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We apply statistical inference on the Pierre Auger Open Data to discern the mass composition of cosmic
rays at different energies. Working with longitudinal electromagnetic profiles of cosmic ray showers, in
particular their peaking depths Xmax, we employ central moments of the Xmax distributions to discriminate
between different shower compositions. We find that already the first few moments entail the most relevant
information to infer the primary cosmic ray mass spectrum. Our approach, based on an unbinned
likelihood, allows us to consistently account for sources of statistical uncertainties due to finite datasets,
both measured and simulated, as well as systematic effects. Finally, we provide a quantitative comparison
of different high energy hadronic interaction models available in the atmospheric shower simulation codes.
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I. INTRODUCTION

Ultrahigh energy cosmic rays (UHECRs) are nucleons
and ionized nuclei colliding with the Earth’s atmosphere at
energies E≳ 1018 eV. Although the first observation of an
UHECR dates back to 1963 [1], there are still many open
questions on the topic (see Refs. [2,3] for recent reviews).
Firstly, the spatial distribution of UHECR sources is poorly
known. The identification of a UHECR source direction is
particularly cumbersome since the galactic and extragalac-
tic magnetic fields deflect these particles during propaga-
tion. Secondly, the mechanisms that accelerate them to such
high energies have not yet been identified. Possibilities
range from acceleration due to supermassive black holes or
supernovae explosions to galaxy collisions [4]. Thirdly,
there are large uncertainties regarding the mass composi-
tion of UHECRs, that is which kind of particles constitute
UHECRs at different energies.
Direct observation of UHECRs by balloon or space-

craft experiments becomes highly inefficient due to
their steep energy spectrum: at E ∼ 1013 eV the flux of
incoming cosmic ray is ϕ ∼ 103 km−2 s−1, while it drops to
ϕ ∼ 10−2 km−2 yr−1 at E ∼ 1020 eV [5,6]. Thus, one must
rely on ground based detectors to observe the by-products

of UHECRs interacting with the atmosphere. The energetic
particle, referred as the primary, scatters with nuclei in the
higher layers of the Earth’s atmosphere and produces a
cascade of secondary particles, which carry a fraction of the
primary energy and propagate onward, scattering again or
decaying into tertiary particles, and so on. This cascade is
called an extensive air shower (EAS).
Currently, the largest operating EAS observatory is the

Pierre Auger Observatory [7], which is composed of 1660
water Cherenkov detectors, called surface detectors (SD),
at 1.5 km distance from each other, covering an area of
3000 km2 in the Pampa desert of Argentina, and four
fluorescent detectors (FD). It recently completed its
13 years-long first data taking run and is upgrading its
detectors for a planned run 2 [8].
The complete evolution of an EAS is a complicated

process involving EM and hadronic processes across many
energy scales. In this work, we focus the observed
longitudinal profile of an EAS, that is the intensity of
fluorescent light emitted by nuclei in the atmosphere,
typically nitrogen, excited by the passage of charged
particles, and measured as a function of the slant depth
of the shower, X. In general, the longitudinal profile has a
clear peak, at Xmax, corresponding to the point of maximum
population of e� in the shower evolution. It depends
strongly on the energy and species of the primary. In
particular, assuming that the energy E of the primary
particle, with atomic number A, is shared equally by all
the nucleons, it can be shown that hXmaxi ∝ lnE − lnA [2].
Despite the simple relation, in practice, the identification

of primaries is not straightforward. Since we cannot
observe nucleus-nucleus scattering at ultrahigh energies
directly, simulations of EAS development have to rely on
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extrapolations from lower energy measurements using
models of hadronic interactions. This leads to significant
systematic uncertainties as evidenced by discrepancies
between predictions based on different hadronic models.
For example, the EPOS-LHC model [9], based on extra-
polations of scattering cross sections from LHC data,
gives significantly different results for hXmaxi than the
QGSJet [10,11] model, which instead uses a phenomeno-
logical approach to describe the nonperturbative parton
cascades. In addition, the actual EAS development is
influenced by many fluctuating parameters, such as the
first interaction height and incidence angle, or the varying
atmospheric conditions along the shower depth. Finally, the
longitudinal profiles can only be detected at sufficiently
low levels of environmental photon background, such as in
moonless nights, thus limiting the available statistics.
A recent analysis of Pierre Auger Observatory data, in

particular of the energy dependence of the average peak
position hXmaxi, suggests that the mass spectrum of
UHECR is dominated by protons at energies E≲ 1018 eV,
while it tends towards heavier nuclei at higher energies [12]
(p. 86). However, existing methods do not allow to infer the
complete primary composition from the available data. In
Ref. [13], the spectrum (in particular, the binned distribu-
tions of Xmax within fixed energy bins) was fitted to a
limited mixture of primaries, with the best fit primary
fractions depending on the energy and on the hadronic
model used in simulations. Using a mixture of five
elements, (p, He, N, Si, Fe), high energy Auger data are
best accommodated by a combination of Si and Fe initiated
showers. However, as shown in Refs. [14,15], the presence
of intermediate elements, such as Ne or C, can affect the
results, and including up to eight elements improved the
overall goodness of fit. While the choice of mixtures
restricted to a few possible elements is quite arbitrary,
these studies seem to confirm indications that the high
energy tail of the UHECR spectrum cannot be explained by
exclusively light primaries.
In the present work, we improve and extend these

previous studies in several ways. Our goal is to infer the
composition that best describes the measured Xmax distri-
bution at different energies and systematically investigate
the uncertainties due to simulation and modeling limita-
tions. We define the composition as

w ¼ ðwp; wHe;…; wFeÞ;
X
P

wP ¼ 1; ð1:1Þ

where the primary index P in general scans over all the 26
possible primaries, from the hydrogen nucleus (A ¼ 1,
P ¼ p) to iron (A ¼ 56, P ¼ Fe). The composition w is
then a 26-dimensional vector of weights. Given the low
statistics available (especially when working with the [16])
and the complexity of the problem, instead of working with
binned Xmax distributions directly, we characterize each

distribution by its first few central moments: the mean
hXmaxi, the standard deviation σXmax

, the skew γXmax
, etc.

This approach has several advantages: Firstly, it avoids
issues of binning sparse distributions as we can compute
the moments directly for the unbinned Xmax distributions.
In addition, it allows us to systematically incorporate
additional qualitative features of the Xmax distributions in
terms of the moments expansion. We explore their increas-
ing discriminative power, both in resolving the primary
composition as well as in comparing predictions of differ-
ent hadronic models. Finally, we are able to transparently
incorporate effects of systematic uncertainties, such as
finite simulation samples, on the inferred compositions.
The problem of estimating the primary composition from

data is one of statistical inference: the most probable
composition w� in an energy bin and for a given hadronic
model is the one that maximizes the likelihood of repro-
ducing the (moments of) Auger Xmax data with a w
weighted mixture of simulated showers, where likelihood
maximization is performed on the parameter w, and all
systematic uncertainties are treated via nuisance parame-
ters. Working with a full 26 component weight vector w
implies finding the maximum likelihood and the relevant
confidence regions on a 26-dimensional manifold. We
employ several methods primarily developed for applica-
tions in machine learning, such as stochastic minimization
techniques together with nested sampling algorithms (see,
e.g., [17]) and bootstrapping [18], to tackle this otherwise
computationally prohibitively demanding task.
The manuscript is organized as follows: In Sec. II, we

give an overview of the Auger Open Data set used and
the Monte Carlo simulations of EAS. We introduce the
decomposition of Xmax distributions into central moments,
discuss their properties and uncertainties, and compare
predictions within different hadronic models, in Sec. III. In
Sec. IV, we construct our primary composition likelihood
model and describe the computational methods which
allow us to solve it. Our main results on the inferred
UHECR compositions in different energy bins and for
different hadronic models are presented in Sec. V. Finally,
in Sec. VI, we summarize our main conclusions and
explore possible future directions. As we use illustrative
examples in the main text for our discussions, we collect all
the relevant additional plots and figures in the Appendix.

