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The gravitational lensing effect at higher order under weak-field approximation is believed to be
important to distinguish black holes and other compact objects such as wormholes. The deflection angle
of a generic wormhole is difficult to solve analytically; thus approximation methods are implemented. In
this paper, we investigate the weak-field deflection angle of a specific wormhole, the Ellis-Bronnikov
wormhole, up to the 1=b4 order. We use different approximation formalisms, study their precision at 1=b4

order by a comparison to a purely numerical result, and finally rank these formalisms by their accuracy.
Moreover, we find that certain formalisms are sensitive to the choice of coordinate system; thus it is
important to choose the coordinate system appropriately for the evaluating of lensing physics.
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I. INTRODUCTION

Gravitational lensing is an important probe to study the
physics of compact objects [1,2]. The recent astrophysical
discovery, such as the observation of gravitational waves
from compact objects [3], made it possible to detect compact
objects through lensing physics in the near future. Thus,
there is a growing interest in the study of gravitational
lensing, and some up-to-date work can be found in [4–19].
The lensing effect is extensively studied for different

lenses [20–25]. Unfortunately, it turns out to be difficult to
distinguish black holes (BHs) and other compact objects
such as wormholes (WHs) [26,27] and boson stars [28].
Those compact objects can mimic the behavior of a black
hole [29–33], and we are unable to observationally exclude
their existence at the present stage [34–37]. In view of
the theoretical importance of black holes as well as other
compact objects, it is essential to search for distinctive
features of these compact objects [38–46].

There are two motivations for us to consider the lensing
effect from a wormhole. On the one hand, recent develop-
ments on the light ring reveal unavoidable instabilities for
a large variety of horizonless compact objects (and thus
exclude the possibility for them to be astrophysically
observed), while wormholes might be free from these
instabilities [47–49]. On the other hand, lensing effect
from higher-order contributions might be eligible to dis-
tinguish black holes and their correspondent wormholes
in the weak-field limit [50,51]. However, it is generically
difficult to analytically resolve the deflection angle for
lenses with a complicated metric. Approximation methods
are then developed to simplify the evaluation procedure, for
example, the Amore-Diaz (AD) formalism [52], the for-
malism through Gauss-Bonnet theorem (GBT) [53], and
the post-post-Newtonian (PPN) methods developed by
Keeton and Petters [54]. While these methods yield rather
accurate results at leading order, their predictions on
higher-order contributions are different from each other.
Unfortunately, recent research pointed out that contribu-
tions from higher-order terms are important to distinguish
different lens objects, for example, the black holes and their
mimicker (see, e.g., [51]). Thus, it is important to clarify the

*tcaiac@connect.ust.hk
†zwangdq@connect.ust.hk
‡hyat@mail.bnu.edu.cn
§mzhuan@connect.ust.hk

PHYSICAL REVIEW D 108, 023004 (2023)

2470-0010=2023=108(2)=023004(14) 023004-1 © 2023 American Physical Society

https://orcid.org/0000-0002-6352-9580
https://orcid.org/0000-0001-9109-437X
https://orcid.org/0000-0001-5002-6098
https://orcid.org/0000-0001-9433-2871
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.023004&domain=pdf&date_stamp=2023-07-05
https://doi.org/10.1103/PhysRevD.108.023004
https://doi.org/10.1103/PhysRevD.108.023004
https://doi.org/10.1103/PhysRevD.108.023004
https://doi.org/10.1103/PhysRevD.108.023004


precision of the gravitational lensing effect with different
approximation methods.
In view of the above argument, we study the higher-order

gravitational lensing effect with different approximation
methods, in an exemplified wormhole. One of the most
well-known wormhole solutions is the Ellis-Bronnikov
wormhole (EBWH), discovered in 1973 [55–57]. It is
based on the theory of Einstein gravity coupled to a free
scalar field, which is referred to as a “phantom field.” This
field is defined by flapping the sign of its kinetic term in the
Lagrangian. It was originally believed that this phantom
field causes instability in the EBWH, but a recent study has
argued that the instability can be cured [58]. Additionally,
another study suggests that slow rotation can stabilize
the EBWH [59]. As a simple yet significant model of a
traversable wormhole, the gravitating lensing effect of the
EBWH has garnered widespread attention in the scientific
community. Most studies on the lensing effect have focused
on a special case of the EBWH, where the wormhole mass
is zero [60–70].
In this work, we extend the study to the full EBWH

metric and evaluate the deflection angle up to the 1=b4�
order in the weak-field limit (b� is the rescaled impact
parameter). We find that the PPN result is the most accurate
one. When the weak-field condition is better satisfied, the
GBT formalism is more precise than the AD formalism.
When the weak-field limit is less satisfied, the AD
formalism might yield better accuracy; however, in this
case the formalism based on weak-field approximation
might not be applicable. Moreover, we find that for AD and
GBT formalisms, the results are sensitive to the choice of
coordinate system when the corresponding deflection angle
approaches 0 in the negative-mass branch of universe.
The paper is organized as follows. We discuss the Ellis-

Bronnikov wormhole in Sec. II, and then briefly introduce
the lensing physics in Sec. III. In Sec. IV, we make a
pedagogical introduction to the approximation formalism,
using the massless EBWH as an example. We present our
main result, the deflection angle for general EBWH up to
second order in different formalisms, in Sec. V, and discuss
the precision of different methods. We conclude in Sec. VI.
Throughout this paper, we will adopt the Planck units so

that 8πG ¼ c ¼ 1. We use the ð−;þ;þ;þÞ convention.

