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Studying the properties of ultradense matter is one of the key goals of modern neutron star research. The
measurement of the tidal deformability from the inspiral of a binary neutron star merger offers one promising
method for constraining the equation of state (EoS) of cold, densematter. In thiswork,we report on a newclass
of EoSs which have significantly different pressures at nuclear densities and large differences in stellar radii,
but that predict surprisingly similar tidal deformabilities across the entire range of astrophysically-observed
neutron star masses. Using a survey of 5 million piecewise polytropic EoSs, subject to five different sets of
nuclear priors, we demonstrate that these “tidal deformability doppelgängers” occur generically. We find that
they can differ substantially in the pressure (by up to a factor of 3 at nuclear densities) and in the radius of
intermediate-mass neutron stars (by up to 0.5 km), but are observationally indistinguishable in their tidal
deformabilities (ΔΛ ≲ 30) with the sensitivity of current gravitational wave detectors. We demonstrate that
this near-degeneracy in the tidal deformability is a result of allowing for a phase transition at low densities.We
show that a combination of input from nuclear theory (e.g., from chiral effective field theory), x-ray
observations of neutron star radii, and/or the next generation of gravitational wave detectors will be able to
significantly constrain these tidal deformability doppelgängers.
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I. INTRODUCTION

Astrophysical observations of neutron stars provide a
unique laboratory for constraining the equation of state
(EoS) of ultra-dense matter. Such constraints have been
made, for example, using measurements of the neutron star
radius from spectral modeling of bursting or quiescent
neutron stars in x-ray binaries [1–9] or, more recently, from
pulse-profile modeling of x-ray pulsars with the Neutron star
Interior Composition ExploreR (NICER) [10–13]. With the
advent of gravitational wave (GW) astronomy, a comple-
mentary avenue for constraining theEoS is nowalso possible.
In particular, observations of the inspiral gravitational

waves from the first binary neutron star merger,
GW170817, have constrained the tidal deformability of a
1.4M⊙ star to Λ1.4 ¼ 190þ390

−120 at 90% confidence, which in
turn has been used to constrain the pressure at twice the
nuclear saturation density to within ∼125% [14–16]. It is

projected that within the next five years, the LIGO-Virgo-
Kagra network is likely to detect Oð10–20Þ additional
neutron star mergers with high signal-to-noise ratios
(SNRs), which could further constrain the pressure at twice
nuclear densities to within a factor of ∼2 [17–20]; or,
potentially to within 20% given certain assumptions about
the nuclear EoS [21].
With the construction of next-generation GW detectors

such as Cosmic Explorer [22], Einstein Telescope [23], or
NEMO [24], even tighter constraints on the EoS will
become possible in the 2030s. For example, an event like
GW170817 would have an SNR of 2800 with Cosmic
Explorer, roughly 88 times larger than was observed in
2017 [25]. These detectors will observe tens of thousands
of events per year, hundreds of which will have extremely
high SNR in the inspiral, leading to anticipated constraints
on the binary tidal deformability of σΛ̃ < 20 and thus
enabling a new era of precision EoS constraints [26].
The prospects for constraining the EoS with current

or next-generation GW observations relies on the
unique mapping between the tidal deformability and the

*craithel@ias.edu
†emost@caltech.edu

PHYSICAL REVIEW D 108, 023010 (2023)

2470-0010=2023=108(2)=023010(17) 023010-1 © 2023 American Physical Society

https://orcid.org/0000-0002-1798-6668
https://orcid.org/0000-0002-0491-1210
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.023010&domain=pdf&date_stamp=2023-07-11
https://doi.org/10.1103/PhysRevD.108.023010
https://doi.org/10.1103/PhysRevD.108.023010
https://doi.org/10.1103/PhysRevD.108.023010
https://doi.org/10.1103/PhysRevD.108.023010


underlying EoS. In the standard paradigm, these constraints
would be limited only by the sensitivity to which the tidal
deformability can be measured, and the masses at which
it is measured. In practice, effects such as dynamical
tides [27,28] or systematics in the available waveform
models [29] may complicate the extraction of the tidal
deformability from the inspiral GWs, but the tidal deform-
ability itself is assumed to map robustly to the EoS at
supranuclear densities.
In this paper, we describe a new construction of EoS

models that poses a challenge to this paradigm. In par-
ticular, we demonstrate that uncertainties in the EoS above
nuclear densities lead to the emergence of what we call
“tidal deformability doppelgängers”; these are EoS models
that differ significantly in pressure at supranuclear densities
and accordingly in the neutron star radius, but that predict
nearly identical tidal deformabilities across a wide
range of neutron star masses. The most extreme of these
doppelgänger EoSs can vary in the pressure by factors of
∼3 and in the radius by up to 0.5 km, but they differ in the
tidal deformability by ≲10 across the entire range of
astrophysically-observed neutron star masses, making them
observationally indistinguishable to current GW detectors.
We find that pairs of doppelgänger EoSs are ubiquitous

in randomly-generated EoS samples and that they occur as
a natural consequence of allowing for a phase transition in
the EoS at densities between 1 and 2 times the nuclear
saturation density (where the exact density depends on the
details of the crust EoS and the high-density parametriza-
tion, as we will demonstrate). We demonstrate that these
doppelgängers can be constructed by exploiting the differ-
ent density dependencies of the tidal Love number, k2,
and the stellar compactness, C, such that the tidal deform-
ability Λ ¼ ð2=3Þk2C−5 remains the same, in spite of large
differences in the stellar radii and pressures at supranuclear
densities. Interestingly, we find that the doppelgängers
approximately obey the quasiuniversal relations between
the tidal deformability and the moment of inertia, but that
the doppelgängers tend to fall below the standard quasiu-
niversal relations with stellar compactness [30].
The small differences in the tidal deformability curves of

the doppelgänger models will likely require the next gen-
eration of GW detectors to resolve. We demonstrate, how-
ever, that the parameter space that is subject to this tidal
deformability degeneracy can also be reduced by applying
more restrictive nuclear priors, e.g., on the crust EoSor on the
density derivatives of the pressure. At low densities, such
constraints may come from nuclear theory (e.g., from chiral
EFT [31–34]); while newmeasurements of neutron star radii
or even broad constraints on the tidal deformability with
current GW detectors may also help to constrain the
parameter space of the tidal deformability doppelgängers,
even before the advent of next-generation detectors.
The outline of the paper is as follows. In Sec. II, we

introduce several examples of doppelgänger EoSs and

illustrate their basic construction. In Sec. III, we perform
a large-scale EoS parameter survey with different sets of
nuclear priors, to characterize the regions of EoS parameter
space where the tidal deformability degeneracy can occur
and we quantify the unique signatures of these models. In
Sec. IV, we discuss the implications of the doppelgänger
EoSs and the prospects for resolving the degeneracy with
joint input from nuclear physics and astrophysics.