II. DATA AND SIMULATIONS

A. Pierre Auger 2021 Open Data

The Pierre Auger 2021 Open Data [16] consists of 22731
SD measurements of EAS, which we refer to as nonhybrid
(NH) showers, and of 3156 “brass hybrid” (BH) events,
that is showers that have been recorded simultaneously by
the SD and the FD. Of these BH, 1602 are called “golden
hybrids” (GH), with independent SD and hybrid recon-
structions. This dataset amounts to 10% of the total data
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collected by the Pierre Auger Collaboration and has already
been subject to high-quality selection criteria and cuts, as it
is used by the Collaboration itself for their data analysis.
Details of the data selection can be found for example in
Ref. [6]. Here, we review the properties of FD measure-
ments and Xmax distributions and their fitting functions.
The former is shown in Fig. 1 for a sample shower in the
Open Data, id ¼ 112636786700, while the latter is shown
in comparison with selected simulations in Fig. 2; see next
section for more details on the simulations.
The electromagnetic signal observed by FDs is strictly

related to the primary composition of the UHECR. The
energy deposited in the FD is measured as function of
the air mass traversed by the shower, the slant depth X.
This profile can be described by the Gaisser-Hillas para-
metrization [19],

fGHðXÞ ¼
�
dE
dX

�
max

�
X − X0

Xmax − X0

�Xmax−X0
λ

exp

�
Xmax − X

λ

�
;

ð2:1Þ

where ðdE=dXÞmax is the maximum energy deposit at the
corresponding depth Xmax, while X0 and λ are two fit
parameters. This profile is universal and does not depend
on the primary particle [20]; however, its parameters
contain information on the mass composition. Indeed, it
can be shown that Xmax is proportional to the logarithm of
the primary atomic mass number A [2]. On the other hand,
the exact shape of the Xmax distribution is strongly affected
by the intrinsic fluctuations on the first primary scattering
in the atmosphere and by the uncertainties on the proton-air
cross section at ultrahigh energies [21,22]. Nevertheless,
the Xmax represents the most reliable observable to infer the
composition of UHECR.
The longitudinal profile is usually studied in terms of the

shifted and normalized distribution f0GHðX0Þ: the depth is
shifted as X0 ¼ X − Xmax, such that every curve is centered
at zero, and the total distribution is normalized by the
energy deposit at the maximum, ðdE=dXÞmax. Introducing
also the parameters L ¼ ffiffiffiffiffiffiffiffiffiffijX0

0jλ
p

and R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=jX0

0j
p

, with
X0
0 ¼ X0 − Xmax [22], we have

f0GHðX0Þ ¼
�
1þ R

X0

L

�
R−2

exp

�
−

X0

LR

�
: ð2:2Þ

The latter distribution is similar to a Gaussian centered at
zero and with a standard deviation L, but distorted by a
multiplicative term governed by R. In Fig. 1, we show the
measured longitudinal profile for the sample shower,
together with the (unshifted) GH fit as a black line.

FIG. 1. Deposited energy per slant depth. The blue dots
represent the FD measurements with uncertainties, while the
black line is the fitted GH function.

FIG. 2. Comparison of Xmax distributions for real data (black line) and simulated data, with proton (red dashed) and iron (red dotted) as
primary, for energies in the interval [1, 2] EeV.
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For each hybrid shower, both the FD dataset and the
parameter set fXmax; ðdE=dXÞmax; L; Rg, with their respec-
tive uncertainties, are provided in the Open Data.
In particular, we are interested in the distribution of the

set fX1
max;…; XN

maxg in a fixed energy bin. Assuming that
each point is normally distributed around the mean value,
Xj
max, with width given by the uncertainty, δXj

max, where
j ¼ 1;…; N, we build the PDF,

PAugðXmaxÞ ¼
1

N

XN
j¼1

N ðXmaxjXj
max; δX

j
maxÞ: ð2:3Þ

B. Shower simulations

We use CORSIKA 7.7401 [23] to simulate EAS from
UHECR and their longitudinal profiles. The latter is then
fitted to the Gaisser-Hillas function, Eq. (2.1), to extract the
depth of the maximum, Xmax. Since it has been shown in
Ref. [21] that Xmax is independent from the incidence angle
of the UHECR, we only simulate EAS for incident
UHECRs perpendicular to the atmosphere.
For a selected set of inputs S, the result of N simulations

is a distribution of values fXsim
maxgNðSÞ. Among the many

tunable parameters of the CORSIKA code, here we restrict
the discussion to three main inputs: the primary nucleus Z,
the energy range E, and the hadronic modelH. The primary
particles simulated are nuclei with proton number Z
ranging from Z ¼ 1 (proton) to Z ¼ 26 (iron). Since
CORSIKA takes as input both the proton number Z and
the mass number A, we consider for each element only the
A for the most abundant stable isotope as to avoid
ambiguities. The Auger Observatory has observed showers
with primary energies up to ∼1020 EeV. However, to both
avoid excessive use of computational resources and have
a reasonable set of data available from the public release,
we restrict our study to primary energies E ≤ 5 EeV. We
additionally divide this set into three bins, namely
E ≤ 1 EeV, 1 < E ≤ 2 EeV, and 2 < E ≤ 5 EeV. In the
Open Data, these three intervals contain 1002 (345),
1233 (696), and 653 (421) BH (GH) showers, respectively.
Within each bin, we simulate showers using a flat
distribution in energy. Finally, we consider four avail-
able hadronic models in CORSIKA: QGSJET01 [24],
QGSJetII-04 [11], EPOS [9], and Sibyll 2.3c [25].
The choice of the hadronic model substantially affects
the results of the simulations, as different treatments of the
hadronic interactions at very high energies affect the
proton-air cross section and the evolution of the hadronic
component of the shower. In turn, these (model-dependent)
calculations predict distributions of Xmax.
In total, we perform 2000 simulations per primary,

energy bin, and hadronic model, for a total of 624000
simulated showers. We use the parametrization in Eq. (2.1)
to extract the value of Xsim

max from each simulated

longitudinal shower profile. Although the uncertainty from
the fit procedure is quite small, we take this into account
and denote it as δXsim

max.
In Fig. 2, we compare the (binned) probability distri-

bution function (PDF) of Xmax for the GH showers (black
line) in the energy interval [1, 2] EeV to simulated showers
with proton (red dashed line) and iron (red dotted line) as
primaries. We observe that in addition to shifts in the peaks
of the distributions between proton and iron, the simula-
tions consistently predict narrower distributions of Xmax for
iron (σXmax

∼ 10–20 g=cm2), compared to the proton dis-
tributions (σXmax

∼ 40–90 g=cm2); however, the difference
varies considerably between simulations based on different
hadronic models. We thus conduct our analysis with all
four models separately and perform a quantitative and
systematic study of differences between hadronic models in
Sec. III C.

