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Spin alignment of vector mesons by glasma fields
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We explain how spin alignment of vector mesons can be induced by background fields, such as
electromagnetic fields or soft gluon fields. Our study is based on the quantum kinetic theory of spinning
quarks and antiquarks and incorporates the relaxation of the dynamically generated spin polarization. The
spin density matrix of vector mesons is obtained by quark coalescence via the Wigner function and kinetic
equation. Our approach predicts a local spin correlation that is distinct from the nonlocal expressions
previously obtained in phenomenological derivations. We estimate the magnitude of such local
correlations in the glasma model of the preequilibrium phase of relativistic heavy ion collisions. It is
found that the resulting spin alignment could be greatly enhanced and may be comparable to the
experimental measurement in order of magnitude. We further propose new phenomenological scenarios
to qualitatively explain the transverse-momentum and centrality dependence of spin alignment in a

self-consistent framework.
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I. INTRODUCTION

Strongly interacting matter produced in the peripheral
collisions of two heavy nuclei at the relativistic energies
carries a huge orbital angular momentum transferred by the
two colliding nuclei. Due to spin-orbit coupling a part of
such an initial orbital angular momentum can be trans-
formed into the spin part which may lead to the spin
polarization of emitted particles [1-4]. Indeed, a nonzero
global and local spin polarization of hadrons has been
measured by the STAR Collaboration [5,6] at BNL, ALICE
Collaboration at CERN [7], and HADES Collaboration [8].
Theoretically, relativistic hydrodynamic predictions based
on global thermodynamic equilibrium formula, which
connects the mean spin pseudovector of a fermion with
four-momentum to the thermal vorticity [9-13], can suc-
cessfully explain the experimentally measured global
polarization of A hyperons [11,12,14-18].

However, predictions for the local spin polarization, i.e.
the momentum dependence of the longitudinal spin polari-
zation [12,19], disagree with the measured values [6]. This
result has triggered further developments in the theoretical
studies related to proper understanding of the origin of spin
polarization and spin transport in relativistic heavy ion
collisions [20-36]. These investigations mainly explore
the possible role of symmetric gradients of hydrodynamic
variables known as the thermal shear [20,22,23] and
of gradients of chemical potential [20,21] and spin potential
[37]. See recent reviews [38,39] for further references about
spin polarization. More recently, several studies performed
with thermal shear corrections in local equilibrium indicated
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that the agreement with the local spin polarization data can
only be achieved if the temperature gradients in thermal
vorticity and shear are neglected [40] or if the mass of the A
hyperon is replaced with the constituent strange quark
mass [41,42].

In addition to spin polarization measurements, experi-
mental studies of the spin alignment of vector mesons have
been performed [43-46]. The spin alignment is characterized
by the deviations of the (00) component of the spin
density matrix pg, from its equilibrium value 1/3 [47,48].
Measurements indicate that the spin alignment is much
larger than predictions based on the assumption of thermal
equilibrium [49,50] and the spin coalescence model [1,51].
Furthermore, spin alignment values strongly vary with
collision energy and with the flavors of the quark and
antiquark that form the vector mesons. At LHC energies [43]
values pgy < 1/3 for global spin alignment is observed for
both ¢ and K** mesons at small transverse momenta, while
at RHIC energies [46], pyo > 1/3 for ¢ and pyy ~ 1/3 for
K** were found. There have been also recent measurements
associated with the spin alignment of J/w [44]. This
puzzling behavior has motivated the development of alter-
native mechanisms for the formation of spin alignment. In
spite of substantial theoretical efforts [52-62], this issue
remains an open question.