II. OBSERVATIONAL DEGENERACY BETWEEN
EOS MODELS WITH LOW-DENSITY

PHASE TRANSITIONS

We start in this section by introducing a few examples of
tidal deformability doppelgängers, in order to illustrate
their key features.
Here and throughout this paper, we utilize parametric

models of the EoS to explore the EoS parameter space in
search of doppelgänger models. In particular, we adopt a
piecewise polytropic (PWP) parametrization of the EoS,
using five polytropic segments that are spaced uniformly in
the logarithm of the density between ρ0 and 7.4ρsat [35–37],
where ρsat ¼ 2.7 × 1014 g=cm3 is the nuclear saturation
density. The starting density of the parametrization is taken
to be between ρsat and 1.5ρsat, below which we adopt a
tabular, nuclear EoS to describe the crust. For these crust
EoSs, we choose nuclear models that are consistent with
low-density nuclear constraints. We fix the pressure at ρ0 to
that of the crust EoS, in order to ensure continuity in the
resulting model. The five polytropic segments of the PWP
EoS are then determined by specifying the pressures at each
fiducial density in the model.
In constructing new EoSs, we impose a set of minimal

physical constraints on the EoS above ρ0, namely that:
(1) The EoS must be hydrostatically stable (i.e.,

∂P=∂ρ ≥ 0, where P is the pressure and ρ is the
rest-mass density).

(2) The sound speed must remain subluminal at all
densities.

(3) The EoS must be consistent with the observation of
massive pulsars. In particular, we require that
Mmax > 2.01M⊙, which corresponds to the 1σ lower
limit on the current most massive neutron star [38,39].

Once these minimal constraints are satisfied, we exploit the
uncertainties in the EoS to freely explore the remaining
parameter space. We note that the resulting EoSs are quite
broad in their coverage. We intentionally explore the
extremes of the EoS parameter space in order to identify
and highlight the new behavior of the doppelgänger
models. As we will demonstrate, by applying additional
nuclear input, the ubiquity and extremity of the
doppelgängers can be significantly reduced.
We introduce the concept of tidal deformability

doppelgängers with a few examples in Fig. 1. In this first
illustration, we have chosen commonly used low-density
EoSs, onto which we attach different high-density EoSs
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that are constructed using PWPs to produce similar tidal
deformability curves. For example, in the top row of Fig. 1,
the light blue model uses the variational-method nuclear
EoS ap3 [40] to describe the crust up to ρsat; while the dark
blue model uses the relativistic mean-field EoS ms1b [41]
for the crust. At ρ > ρsat, we switch to the PWP con-
struction described above, and we adjust the high-density
pressures to specifically minimize differences in the tidal

deformability Λ. The net result is a pair of EoSs that differ
in the pressure at ρsat by a factor of 2.6, in the radius R1.4 of
a 1.4M⊙ star by 0.33 km, but differ by ΔΛ≲ 10 across the
entire range of astrophysically observed neutron star
masses. The second and third rows of Fig. 1 show two
additional pairs of doppelgänger EoSs, which are con-
structed using different sets of crust EoSs: gnh3 [42],
alf4 [43], wff1 [44], and ms1, which is identical to ms1b but

FIG. 1. Three example pairs of doppelgängers, each constructed by assuming a different microphysical EoS for the crust. The various
crust EoSs (which are shown with dashed lines) are used up to ρsat; at higher densities, we use piecewise polytropes to explore the
parameter space and to illustrate the degeneracy in tidal deformabilities. The EoSs are shown in the left column; the middle column
shows the corresponding mass-radius relations; and the right column shows the absolute difference in tidal deformability at each mass,
for a given pair of doppelgängers. The vertical bands indicate the expected 68% measurement uncertainty in the tidal deformability for a
population of neutron star mergers, assuming an intermediate merger detection rate, for the sensitivity of LIGO at design sensitivity
(aLIGO), the anticipated sensitivity of LIGO during its fifth observing run (Aþ), and the proposed XG detector Cosmic Explorer (CE)
[25]. Masses below the lightest-observed neutron star mass are masked in gray.

TIDAL DEFORMABILITY DOPPELGÄNGER: … PHYS. REV. D 108, 023010 (2023)

023010-3



features a higher symmetry energy (for additional details on
these models, see e.g., [45]). In Fig. 1, we have grayed out
masses below 1.17M⊙, which is the 1-σ lower limit on the
lightest-observed pulsar [46], in order to focus on astro-
physically observed neutron star masses.1 In these exam-
ples, we find fractional differences in pressure of 170% and
in R1.4 of 0.72 km for the gnh3/alf4 pair of doppelgängers
(in green); and 365% in pressure and 0.48 km in R1.4 for the
wff1/ms1 pair of doppelgängers (in red).
Despite these large differences in pressure and radius, the

tidal deformabilities for each set of models are very similar
in all three cases. We show the difference in tidal deform-
ability as a function of the mass for each pair of models in
the far right column of Fig. 1. In these figures, the vertical
shaded bands indicate anticipated 68%measurement uncer-
tainties in the tidal deformability, σΛ, for a population of
neutron star mergers, assuming an intermediate merger
detection rate observed with current and next-generation
facilities [25].2 When this measurement uncertainty, σΛ,
becomes comparable to the intrinsic difference between a
pair of models, ΔΛ, the two EoSs can no longer be
distinguished. Already, we see that a next-generation
detector such as Cosmic Explorer would be required to
distinguish between any of these pairs of doppelgängers
based on their tidal deformabilities alone.