C. Detector effects

From each set of Xmax simulated in a fixed energy bin,
we can build the respective PDF, as already done in
Eq. (2.3), by summing the single normal distributions.
However, in order to be compared to the measured data,
the simulation outputs need to be convoluted with the
experimental detector acceptance (ϵ) and resolution (R).
These effects also constitute the main contribution to the
total systematic uncertainty. Constructing the PDF as in
Eq. (2.3) thus naturally includes these errors in any
computation involving PðXÞ.
The inclusion of detector effects reshapes the distribution

of simulated Xmax, and acceptance in particular also
changes its normalization. For a fixed set of inputs
S ¼ fZ; E;Hg, the corresponding PDF is given by

PsimðXmaxjSÞ ¼
1

Ñ

X
j

Z
dX̃N ðX̃jXj

max; δX
j
maxÞ

× RðXmax − X̃Þ × ϵðX̃Þ; ð2:4Þ

where the index j ¼ 1;…; N scans over the simulated
showers and Ñ is a normalizing constant. The acceptance ϵ
is parametrized as a piecewise function of X, with a central
constant part, and two exponential extremes,

ϵðXÞ ¼

8>>><
>>>:

exp
�
X−x1
λ1

�
X ≤ x1

1 x1 ≤ X ≤ x2

exp
�
− X−x2

λ2

�
X ≤ x2

; ð2:5Þ

while the resolution R is parametrized as a combination of
two normal distributions of X − X̃, centered around the
origin,

RðXÞ ¼ R3N ðX j 0; R1Þ þ ð1 − R3ÞN ðX j 0; R2Þ; ð2:6Þ
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where the sets of parameters ðx1; λ1; x2; λ2Þ and
ðR1; R2; R3Þ depend on the energy bin. The full detailed
description of detector effects and other sources of sys-
tematic errors, together with the numerical values of ϵ and
R parameters, are given in Ref. [21].
The integral in Eq. (2.4) depends solely on the specific

shower considered and the energy bin where it falls. For
later convenience, we define the quantity,

FjðXmax jSÞ≡
Z

dX̃N ðX̃ jXj
max; δX

j
maxÞ

× RðXmax − X̃Þ × ϵðX̃Þ; ð2:7Þ
and rewrite the PDF as

PsimðXmax jSÞ ¼
1

Ñ

X
j

FjðXmax jSÞ: ð2:8Þ

The advantage of this notation is twofold: firstly, we have
written the PDF as a sum of single integrals, which only
need to be evaluated once for each S; secondly, the
systematic uncertainty from detector effects is included
in each Fj in a transparent way. The latter is studied in more
detail in Sec. IVA.
Note that the Auger Collaboration divides the energy in

smaller bins, namely in the intervals log10 E ∈ ½e; eþ 0.1�,
where e ¼ 17.8; 17.9;…; 20, and the energy in measured in
eV. The numerical values of the efficiency and smearing
functions are given in Ref. [21] for each of these bins. We
take them into account in building Eq. (2.4), then combine
the results in the larger energy bins we defined in Sec. II B.
As an example, the first two energy bins in Auger, B1 ≡
log10 E ∈ ½17.8; 17.9� and B2 ≡ log10 E ∈ ½17.9; 18.0�, are
contained in our first energy bin, E1 ≡ E ∈ ½0.6; 1� EeV.
We can then build PsimðX jE1Þ (we omit the other inputs
here) by subdividing the summation over the index j, into a
sum over j1 and j2, where each index scans over theN1 and
N2 showers in the bins B1 and B2, respectively. Namely,
we have

PsimðXmax jE1Þ ¼
1

N1 þ N2

ðN1PsimðXmax jB1Þ

þ N2PsimðXmaxjB2ÞÞ: ð2:9Þ

III. CENTRAL MOMENTS OF Xmax
DISTRIBUTIONS

A. Moment decomposition

Given a dataset fXmaxg containing Xi
max with i ¼

1;…; N, its mean and central moments are defined as

z1 ≡ hXmaxi ¼
1

N

XN
i¼1

Xmax;i; ð3:1Þ

zn ¼
1

N

XN
i¼1

ðXmax;i − z1Þn; ð3:2Þ

where fXmaxg can be either the observed dataset, fXAug
maxg,

or a simulated set with fixed inputs, fXsim
maxg. The central

moments can be used to characterize a distribution. In
particular, higher central moments describe the spread and
shape about its mean. Effectively, we build a map,

G∶ PðXÞ →

0
BB@

z1

..

.

zn

1
CCA; ð3:3Þ

which reduces the dimension of each Xmax set from N
numbers, where typically, N ∼ 103, to a set of n moments.
While dimensionality reduction can be achieved in
several ways, for example, by binning or training a neural
network, this particular map reduction exhibits excellent
performance, offers transparent interpretation, and is
suitable also for low statistics samples. In particular, in
Sec. III B, we argue that n ¼ 3 already entails the most
relevant distribution information; furthermore, we show in
Sec. VA that three moments are sufficient to reproduce
existing results in the literature obtained by considering the
full (binned) Xmax distribution.
Once we fix the energy E and the hadronic model H in

our simulations, we obtain a PDF for each primary Z,
PðXmax jZÞ; see Eq. (2.4). We can write the nth ordinary
moment of this distribution as

hXn
maxiZ ¼

R
PðXmax jZÞXn

maxdXmaxR
PðXmax jZÞdXmax

: ð3:4Þ

The above expression can be further simplified. We can
formally define the “nth moment” for each individual
shower j as

F n
j ðZÞ ¼

Z
FjðXmax jZÞXn

maxdXmax; ð3:5Þ

where we have used the expression in Eq. (2.8). Defining

1

N

X
j

F 0
jðZÞ≡ ΔZ ¼

Z
PðXmax jZÞdXmax; ð3:6Þ

leads to the final expression,

hXn
maxiZ ¼

1
N

P
jF

n
j ðZÞ

ΔZ
: ð3:7Þ

This form is highly convenient for numerical evaluation, as
the integrals F n

j only need to be computed once for a given
dataset. ΔZ represents the renormalization of the Xmax
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distribution due to detector effects. In particular, detector
efficiency and smearing in general lead to ΔZ < 1.
Numerically, we find this effect to be at the Oð1%Þ level,
that is ΔZ ≳ 0.99, and thus, negligible with our statistics.
Nonetheless, we keep this notation in the remainder of the
paper as this is in general the proper normalization factor
for the evaluation of moments.
The nth central moment zn can then be written as a linear

combination of hXm≤n
max i. The first moment is the mean,

z1 ≡ hXmaxi, while for n > 1, we can write, in general,

zn ¼ hðXmax − hXmaxiÞni ¼
Xn
k¼0

�
n

k

�
hXn−k

maxið−1ÞkhXmaxik:

ð3:8Þ

Explicitly, for the first four moments, we have

z1 ¼ hXmaxi;
z2 ¼ hX2

maxi − hXmaxi2;
z3 ¼ hX3

maxi − 3hX2
maxihXmaxi þ 2hXmaxi3;

z4 ¼ hX4
maxi − 4hX3

maxihXmaxi
þ 6hX2

maxihXmaxi2 − 3hXmaxi4; ð3:9Þ

where the dependence on Z has been omitted. Finally, for a
composition w, the total nth moment can be written as

hXn
maxiðwÞ ¼

P
ZhXn

maxiZΔZwZP
ZΔZwZ

: ð3:10Þ

Note that while an ordinary moment hXn
maxi of a compo-

sition is a weighted average of the same moments hXn
maxiZ

of individual components; this is, in general, not true
for central moments, which have to be computed through
Eq. (3.9).

B. Correlations

We perform the decomposition of the Xmax distributions
into moments with the aim of capturing their most
discriminating features when inferring the UHECR com-
position. However, if moments zn and znþ1 are highly
correlated for a fixed set of simulation inputs (Z, E, H),
then znþ1 actually does not provide much additional
information on the distribution shape with respect to zn.
In order to have a quantitative measure of such correlations,
we perform linear fits between two sets of moments, fzng
and fznþ1g, for a fixed energy bin, primary CR, and
hadronic model, obtained via the bootstrapping procedure
described in Sec. IVA. For each moment pair, we compute
the correlation coefficient, R. If R → 1, the two moments
are highly linearly correlated, while R → 0 indicates weak
to no correlation.
In Fig. 3, we show the correlation coefficients of

nine consecutive moments for four different primaries, p,
He, N, and Fe, simulated with each hadronic model in the
[1, 2] EeV energy bin. Each segment indicates the value of
R for the linear fit between zi and ziþ1. From the plots, we
can see that even z1 and z2 are not completely uncorrelated,
with R ∼ 0.5. Nonetheless, the second moment is expected
to provide significant complementary information to the
mean (hXmaxi). The third moment shows further increased
correlation with the second one, as indicated by the values

FIG. 3. Correlation coefficients between consecutive moments for four simulated primaries, proton (p, red), helium (He, blue),
nitrogen (N, orange), and iron (Fe, dark green), and for Auger data (black dashed). The thick horizontal gray line indicates R ¼ 0.5.
Each segment shows the value of R for zi and ziþ1; e.g., the first segment in each plot shows R for the fit of z1 and z2, the second segment
for the fit of z2 and z3 and so on.
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in the range R ∼ ð0.6–0.8Þ, depending on the primary and
hadronic model. Going beyond the third moment in the
expansion, we find strong correlations between zi and ziþ1,
that is R ∼ 1.1 These higher moments are thus expected to
add increasingly marginal additional information to the
analysis. We test this hypothesis explicitly in Sec. V by
comparing inferred compositions and their uncertainties at
different truncations of the zi expansion.