II. BRIEF INTRODUCTION TO ELLIS-
BRONNIKOV WORMHOLE

A. Theory and metric

One of the simplest ways to construct a wormhole
solution is by introducing a free phantom scalar field as
exotic matter in general relativity, namely

L ¼ ffiffiffiffiffiffi
−g

p �
Rþ 1

2
ð∂ϕÞ2

�
; ð1Þ

where R is the scalar curvature and ϕ is a phantom scalar
field. The EBWH was discovered independently by Ellis
and Bronnikov in 1973 and is a spherically symmetric
solution. The line element of EBWH can be written as

ds2 ¼ −hðrÞdt2 þ hðrÞ−1dr2 þ R2ðrÞdΩ2
2;

h ¼ e−
m
qϕ; R2 ¼ r2 þ q2 −m2

h
;

ϕ ¼ 2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p arctan

�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 −m2
p �

; ð2Þ

where ðm; qÞ are two integration constants. Here dΩ2
2

represents the unit solid angle for two dimensions. The
wormhole throat, which connects two asymptotic flat
spacetime regions, is located at the minimum of RðrÞ
and is at r ¼ −m. These regions can be referred to as
Universe I where r ∈ ð−∞;−mÞ and Universe II where
r ∈ ð−m;þ∞Þ. When m ≠ 0, the metric denotes an asym-
metric wormhole because Universe I is not a copy of
Universe II.
Specifically, the two universes would observe the worm-

hole with opposite signs and different absolute values:

M� ¼ �me�πm=ð2
ffiffiffiffiffiffiffiffiffiffi
q2−m2

p
Þ: ð3Þ

If m ≥ 0 and q ≥ 0, Universe I has a positive wormhole
mass while Universe II has a negative one. For more details
on the global structure of EBWH, refer to Ref. [71].
Later on, we may simply use the � sign to refer to the

universe with an observed positive/negative mass, if con-
venient. Moreover, we see the gravitational property of
the wormhole seen by Universe II is equivalent to that by
Universe I, as long as we make a transformation m → −m.
Thus, we may set m ≥ 0 without loss of generality.
Although the two universes are asymmetric, in our con-
vention (3) they are written as symmetric as possible,
differing only by a transform m → −m.
We mention that, the horizonless condition for EBWH,

i.e., the metric component g00 is everywhere negative, is
imposed by q2 > m2. Since we have set m ≥ 0, the
condition can be simply written as q > m.

B. Special cases

When m ¼ 0, the metric (2) reduces to the well-known
symmetric EB wormhole:

ds2 ¼ −dt2 þ dr2 þ ðr2 þ q2ÞdΩ2
2; ð4Þ

where the light ring locates at r ¼ 0 and without innermost
stable circular orbit (ISCO) in the whole spacetime.
In principle, the horizonless condition q2 > m2 forbids

the possible q → 0 limit. However, if we naively set q ¼ 0
in the metric (2), we may recover the Schwarzschild black
hole with massm (see, e.g., [71] for more details). This is in
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agreement with our intuition: the condition q2 > m2 for-
bids the existence of a horizon, so when we take q ¼ 0 and
m ≠ 0, we expect a black hole to come to exist.

III. BASICS ON GRAVITATIONAL LENSING
PHYSICS

A. Lensing geometry

For simplicity, we start with a static spherically sym-
metric metric

ds2 ¼ −PðrÞdt2 þQðrÞdr2 þ R2ðrÞdΩ2
2: ð5Þ

We depict the lens geometry in Fig. 1. We may treat the
lens object (in our case the wormhole W) to be a point, as
long as the scale of lensing geometry is much larger than
the lens object. A light ray is emitted at an angle β from the
source S, but deflected by the lens such that the observer O
received it at an angle θ. We use the deflection angle α to
measure the deflection of light. In the metric (5), the
deflection angle has the following expression (the formulas
are generalized by [72], compared to the simple case, say,
e.g., [73]):

α ¼ 2

Z
∞

r0

ffiffiffiffiffiffiffiffiffiffi
QðrÞp

=RðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðrÞ
R2ðr0Þ

Pðr0Þ
PðrÞ − 1

q − π; ð6Þ

where r0 is the distance of the closest approach of the light
to the center of the gravitational attraction.
Sometimes it is more convenient to use the impact

parameter b instead of r0 to describe the light ray. The
impact parameter b is defined as

b ¼ Rðr0Þ=
ffiffiffiffiffiffiffiffiffiffiffi
Pðr0Þ

p
: ð7Þ

With the help of (6), we can relate the angle θ and β by
the lensing geometry. In the weak-field limit we have

Dlsα ¼ Dsðβ − θÞ; ð8Þ

which gives a function βðθÞ. Observables may then be
evaluated from the function βðθÞ. For example, the mag-
nification is determined by the ratio between the solid
angles

jμj ¼ dΩO

dΩS
¼
���� βθ dβdθ

����−1: ð9Þ

We see that the deflection angle α is essential in the
lensing physics. In the following, we shall restrict ourselves
to the property of α. Moreover, we are interested in the
weak-field regime, where we require b to be much larger
than any wormhole parameters (in our case b ≫ m and
b ≫ q). Thus, we expect the deflection angle to be a series
ofm=b and q=b. In the current paper, we will evaluate α up
to the 1=b4 order.