We note that we focus on absolute differences in radii
and tidal deformabilities, because this allows for the most
direct comparison against the observational sensitivity of
experiments such as NICER or LIGO. For example, it has
been estimated that the sensitivity of next-generation GW
detectors will yield constraints on the neutron star radii of
50–200 m [26], significantly smaller than what we con-
struct for the doppelgänger models shown in Fig. 1. To
explore the impact of this tidal deformability degeneracy
for current and future GW detector sensitivities, we
perform mock Bayesian inferences of the EoS for a pair
of doppelgänger models in a companion paper [47].
The examples shown here were constructed by using

different theoretical calculations for the crust EoS up to ρsat
and freely varying the PWP pressures at higher densities.
These results are consistent with previous work that has
shown that changing the crust EoS (at densities below
1014 g=cm3) can affect the radius without significantly
changing the tidal deformabilities [48]. Here, however, we
find that EoSs can have significant (∼3×) differences at
supranuclear densities, and still be indistinguishable in
their tidal deformabilities.
We can also see this behavior emerge more generically,

by systematically varying the EoS at densities above ρsat to
explore the uncertainties in the EoS at supranuclear
densities. We do so in Fig. 2, where we adopt a single
low-density EoS, ap3, which we use at densities below ρsat
for all models. At densities above ρsat, we construct a
sequence of models that exhibit similar tidal deformability
curves as the supranuclear pressures are varied.
In Fig. 2, it becomes clear that there is actually a

continuum of EoS models that produce nearly degenerate
tidal deformability curves. The mass-radius and tidal
deformability curves for these models are shown in the

FIG. 2. Tidal deformability degeneracy for an example family of doppelgänger EoSs. From left to right, we show the EoS pressure as a
function of density, the mass-radius (M − R) relation for each EoS, and the mass-tidal deformability relation. The curves in these first
three figures are colored according to the EoS pressure at the first fiducial density, 1.5ρsat, where ρsat is the nuclear saturation density.
The figure on the far right shows the absolute difference inΛ between any two of these EoSs, with a blue-green color scale to indicate the
ratio of pressures at ρsat for the two EoSs being compared. The vertical shaded bands indicate the expected detection sensitivity inΛ for a
population of mergers observed with current and next-generation detectors, and masses below the lightest-observed neutron star mass
are masked in gray (as in Fig. 1). For any pair EoSs, the tidal deformabilities differ by ≲50 across the entire range of astrophysical
neutron star masses, even though the pressures at 1.5ρsat differ by a factor of 5.

1We note that the 90% lower limit on the secondary mass from
GW170817 was also 1.17M⊙ and that, to date, no lighter neutron
stars have yet been detected from gravitational wave events [14].

2We note that the σΛ from [25] was calculated for the binary
tidal deformability, Λ̃. In this paper, we assume equal mass
binaries for simplicity, in which case Λ̃ reduces to the tidal
deformability of either star. We present the difference in Λ̃ as a
function of the mass ratio for two example pairs of doppelgänger
EoSs in a companion paper [47].
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middle panels of Fig. 2, where they are colored according
to the pressure at the nuclear saturation density, Psat. The
far right panel of Fig. 2 shows the difference in tidal
deformability between any two pairs of these EoSs, colored
according to the ratio of pressures at 1.5ρsat. As we saw in
Fig. 1, the tidal deformabilities of these models are nearly
indistinguishable with current GW detectors for all but the
lowest-mass systems. In this case, the doppelgängers would
be distinguishable in an EoS inference from GW data only
by the choice of informative nuclear priors. In contrast, for
a population of mergers observed with Cosmic Explorer,
these models start to become distinguishable from the data
directly.
The fact that the near-degeneracy in tidal deformability

curves applies to a continuous range of EoS parameter space
has important implications: it suggests that even as the range
of EoS pressures is further constrained by future astrophysi-
cal detections and by input from nuclear theory, the tidal
deformability degeneracy will be reduced, but not entirely
eliminated. We revisit this point and discuss practical ways
for further resolving the degeneracy in Sec. IV.

III. EOS PARAMETER SURVEY

Having now introduced the common features of a few
examples of tidal deformability doppelgängers, in this
section, we turn to a large-scale parameter survey, in order
to illustrate the ubiquity of the doppelgänger EoSs and to
quantify the specific regions of parameter space that are
susceptible to this tidal deformability degeneracy.

A. Construction of parameteric EoSs

To that end, we construct five samples of piecewise
polytropic EoSs. All EoSs consist of five polytropic seg-
ments, as described in Sec. II. We consider three fiducial
densities for the onset of our piecewise polytopes,
ρ0 ¼ f1; 1.2; and 1.5gρsat, in order to gauge the impact
of this starting density on the doppelgänger behavior. At
densities below this fiducial value, we adopt a tabulated,
nuclear EoS to describe the crust. The pressure at ρ0 is set
by the crust EoS, in order to ensure continuity in the EoS.
We explore two choices for the crust EoS. For the baseline
set of models, we use the nuclear model ap3 [40] for the
crust; but we also explore the impact of one stiffer EoS
model, ms1b [41], which predicts a significantly (2.6×)
larger pressure at ρsat (see top panel of Fig. 1).
The pressures at the remaining five fiducial densities are

free parameters, which we sample uniformly via a Markov-
chain Monte Carlo (MCMC). A tentative MCMC step is
rejected if it violates any of the minimal constraints
enumerated in Sec. II. We additionally impose a regularizer
on the pressure in our MCMC sampling, in order to
penalize EoS models that have extreme density variations
in the pressure. This helps to compensate for the large
degree of freedom inherent to a five-polytrope EoS.

We construct the regularizer to be a Gaussian over the
second logarithmic derivative of the pressure, i.e.,

ξ ¼ exp

�
−
ðd2ðlnPÞ=dðln ρÞ2Þ2

2λ2

�
; ð1Þ

where λ is the characteristic scale. The distribution of
d2ðlnPÞ=dðln ρÞ2 evaluated at different densities for a large
sample of theoretical EoSs is shown in Fig. 1 of [49]. Based
on those results, we adopt a conservative value of λ ¼ 8 for
our baseline models, which corresponds to a weakly
informative prior. We also construct one set of models
with λ ¼ 2, which corresponds to taking stronger (more
informative) input from the existing set of nuclear models.
For further details about how the choice of this Gaussian
regularizer affects an EoS inference, see [49].
Altogether, we construct five different sets of PWP EoSs;

our baseline model starts at ρsat, uses ap3 for the crust EoS,
and adopts a weak prior on the second derivative of the
pressures. We explore two samples with the same crust and
prior, but starting the PWP parametrization at ρ0 ¼ 1.2 and
1.5ρsat. We additionally modify the baseline sample to use
ms1b for the crust EoS, keeping ρ0 and the weak prior the
same; and to use a stronger prior, keeping ρ0 and the crust
EoS the same. For each case, we generate a large number
(2–4 million) of parametric EoSs, in order to densely
sample the five-dimensional EoS parameter space. We
summarize these samples in Table I for reference in the
following analysis.