C. Model comparison

One important feature of parametrizingXmax distributions
in terms of their moments is that it allows for a systematic
and transparent comparison of different high energy had-
ronic interaction models discussed in Sec. II B. To illustrate
this, we fix the primary energy E and compare sets of zn
computed from simulated showers using different combi-
nations of the hadronicmodelH and primaryZ [again, these
fznðH;ZÞg sets are obtained using the bootstrapping
procedure described in Sec. IVA]. To quantify the com-
parison, we estimate the so-called (s.c.) Hellinger distance
defined between pairs of PDFs. Given two probability
density functions p1ðxÞ, p2ðxÞ, the Hellinger distance H
is defined via

H2ðp1; p2Þ ¼
Z � ffiffiffiffiffiffiffiffiffiffiffi

p1ðxÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffi
p2ðxÞ

p �
2

dx

¼ 1 −
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1ðxÞp2ðxÞ
p

dx: ð3:11Þ

Thus, H defines a metric in the space of PDFs, bounded in
the range [0, 1]. Intuitively, one can think of two PDFs being
“distant” when H2ðp1; p2Þ → 1, as p1 would assign zero
probability to all points x, where p2ðxÞ > 0 and vice versa.
Conversely, the two PDFs are “near”whenH2ðp1; p2Þ → 0.
When both PDFs are Gaussians, p1ðxÞ ∼N ðμ1; σ1Þ and
p2ðxÞ ∼N ðμ2; σ2Þ, the integral in (3.11) can be solved
analytically yielding

H2ðp1; p2Þ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ1σ2
σ21 þ σ22

s
exp

�
−
1

4

ðμ1 − μ2Þ2
σ21 þ σ22

�
: ð3:12Þ

For each set fznðH;ZÞg, we thus first approximate (fit)
the relevant PDFs as Gaussians pðznÞÞ ∼N ðμðznÞ; σðznÞÞ.
Then for pairs pðznðHa; ZiÞÞ pðznðHb; ZjÞÞ, the Hellinger
distance Hab

ij ðznÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðpðznðHa; ZiÞÞ; pðznðHb; ZjÞÞÞ

q
for each moment zn as given in Eq. (3.12) quantifies
systematic differences between simulations based upon the
two hadronic models. In particular ,Hab

i¼jðznÞ ≫ Hab
i≠jðznÞ

(for some i ≠ j) would directly indicate a systematic

relative bias between a pair of models related to primary
UHECR inference based on the zn moment. As an example,
in Fig. 4, we show the matrix of Hellinger distances for the
first four central moments of EPOS and Sibyll, simulated in
the [1, 2] EeV energy bin.2 We observe that while the two
hadronic models agree relatively well for the first moment
(the smallest values ofH are close to the diagonal), already
at z2, their predictions start to systematically exhibit
significant relative bias (smallest values of H are shifted
systematically away from the diagonal) as well as spread
(more cells with H ≪ 1). Both effects become even more
pronounced for z3 and z4. Relative bias implies that the two
hadronic models could in principle infer different UHECR
compositions for the same measured z2;3;4. The effect is
however partially offset by the spread, which signifies that
the resolution or discriminating power between primaries
diminishes, i.e., distributions of z2;3;4 for different (neigh-
boring) primaries (even for the same hadronic model, see
the Appendix) are more and more similar. What is
important however is that at least for very distant primaries
(with very different atomic numbers Z) higher moments
retain significant discriminatory power (H ∼ 1).

IV. INFERRING COMPOSITION OF UHECRs

A. Evaluation of uncertainties via bootstrapping

The total uncertainty of simulated fXmaxg PDFs and
subsequently, of zi receives two main contributions: the
systematic error from detector effects, as described in
Sec. II C, and the statistical uncertainty due to the finite
number of showers available. While the former is included
in our definition of the PDF, see Eq. (2.4), we need to
evaluate the latter in a consistent way. Our strategy consists
of bootstrapping the PDFs of simulated showers and
evaluating the resulting widths of moment distributions.
In the following discussion, we assume that the energy bin
and hadronic model are fixed and keep only the primary
particle Z as variable.
The systematic uncertainty of a single shower

Xj
max is fully described by the modified distribution

FjðXjZÞ; see Eq. (2.7). The mean and standard deviation
of the latter, namely μj ¼ F 1

jðZÞ=F 0
jðZÞ and σj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F 2
jðZÞ − ½F 1

jðZÞ�2
q

=F 0
jðZÞ, can be seen as the best

estimations of the jth simulated measurement and its
uncertainty. To show the total contribution of the system-
atic error, we sample each simulated shower from a
normal distribution N ðμj; σjÞ, and compute the central
moments of the resulting distribution. By repeating
these steps multiple times, we obtain an estimation of
each moment distribution, and in particular, their width.
We show this in Fig. 5 (in black) for the example case of

1We have checked explicitly that the conclusion remains
qualitatively the same also for s.c. normalized (dimensionless)
moments defined as zi=z

ði=2Þ
2 for i > 2.

2Similar results comparing all hadronic model pairs in the
same energy bin, are presented in the Appendix.
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the first moment of proton showers simulated with EPOS,
in the energy bin [1, 2] EeV.
The statistical uncertainties of moments zn are estimated

in a similar way using bootstrapping. We sample an
event N times from a set of N showers, allowing for
repetitions and with the same probability 1=N to be picked.
Sampled events are then used to compute moments zn. By
repeating this procedure multiple times, we obtain a set of
moments fzng which captures statistical and systematic
uncertainties at the same time. To have a more intuitive
picture, we can think of the infinite statistics limit, N → ∞,
while neglecting for this purpose any systematic error. In
this limit, the probability of sampling any single event more
than once goes to 0; the resulting distribution of each
moment will tend to a delta function peaking at the real
value of zn. Reducing the number of events available, we
are more likely to sample the same event multiple times,
resulting in a wider distribution of zn.
We indicate the steps of the bootstrapping procedure

with the index l. The PDF of the lth bootstrapped sample is

PsimðXjZÞl ¼
1

N

X
j

Oj;lðZÞFjðXjZÞ; ð4:1Þ

where Oj;lðZÞ gives the number of times the jth event is
sampled in the lth bootstrapped step. At each l, we generate
a random list Oj;lðZÞ, with the single constraint thatP

j Oj;l ¼ N. The nth moment for a given composition
w, Eq. (3.10), at the lth bootstrapped step then reads

hXn
maxilðwÞ ¼

P
ZGðZÞnl wZP
ZGðZÞ0l wZ

; ð4:2Þ

where we have defined

GðZÞnl ≡ 1

N

X
j

Oj;lðZÞF n
j ðZÞ: ð4:3Þ

This expression summarises our notation of Sec. III A, as
for n ¼ 0, we have GðZÞ0l ¼ ΔZ;l and for n > 0, we get
GðZÞnl ¼ hXn

maxiZ;lΔZ;l. All information about simulated
showers used to infer the composition is then entailed by
the tensor GðZÞnl .
We perform the bootstrapping procedure with M ¼ 105

steps. For each step, we compute the moments zn
using Eq. (3.9). This results in a set of moments,
fðznÞ1;…; ðznÞMg, which we use to obtain their distribu-
tions. As a case example, we show in Fig. 5 (in red), the