B. Deflection angle for special cases

As pointed out in Sec. II B, the asymmetric EBWH
reduces to the Schwarzchild black hole and symmetric
EBWH in the limits q ¼ 0 and m ¼ 0, respectively. Since
the lensing physics of the latter two objects are thoroughly
studied, it would be important to compare our result in the
two limiting cases to the previous study.
For our purpose, we will take the massless EBWH

as a tool to illustrate different approximation methods in
Sec. IV. So we shall simply present the deflection angle for
a Schwarzschild black hole in the weak-field limit [74,75]

α ¼ 4m
r0

þ
�
15π

4
− 4

��
m
r0

�
2

þ
�
122

3
−
15

2
π

��
m
r0

�
3

þ
�
3465

64
π − 130

��
m
r0

�
4

þO
�
m
r0

�
5

; ð10Þ

and in terms of the impact parameter b, we have

α ¼ 4m
b

þ 15π

4

m2

b2
þ 128

3

m3

b3
þ 3465

64
π
m4

b4
; ð11Þ

where m is the mass of the Schwarzschild black hole.
The deflection angle of a massless EBWH can be found

in Sec. IV, Eq. (16).

IV. MASSLESS EBWH AS AN ILLUSTRATION
FOR DIFFERENT FORMALISMS

This section is a pedagogical introduction for the
approximation methods, with the massless EBWH metric

ds2 ¼ −dt2 þ dr2 þ ðr2 þ q2ÞdΩ2
2; ð12Þ

where q is the throat radius and dΩ2
2 stands for the two-

dimensional unit sphere. The gravitational lensing effect
of massless EBWH is extensively studied in the literatureFIG. 1. The geometry of a lensing with a pointlike len.
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(see, e.g., [60–70]). The deflection angle for the metric (12)
is an elliptic function:

α ¼ 2K

�
q
b

�
− π; ð13Þ

where KðuÞ is the elliptic integral of the first kind, defined
as

KðuÞ≡
Z

1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − u2x2Þ

p : ð14Þ

We can write the deflection angle (13) in the form

α ¼ π
X∞
n¼1

�ð2n − 1Þ!!
ð2nÞ!!

�
2
�
q
b

�
2n
; ð15Þ

where !! denotes the double factorial. Since we are
interested in the weak-field region q ≪ b, we keep the
first two contributions

α ¼ π

4

�
q
b

�
2

þ 9π

64

�
q
b

�
4

þO
�
q
b

�
6

: ð16Þ

We shall keep the result (16) as fiducial. In the following
sections, we shall evaluate the deflection angle of the
massless EBWH (12) with the three different formalisms,
and compare it with (16).

A. The AD formalism

The AD formalism [52] converts the complicated inte-
grals into a rapidly convergent series of solvable integrals.
Starting from (6), we make a change of variable

z≡ r0=r, and an auxiliary function

VðzÞ≡ z4

r20

R2ðr0=zÞ
Qðr0=zÞ

þ Pðr0Þr20
R2ðr0Þ

−
z4

r20

R4ðr0=zÞPðr0Þ
Qðr0=zÞPðr0=zÞR2ðr0Þ

; ð17Þ

and the expression for α becomes

α ¼
Z

1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð1Þ − VðzÞp − π: ð18Þ

Up to now, the formalism is accurate. Now we write the
function VðzÞ as

VδðzÞ ¼ V0ðzÞ þ δðVðzÞ − V0ðzÞÞ; δ ∈ ð0; 1Þ; ð19Þ

where V0ðzÞ is some function that makes (18) solvable
(for example, V0 ¼ λz2). If VðzÞ is of the form VðzÞ ¼P∞

n¼1 vnz
n, we can expand the integral as a series of δ and

integrate it term by term. The result, after taking δ ¼ 1, is

α ¼ 3π

2
ffiffiffi
λ

p −
1

λ3=2

X∞
n¼1

vnzn − π: ð20Þ

Finally, we shall assume that the α get the most accurate
values when dα=dλ ¼ 0, i.e., the principle of minimal
sensitivity (PMS). The final result is

α ¼ π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2
P∞

n¼1 vnz
n

r
− 1

�
: ð21Þ

We elaborate the procedure with the massless EBWH
(one may refer to [76] for more details). Here − g00 ¼
g11 ¼ 1 and g22 ¼ r2 þ q2, so the deflection angle is

α ¼ 2

Z
∞

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ q2

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ q2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r20
p − π; ð22Þ

and the function VðzÞ becomes

VðzÞ ¼ b2 − 2q2

b2
z2 þ q2

b2
z4: ð23Þ

From the expression (21), we can directly write

α ¼ π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2

2b2 − q2

s
− 1

�
: ð24Þ

In weak-field approximation q ≪ b, the final result is

α ¼ π

4

�
q
b

�
2

þ 3π

32

�
q
b

�
4

þO
�
q
b

�
6

: ð25Þ

The result is accurate in the first order, but disagrees
with (16). The difference is noticed in [62] and explained as
the failure of PMS near the throat r ¼ 0.

B. The GBT formalism

The GBT formalism has been widely applied to lensing
physics since it manifests the physics in a topological
viewpoint. Here we show the lensing geometry in Fig. 2
from [53].
The strategy of GBT formalism is as follows. First, the

Gauss-Bonnet theorem for a domain D isZ Z
D
KdSþ

Z
∂D

κdtþ
X
i

ϕi ¼ 2πχðDÞ: ð26Þ

Here, K and κ are Gaussian curvature and geodesic
curvature. The angle αi are the exterior angles, while χðDÞ
is the Euler characteristic number. The line integral is done
with respect to the affine parameter t (not to be confused
with the t coordinate). The exterior angle is related to the
interior angle by θS ¼ π − ϕS and θO ¼ π − ϕO.
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For our case, we shall assume the lens is nonsingular so
that χðDÞ ¼ 1. Notice that the geodesic curvature for a
geodesic vanishes, so that κðγ1Þ ¼ κðγ2Þ ¼ 0. The for-
mula (26) for domain D1 then gives