B. Döppelganger scoring metric

Within each EoS sample described in Table I, we search
for models that show minimal differences in their tidal
deformability curves, in spite of large differences in the
EoS. In particular, we take a subset of ∼9 × 105 models and
compare each of these to every other EoS in the full sample.
For each possible pair of EoSs, we define a “doppelgänger
score” according to

D ¼ exp
�
−
ðΔΛmaxÞ2

2σ2Λ

��
1 − exp

�
−
ðΔRminÞ2

2σ2R

��
; ð2Þ

where ΔΛmax is defined as the maximum difference (i.e.,
the L∞-norm) in Λ between the two EoSs at any mass

TABLE I. Overview of EoS populations considered in this
work.

Starting density Crust EoS Prior choice

ρsat ap3 Weak (λ ¼ 8)
1.2ρsat ap3 Weak (λ ¼ 8)
1.5ρsat ap3 Weak (λ ¼ 8)
ρsat ms1b Weak (λ ¼ 8)
ρsat ap3 Strong (λ ¼ 2)
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across the astrophysically observed mass range, which
we take to span from the lightest observed pulsar at
1.17M⊙ [46] to 2.01M⊙ [38,39], at their 1-σ lower limits.
We calculate ΔRmin as the minimum difference in radius
between the two EoSs across the same mass range. The first
term in Eq. (2) is one for EoSs that predict identical tidal
deformabilities at all masses, and goes to zero as the tidal
deformability curves become less similar; while the second
term is zero for EoSs with identical mass-radius curves,
and approaches one as the mass-radius curves become
more distinct. Thus, the doppelgänger scoring criteria is
largest when ΔΛmax is minimized and ΔRmin is maximized.
Finally, to set the scale in Eq. (2), we define σΛ ¼ 10 and
σR ¼ 0.3 km, based on the characteristic differences that
we found in Λ and R in Sec. II.
We note that this scoring metric necessarily selects for

doppelgängers that are similar to what we constructed
by hand in Sec. II. Other scoring criteria would select
for different features. For example, maximizing a mass-
averaged ΔR (instead of ΔRmin) tends to select for EoSs
that are dominated by large differences in radius near the
maximum mass turn-over, even if the mass-radius curves
are identical at other masses. It may also be possible to
search for doppelgänger behavior directly in pressure-
density space. Empirically, we find that the scoring criteria
in Eq. (2) works well for identifying doppelgängers with
similar phenomenological features to the examples shown
in Sec. II.
For each EoS in our ∼9 × 105 subset, we use Eq. (2) to

identify a “best” doppelgänger companion out of all
possible (2–4 million) companions. For many EoSs, there
is no high-scoring doppelgänger companion, and the “best”
score is correspondingly very low. However, for the high-
est-scoring pairs of EoS, we find doppelgängers that are
comparable to those constructed by hand in Figs. 1 and 2.

C. Population properties

We compute the distribution of scores D for each
sample of randomly-generated EoSs and we classify as
doppelgängers those pairs of EoSs that have D within
90% of the highest score found. This criterion selects
Oð103–104Þ doppelgängers for each sample of EoSs. We
show contours of the mass-averaged ΔΛ and ΔR for these
models in Figs. 3–5.
To start, Fig. 3 shows the results for the EoS samples that

start their PWP parametrizations at ρ0 ¼ f1; 1.2; and
1.5gρsat. All three of these samples use the same low-density
crust EoS (ap3) and the same weak prior (see Table I). For
comparison, Fig. 3 also includes contours of the mass-
averaged ΔΛ and ΔR for 5,000 randomly drawn pairs of
EoSs from each sample in the unfilled contours.
In general, randomly paired EoSs have large differences

in tidal deformability, which are correlated with the differ-
ence in radius, as one might typically expect. In contrast,
the samples of EoSs that we identify as doppelgängers

occupy a distinct part of the EoS parameter space. These
have average differences in Λ of ≲10, indicating that the
mass-tidal deformability curves of these pairs of EoSs are
extremely similar to one another, while the average differ-
ence in radius is ∼0.1–0.4 km. From Fig. 3, we already see
that the EoS sample constructed with the PWP paramet-
rization starting at ρsat enables the most extreme set of
doppelgängers, with average radius differences of up to
∼400 m. As the crust EoS is enforced to higher densities,
the allowed doppelgängers become less extreme.
Figure 4 shows the impact of assuming a different crust

EoS on the resulting sample of doppelgängers. In this
figure, the baseline EoS sample, which assumes ap3 to
ρ0 ¼ ρsat, is repeated in teal for reference. The new
EoS sample (shown in yellow) is otherwise identical
(i.e., using ρ0 ¼ ρsat and the weak prior), but the low-
density EoS is exchanged for the stiffer model ms1b.
We find that adopting a stiffer crust EoS results in less
extreme doppelgängers, characterized by smaller average
differences in radii.
Figure 5 likewise shows the impact of modifying the

baseline EoS sample (in teal) to use a stronger prior on the

FIG. 3. Contours showing the mass-averaged differences in
radius and tidal deformability, calculated across the mass range of
1.17–2.01M⊙. The filled contours show the average differences
for the highest-scoring set of doppelgänger EoSs (68% and 95%
intervals), while the unfilled contours represent the average
differences for pairs of randomly-selected EoSs from each
sample (68% intervals). We include results for three EoS
samples, for which the PWP parametrization starts at
ρ0 ¼ f1; 1.2; and 1.5gρsat, where ρsat is the nuclear saturation
density. All samples use the same crust EoS (ap3) at lower
densities and adopt the same weak (λ ¼ 8) prior on the pressure
derivatives at higher densities. As the crust EoS is assumed to
higher densities, the allowed doppelgängers become less extreme.
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second logarithmic derivative of the pressure (in pink), such
that λ ¼ 2 in Eq. (1). By restricting rapid variations in the
pressure as a function of density, the extremity of the
doppelgänger models can be further reduced.
To understand these differences as a function of mass,