In one of the approaches [55,56] based on the quantum
kinetic theory (QKT) for the spin-1/2 fermions [63-73] (see
also a recent review [39] and references therein) with the
inclusion of color degrees of freedom, it was shown that
the turbulent color fields occurring in weakly coupled
anisotropic quark-gluon plasmas (QGP) could dynamically
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generate spin polarization of quarks and lead to pgy < 1/3
for spin alignment of ¢ mesons at small transverse
momentum. (A similar mechanism [74] could also induce
a jet polarization in anisotropic QGP.) In QKT, such a
dynamical source term expressed in terms of coherent color
fields could capture early-time effects and result in spin
polarization at freeze-out, whereas collisions at late time
could lead to suppression of such early-time effects by
means of relaxation or enhancement by quantum corrections
from gradient terms such as vorticity [28,29,71-73,75-78].

Although Weibel-type instabilities [79-81] can be one of
the sources for generation of the color fields in an expanding
QGP, our focus here is on the color fields [82] arising from
the glasma phase [83,84] that is thought to precede the
formation of QGP. The glasma phase is commonly
described by the color glass condensate (CGC) effective
theory [85—-89]. Notably, such color fields are not effective
in creating a nonzero spin polarization due to their fluctuat-
ing properties [90], but they can contribute to spin corre-
lations of quarks and antiquarks that lead to spin alignment
of vector mesons [90].

In this paper, we reexamine the spin alignment of vector
mesons arising from the color fields in the glasma using
newly derived equation for the py, component of spin
density matrix from the vector-meson kinetic equation in the
quark-coalescence scenario. The new expression of the pg
component of a spin density matrix, unlike the phenom-
enological one adopted in our previous work [90], involves
the contributions from spin correlations of both the color-
singlet and color-octet components of the axial-charge
current densities for quarks and antiquarks that are dynami-
cally generated by the fluctuating color fields. We also
calculate the spin correlation due to the U(1) magnetic field
generated by the colliding nuclei and discuss the momentum
dependence of the spin alignment.

The paper is structured as follows: In Sec. II, we show
how spin polarization is generated by the background
electromagnetic fields in the framework of QKT, followed
by a discussion of the contribution from color fields. In
Sec. III, we derive a new equation for the py, component of
the spin density matrix from the vector-meson Kkinetic
equation in the quark coalescence scenario and obtain a
simplified expression in the nonrelativistic approximation.
In Sec. IV, we estimate the contribution from color fields in
the glasma phase. We also estimate the contribution from
the U(1) magnetic fields generated by the colliding nuclei.
In Sec. V, we qualitatively analyze the momentum depend-
ence of the spin alignment of vector mesons from the
glasma effect and from an effective potential. Finally, we
present conclusions and an outlook in Sec. VI. Various
technical details have been relegated to the appendixes.

Throughout this paper we use the mostly minus signature
of the Minkowski metric #** = diag(1,—-1,-1,—1) and
the completely antisymmetric tensor e*** with €123 = 1.
We introduce the notations A®BY) = AFBY + AYBH*,

ArBY = AFBY — AYBF, and F* = Wl F 5/2. Greek and
roman indices are used for space-time and spatial compo-
nents, respectively, unless otherwise specified.

II. DYNAMICAL SPIN POLARIZATION

To track the dynamical spin polarization for nonequili-
brium fermions created in early times of heavy ion
collisions in the presence of strong (chromo)electromag-
netic fields led by colliding nuclei, the QKT developed in
recent years is one of the most suitable theoretical frame-
works. In this section, we review the so-called axial kinetic
theory (AKT) constructed in Refs. [69,71] with further
inclusion of color degrees of freedom [55,56], which
incorporate a scalar kinetic equation (SKE) and an axial-
vector kinetic equation (AKE) to delineate the intertwined
dynamics between charge and spin evolution, and further
derive the terms associated with dynamical spin polariza-
tion with approximated spin relaxation from collisions. We
shall begin with the case with U(1) electromagnetic fields
and then discuss the scenario for quarks influenced by color
fields.