θS þ θO ¼
Z Z

D1

KdS; ð27Þ

which may help us to intuitively judge whether the lens is
convex or concave.
Applying the formula (26) to the domain D2, we choose

sufficiently remote S and O such that θS ≃ θO ≃ π=2,
so that Z

γP

κðγPÞdt ¼ π −
Z Z

D2

KdS: ð28Þ

Finally, for asymptotically flat domain D2, we have
κðγPÞdt=dα ¼ 1, so the line integral is

Z
γP

κðγPÞdt ¼
Z
γP

dα ¼ π þ α; ð29Þ

so the deflection angle can be directly obtained by

α ¼ −
Z Z

D2

KdS: ð30Þ

Before proceeding, we shall mention that the relation
between the deflection angle α from GBT formalism (30)
and the conventional one (6) is not clear at first glance.
Fortunately, there is vast literature on the topic, where the
equivalence of the two deflection angles is established in
generic spacetime [77–86]. Therefore, in the EBWH case,
we can simply take the deflection angle evaluated by (30) to
be identical to the conventional one (6).
It is generically convenient to evaluate the surface

integral in the optical metric. We elaborate the process

by the massless EBWH. For convenience we fix θ ¼ π=2
due to the spherical symmetry, so the null geodesic ds2 ¼ 0
gives

dt2 ¼ dr2 þ ðr2 þ q2Þdφ2: ð31Þ

The next step is to write the null geodesics in the form

dt2 ¼ habdλadλb ¼ du2 þ ζ2ðuÞdφ2; ð32Þ

and for massless EBWH, we already have u ¼ r,
ζðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ q2

p
, so the Gaussian optical curvature is

K ≡ −
1

ζðuÞ
�
dr
du

d
dr

�
dr
du

�
dζ
dr

þ
�
dr
du

�
2 d2ζ
dr2

�

¼ −
1

ζ

d2ζ
dr2

¼ −
q2

ðq2 þ r2Þ2 ; ð33Þ

and the deflection angle is

α≡ −
Z Z

D2

KdS ¼ −
Z

π

0

dφ
Z

∞

rOE

K
ffiffiffi
h

p
dr: ð34Þ

It is common to use straight line approximation, i.e.,
rOE ¼ b= sinφ, which is precise at leading order.
Unfortunately, the straight line approximation will cause
considerable deviation at higher order [67]. Since we are
interested in the higher-order correction to the deflection
angle, we need to introduce u ¼ 1=r and expand it into
higher-order series of 1=b [87] in our calculation. After
some straightforward calculations, we have

u ¼ 1

r
¼ sinφ

b
þ
��

π

2
− φ

�
cosφþ sinφ

�
q2

b3
: ð35Þ

Now we can calculate the deflection angle

α ¼ −
Z

π

0

dφ
Z sinφ

b þ½ðπ
2
−φÞ cosφþsinφ�q2

b3

0

K
ffiffiffi
h

p
u2du

≃
π

4

�
q
b

�
2

þ 39π

64

�
q
b

�
4

þO
�
q
b

�
6

: ð36Þ

This has to be compared by the result from straight line
approximation [67]:

α ¼ π

4

�
q
b

�
2

−
9π

64

�
q
b

�
4

þO
�
q
b

�
6

; ð37Þ

and we see that the improved result (36) also deviates from
the precise result in the massless case (16). However, in
later sections we will show that, the improved GBT
formalism in isotropic coordinates will result in an accurate
result up to q4=b4 in massless limits.

FIG. 2. The lensing geometry in weak-field approximation. The
two geodesics γ1 and γ2 represent light rays from the source S to
the observer. The domain D1 contains the lens L while L ∉ D2.
The two domains intersect at γ1, and we require D2 to be
asymptotically flat at least in the neighbor of S andO. Finally, we
need an auxiliary curve γL enclosing L, and γP, which is the
boundary curve of D2.
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C. The PPN formalism

The PPN formalism is based on a simple observation
that, in the weak-field limit, a wild range of physical
quantities can be expressed as a series of the effective
Newtonian potential. For a gravitational lens with mass M,
the effective Newtonian potential is Φ ¼ M=r. Notice that
we have used Planck units with 8πG ¼ 1, so in principle,
the coefficient G in the definition of Φ should lead to a
factor of 1=8π. However, since 1=8π is only a constant, we
may suppress it for convenience by a rescaling. This is
equivalent to transfer the 1=8π factor from Φ into the
coefficients of Φ in the PPN series.
Before proceeding, we shall clarify some tricky issues.

First, as we shall see from (3), the gravitational masses
observed in Universes I and II are different. Thus we shall
specify which universe we are working with before
proceeding. Besides, for a complicated metric such as
EBWH, the expression for Φ is not obvious. For example,
the physical radius of EBWH is R instead of the r from (2),
so it is not clear whether we should use r or R in the
definition of Φ. Besides, the form of mass could change
in different conventions. For example, in some studies,
e.g., [88], the convention for EBWH is chosen such that the
Kepler mass in one side is m and in the other side is