Fig. 6 shows contours of the differences in Λ and R at fixed

masses, for each set of doppelgängers identified in Fig. 3.
In general, we find that the doppelgängers selected for by
Eq. (2) have the largest differences in radius at low masses
(1.2M⊙). At all four masses considered, the doppelgängers
differ in Λ by a similar degree, albeit with somewhat larger
characteristic differences reached at 1.8M⊙. In fact, we can
see that for this mass, ΔΛ is more strongly correlated with
ΔR, whereas ΔΛ is almost independent of ΔR at lower
masses. Figure 6 again highlights that assuming the crust
EoS to higher densities reduces the parameter space of the
doppelgänger EoSs. For example, when the crust EoS is
assumed only up to ρsat, the doppelgängers are character-
ized by ΔR1.4 ≲ 0.25 km. However, in the more restrictive
case that the EoS is known to 1.5ρsat, the resulting set of
most extreme doppelgängers have ΔR1.4 ≲ 0.1 km.
In summary, for all EoS samples considered, we find

populations of doppelgänger EoS models that have average
differences in the tidal deformability of ≲10, but that differ
in radii by up to a few hundred meters. The extremity of the
doppelgänger behavior—characterized by the average
differences in radii—can be reduced by enforcing the crust
EoS to higher densities, using a crust EoS that is relatively
stiff, or by adopting stronger priors on the density deriv-
atives of the pressure.

D. EoS parameter space of the doppelgänger models

We turn now to the EoS parameter space probed by the
tidal deformability doppelgängers. Figure 7 illustrates the
mass-radius bounds spanned by each population of models
from Fig. 3. The lighter shaded regions correspond to
the randomly drawn EoSs from the full EoS samples, while
the darker shaded regions show the space occupied by the
doppelgänger EoSs. We caution that these are merely
bounds on the mass-radius space, and that multiple differ-
ent EoSs may contribute to any given feature along these
edges (see e.g., Fig. 3 of [49]). However, these edges
already demonstrate clearly that the doppelgänger scoring
criterion selects for relatively compact stars.
This is even more apparent when we consider the

distributions of radii for stars of fixed mass (M ¼ 1.4M⊙),
which are shown in the top panel of Fig. 7. The randomly
drawn sample of EoSs peaks strongly towards large R1.4,
due to the uniform MCMC sampling of the EoSs in
pressure space. In spite of this strong preference for
large-radius stars in the randomly-drawn EoS sample, the
doppelgängers select for more compact neutron stars,
with R1.4 ≃ 11–12 km. As the starting density for the
PWP parametrization is increased, the distribution of
doppelgängers shifts toward smaller radii and spans a
narrower region of the mass-radius plane.
Figure 8 shows the impact on these mass-radius bounds

of changing the crust EoS (in yellow) or adopting stronger
priors (in pink), compared to the baseline sample of
doppelgängers (in teal). For the same starting PWP density
of ρ0 ¼ ρsat, using a stiffer crust EoS such as ms1b causes

FIG. 5. Same as Fig. 3, but showing the impact of the choice of
prior on the doppelgänger populations. Both samples have a
fiducial density of ρ0 ¼ ρsat and assume ap3 for the crust EoS.
The baseline case for a weak prior (λ ¼ 8) is repeated from Fig. 3
in teal; the sample with a stronger prior (λ ¼ 2) is shown in pink.

FIG. 4. Same as Fig. 3, but showing the impact of the crust EoS
on the doppelgänger populations. Both samples have a fiducial
density of ρ0 ¼ ρsat and a weak prior on the second derivatives of
the pressure. The baseline case using ap3 for the crust EoS is
repeated from Fig. 3 in teal; the sample using ms1b for the crust is
shown in yellow.
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the doppelgänger population to shift to larger radii, with the
distribution of R1.4 peaking at ∼12.25 km, compared to
R1.4 ∼ 11.7 km for the baseline sample that uses the softer
crust EoS ap3. When the stronger prior is adopted, the
mass-radius bounds shrink and R1.4 is again slightly larger
than the weak prior baseline case. The reason for this is that
the stronger prior penalizes phase transitions (see Eq. (1)),
which generally lead to more compact stars.
For the range of crust EoSs, priors, and starting densities

considered here, we find that the doppelgängers occur in a
relatively compact region of parameter space. The range of
stellar compactness spanned by these models is consistent

with current astrophysical constraints from NICER [10–13]
and GW170187 [14–16]. However, if future observations
find that neutron star radii are significantly larger, it may be
possible to constrain the ubiquity and extremity of the
doppelgängers by combining nuclear input (e.g., in terms
of the densities to which the crust EoS is known) with x-ray
observations of neutron stars. We revisit this point in the
discussion below.
In order to better understand the parameter space of these

models, Figs. 9 and 10 show 2D histograms of the pressure
and density for the various populations of doppelgängers.
For a given pair of doppelgängers, we identify one EoS as

FIG. 6. Contours showing the absolute difference in Λ and R measured at four different masses, for the doppelgängers identified in
Fig. 3. The colors indicate the density at which the PWP parametrization begins, below which the crust EoS (ap3) is assumed. All
models are sampled with the weak prior. The contours correspond to 68% and 95% intervals. The absolute differences in radii tend to
be largest at small masses; while the differences inΛ tend to be largest at higher masses. In all cases,ΔΛmeasured at any of these masses
is ≲20.
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“softer” and one as “stiffer”, based on which has the larger
pressure at the first fiducial density in our parametrization.
We then compute the 2D histogram for all of the softer
EoSs in blue, and the stiffer EoSs in red. A clear structure
emerges in these 2D histograms, with all softer (blue) EoSs
exhibiting some degree of a phase transition at densities
immediately above ρ0, for any of the three starting densities
considered in Fig. 9. The stiffer (red) EoSs start initially
stiff, then soften. We saw a similar behavior in Figs. 1 and
2, where the strongest tidal deformability degeneracy
occurred for EoSs that differed maximally in the pressure
at low densities, but were similar at higher densities. Here,
we see that this signature holds more generally in this larger
and randomly generated EoS sample; that is, the
doppelgänger degeneracy emerges for EoSs that differ
significantly at low densities, with one stiffer EoS rising
rapidly in pressure, undergoing a phase transition, and then

stiffening again (more slowly) to higher densities. The
companion doppelgänger EoS is one that starts with a
strong phase transition just above ρ0, and then stiffens, such
that it has the higher pressure just above the first softening
of the other EoS.
The large differences between the stiff (red) and soft