A. Background electromagnetic fields

In order to study the spectra of spin polarization and spin
correlation of massive fermions, we will focus on the vector
and axial-vector components of the Wigner function, which
are given by

Vi(p.x) = %tr(7”5<(p,x)),
A(p.x) = (s (p.). (1)

respectively. Here

S<(p.x) = / YV G(x) Ulry 2 )y () (2)

represents the Wigner function of massive fermions, where
x=(x; +x,)/2,Y = x; — x,. Also, U(x,, x;) denotes the
gauge link and p, represents the kinetic momentum, which
ensure the gauge invariance of S<(p, X). One may obtain
perturbative solutions of V(p,x) and A¥*(p,x) and cor-
responding kinetic equations from the Kadanoff-Baym
equation by utilizing the 7 expansion as the gradient
expansion of Wigner functions in phase space. Due to
the quantum nature of spin, we may adopt the power
counting V¥ ~ O(h°) and A* ~ O(h) and focus on the
leading-order contribution. In such a case, we have

V(p.x) = 2a6(p* — m?)fy. (3)

where fy(p,x) and m denote the distribution function and
mass of the fermions, respectively. The dynamics of fy is
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dictated by the SKE as a standard Vlasov equation,
p - Afy =Cl|fy], with the on-shell condition p? = m?.
Here A, = 0, + eF,, 0, with F,, being the field strength
of electromagnetic fields and C[fy] corresponds to the
collision term depending on the details of interaction. Our
focus will be instead A delineating the spin polarization
through quantum corrections of O(%). See Ref. [39] for a
comprehensive review and technical details.

In the particle rest frame with a frame vector ny, = p*/m,
the magnetization-current term in A4* vanishes and the A*

reduces to

A (p.x) = 22 |8(p? = m2)a + he P p,8 (07 = m)fy]
(4)

where & (x) = d5(x)/dx and a*(p, x) represents an effec-
tive spin four-vector. For practical applications to the spin
polarization in heavy ion collisions, one usually evaluates
the spin-polarization or correlation spectra near chemical
equilibrium with fy in local thermal equilibrium, while a*
need not reach thermal equilibrium and thus could carry
early-time effects. Consequently, we will refer the contri-
bution of @* to spin polarization or correlation as the
dynamical one and which from the second term in A*
carrying only the information at chemical freeze-out as the
nondynamical one. The phase-space evolution of @ (p, x)
is governed by the AKE,

|

1 % /
a'(p,x) = 5— / dx© (xg — xf)e™ 00/ | het07 p,O(x() (Do F i, (¥) 0 fy (po ) +

2po

[Se]

) Ax = é(lnr)ﬂ + hégn,)y’ (5)

where

) A# = 5(p* —m?) <p - AG* + eF™a,

e
- E hg”wmpp(ao'F/ﬂ/)a[ﬁ’fV)

+heF*p,d (p* —m*)p-Afy.  (6)

For simplicity, we may neglect the terms p,F ”ﬁap,,&” and
F**a,, which are suppressed in the weak-field limit when
a" is dynamically generated by F**. Also, we adopt the
relaxation-time approximation for the collision term by
postulating é(ln")” + haén’)” =—5(p*—m?) po(@" — ieq) /x>
where atq(p, x) denotes the equilibrium value of @* and 7y
represents a constant spin relaxation time. The practicabil-
ity of this simplification will be further discussed later.
Accordingly, the off-shell AKE reduces to

€ petno po(@" — &
p - oa" _Eheﬂ ’ pp<aaFﬂb)0ﬁfV = _u7 (7)

TR

which yields

2podby(p. x')
R

)

C

where |, = {xf = ¥}, x| = x| — p'(xo — x()/ Po} and ©(x) denotes a unit-step function of x. Here V and V| represent the

perpendicular and parallel components with respect to the spatial momentum p’ for an arbitrary spatial vector V',
respectively. We also assume dy,F, (x') # O starting at xj, = 0 as the initial time. We will further assume @, is a constant,

whereby Eq. (8) reduces to

~ ~ he «© —(xo—=x) /7R SHLPC
@' (p,x) = eq +2—Po/ dxy® (xy — x})O(xp) e~/ e p (9, Fy, (x') O f v (p. X )

()