−meπm=
ffiffiffiffiffiffiffiffiffiffi
q2−m2

p
. Thus if we apply different conventions, the

definition for Φ seems to be varying.
In view of the above argument, we need to be more

careful about what is an effective Newtonian potential. In
the standard treatment of PPN formalism, we start with the
isotropic metric

ds2 ¼ −AðlÞdt2 þ BðlÞðdl2 þ l2dΩ2
2Þ: ð38Þ

The isotropic coordinate is defined such that the spatial part
of the metric is conformally flat, so that the light cone
appears round. In the rest of this paper, we will use l to
represent the radial coordinate as long as we are working
with isotropic coordinates.
Let us illustrate how the PPN formalism works in the

massless case. The metric for massless EBWH in the
isotropic coordinate is (see the Appendix for more details)

ds2 ¼ −dt2 þ
�
1þ q2

4l2

�
2

ðdl2 þ l2dΩ2
2Þ: ð39Þ

As one can see, we can simply define the effective
Newtonian potential Φ ∝ q2=l2. Notice that Φ shows a
q2=l2 dependence, instead of the conventional q=l one.
This is expected since the deflection angle (16) contains
only the q2=b2 term. Let us naively take Φ ¼ q2=4l2, and
the metric coefficients become

AðΦÞ ¼ 1; BðΦÞ ¼ 1þ 2ΦþΦ2: ð40Þ

Under the isotropic metric above, the deflection angle
should be expressed as

α ¼ 2

Z
∞

r0

1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB

1=b2 − A=r2

s
dr − π: ð41Þ

Finally, only the nonzero even order terms remain. So the
deflection angle in PPN formalism is

α ¼ π

4

�
q
b

�
2

þ 9

64
π

�
q
b

�
4

þO
�
q
b

�
6

: ð42Þ

Compared to (16), the result in PPN formalism is relatively
accurate considering the massless case.
From the above argument, it seems that we need two

PPN parameters to describe the massive EBWH, since it
contains two model parameters, q andm. Fortunately, as we
shall see in Sec. V C, it is still possible to use one single
PPN parameter to describe the lensing physics in one side
of EBWH.

V. DEFLECTION ANGLE OF MASSIVE EBWH

Now we come to the generic EBWH. Our strategy is as
follows. We use the AD formalism, the GBT formalism,
and the PPN formalism to evaluate the deflection angle
up to second order, in Secs. VA–VC, respectively. Then,
we numerically evaluate the deflection angle and compare
the numerical result to the above methods in Sec. V D.
Before proceeding, we mention that the metric compo-

nent in the isotropic coordinate is (see the Appendix for
details)

A ¼ exp
�
γ

�
π − 4 arctan

lγ
m

��
; ð43Þ

B ¼ 1

A
ðl2γ2 þm2Þ2

4l4γ4
; ð44Þ

with the dimensionless constant being

γ ≡ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p : ð45Þ

For the AD and GBT formalism, it would be useful to do
the calculation in the two coordinate system as a consis-
tency check.
Finally, when presenting the final result, we will meet the

following combination:

ð�1Þαþβ m
αqβ

bαþβ e
ð�1Þαþβ mπffiffiffiffiffiffiffiffi

q2−m2
p

: ð46Þ
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Such a combination seems more complicated than
expected, and that is because the metric coefficients on
each side of the wormhole cannot be simultaneously set to
asymptotic unity. For simplicity we define the rescaled
impact parameter as

b� ≡�be
� mπffiffiffiffiffiffiffiffi

q2−m2
p

; ð47Þ

where � correspond to wormhole sides with positive/
negative mass as mentioned above. Now the expression
(46) just simplifies to

mαqβ

bαþβ
�

: ð48Þ

Compared to the massless case, the mass is introduced
and the impact parameter is rescaled in massive results.

A. The AD formalism

The auxiliary function VðzÞ in the metric (2) is

V�ðzÞ ¼ ½r20 þ z2ðq2 −m2Þ� z
2

r20

�
1 −

q2 −m2 þ r20=z
2

r20 þ q2 −m2

× exp
�
�4γ

�
arctan

r0γ
m

− arctan
r0γ
mz

��	
: ð49Þ

We are only interested in the deflection angle up to the 1=b4

term, so we expand (49) up to z4 order, substitute into it into
formula (21), get

α ≃� 4m
r0

þ π2

4

q2

r20
þ
�
24

π
− 16þ 15

4
π

�
m2

r20

�
�
37

3
− 4π

�
q2m
r30

�
�
160

π2
−
192

π
þ 89 − 12π

�
m3

r30

−
5π

32

q4

r40
þ
�
142

π
− 92þ 245

16
π

�
q2m2

r40

þ
�
1120

π3
−
1920

π2
þ 1362

π
− 420þ 1563

32
π

�
m4

r40
; ð50Þ

and translate into the rescaled impact parameter b�, where
we have

α ¼ 4
m
b�

þ π

4

q2

b2�
þ
�
24

π
− 8þ 15

4
π

�
m2

b2�

þ
�
160

π2
−
96

π
þ 47þ 3π

�
m3

b3�
þ
�
43

3
− 3π

�
m
b�

q2

b2�

þ
�
1120

π3
−
960

π2
þ 570

π
− 54þ 1059

32
π

�
m4

b4�

þ
�
166

π
−
62

3
−
19

16
π

�
m2

b2�

q2

b2�
þ 3π

32

q4

b4�
: ð51Þ

One may also use the formalism in the isotropic
coordinate by a similar procedure and get

α ¼ 4
m
b�

þ π

4

q2

b2�
þ
�
24

π
− 8þ 15

4
π

�
m2

b2�

þ
�
160

π2
−
96

π
þ 56

�
m3

b3�
þ 16

3

m
b�

q2

b2�

þ
�
1120

π3
−
960

π2
þ 678

π
− 72þ 1737

64
π

�
m4

b4�

þ
�
58

π
−
8

3
þ 151

32
π

�
m2

b2�

q2

b2�
þ 9π

64

q4

b4�
: ð52Þ

In both cases, the results (51) and (52) agree with the
previous result from AD formalism (25) in the massless
limit. Comparing the results (51) and (52) to the precise
one: in the q ¼ 0 limit, they differ from (11) at the order
m2=b2�; in the m ¼ 0 limit, they differ from (25) at the
q4=b4� order. Moreover, the AD formalism gives different
results in different coordinate systems at the 1=b3� order,
even if the underlying metrics are the same.