(blue) doppelgängers in Fig. 9 imply significant differences
in the underlying physics of the models. In particular,
although the PWP construction is phenomenological in
nature, the qualitative features found in Fig. 9 are similar to
what is found in more realistic calculations of EoSs with
first-order phase transitions to deconfined quark matter, or
more generally to the emergence of more exotic degrees of
freedom, e.g., [50–52] and references therein. Thus, the
degeneracy of the tidal deformability curves for these
models suggests some limitation to how well we may be
able to resolve phase transitions in some regions of
parameter space. We investigate this question in the context
of mock EoS inferences from GW data for doppelgänger
models in [47].
As the crust EoS is assumed to higher densities, we find

in Fig. 9 that the differences in pressures between a given
pair of doppelgängers are reduced. For comparison against

FIG. 8. Same as Fig. 7, but showing the impact of the choice of
priors and the crust EoS on the doppelgänger populations,
compared to the baseline sample (in teal; repeated from Fig. 7).
All samples have a fiducial density of ρ0 ¼ ρsat. The impact of
using the stiffer crust EoS ms1b is shown in yellow. The impact of
adopting a stronger prior on the density dependence of the
pressure is shown in pink.

FIG. 7. Mass-radius space spanned by the EoS samples
included in Fig. 3. The EoS samples with the PWP parametriza-
tion starting from ρsat are shown in teal, from 1.2ρsat in orange,
and from 1.5ρsat in blue. The light-shaded regions show a random
sample of 5,000 EoSs, drawn from the complete distribution,
while the dark-shaded regions correspond to the sample of
highest-scoring doppelgänger EoSs. Mass-radius constraints
from NICER are shown in gray dashed [10,12] and dash-dotted
lines [11,13]. The corresponding distribution of the radii pre-
dicted for a 1.4M⊙ neutron star for each of these samples is
shown in the top panel. The randomly selected set of EoSs are
strongly biased towards large radii, due to the uniform sampling
in pressure-density space. In contrast, the doppelgänger criterion
selects for more compact stars.
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the baseline case (with the PWP parametrization starting at
ρ0), we show also in Fig. 10 the doppelgänger populations
with the stronger prior on the pressure derivatives and with
the stiffer crust EoS. For the case of the strong prior, which
penalizes large second derivatives of the pressure (Eq. (1),
first-order phase transitions are severely restricted.
Nevertheless, the doppelgänger scoring criteria still selects
for EoSs that are maximally different at intermediate
densities and selects, when possible, for smoother, cross-
over phase transitions.
For the crust EoS ms1b in the bottom panel of Fig. 9, we

also find smaller differences in the pressures between the
stiff and soft doppelgängers, compared to the baseline case
which used ap3 for the crust. The reason for this is that
ms1b is a relatively stiff EoS (see Fig. 1), thus the
parametrization starts from a higher pressure at ρ0. As a
result, there is a narrower region of parameter space in
which it is possible to construct a pair of models with the
requisite phase transitions to achieve the doppelgänger
morphology.
We emphasize that these pressure-density histograms

highlight the most extreme pairs of doppelgängers in our
full sample. As was shown in Fig. 2, the parameter space
between the blue and red curves will also be partially
degenerate in tidal deformability. We note that a different
parametrization of the EoS (e.g., a constant-sound-speed
[53], spectral [54,55] or nonparametric [56,57] representa-
tion) may influence the EoS features identified here and the
resulting tidal deformability degeneracy as well. Further
work will be needed to assess the ubiquity of the
doppelgänger degeneracy in other EoS frameworks.

E. I-Love-C quasiuniversal relations

The typical differences of ≲10 in the tidal deformability
found in Sec. III C are much smaller than expected from the
quasiuniversal relation between Λ and the stellar compact-
ness, C, first introduced in [30,58]. This Λ − C relation

predicts, e.g., that a 0.4 km difference in radii for
R1.4 ≃ 12 km stars should propagate to a difference in
Λ1.4 of 85. More generally, it has been shown that Λ ∝ Rα

for a large range of EoSs, where α ≈ 6 [59–61], which
would further imply that small differences in R should
propagate to large differences in Λ. Given these standard
scaling relations, the small differences in Λ for the
doppelgängers are quite surprising.
Curiously, we find that the doppelgänger EoSs still

approximately obey the quasiuniversal relations of [30],
between not just Λ and C, but also with the dimensionless
moment of inertia Ī ≡ I=M3. We show these relations in
Fig. 11 for our baseline EoS sample (PWP parametrization
starting at ρsat, ap3 for the crust EoS, and a weak prior on
the pressure derivatives). The highest-scoring sample of
doppelgängers are shown in teal, while the sample of
randomly-drawn EoSs are shown in orange. The bottom
panel shows the residuals compared to the fit relations
from [30].
We find that the doppelgängers obey these standard

quasiuniversal relations, with a roughly comparable degree
of scatter. In particular, for the Ī − Λ relation, which is the
tightest relation of the three shown, the doppelgängers obey
the existing relation nearly exactly, with errors at the
subpercent level. This is nearly indistinguishable from
the relation we find for the random sample of EoSs. In
the relations between either Λ or Ī and the stellar compact-
ness, which are generally broader, we find that the
doppelgängers are approximately consistent with the
existing relationships, although there is a systematic
deviation from the standard relation at small compactness.
This deviation becomes more evident in Fig. 12, where

we show a 2D histogram of the Λ − C relation for the same
sample of doppelgängers. As in Fig. 9, for each pair of
doppelgängers, we identify one softer and one stiffer EoS
based on which has the larger pressure at the first fiducial
density and we color the resulting histograms in blue and