FIG. 4. Hellinger distance Hab
ij ðznÞ between EPOS (a) and Sybill (b) models and different primaries i, j (both axis represent primary

atomic numbers) for the first four central moments zn of Xmax distributions of simulated UHECRs with energies within [1, 2] EeV. See
text for details.
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result for the z1 distribution of proton showers, simulated
with hadronic model EPOS in the [1, 2] EeV energy bin. It
is clear from Fig. 5 that the total uncertainty of the central
moment z1 is dominated by statistical fluctuations due to
finite number simulated showers, which dominate over the
systematic errors from detector effects. In the example
shown, the width of the z1 distribution is ∼0.5 g=cm2 for
the latter, while it is ∼1.5 g=cm2 for the former. That is,
including statistical errors the total uncertainty increases by
a factor of 3. The same pattern can be seen for the other
moments and in general, for all other primaries, where the
ratio between total and systematic errors is closer to a factor
of 2 for our simulated shower samples.
We can apply the same procedure to the set of measured

data. Starting from the PDF for measured Xmax in a fixed
energy bin, Eq. (2.3), we can write at the lth step of the
bootstrapping,

PðXjEÞl ¼
1

N

XN
j¼1

N ðXjXmax;j; δXmax;jÞOj;l; ð4:4Þ

where now N is the number of measured events in bin E. It
follows that the nth moment is

hXn
maxil ¼

Z
PðXjEÞlXndX

¼ 1

N

XN
j¼1

Oj;l

Z
N ðXjXmax;j;δXmax;jÞXndX: ð4:5Þ

Similarly to the case of Eq. (3.5), we can compute these
integrals for each event once, before performing the boot-
strapping, thus greatly improving on the required compu-
tation time.3

Finally, we remark that the bootstrapped moments
closely follow normal distributions, as expected from the
central limit theorem, both for simulations and real data.
In Fig. 6, we show the first four moments distributions
for protons simulated with EPOS in the [1, 2] EeV
energy bin. In the following, we can then safely take
pðziÞ ¼ N ðzijμzi ; σziÞ, where ðμzi ; σziÞ are the mean and
standard deviation of fzig. More generally, we have

zðwÞ ∼N nðzjμðwÞ;ΣðwÞÞ; ð4:6Þ

where zðwÞ is the vector of n moments and N nðzjμ;ΣÞ is a
multivariate normal distribution, with μ the n-dimensional
mean vector and Σ the n × n covariance matrix. As
described in Eq. (3.10), in the general case, the moments
of Xmax distributions will depend on the composition; here
this is reflected in μ and Σ being functions of w.
Similarly, from Eq. (4.5), we have for Auger data in a

selected energy bin,

z̃ ∼N nðzjμ̃; Σ̃Þ; ð4:7Þ

where now the mean μ̃ and covariance matrix Σ̃ are
constants calculated from the (bootstrapped) data distribu-
tions for each energy bin.

B. Likelihood

The composition w of UHECR in a selected energy
bin is inferred by comparing simulated data with the BH4

events in the Open Data from Pierre Auger Observatory. In
the following discussion, we assume that both the energy
bin and the hadronic model have been fixed, thus leaving
the composition w as the only free parameter.
In the previous sections, we mapped the PDFs of both

measured and simulated Xmax to a set of n features, namely
the first n central moments of the distributions, via
Eq. (3.3). Furthermore, we have shown that we can safely
approximate the moment distribution in terms of a
n-dimensional multivariate normal. For a given composi-
tion w, the moments of simulated data can be expressed as a
weighted average of single primary moments, as described
in Eq. (3.10). Thus, the parameters of the respective
multivariate distribution in Eq. (4.6), the mean vector
μðwÞ, and the covariance matrix ΣðwÞ, contain all the
information on the composition w. Similarly, the distribu-
tion of moments of measured data is described by the
parameters μ̃ and Σ̃, as in Eq. (4.7).
Given the above premises, the problem of inferring the

composition consists of fitting the simulated n-dimensional
vector zðwÞ, to the measured z̃. The approximation to

FIG. 5. Distribution of z1 for protons simulated with EPOS
in the [1, 2] EeV energy bin. The black distribution is
obtained including only systematic uncertainties, while the red
one including statistical uncertainties by bootstrapping; see
Sec. IVA for details.

3For comparison, in the binned approach, the likelihood sum
over all bins needs to be recomputed for each bootstrapped sample.

4We have checked that the results are comparable if we restrict
to GH showers only. The advantage here comes from the higher
number of BH events, which lead to slightly smaller confidence
intervals.

LEARNING THE COMPOSITION OF ULTRAHIGH ENERGY … PHYS. REV. D 108, 022004 (2023)

022004-9



multivariate normal distribution further simplifies the
problem of taking into account the full uncertainties and
correlations into the likelihood function. In particular, the
likelihood of obtaining moments z, with composition w,
given the experimental data reads

L̃ðz; wÞ ¼ N nðzjμ̃; Σ̃Þ ×N nðzjμw;ΣwÞ; ð4:8Þ

where we have written μðwÞ≡ μw, ΣðwÞ≡ Σw, for brevity.
In general, we are considering the likelihood as a function
of both z and w. The former can be treated as a nuisance
parameter, introduced to take into account the uncertainties,
which we need to marginalize over. In this work, we follow
the Bayesian approach and integrate Eq. (4.8) over all
possible values of z,

LðwÞ ¼
Z

L̃ðz; wÞdnz: ð4:9Þ

The integral can be solved explicitly, and the logarithm of
the solution (the log-likelihood) reads

log ½LðwÞ� ¼ −
n
2
logð2πÞ − 1

2
log ½detðΣw þ Σ̃Þ�

−
1

2
ðμTwΣwμw þ μ̃TΣ̃ μ̃Þ

þ 1

2
ðΣ−1

w μw þ Σ̃−1μ̃ÞTðΣ−1
w þ Σ̃−1Þ−1

× ðΣ−1
w μw þ Σ̃−1μ̃Þ: ð4:10Þ

Finally, we can obtain the distribution of possible compo-
sitions w, PðwÞ, given the experimental data, via the Bayes
theorem as

PðwÞ ¼ LðwÞDirðw; αÞR
LðwÞDirðw; αÞdDw ; ð4:11Þ

where D ¼ 26. Here, we have assumed a flat prior
(Dirichlet) distribution Dirðw; αÞ, with α ¼ ð1;…; 1Þ,
meaning that in the absence of experimental informa-
tion, all compositions are equally probable. The “best
composition,” w�, is thus the composition that maximizes
the posteriorPðwÞ or equivalently, in the case of a flat prior,
the composition that maximizes the log-likelihood in
Eq. (4.10).
The posterior distribution in Eq. (4.11) realizes the main

goal of this work: the most probable composition as well as
the confidence regions (or confidence intervals of single
primary fractions) can be extracted from an unbinned
likelihood of fXmaxg distributions based on their expansion
in central moments.