Given the electromagnetic fields expressed in terms of n* = (1,0),

Faﬂ = —E”DQﬁB”I’ly + I’lﬂEa - I/laEﬂ, (10)

it is found that

e’ p,(0,F p,) = 5§(n “0p-B—n-pd-B)+ (n-pds— pgn-0)B" +n(pzo-B—0sp-B)+ e p om0, Ep). (11)

Assuming fy(p,x') = fy(po,x,) with only energy and time dependence, one finds

he

a'(p.x) = g — / dx® (xo — x) @ (x) e~ 00 e pig (9, E; (x') 90 v (Pos Xp) (12)

2p0 —0
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where we have used d- B = 0. It is found @' (p, x) can be
induced by space-time variations of the electric field. When
involving xﬁ dependence, it is inevitable to have the

momentum dependence for fy(p,x’), which is neglected
for simplification. For phenomenological applications, Ezéq
could be proportional to the kinetic vorticity in QGP albeit
with the negligence of spatial gradients on fy(p,x).
Notably, the relaxation-time approximation also corre-
sponds to the linearization of the collision term, for which
the smallness of fluctuations from equilibrium distribution
functions is required in the standard Boltzmann equation.
Nevertheless, for AKE up to O(#), the collision term is by

|

default linear to @* usually accompanied by another term
with the space-time gradients on fy, stemming from spin-
orbit interaction. In the case for gauge theories, the
structure of the collision term could be more complicated,
where the inverse relaxation times may have to be replaced
by operators [28,69,76].

In heavy ion collisions, there could locally exist strong
background electromagnetic fields coming from colliding
nuclei and dynamical ones generated in the QGP. When
further considering spatial inhomogeneity of the electric
fields, we may apply the Bianchi identity 0”13 # = (0, which
leads to €'/%0;E; = dyB'. One hence obtains

. he [ , ) .. -
6a'(p.x) =5 - / dxy®(xg — x)0O(x() e~ 00/ (py 0y B! (x') + €7 10y E;(x')) 0,0 f v (13)

Po J -

where 6a'(p.x) = @'(p., x) — akq. In the collisionless limit such that 7 — co and assuming the time variation of fvis

sufficiently small compared to that of background fields (e.g. |0yB’|/|B| > |dofv|/fv)" in early times, by using the
integration by parts and dropping the vanishing surface terms, we arrive at

6 (p.x) = 2 0(x0) [ (0B (x0) + 7P (x0) ) Oy F (0. 30) — (0B (0) + e py,(0)) oy (o, 0)] . (14)

2po

from which it is transparent to see that the spin polarization
is induced by parallel magnetic fields and perpendicular
electric fields as the spin Hall effect. Here we implicitly
hide the spatial dependence of electromagnetic fields for
brevity. Nonetheless, one should recall here B(0) =
B(0,x; = x)|c.s—o and so does E'(0). In fact, we should
set dky = 0 when collisions are suppressed. In contrast,

|

Apx) = [ o0 (p.)

|
when 7z — 0, one should find éa* = 0. To incorporate the
approximate spin-relaxation effect, one may multiply the
result in Eq. (14) with e~/ albeit with the oversuppres-
sion for early-time contributions.

Next, combining with the nondynamical contribution,
the full on-shell axial Wigner function becomes

1 |_ heB"(x ~
— 50 |00 =T 07 (e . (15)
€p po=¢=\/IpP+m?
Then, A*(p,x) can be more explicitly written as
; he . - € py - -
Ap.x) = 4~ |=B'(0)9,0fv(po. 0) + == (E;(x0)9p0/ v (Po. X0) = E;(0)dp0f v(P0.0)) (16)
P P Po=¢p

in the collisionless limit. In practice, it is expected that both electromagnetic fields are relatively suppressed at x; as the

freeze-out time. Accordingly, one could approximate

'Such a condition might be difficult to be justified in heavy ion collisions. However, provided the strong background fields decay
rapidly before thermalization, at which |9, /| reaches the maximum, one may expect the contribution from e.g. B'd,fy in the integrand

is relatively suppressed.
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. —h . -
Alp0) % 3 (eB'(0) + M 0)0, 1 (). (17)

where we introduced j‘v(ep,O) = f@(ep) as the initial
(quark) distribution function, which is dominated by the
early-time contribution. Furthermore, given |B,(0)|~ 0,
|E.(0)] ~0, and p, ~ 0 at central rapidity with z being the
longitudinal (beam) direction, one could approximate