FIG. 9. Pressure-density histograms for the population of doppelgängers identified in Fig. 3. All models use ap3 for the crust EoS and
use the weak prior on the density-dependence of the pressure. We classify each EoS in a given pair of doppelgängers as “stiff” or “soft”
based on the pressure at the first fiducial density, and we plot the 2D histograms for each subclass in red and blue respectively.
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red, respectively. We find that the doppelgänger models
tend to fall systematically below the Λ − C relationship
of [30], with larger deviations at small C. This is perhaps
not surprising, given with the compact region of parameter
space that these models are found within (see Sec. III D).
We also find that, although the doppelgängers generally

obey the standard Λ − C relation, they select from distinct
regions of this plane, as evidenced by the divide in colors in
Fig. 12. That is, the doppelgängers can be interpreted as
originating from different subpopulations that exist within
the scatter of the broad Λ − C relation. The results in
Fig. 12 are shown for the weakest set of constraints in order
to illustrate the trend.
For completeness, we show the I − Λ − C relations for

the EoS samples with additional restrictions (in terms of the

density to which the crust EoS is assumed, the choice
of crust EoS, and the prior) in the Appendix. In all cases,
we find that the doppelgängers exhibit a tight I − Λ
correlation, with subpercent residuals comparable to the
relation of [30]. For the Λ − C and I − C relations, the
doppelgänger models can deviate more significantly from
the relations of [30], especially at low C, depending on the
restrictions adopted in the EoS sampling.
Finally, we illustrate the origin of the tidal deformability

degeneracy in Fig. 13, where we show the tidal Love
number, k2, for one pair of high-scoring doppelgängers (in
the top panel), compared to the random population of EoSs
(in the bottom panel). We see in this figure that, although
the tidal deformabilities of the two doppelgänger EoSs are
very similar, their tidal Love numbers differ significantly.
Figure 13 additionally shows that for a random sample of
EoSs, k2 is approximately correlated with the neutron star
radius. Because the tidal deformability is constructed from
these two quantities according to

Λ ¼ 2

3
k2

�
R
M

�
5

; ð3Þ

the bottom panel of Fig. 13 thus also illustrates the known
Λ ∝ Rα scaling relation.
In contrast, the top panel of Fig. 13 shows that the

doppelgängers violate this trend between k2 and the radius,
across a limited range of radii. For the doppelgänger
models, an increase in k2 at a given mass is balanced
by a decrease in R, and the overall Λ remains approx-
imately unchanged. These results suggest that if a gravi-
tational wave detector were directly sensitive to k2, the
doppelgänger models could be more readily distinguished.
However, because the detectors are most sensitive to the
product of k2 and R5, and because k2 and R are each
sensitive to the EoS at slightly different densities, it is
possible to construct models that are approximately degen-
erate in their tidal deformabilities. We note that these trends
hold generally for all of the EoS samples considered, but
with differing magnitudes. We show results here for the
baseline sample for illustrative effect.

IV. DISCUSSION

The example doppelgängers first constructed by hand in
Sec. II and identified generically from samples of ran-
domly-generated EoSs in Sec. III both share a common
signature; namely, that the stiffer EoS undergoes some
crossover (or, in the more extreme case, first-order) phase
transition at supranuclear densities. When compared to a
sufficiently soft companion EoS, the resulting models can
have nearly identical tidal deformability curves across a
wide range of neutron star masses, in spite of significant
differences (>100%) in the low-density pressures. We see
this behavior in EoS samples that are constructed to
obey minimal physical constraints and that are subject to

FIG. 10. Same as Fig. 9, but showing the impact of adopting a
stronger prior (top) or stiffer crust EoS (bottom) on the population
of highest-scoring doppelgängers. The PWP parametrization
starts at ρ0 ¼ ρsat for all models.
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different degrees of nuclear input, in terms of the density to
which the crust EoS is utilized and in terms of the prior on
the derivatives of the pressure. In every case, we find
examples of doppelgänger EoSs, although the extremity of
the degeneracy is reduced as more restrictions are added.
The existence of doppelgänger EoSs thus seems to be a

natural consequence of allowing for a phase transition. For
an EoS to undergo a phase transition and still meet the
maximum mass requirement of ∼2M⊙, it requires a
significant degree of stiffening at both lower and higher
densities. As we have shown in Fig. 10, one way to reduce

the extremity of the allowed doppelgängers is to apply a
stronger prior on the second derivative of the pressure.
Thus, by folding in constraints on the sound speed in
neutron stars from latest astrophysical measurements,
combined with theoretical input from chiral EFT [e.g.,
63–66], it may be possible to constrain the parameter space
of doppelgänger models.
In terms of the crust EoS, further constraints may be

possible by incorporating latest results from chiral EFT
calculations, which can at least partially constrain the EoS
to densities of 2ρsat [67–69], Improvements in low-density
experimental constraints will come in the coming years as
well, e.g., from measurements of the neutron skin thickness
with PREX and CREX [70], new neutron-rich isotope
facilities such as FRIB, RIBF, and FAIR, and next-
generation heavy-ion colliders such as NICA [71]. As
these experiments and theoretical inputs constrain the crust
EoS to higher densities, the allowed parameter space for the
doppelgänger models will be further reduced.
Another avenue forward is to use the next-generation of

astrophysical constraints. Indeed, the most extreme exam-
ples of doppelgängers that we constructed predicted neu-
tron star radii that differ by ∼0.5 km (or even 0.7 km, when
allowing for further freedom in the crust EoS, as in Sec. II).
This is comparable to the anticipated radius accuracy for
the brightest NICER targets [72]. Gravitational wave
detections of mergers with very low-mass neutron stars
(∼1–1.2M⊙) may also help to distinguish between some
classes of doppelgängers, as low-mass stars have generally
larger differences in tidal deformabilities. If such low-mass
systems exist, they may be a prime target for partially
resolving the tidal deformability degeneracy directly with
GW data. We demonstrate this prospect in the context of an
EoS inference from current and upcoming GW data for a
pair of doppelgänger models in [47]. However, we note that

FIG. 12. 2D histogram showing the quasiuniversal relationship
between tidal deforambility and stellar compactness, for the
doppelgängers identified for our baseline EoS sample. We
classify each EoS in a given pair of doppelgängers as “stiff”
or “soft” based on the pressure at the first fiducial density, and we
plot the 2D histograms for each subclass in red and blue
respectively. Tidal deformability degeneracy emerges for EoSs
that trace out parallel, but offset trends in Λ − C.