C. Estimating confidence regions with nested sampling

While the best composition w� can be obtained in a
straightforward way, by maximizing the log-likelihood in
Eq. (4.10), the extraction of confidence intervals is sig-
nificantly more involved. The likelihood LðwÞ depends on
26 correlated parameters, subject to a single constraintP

Z wZ ¼ 1. The numerical evaluation of such a function
around the point w� proves to be computationally intensive.
We approach this problem by sampling from the posterior
PðwÞ using a nested sampling (NS) [17] algorithm.
The basic task of NS is to compute the evidence,

Z ¼
Z

LðwÞDirðwÞdDw ¼
Z

1

0

LðXÞdX; ð4:12Þ

FIG. 6. Distribution of first four moments, z1;2;3;4, for protons simulated with EPOS in the [1, 2] EeVenergy bin. The horizontal axis of
the zn plot is in units ðg=cm2Þn. The black line indicates the distribution of the respective moment obtained by bootstrapping the
simulated Xmax. The mean and standard deviation of the latter define the normal distribution shown with the red line.
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where LðXÞ is obtained by inverting the mass function
XðLÞ ¼ R

LðwÞ≥LDirðwÞdDw. In its simplest form, the algo-
rithm can be described in the following way. In the first
step, k ¼ 1, Nlive compositions w, called live points, are
sampled from the prior. The point w1 with the lowest
likelihood, L1, is called a dead point. At each following
step, k > 1, a new live point is sampled from the prior with
the constraint that LðwÞ > Lk−1, and again, a dead point wk
with likelihood Lk is determined. The contribution to the
evidence at step k is given by δZk ¼ LkδXk, where δXk is
the volume of the prior region where points have likelihood
between Lk−1 < LðwÞ ≤ Lk; this region can be estimated
from a beta distribution for uniform priors (see Ref. [17] for
details). Finally, the algorithm outputs a set of dead points,
wk, with the associated weights, uk, given by uk ¼ δZk=Z,
where k ¼ 1;…;M are the number of samples produced.
The size ofM depends on the number of Nlive employed in
the sampling procedure.
Built on this simple procedure, the modern implemen-

tations of the NS algorithm include in addition evaluations
of the uncertainty on the estimated volume of the prior
region as well as the uncertainty on the contribution to the
evidence δZk. The procedure is in principle valid for any
prior, which in our case is assumed to be a flat Dirichlet
distribution.
In this work, we use a recent implementation of NS,

called UltraNest [26–28], available on GitHub [29].
The computation of weighted samples from the posterior is
done using the function ReactiveNestedSampler.
We also employ the slice sampling technique, included in
the UltraNest code, with the default setting for the
number of steps. The latter allows us to efficiently explore
the high dimensional space spanned by our parameter. We
then use the outputs fðwk; ukÞg to compute the confidence
level as a function of likelihood L0 as

CLðL0Þ ¼
X

ðwk;ukÞjLðwÞ≥L0

uk: ð4:13Þ

In Fig. 7, we show the latter relation obtained for the four
primaries mixture described in Sec. VA, with two different
settings for the number of live points used by UltraNest,
Nlive ¼ 400 and Nlive ¼ 1200. As the two results are
consistent, we use the lower Nlive ¼ 400 setting, which
considerably reduces the computation time required.
Samples generated by NS cannot be used directly to

determine the confidence regions of individual primary
fractions, wZ, as can be seen from Fig. 8. In general, the
algorithm does not provide samples of w that lie precisely
on the boundary of a confidence region of interest. Instead,
it provides a reliable map between the confidence level CL
(L) and likelihood L, as shown in Fig. 7. With this
information, we can compute the confidence intervals for
a fixed CL ðL0Þ and primary Z by solving for the positivity
limits of the function Lðw0Þ − L0. That is, we look for the

two compositions wlow
0 and whigh

0 , which satisfy the follow-
ing condition:

∀w0∶ Lðw0Þ ≥ L0 ⇒ ðw0ÞZ ∈ ½ðwlow
0 ÞZ; ðwhigh

0 ÞZ�; ð4:14Þ

where ðw0ÞZ is the Zth component. Specifically, we
compute the upper and lower bounds for each primary
fraction for the 68.3% (1σ) and 95.4% (2σ) confidence
levels separately. Starting with the lower bound, we
describe here the algorithm for a fixed primary Z and
confidence level CL (L):

FIG. 7. Confidence level as a function of log-likelihood,
for hadronic model EPOS in the energy interval 17.9 <
logðE=eVÞ ≤ 18.0. The solid black line shows the result with
Nlive ¼ 400, while the dashed blue line is for Nlive ¼ 1200. In
both cases, we use n ¼ 3 moments as features.

FIG. 8. Fraction of primaries from samples generated by
NS with 400 live points, for the hadronic model EPOS in the
energy interval 17.9 < logðE=eVÞ < 18.0. Here, we use n ¼ 3
moments.
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(1) Choose the confidence level CL (e.g., 1σ) and
calculate the corresponding L0 by inverting the
relation in Eq. (4.13).

(2) Select 3 compositions w0 from samples obtained by
NS algorithm, which have the lowest values of Zth
component ðw0ÞZ and with likelihoods Lðw0Þ ≥ L0.

(3) For each selected composition w0 initialize n ¼ 0
and repeat the following steps:
(a) Sample M ¼ 200 times from a multinomial

distribution Multðwjp ¼ w0; N ¼ 1000Þ. In this
way, a set of compositions fw1;…; wMg is
obtained.

(b) Find a composition w� in the set fw1;…; wMg
with the likelihood Lðw�Þ ≥ L0 and with the
lowest value of the Zth component, ðw�ÞZ.

(c) If ðw�ÞZ < ðw0ÞZ, replace w0 with w� and set
n ¼ 0; otherwise, add 1 to n.

(d) If n ¼ 10, exit the loop. The value of ðw�ÞZ is the
estimated lower bound for the confidence inter-
val of primary Z for confidence level CL Save
this value.

(4) Compare estimated lower bounds and determine the
lowest value among the three.5

The upper bound and the most probable composition
can be found using the same approach with trivial
modifications. In Fig. 8, we show the result for the
single primary fractions, obtained in the four element
mixture case described in Sec. VA, for different confidence
levels.
The set of Python codes developed to perform all the tasks

described in this section is available on GitHub.

V. RESULTS

A. Method validation and comparison
with previous studies

We first apply our method to a mixture of four elements,
namely (p, He, N, Fe), in order to compare with results of
previous studies [14,30]. In particular, in these works, the
composition of up to eight primaries (p, He, C, N, O, Ne,
Si, Fe) was inferred by binning the Xmax distribution, both
simulated and measured, and maximizing the likelihood,

log ½LbinðwÞ� ¼
XN
i¼1

ðni − yi − ni log ½ni=yi�Þ; ð5:1Þ

where ni is the number of simulated showers in the ith bin of
Xmax and yi is the number of observed events in the same bin,
N is the number of bins. Note that, differently from the
unbinned likelihood in Eq. (4.8), the uncertainties stemming
from the finite size of the simulation sets are not naturally
included in the definition of the binned likelihood but need
to be computed separately. In particular, we obtain them via
a (computationally intensive procedure of) bootstrapping
NB samples of simulated data, computing the individual
binned likelihoods and then averaging over them.
In Fig. 9, we compare the results, in the framework

of four primaries in the log10ðE=eVÞ ∈ ½17.9; 18.0�
energy bin, obtained with the use of the binned likelihood
with N ¼ 46, Eq. (5.1) (left plot), and with the use
of the unbinned likelihood for the Xmax central moment
decomposition with n ¼ 3, 4, Eq. (4.9) (right plot). Both
methods have been applied to the same available events
from the Auger Open Data set, resulting in somewhat
wider confidence intervals compared to the original pub-
lications [14,30]. While our analysis reproduces a prefer-
ence for large proton fractions, wp ∼ 50%, as seen in the
literature, the fraction of heavier elements for the best fit
are different, i.e. (wHe ∼ 40%, wN ∼ 0%) obtained with the

FIG. 9. Inferred composition for a mixture of four primaries, (p, He, N, Fe), in the energy bin log10 E ∈ ½17.9; 18.0�. Left: result
obtained using the binned likelihood, Eq. (5.1). The black solid line indicates the most probable composition, while the red bands the 2σ
confidence interval. Right: results obtained with the unbinned likelihood, Eq. (4.9). The black and red solid lines show the best
composition and the 2σ regions respectively, based on n ¼ 3 central moments. The dashed lines represent the same in the case of n ¼ 4
central moments.

5The estimated bounds do not improve significantly by using a
higher number of compositions in step 2. We use three points to
reduce the computational time and check the consistency of the
results.
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unbinned method versus (wHe ∼ 20%, wN ∼ 20%) obtained
with the binned likelihood. However, shifts in the w� can be
expected given the low statistics and high dimensionality of
the problem. Importantly, the inferred fraction confidence
intervals are comparable between the two approaches, even
though the unbinned method is based only on the first three
or four central moments of the Xmax distribution compared
to N ¼ 46 bins considered in the binned likelihood
approach.
We also compare the two methods in terms computa-

tional requirements. In particular, we measure the average
computational time to evaluate the (bootstrapped) like-
lihood once; the latter is obtained by evaluating the like-
lihood 1000 times and taking the average over the
individual computational times. Considering a range of
bootstrapping steps up to M ¼ 10000, we find the
unbinned method with four moments to be consistently
at least an order of magnitude more efficient compared to
the binned approach with N ¼ 46 bins. We note that this
significant reduction of computational time is one of the
main advantages of the unbinned method.