: —he ,
A (pox) R =B (0)0, 11 (6)  (18)
14

and

he
Ae(p.x) ~ 35 Py (000,17 (¢,)
14

he 0
%3 B0,V (&), (19)
14

where we further assume |p,| > |p,| in peripheral colli-
sions with transverse shear flow. In the collisionless
scenario, the dynamical contribution from a@* is frozen at
the early time, while the vector component of quark Wigner
functions governed by fv(ep,xo) keeps evolving and
reaches thermal equilibrium in the QGP phase. Considering
the spin freeze-out at the QGP phase, as originally
proposed in Refs. [9,13], the spin-polarization pseudovec-
tor of quarks from background electromagnetic fields is
then given by

vy AEPTE P.X) [dE- peB(0)0, 1V (6p)
(P)*szdZ-./\/'(p,X)N 4mfd2'pft‘}}(€p)
(20)

and

ey J A pT5R.X) [ dZ - ppteE (00, 11 (cy)
) " 2m[dX-N(p.X)~  dme, [dE-pfi(e,)
(21)

where d¥¥ denotes the normal vector of a freeze-out hyper
surface and we introduce

T4 (p.X) = 444 (p. X).

No(p. X) = 4 / 0 6 po) ¥ (p. X)

o 4P”fv(l” X>|p0=€p

b
261,

(22)

and f1(e,) = 1/(e’» + 1) represents the vector-charge
distribution function in thermal equilibrium as the

Fermi-Dirac distribution. For convenience of later compu-
tations, we alternatively use X* to represent the space-time
coordinates.

However, in heavy ion collision experiments, we have
so far not found the evidence supporting global spin
polarization induced by magnetic fields. Based on our
findings with the inclusion of dynamical spin polarization
dominated by the contributions from initial electromag-
netic fields, the suppression of spin polarization from
electromagnetic fields may not solely stem from the rapid
decay of such fields. Alternatively, it may also be sup-
pressed by the strong spin-relaxation rate from collisions,
which efficiently washed out the early-time contributions.
Although the early-time electromagnetic fields are
stronger with higher collision energies, the lifetime of
QGP is also longer, which accordingly enhances the spin-
relaxation effects. In addition to the spin relaxation, the
initial magnetic fields also drop more rapidly at high
energies in the preequilibrium state and become saturated
with finite electric conductivity. Since the dynamical spin
polarization is induced by the time derivatives upon
electromagnetic fields as shown in the integrand of
Eq. (13), the spin polarization of quarks and antiquarks
produced later than the abrupt decay of magnetic fields
may not be affected.

B. Background color fields

In the case when color degrees of freedom are included,
both the Wigner functions and QKT of quarks are more
involved. Generically, we have to decompose an arbitrary
color object into O = O*I + O%t*, where O° and O“
denotes the color-singlet and color-octet components,
respectively, and ¢“ are the SU(N,) generators and [ is
the identity matrix in color space. Before introducing the
QKT, we should reanalyze how spin polarization and
correlation are computed when considering color degrees
of freedom.

Given the lowest-order contributions to singlet and octet
vector-charge distribution functions are of O(¢°) and O(g)
at weak coupling, respectively, the singlet and octet SKEs
and AKEs are given by

(95 + CogFlytfy) = (23)
P (0,18 + 9FE,00 13 ) = €3, (24)
and

~S, a ~ hC a a
p(0,a" + CogFy,0ha™) _Tzewml’p(aagFﬂy)a/ﬁzfv =Cs,

(25)
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n
p’ (()pfz“” + gF,‘fpd’;,ZlS”) —Ee’””"pp( 2,9F¢, )6ﬂfS =CF,
(26)

where C, = 1/(2N.) and we have dropped the higher-
order terms in g responsible for the gauge links between
color fields for brevity. Here we introduce the collision
terms characterized by C,, C%, C%, and Cg", which however
depend on details of scattering processes. On the other
hand, the color-singlet and color-octet axial Wigner func-
tions are given by