B. The GBT formalism

The Gaussian curvature [89] and orbit equation are

K ¼ mðm ∓ 2rÞ − q2

ðr2 þ q2 −m2Þ2 exp
�
�4γ arctan

γr
m

�
; ð53Þ

u ¼ sinφ
be�πγ �

2m
b2e2�πγ þ

�
ðq2 þ 3m2Þ

�
π

2
− φ

�
cosφ

þ ðq2 þ 5m2Þ sinφ
�

1

b3e3�πγ � ½9ðq2 þ 7m2Þ

− ðq2 − 9m2Þ cos 2φ� m
3b4e4�πγ ; ð54Þ

so the integration directly gives

HIGHER-ORDER CORRECTION TO WEAK-FIELD LENSING OF … PHYS. REV. D 108, 023004 (2023)

023004-7



α ¼ 4m
b�

þ π

4

q2 þ 15m2

b2�
þ 8m
3b�

4q2 þ 11m2

b2�

þ 3π

64

ð13q4 þ 38q2m2 − 51m4Þ
b4�

: ð55Þ

When m ¼ 0, we recover the result in (36). Also, when
q ¼ 0, the result differs from (11) even at the m2=b2� order.
We may repeat the procedure in the isotropic coordinate,

where the Gaussian curvature and orbit equation are

K ¼ 128l3½q2ð�mþ 2lÞ þmð∓ m2 þ 2mlþ 4l2Þ�
ðq2 −m2 þ 4l2Þ4

× exp

�
∓ 2γ

�
π − 4 arctan

2γl
m

��
; ð56Þ

u ¼ sinφ
be�πγ �

2m
b2e2�πγ þ

�
ðq2 þ 15m2Þ

�
π

2
− φ

�
cosφ

þ ðq2 þ 23m2Þ sinφ
�

1

4b3e3�πγ � ½9ð3q2 þ 29m2Þ

þ ð5q2 þ 27m2Þ cos 2φ� m
12b4e4�πγ : ð57Þ

After evaluating the integral and substituting l into r, we get

α ¼ 4m
b�

þ π

4

q2 þ 15m2

b2�
þ 8m
3b�

2q2 þ 13m2

b2�

−
3π

64

q4 þ 186q2m2 þ 835m4

b4�
: ð58Þ

As we shall see, the results (55) and (58) differ at the
order 1=b3�.
Before proceeding, let us briefly comment on the result.

From (16) we see that, in the massless limit m ¼ 0, the
accurate coefficient of the q4=b4 term is 9π=64, while the
GBT method in conventional coordinate and isotropic
coordinate yields 39π=64 and −3π=64, respectively.
Therefore, we can intuitively deduce that the GBT formal-
ism is more accurate in the isotropic coordinate.

C. The PPN formalism

To proceed with the PPN formalism we need to know the
Newtonian potentialΦ. However, it appears tricky to define
Φ in our case. Recall that the throat is located at r ¼ −m,
i.e., l ¼ ðq −mÞ=2; and the two asymptotic region r →
�∞ corresponds to l ¼ 0 and l → ∞, respectively. Thus,
simple expressions such as Φ ¼ m=2l would not work for
both sides. In fact, by the conventional treatment, we shall
define a Newtonian potential that vanishes at a flat region.
However, we cannot set the two sides of the universe in (2)
to be asymptotically flat simultaneously. Therefore, we
cannot expect a global Newtonian potential satisfying both
Φðl ¼ 0Þ ¼ 0 and Φðl → ∞Þ ¼ 0.

Therefore, we shall use an alternative approach. We shall
define the two Newtonian potential, Φ− corresponds to the
r > −m universe with negative mass, and Φþ corresponds
to the r < −m universe with positive mass. Moreover, as
we see in the Appendix, Universe II can be transferred to
Universe I by a change of variable l → ðq2 −m2Þ=4l. So
without loss of generality let us first work out the Φ− case.
In theΦ− case l > ðq −mÞ=2, and the weak-field limit is

valid at the region l ≫ q. Now for the large l, the arctan
function in (43) approximates to π=2, so let us rewrite the
coefficient AðlÞ as

AðlÞ ¼ exp

�
γ

�
4 arctan

m
2γl

− π

��
: ð59Þ

Notice that at the asymptotic region Að∞Þ¼ expð−γπÞ≠1,
this is the cost we have to pay for the metric (2), where the
two sides are written as symmetric as possible. Now, one
may simply define

Φ− ¼ −
m
2γl

; l ∈
�
q −m
2

;∞
�
; ð60Þ

and we may expand the metric components as

AðΦÞ ¼ e−γπ
�
1− 4ðγΦ−Þþ 8ðγΦ−Þ2−

1

3

�
32−

4

γ2

�
ðγΦ−Þ3

þ 16

3

�
2−

1

γ2

�
ðγΦ−Þ4þOðγΦ−Þ5

�
: ð61Þ

The deflection angle for this side is then

α ¼ 4m
b−

þ π

4

�
16þ 1

γ2

�
m2

b2−
þ 16

3

�
9þ 1

γ2

�
m3

b3−

þ
�
64þ 10

γ2
þ 9

64γ2

�
π
m4

b4−
þO

�
m5

b5−

�
: ð62Þ

For the positive mass side, it corresponds to r → −∞ and
l → 0. To avoid the counterintuition of representing spatial
infinity near coordinate origin we take the transformation
l → ðq2 −m2Þ=4l, and the metric coefficient becomes