The results of unbinned fit with n ¼ 3, 4 are well
consistent with each other. We further explore the quali-
tative and quantitative differences between results obtained
with fits to different numbers of central moments in Fig. 10.
We show the 3σ (solid) and 5σ (dashed) contours of the
multivariate normal distributions of moments in the same
energy bin considered above, log10 E ∈ ½17.9; 18.0�, pro-
jected onto planes spanned by pairs of moments; see
Eqs. (4.6) and (4.7). The black ellipses indicate the
contours of the measured Auger Open Data moment
distribution, while the red, purple, blue, and green lines
indicate the maximum likelihood compositions, inferred
from unbinned fits to n ¼ 1, 2, 3, 4 central moments,
respectively. Note that when fitting to only z1 ¼ hXmaxi, the
best fit composition gives rather poor predictions for higher
moments. This again indicates that higher central moments
of the Xmax distribution contain additional relevant addi-
tional information on the primary composition of
UHECRs. On the other hand, when including the second
(and third) moments in the fit, the resulting predictions for
the higher [third (and fourth)] moments are consistent

FIG. 10. 3σ (solid) and 5σ (dashed) contours of the multivariate moment distributions for the Auger data (black) and for the best
composition inferred with EPOS, using n ¼ 1 (red), n ¼ 2 (purple), n ¼ 3 (blue), and n ¼ 4 (blue) moments, in the log10 E ∈
½17.9; 18.0� energy bin, for the 4 primary framework.
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within uncertainties with the data, but more importantly,
also with model results obtained when these higher
moments are included in the fit. This reaffirms our expect-
ation that (given the available statistics) n ¼ 3 is sufficient
to describe the most relevant features of the Xmax distri-
butions when inferring the composition of UHECRs.6

B. Full composition results—EPOS

Next, we apply our method to infer the full composition
of UHECRs. In this subsection, we focus on results
obtained with the EPOS hadronic model. We compare
results obtained with different hadronic models in Sec. V C.
Additional plots and results are collected in the Appendix.
To show the inferred compositions of all 26 considered

primaries in a meaningful way, while properly including
the confidence intervals and account for correlations, we
plot cumulative fractions of elements. That is, for each
Z0 ∈ f1;…; 26g, we plot the fractions of elements heavier
than Z0 (Z > Z0) that form the showers, with the respective
1σ and 2σ confidence intervals. The single fractions wZ
suffer from the fact that the full composition w represents a
point in a 26-dimensional space, with a single constraintP

Z wZ ¼ 1. Thus, the confidence interval for any single
wZ, which is actually a projected confidence region of w on
the Z dimension, does not carry useful information on the
remaining 25 fractions. Furthermore, the low available
statistics leads to very large confidence intervals of the
inferred fractions. The value of any single wz, while
interesting on its own, cannot be strongly constrained with
presently available Open Data.
In Fig. 11, we show the results obtained in the three

energy bins with EPOS. The black (dashed) lines indicate
the cumulative for the best composition w�, obtained by
maximizing the posterior probability, Eq. (4.11) with
n ¼ 3ð4Þ, while the magenta (blue) shaded regions indicate
the respective 2σ confidence intervals. At each step Z0, we
can read the fraction of elements heavier than Z0.
Focusing on the confidence of exclusion indicated by the

2σ regions, at the level of precision achievable with the
Open Data, we can exclude that in the high energy bin
≳90% of the showers are sourced by protons. Or, in other
words, that at least ∼10% of the showers are sourced by
elements heavier than the proton. Similar limits can be
extracted for all elements and energy bins. Despite the low
precision of such predictions, it can still be seen how higher
energy showers tend to prefer compositions with smaller
wp. In the bottom plot of Fig. 11, showing results in the
highest considered energy bin, the fraction of heavy
elements is at least ∼20% at 2σ level, with the best fit
around 50% and the upper limit consistent with no proton
induced showers altogether.

Next, we note that results of fits to n ¼ 3ð4Þmoments are
again perfectly comparable, especially in terms of the
inferred confidence intervals. Thus, at currently available
statistics, three central moments suffice to extract the most
relevant information on the composition even in the full
Z ¼ 26 case. To further quantify the possible differences
between results obtained with fits to different numbers of
central moments, we show in Fig. 12 the 3σ (solid) and 5σ
(dashed) contours of the multivariate normal distributions
of moments in the low energy bin E ∈ ½0.6; 1� EeV,
projected onto planes spanned by pairs of moments; see
Eqs. (4.6) and (4.7). As in Fig. 10, the black ellipses
indicate the contours of the measured Auger Open Data
moment distribution, while the red, purple, blue, and green
lines indicate the maximum likelihood compositions,
inferred from unbinned fits to n ¼ 1, 2, 3, 4 central
moments, respectively. Note that due to more statistics
in this energy bin and larger composition space, when

FIG. 11. Fraction of primaries with atomic number Z > Z0

inferred with the EPOS model, in the three energy bins consid-
ered. The solid black line and purple regions indicate the results
taking n ¼ 3 moments in the distribution decomposition, while
the dashed black line and cyan regions show the effect of taking
n ¼ 4 moments.

6We revisit this issue again in Sec. V B when considering the
full Z ¼ 26 composition results.
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fitting to only z1 ¼ hXmaxi, the best fit composition now
clearly gives poor predictions for higher moments (incon-
sistent with the data at the 3σ level). This indicates that the
additional information provided by higher central moments
is relevant especially when trying to infer UHECR com-
position, including more primaries from high enough
statistics datasets. Currently including the second (and
third) moments in the fit, the resulting predictions for
the higher [third (and fourth)] moments are still consistent
within uncertainties with the data and with model results
obtained when these higher moments are included in the fit.
We expect the importance of higher moments to further
increase when fitting to larger UHECR shower datasets
already collected at the Pierre Auger Observatory. For
completeness, we show the results for the intermediate and
high energy bins in Figs. 24 and 25, respectively.

C. Comparison of hadronic models

Finally, we compare the results for the full UHECR
composition based on simulations obtained with different
hadronic models. In Fig. 13, we show the results for all four

hadronic models considered in Sec. II B. It is immediately
clear how these models can lead to very different con-
clusions. The Sibyll model (second row) tends to predict
heavier compositions and smaller proton fractions than
EPOS, with a lower limit of ∼30% at 2σ for the fraction of
elements beyond protons. On the other hand, the two
QGSJet models (last two rows) favor light compositions,
with all predictions consistent at 2σ with a 100% proton
shower composition.
Another comparison of the four hadronic models is

provided by the quality of their fits to Auger data. In
Table I, we summarize the values taken by the negative log-
likelihood, Eq. (4.10), at the best composition point in each
energy bin, when considering different numbers of
moments n. For the same n, smaller values indicate better
fits to the measured Auger data in a given energy bin. With
only a single feature, namely hXmaxi, all models give
similar results, that is all models fit the data equally well
(but can infer markedly different compositions).
Differences in the goodness of fit start to emerge only
when increasing the number of higher moments consid-
ered. We see that, both in the case of n ¼ 3 and n ¼ 4, the

FIG. 12. 3σ (solid) and 5σ (dashed) contours of the multivariate moment distributions for the Auger data (black) and for the best
composition inferred with EPOS, using n ¼ 1 (red), n ¼ 2 (purple), n ¼ 3 (blue), and n ¼ 4 (blue) moments, in the low energy bin, for
the full Z ¼ 26 primary framework.
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EPOS and Sibyll models provide the best fits, while the two
QGSJet models yield significantly higher values of− logL.
A more detailed understanding of the differences

between models can also be obtained by plotting the
moments of best fitted compositions for each model against

the Auger data. This is shown in Fig. 14 for the lowest
energy bin, where the 3σ and 5σ contours of the multi-
variate normal distributions of moments, projected onto
planes spanned by pairs of moments are shown; see
Eqs. (4.6) and (4.7). The black ellipses indicate the

FIG. 13. Fraction of primaries with atomic number Z > Z0 inferred with all four hadronic models and n ¼ 3, in the three energy bins
considered. The black line shows the fraction for the best composition, while the cyan and purple regions indicate the 1σ and 2σ
confidence levels, respectively.