FIG. 11. Quasiuniversal relation between tidal Love number, the neutron star compactness, C, and the dimensionless moment of
inertia Ī ≡ I=M3. A random selection of 5000 EoSs from our baseline EoS sample (which assumes the ap3 crust EoS to ρsat and a weak
prior on the pressure derivatives) are shown in orange, while the set of most extreme doppelgängers are shown in teal. The quasiuniversal
relations from [62] are shown in gray, dashed lines for reference. The average residuals between the EoS samples and the quasiuniversal
fit line are shown in the bottom panels.
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measuring the difference in Λ for such systems will likely
still require very high SNRs, at which point current
waveform models become prone to systematic errors [29].
Improvements in numerical waveform models are thus
crucially needed as well.
Rather than treating each of these types of constraints

separately, the most promising route forward will likely be
to combine these inputs. For example, consider a scenario
in which nuclear theory constrains the crust EoS suffi-
ciently tightly that the allowed parameter space of
doppelgängers is restricted to R1.4 ∈ ð10; 12Þ km (as in
e.g., Fig. 7). If NICER measures the radius of a future
source with high precision to R1.4 > 12 km or if LIGO
likewise measures an incompatible tidal deformability, then
the most extreme sets of doppelgängers can effectively be
ruled out.
In a companion work to this paper [47], we performed a

set of numerical relativity simulations of neutron star
mergers, using two example pairs of doppelgänger EoSs.

In that work, we investigated the emission of gravitational
waves from the postmerger remnant, and found that the
peak frequency of the postmerger signal is the same for a
given pair of doppelgängers, to within our estimate of the
numerical error of the simulations. In other words, it seems
that postmerger GWs may not be able to distinguish
between doppelgängers either, although this conclusion
is subject to the numerical and physical uncertainties
of current state-of-the-art simulations, including the pos-
sible impact of incorporating more realistic magnetic
fields [73–75], more advanced neutrino physics [76–79],
finite-temperature effects [80–82], and rapid neutron star
spins [83–87], which will need to be considered before a
final conclusion can be drawn.

V. SUMMARY AND CONCLUSIONS

In this paper, we have introduced a new class of EoS
models that can differ significantly in the pressure near
saturation densities and, accordingly, in the radii by up to
0.5 km, but that are surprisingly similar in tidal
deformability across the entire range of neutron star
masses. These tidal deformability doppelgängers will
be challenging to differentiate with the current generation
of GW detectors, although next-generation facilities
such as Cosmic Explorer or Einstein Telescope may be
able to resolve the small differences in Λ for these
models.
We have shown that it is not only possible to construct

EoSs that have nearly degenerate tidal deformability
curves, but that these doppelgängers naturally occur in
randomly generated samples of EoS models, as a conse-
quence of allowing for a phase transition at supranuclear
densities, where the exact density can be pushed higher by
adopting a more restrictive nuclear input. This has impor-
tant implications for EoS inferences from measurements of
the tidal deformability. In particular, even with measure-
ments of tidal deformabilities across a wide range of
masses, we have shown that there are some regions of
the EoS parameter that will be challenging to distinguish
based on the tidal deformabilities alone. This implies a
fundamental limit to the level at which the neutron star
radius can be constrained from current measurements of the
tidal deformability, in the absence of informative nuclear
priors that would distinguish between these doppelgänger
models.
However, we have also demonstrated that by adopting

more restrictive priors on the density dependence of the
pressure, or by utilizing the crust EoS to higher densities,
that the extremity of the doppelgänger models can be
significantly reduced. Thus, by incorporating future con-
straints from nuclear theory and experiments, x-ray obser-
vations of neutron star radii, and population constraints on
the tidal deformability from current-generation facilities, it
may be possible to significantly constrain the ubiquity of

FIG. 13. Tidal Love number as a function of the neutron star
mass and radius (shown via the color). The top panel shows these
values for one of the highest-scoring examples of doppelgängers,
while the bottom panel shows the correlations for a randomly
drawn sample of EoSs. All results are shown for the baseline
sample, which uses ap3 for the crust EoS up to ρsat, together with
the weak prior on the pressure derivatives.
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doppelgänger models, even before the advent of next-
generation GW detectors.
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APPENDIX: I-LOVE-C RELATIONS FOR
ADDITIONAL EOS SAMPLES

In this appendix, we report the I-Love-C relations for
three additional EoS samples, to demonstrate the impact of

assuming the crust EoS to a higher density of ρ0 ¼ 1.5ρsat
(in Fig. 14), using a stonger prior on the high-density
pressure derivatives (in Fig. 15), and adopting the stiffer
crust EoS ms1b (in Fig. 16). In each of these figures, we
show the correlations between tidal deformability, moment
of inertia, and compactness for both a set of randomly
selected EoSs (in orange) or the highest-scoring set of
doppelgängers from a given EoS sample (in teal).
For all three of these EoS samples, which adopt addi-

tional restrictions compared to the baseline EoS sample
described in Sec. III E, we find that the I − Λ relation still
holds, almost exactly, for the doppelgänger models. In
particular, I − Λ correlation for the doppelgänger models
matches that of Ref. [30] with subpercent residuals,
indistinguishable from the correlation for the randomly
selected set of EoS models.
In contrast, we find larger deviations of up to ∼30% in

the Λ − C and I − C relations for the doppelgänger models,
compared to the quasiuniversal relations of [30]. The
deviations are largest in the Λ − C correlations at small
compactness.
Thus, although the EoS samples shown in Figs. 14–16

have more restrictions than the baseline EoS sample of
Sec. III E, they deviate more significantly from the existing
quasiuniversal Λ − C relations. Depending on the region of
parameter space in which the true EoS resides, these
deviations may bias EoS inferences that incorporate the
standard Λ − C fits; e.g., as was done in one of the EoS
inferences of the LIGO-Virgo anaylsis of GW170817 [16].

FIG. 14. Same as Fig. 11, but for the EoS sample that assumes the crust EoS ap3 to ρ0 ¼ 1.5ρsat, with the weak prior. Caption details
from Fig. 11 are repeated for convenience: Quasiuniversal relation between tidal Love number, the neutron star compactness, C, and the
dimensionless moment of inertia Ī ≡ I=M3. A random selection of 5,000 EoSs from is shown in orange, while the set of doppelgängers
is shown in teal. The quasiuniversal relations from [62] are shown in gray, dashed lines for reference. The average residuals between the
EoS samples and the quasiuniversal fit line are shown in the bottom panels.
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