m

δll04R½ðΓ−1
R · Γ · Γ−1

R Þlm;lm�½N −1Cl þ 4πP̄2δl0�

þ
X
mm0

2jðΓ−1
R · Γ · Γ−1

R Þlm;l0m0 j2: ðA14Þ

If we assume that the signal is weak and the true angular
power spectrum is negligible in comparison to the noise
spectrum, then covariance

ð2lþ 1Þð2l0 þ 1Þ
N 2

Σll0 ≈
X
mm0

2jðΓ−1
R · Γ · Γ−1

R Þlm;l0m0 j2:

ðA15Þ

2. Approximated PDF for SNR

Using Eqs. (19) and (22),

Ĉl ¼ N
2lþ 1

X
m

½jP̂lmj2 − σ2l� ¼
N σ2l
2lþ 1

X
m

�jP̂lmj2
σ2l

− 1

�
;

ðA16Þ

Ĉl ¼ N σ2l
2lþ 1

X
m

½jρlmj2 − 1�; ðA17Þ

where ρlm is the SNR of the SpH coefficient. Now, using
Eq. (20), the error bar can be written as

σCl
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N 2

ð2lþ 1Þ2
X
m

σ4l

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2lþ 1Þ

s
N σ2l: ðA18Þ

Then the SNR is

ρl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð2lþ 1Þ

s X
m

½jρlmj2 − 1�: ðA19Þ

The SNR ρlm are normally distributed random variables
in noise-only cases. Then, the PDF for the sum of the
squares of the k ¼ 2lþ 1 normally distributed random
variables is χ2 distributed with k DOF:

P

�
x ¼

X
m

jρlmj2
�

¼ χ2k

�
x ¼

X
m

jρlmj2
�
: ðA20Þ

Then, the distribution of ρl ¼
ffiffiffiffi
1
2k

q
ðx − kÞ, from change of

variable

P

�
y ¼ ρl ¼ ðx − kÞffiffiffiffiffi

2k
p

�
dy ¼ PðxðyÞÞ

				 dxdy
				dy;

¼
ffiffiffiffiffi
2k

p
χ2kðx ¼

ffiffiffiffiffi
2k

p
yþ kÞdy:

ðA21Þ

3. Angular power spectrum using dirty map

Let us define the angular power spectrum using the dirty
map as

D̂l ¼ 1

2lþ 1

X
m

jXlmj2: ðA22Þ

Then its expected value is given by

hD̂liN;U ¼ 1

2lþ 1

X
m

hX�
lmXlmiN;U; ðA23Þ

¼ 1

2lþ 1

X
m

X
l0m0

X
l00m00

Γ�
lm;l0m0Γlm;l00m00 hPl0m0Pl00m00 iN;U þ 1

2lþ 1

X
m

hn�lmnlmiN;U; ðA24Þ
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¼ 1

2lþ 1

X
m

X
l0m0

X
l00m00

Γ�
lm;l0m0Γlm;l00m00 hPl0m0Pl00m00 iU þ 1

2lþ 1

X
m

hn�lmnlmiN; ðA25Þ

≈
1

2lþ 1

X
m

X
l0m0

X
l00m00

Γ�
lm;l0m0Γlm;l00m00 ½N −1Cl0δl0l00δm0m00 þ 4πP̄2δl0l00δl00� þ

1

2lþ 1

X
m

Γlm;lm; ðA26Þ

≈
1

2lþ 1

X
m

X
l0m0

Γ�
lm;l0m0Γ�

lm;l0m0 ½N −1Cl0 þ 4πP̄2δl00� þ
1

2lþ 1

X
m

Γlm;lm; ðA27Þ

≈
X
l0
All0 ½N −1Cl0 þ 4πP̄2δl00� þ Nl; ðA28Þ

where All0 ¼ 1
2lþ1

P
mm0 jΓlm;l0m0 j2 can be called a bias

matrix in analogy to CMB analysis [41] that represents the
correlation between modes, and Nl ¼ 1

2lþ1

P
m Γlm;lm is

the noise angular power spectrum.

4. Weighted mean squared error

We fit the histogram from time-shifted data and find
effective DOF by minimizing the weighted mean squared
error defined as

MSE ¼
Pnbins

i¼1 wiðNi − NtotalPðyiÞÞPnbins
i¼1 wi

; ðA29Þ

where nbins are the numbers of bins in the histogram, Ni is
the number of samples having statistic value between yi −
dy=2 and yi þ dy=2, Ntotal is the total number of the
samples to fit and wi ¼ N−1

i is the weight for each bin to
give more weight to the tail of the histogram.
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