AðlÞ ¼ exp

�
γ

�
π − 4 arctan

m
2γl

��
; ð63Þ

Φþ ¼ m
2γl

; l ∈
�
qþm

2
;∞

�
: ð64Þ

In terms of effective potential Φþ,
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AðΦÞ ¼ eγπ
�
1− 4ðγΦþÞ þ 8ðγΦþÞ2 −

1

3

�
32−

4

γ2

�
ðγΦþÞ3

þ 16

3

�
2−

1

γ2

�
ðγΦþÞ4 þOðγΦþÞ5

�
; ð65Þ

and the deflection angle for this side is

α ¼ 4m
bþ

þ π

4

�
16þ 1

γ2

�
m2

b2þ
þ 16

3

�
9þ 1

γ2

�
m3

b3þ

þ
�
64þ 10

γ2
þ 9

64γ2

�
π
m4

b4þ
þO

�
m5

b5þ

�
: ð66Þ

After using the expression of γ, we finally get

α ¼ 4m
b�

þ 15π

4

m2

b2�
þ π

4

q2

b2�
þ 128

3

m3

b3�
þ 16

3

m
b�

q2

b2�

þ 3465

64
π
m4

b4�
þ 311

32
π
m2

b2�

q2

b2�
þ 9π

64

q4

b4�
: ð67Þ

We comment that the result (67) returns to the precise
solutions (11) and (16) in the limit q → 0 and m → 0,
respectively.

D. Numerical evaluation

Before proceeding, we shall set a “fiducial” result for α,
by expanding (6) as a series of q=b� and m=b� by brutal
force. The result is simply

α ¼ 4
m
b�

þ 15π

4

m2

b2�
þ π

4

q2

b2�
þ 128

3

m3

b3�
þ 16

3

m
b�

q2

b2�

þ 3465

64
π
m4

b4�
þ 311

32
π
m2

b2�

q2

b2�
þ 9π

64

q4

b4�
: ð68Þ

Not surprisingly, the result (68) coincides with the PPN
result (67). In PPN formalism we expand the deflection
angle as a series ofΦ�, andΦ� itself can be seen as a series
of m=b� and q=b�. Therefore, the procedure should be
equivalent to expand α with respect to m=b� and q=b�
directly, and we then recover (68).
Surely, we have no reason to claim (68) to be precise

up to the order 1=b4�. However, as we shall show in the
following, the result (68) shows the least deviation on the
numerical result, so we may comprehensively understand
the error in different methods, by comparing their coef-
ficients with that in (68).
As shown in Fig. 3, the approximation of analytical

expansion (68) is satisfying, while the relative error quickly
decreases as parameters m=b� and q=b� decrease. In
isotropic coordinates the analytical expansion is identical,
and thus Fig. 3 still fits.
The upper triangle region of Fig. 3 is the negative mass

side, and the lower region represents the positive mass side.

On the positive mass side the relative error changes
smoothly, while on the other side it does not. There is a
light thin line on the negative mass side at which the
relative error is larger than neighboring regions, which is
because the deflection angle reaches zero and changes its
sign when crossing this line, causing the machine error to
dominate around this area. There is also a dark line on the
negative mass side, and this is simply the area where
analytical expansion reaches its best approximation. We
will see similar patterns for other approximation methods.
We depict the numerical results from AD formalism in

Fig. 4 and GBT formalism in Fig. 5, respectively. The PPN
result is already presented in Fig. 3. We show the results
of AD and GBT formalisms in both metrics, while the
PPN result only appears in the isotropic coordinate, since
the effective Newtonian potential is better defined in the
isotropic coordinate.
Let us first come to the choice of coordinate system.

From Fig. 4, the AD formalism yields almost identical
results in the two coordinate system, except for the upper
triangle region in the negative-mass branch, which corre-
sponds to a relatively large jq=b−j > 10−2 and a relatively
small jm=b−j < 10−2.5. We comment that the upper triangle
region is exactly near the “critical line,” where the absolute
value of α approaches 0 and the machine error may be
important, as that in the analytical case, Fig. 3. Therefore,
the relative error in this region is naturally inaccuracy. Thus
we conclude that the AD formalism is insensitive to the
coordinate choice in most of the parameter space.
On the other hand, one may directly see from Fig. 5 that

the GBT method is much more accurate in the isotropic
coordinate. There seems to be a specific region (the deep
blue line in the upper channel of Fig. 5, corresponding to
q=b− ≃m=b−), where the relative error is highly small in
the original coordinate. Unfortunately, the q ¼ m case
would result in an apparent divergent scalar field ϕ (2)

FIG. 3. Relative error of analytical/PPN expansion α compared
with numerical result αnum for both sides of EBWH.
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and a divergent mass (3), so the parameter space may not be
physically relevant. Thus we conclude that it would be
better to apply GBT formalism in the isotropic coordinate
in our exemplified EBWH case.
Now let us come to the relative error in different

methods. From Figs. 3–5, we see that for the case of
EBWH, the PPN method is the most precise one. For the
reader’s convenience, we depict the difference of relative
errors between AD and GBT formalisms in Fig. 6. It is clear
that, in original coordinates, the AD formalism is more
precise for large jq=bj and jm=bj, while the GBT formalism
is more accurate in a weaker field limit. However, in
isotropic coordinates, the GBT formalism is generally more
accurate than AD formalism, except for a minor param-
eter space.
A nice property about GBT formalism is that the weak-

field condition is better satisfied. We may naively under-
stand the result by comparing the AD and GBT results to
the analytic results. The leading deviation between the AD
result (51) and (52) and the analytic result (68) occurs at the
m2=b2� term, whose coefficients differ by a proportion

1 −
�
24

π
− 8þ 15

4
π

�= �15π
4

�
≃ 3%: ð69Þ

The leading deviation between the GBT result (55) and (58)
and the analytic result (68) occurs at the m3=b3� term. In
other words, the GBT formalism has no error at the m2=b2�
order, while the AD formalism starts to show error.
We conclude that, for the EBWH case, the PPN

formalism is the most accurate one, while the accuracy
of AD and GBT formalisms depend on the parameter
space. However, we can always turn to the isotropic
coordinate, and then the GBT formalism becomes more
precise than the AD formalism in most of the param-
eter space.