TABLE I. Values of − logL for the most probable 26-dimensional compositions, for each hadronic model in three
energy bins, using n ¼ 1 (n ¼ 2) [n ¼ 3] fn ¼ 4g moments. Smaller values indicate a better fit to the measured
data.

E=EeV ∈ ½0.6; 1� E=EeV ∈ ½1; 2� E=EeV ∈ ½2; 5�
EPOS 1.6 (7.8) [18.8] f35.7g 1.5 (7.7) [18.7] f35.1g 1.7 (8.2) [20.3] f37.1g
Sibyll 2.3c 1.6 (7.8) [18.8] f35.0g 1.5 (7.6) [18.7] f35.8g 1.7 (8.2) [20.3] f36.5g
QGSJet01 1.7 (8.1) [23.1] f40.4g 1.7 (10.7) [22.8] f40.4g 1.8 (8.9) [25.2] f41.3g
QGSJetII-04 3.7 (17.8) [30.7] f51.0g 6.1 (23.1) [43.1] f63.2g 5.1 (25.2) [56.8] f73.3g
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contours of the Auger moment distribution, while the red,
purple, blue, and green lines are for the best fit Sibyill,
EPOS, QGSJet01, and QGSJetII-04 models respectively.
While the first two models sit inside the 3σ region for all
moments, the last two clearly give a poor fit to Auger
results, especially for higher moments. The same results for
the other two energy bins are shown in Figs. 26 and 27.

VI. CONCLUSIONS

We proposed a novel approach to the problem of
inferring the nuclear composition of UHECRs from the
measurements of fluorescent light spectra, the s.c. longi-
tudinal profiles. We applied it to the data released in the
Auger Open Data set, which contains ∼10% of the total
recorded showers.
The position of the peak of the longitudinal profile,

called Xmax, signals the maximum energy deposited from
the shower in the atmosphere in the form of electromag-
netic radiation. The Xmax of a single shower can be related
to both the initial energy and the atomic number A of the

primary particle. However, the inherent stochastic nature of
the showering process introduces large fluctuations.
Inferring the primary nucleus of any single shower is thus
at present intractable. On the other hand, the distribution of
Xmax in a selected energy bin can be used to infer on the
composition of UHECRs in that energy region.
Starting from this observation we introduced central

moments of the Xmax distributions as discriminating fea-
tures of their primary components. To extract the compo-
sition from data, one has to rely on simulations, which in
turn depend on the hadronic model assumed to compute the
first series of interactions in the atmosphere. We performed
our simulations with CORSIKA, using all four hadronic
models available, in order to provide a quantitative com-
parison of their ability to fit the data and highlight their
differences.
In our approach, the distributions of moments of Xmax as

measured by Auger, are fit to the distributions of moments
of simulated Xmax. The Xmax are simulated for each single
primary with Z ¼ 1;…; 26, that is from proton to iron, and
then combined assuming different compositions. A number

FIG. 14. 3σ (solid) and 5σ (dashed) contours of the multivariate moment distributions for the Auger data (black) and for the best n ¼ 3
composition inferred with Sibyll (red), EPOS (purple), QGSJet01 (blue), and QGSJetII-04 (green), respectively, in the low energy bin,
E ∈ ½0.65; 1� EeV.
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of convenient simplifications and approximations allows
for the likelihood to be expressed in a compact form and
computed efficiently for any assumed composition. Finally,
the computationally intensive task of covering the high-
dimensional space of all possible compositions is tackled
using nested sampling algorithms to estimate the like-
lihoods of the compositions and their confidence regions.
Our method differs from existing approaches in the

literature in several significant ways. Firstly, owing to the
implementation of the nested sampling technique and
efficient likelihood evaluation, leading in turn to significant
reduction of computational costs, we were able to explore
for the first time the full range of possible compositions,
while previous works limited themselves to mixtures of
only a few nuclei. In addition, all previous analyses used
the binned Xmax distributions directly to fit the composi-
tions. The main discriminating features that differentiate
between different compositions and/or hadronic models
however remained obscured. In addition, in the binned
likelihood approach, it is often difficult to discern the
effects of systematic and statistical uncertainties (of mea-
surements as well as simulations) on the final results. Our
unbinned likelihood approach, based on the systematic
characterization of Xmax distributions in terms of their first
few central moments, addresses both of these issues. In
particular, it allows us to transparently include systematic
and statistical uncertainties in the fit, both from the data and
Monte Carlo simulations. In addition, the discrimination
power of individual moments is easily identified, allowing
for transparent model and composition comparison.
Finally, since the central moments of Xmax distributions,

conveying their most relevant features, can be systemati-
cally and efficiently computed, they are suitable for further
studies and improvements. In particular, larger statistics
datasets available to the Auger Collaboration could poten-
tially warrant the inclusion of higher moments in the fits.
Certainly, they should more strongly constrain the allowed

compositions of UHECRs and allow us to better discrimi-
nate between different hadronic models. Potentially, they
could even allow us to probe the presence of exotic
primaries [such as leptons or new hypothetical massive
(quasi)stable particles]. In addition, the compact form of
the likelihood and transparency of the main discriminating
features in our approach should facilitate the application of
machine learning methods in the analysis of UHECRs. We
leave all of these explorations for future work.
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APPENDIX: ADDITIONAL PLOTS

Figures 15–18 show the Hellinger distance matrix for
different primaries simulated in the [1, 2] EeV energy bin,
within the EPOS, Sibyll, QGSJetII-04, and QGSJet01
models, respectively. Comparison of model pairs in the
same energy bin are shown in Figs. 19–23. For details on
these plots, see the discussion in Sec. III C.
Figure 13 shows the results on the cumulative compo-

sition for all four hadronic models. Figures 26 and 27 show
the moment correlations of best compositions in the
intermediate and high energy bin, respectively. Finally,
Figs. 24 and 25 show the comparison of the best compo-
sitions obtained with EPOS model, using n ¼ 3 or n ¼ 4
moments, in the intermediate and high energy bin, respec-
tively. The main discussion for the plots listed above can be
found in Sec. V B.
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FIG. 15. Hellinger distance HijðznÞ between different primaries i, j within the EPOS model for the first four central moments zn of
Xmax distributions of simulated UHECRs with energies within [1, 2] EeV. See text in Sec. III C for details.
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FIG. 16. Same as Fig. 15, for Sibyll model.
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FIG. 17. Same as Fig. 15, for QGSJetII-04 model.
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FIG. 18. Same as Fig. 15, for QGSJet01 model.
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FIG. 19. Same as Fig. 4, for EPOS and QGSJetII-04 models.
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FIG. 20. Same as Fig. 4, for EPOS and QGSJet01 models.
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FIG. 21. Same as Fig. 4, for Sibyll and QGSJetII-04 models.
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FIG. 22. Same as Fig. 4, for Sibyll and QGSJet01 models.
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FIG. 23. Same as Fig. 4, for QGSJetII-04 and QGSJet01 models.
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FIG. 24. Same as Fig. 12, for the intermediate energy bin, E ∈ ½1; 2� EeV.
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FIG. 25. Same as Fig. 12, for the high energy bin, E ∈ ½2; 5� EeV.
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FIG. 26. Same as Fig. 14, for the intermediate energy bin, E ∈ ½1; 2� EeV.
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