A% =27 [(5(p2 —m?)a* + hCyp, 8 (p* — mz)gF"””f“’,],
(27)

AWM =27 [5(1)2 —m?)a™ + hp,& (p* — mz)gF”"”fﬂ,

Since we are only interested in how the spin polarization
is dynamically induced, the dynamics of fy is not our
primary concern. Instead of constructing the proper colli-
sion terms for C, and C¢, we will simply introduce particular
forms of f3, and f%; as the solutions of SKEs. On the other
hand, for AKEs, we may now postulate the relaxation-time
forms,

poa®

~ 0
TR TR

. (29)

where we have assumed the absence of mixing terms and
ey = 0. A comprehensive analysis for the color-singlet
AKE has been presented in Refs. [56,90] albeit with the
omission of collisions. We will hence focus on the color-
octet one. It is worthwhile to note the color-octet AKE in

Eq. (26) with the suppressed diffusion term, gFyj,d,a*, at

(28)  weak coupling (or equivalently with weak fields) reduces to

the form same as Eq. (7) by simply adding the color indices

where we have also applied f5, ~ O(¢°) and f¢ ~ O(g) to ~ for @ and F* and setting akq = 0. Therefore, the solution

drop the higher-order terms. of the color-octet AKE gives rise to an analogous solution,
n o0 /Y /70

a%(p,x) = 2—50 / dxy®(xg = x0)O(xp)e™ 00/ %07 p (0ys Ff, ()0 fy (P ) (30)

In addition, one also find the analogous form for Egs. (4) and (28). In the collisionless limit, similarly assuming /3, (p,x') =
Fv(po. x;) and taking e/¥9 .E{ = dpB“' by ignoring the nonlinear terms as an Abelianized approximation for color fields,
we can follow the same procedure as in the case with electromagnetic fields to obtain

a“(p,x)

which yields
hgB“(xo) | -

Tp.5) = 2 (ap.5) -5
hg

zjkpk

=5 B0 ) = B0, Pl 0) +

as,,fV(

€p

(B0, 7o) - E100, 711600 ) | 1)

Epvxo)>

ai 7 p a p, a p,
=20 -0)0, oy (1000, e x0) = 000, 71(600) )| (32)
P
I
by also incorporating the nondynamical contribution. . 4p*fy(p, X)| po=e,  2DMf (D, X)
In Refs. [55,56], in light of the original form for N¥(p,X) = 2 = c (34)
P P

relativistic fermions [9,13], it is proposed that the spin
polarization of a single quark (or an antiquark) takes
the form

JdZ - pTr(T5(p.X)) _ [dZ-pTS'(p.X)
2m [dZ,Tr.(N*(p,X)) 2m [dZ-N*(p,X)’

(33)

P (p) =

where Tr. denotes the trace over color space and

with f}(p. X) = £} (p, X)|p0:€p. Here the color fields

encoded in J¥(p,X) should be regarded as the field
operators and one has to further take an ensemble average
or the quantum expectation value () for the field operators
therein to acquire the spin polarization pseudovector
(P#(p)). Considering the effect led by strong color fields
in the glasma sate in early times, only the dynamical
contribution from &% could possibly affect the spin
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polarization. The explicit form of &% induced by back-
ground color fields can be found in Refs. [56,90]. It is
however also shown that the corresponding spin polariza-
tion actually vanishes and only the nonvanishing spin
correlation, as will be discussed later, is present. On the
other hand, a* does not affect the spin polarization,
whereas it could modify the spin correlation associated
with spin alignment as will be discussed in the next section.