VI. CONCLUSION AND OUTLOOK

The higher-order effect in gravitational lensing may be
important to distinguish compact objects such as black
holes and wormholes. For complicated metrics, the deflec-
tion angle may be hard to evaluate, and the approximation

FIG. 4. Relative error of AD formalism result compared with
numerical result αnum for both sides of EBWH.

FIG. 5. Relative error of GBT formalism result compared with
numerical result αnum for both sides of EBWH.
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methods are thus implemented. Although different approxi-
mation methods give the same results on the leading order,
their predictions on higher order are different, so it is
important to clarify which methods should be more precise.
In this work, we study the gravitational lensing effect in the
EBWH wormhole under the weak-field limit to higher
order. We evaluate the deflection angle to the 1=b4� order,
using the AD formalism, the GBT formalism, and the PPN
formalism, respectively. By a direct comparison to the
numerical result, we find that the PPN formalism provides
the most accurate result. Generically, the GBT formalism is
more accurate in the weaker field limit, while the AD
formalism becomes more precise in the presence of a
stronger field. We also find that AD formalism is insensi-
tive to the choice of coordinate, while the accuracy of the
GBT formalism depends highly on the coordinate system.
Combining all the bove results, we find that the improved
GBT formalism [87] in the isotropic coordinate gives the
most accurate approximation, compared to GBT in the
ordinary coordinate and the AD formalism.

Although in our case the PPN formalism yields the
best result, it might be complicated to figure out all
PPN parameters for sophisticated wormhole solutions.
Therefore, it is still valuable to estimate the deflection
angle using other formalisms at a higher order. In the
EBWH case, we find that the improved GBT formalism in
the isotropic coordinate is a good approximation, whose
error appears at the 1=b3 order, thus we may attempt to
apply this formula for complicated wormhole metrics, if the
PPN formalism is too difficult to apply. However, since we
only considered the EBWH wormhole, it would be too
early to judge which formalism is better from our result. It
would be interesting to compare results from different
formalisms in a more generic wormhole metric and decide
which formalism should be better.
It is also interesting to improve the formalism, based on

the current result. For example, the AD formalism gives
different predictions in the original coordinate (2) and
isotropic coordinate (38). The difference may arise from the
PMS, where the condition dα=dλ is different for different
metrics. Would it be possible to improve the accuracy of
AD formalism by changing PMS to some other principles
that are coordinate-free? Besides, in the GBT formalism,
the lens is simply treated as a point mass, which has no
influence on the spacetime topology. However, the worm-
hole is a geometric structure whose existence may greatly
change the spacetime topology. We may study if the
topological structure of the wormhole shall be taken into
account in the GBT formalism, and if the change could
improve the precision of the method.
Finally, to distinguish wormholes and other compact

objects, we need to evaluate astrophysical observables such
as magnification and event rate. It is possible that, although
the deflection angle differs for different compact objects,
the resulting observable signals are still highly degenerate,
whose difference is so small and below the resolution of
current experiments. Thus, it is important to extend our
result to astrophysical observables in concrete models in
the future.
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APPENDIX: ISOTROPIC COORDINATE
FOR THE EBWH

We derive the form of the isotropic coordinate for the
EBWH. We start with the massless case, whose metric is

ds2 ¼ −dt2 þ dr2 þ ðr2 þ q2ÞdΩ2
2: ðA1Þ

Compared to (38), we see that AðlÞ ¼ 1, and we have the
following:

ffiffiffiffiffiffiffiffiffi
BðlÞ

p
dl ¼ dr; BðlÞl2 ¼ r2 þ q2: ðA2Þ

For convenience we take a specific branch of solution

2l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q2

q
þ r → r ¼ l −

q2

4l
: ðA3Þ

The corresponding metric is

ds2 ¼ −dt2 þ
�
1þ q2

4l2

�
2

ðdl2 þ l2dΩ2
2Þ: ðA4Þ

For the generic EBWH, we have

AðlÞ ¼ hðrÞ; BðlÞdl2 ¼ dr2

hðrÞ ; BðlÞl2 ¼ R2ðrÞ:

ðA5Þ

We begin with the following relation:

dl2

l2
¼ dr2

hðrÞR2ðrÞ →
dl
l
¼ � drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ q2 −m2
p : ðA6Þ

Similarly we take a special branch of solution

2l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q2 −m2

q
þ r → r ¼ l −

q2 −m2

4l
: ðA7Þ

We will use the identity

2 arctanðx2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ ¼ π

2
þ arctan x ðA8Þ

and define a dimensionless parameter

γ ≡ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −m2

p ; ðA9Þ

such that

A ¼ exp

�
γ

�
π − 4 arctan

2lγ
m

��
; ðA10Þ

B ¼ 1

A

�
1þ q2 −m2

4l2

�
2

: ðA11Þ
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