II1. SPIN DENSITY MATRIX FROM QUARK
COALESCENCE IN WIGNER FUNCTIONS

For spin alignment, when spin quantization axis is set to
be along the y direction,” it is proposed that the normalized
spin density matrix can be written as [1,51,60,90]

1+ 30 {PYPY) = 2(PaPy)
3 -+ Zj:x,y.z <P{1P§I>
where the subscripts g and g correspond to the quark and

antiquark, respectively. When |(P£P§>| < 1, it further
reduces to

Poo ) (35)

1 2 v
P~ 3+ 5 (PyPy) + (PiP5) = 2(PyPy)). - (36)

Here (P;P}) represents the quantum expectation value of
spin correlation, which is not necessary to be equal to the
product of the expectation values of spin-polarization
pseudovectors and we may elaborate on its explicit
expressions in various forms later. Since the spin-polari-
zation pseudovector of a single quark should be color
singlet, when including the color degrees of freedom, the
spin correlation associated with spin alignment is proposed
to be [90]

e p [dy pTHpX) T pY)
4m? ([ dzx-Ny(p.X) [ dSy-N3y(p.Y))
(37)

(P4(p)P5(p))

based on a phenomenological construction in the quark
model. Note that here only the color-singlet components of
J ’;5 and 7 ’55 contribute to both the spin polarization and

correlation. By the symmetry of color-charge conjugation,
we should have 775 (p. X) = Js(p, X), and (P4 (p)P;(p))
is expected to be positive when having equal number
of quarks and antiquarks (no corrections from the quark
chemical potential). Furthermore, the color fields in

In heavy ion collisions, the spin quantization axis is chosen to
be perpendicular to the reaction plane of the collision. However, it
can be also chosen along different directions depending on the
experimental setup. The theoretical construction in this section is
independent of the experimental choices.

Yy, Ty, Ttex) T (p. X)
a a

q a? q
b b _ _

o S SR

color singlet Tk (p,Y) T ®Y)

FIG. 1. Left: color-singlet contribution for the spin correlation
affected by color fields represented by curvy lines. Right: color-
octet contribution where the blob represents possible corrections
from the medium or from higher-order loops on correlated color
fields.

color octet

Jys(p, X) and T (p, Y) are not directly connected albeit
the indirect correlation originates from the same color
source such as the case for color fields coming from the
same nucleus in glasma [90]. Such a scenario is schemati-
cally illustrated in the left panel of Fig. 1. Nonetheless, as
will be more rigorously shown from the derivation of quark
coalescence in the Wigner functions and kinetic theory of
vector mesons, there exist extra contributions led by the
color-octet contribution depicted in the right panel of Fig. 1,
which turns out to play a central role in this paper.

A. Spin density matrix from the vector-meson
kinetic equation

We will follow the approach in Ref. [60] to derive the
spin density matrix from the coalescence scenario in
Wigner functions and kinetic theory of vector mesons.
We begin with the vector-meson field in mode expansions,

&k .
VH(x) = — et (A k)a(A, k)e kx>
=3 | Gayryam @ -Rap

+ e (1. k)bT (A ket ), (38)

where E; = /|k|> + M? with M being the mass of vector
mesons and [60]

k‘€;L

k.
(k) = ( et €

M@+mo (39)

represents the polarization vector with €, being the spin-
state vector determined by the spin quantization axis in
experiments, which satisfies e*(1.k)e, (V. k) = —€, - €,
and e”(A.k)k, = 0. We also impose €, - €}, = J,,. In the
rest frame of the vector meson, we have ¢#(1,0) = (0,¢,).
For ¢ mesons, we have b(4,k) = a(A,k). We may con-
struct the Wigner function in real time formalism (see e.g.
Ref. [91]) via
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W (g, X) = / Vet (VIV(X = Y J2)VH(X + Y/2))

e—ik_~X

QT ki forove e o) o]

k k k
) |:€ﬂ(/l’q+ _)e*y(/’l/’q_ 2_><a-r<ﬂ/’q_ 2>a<
k k
v _ BN g 2
+¢€ </1, q+2>€ </1, q >

[\

where

1
k(J)r:E<Eq+kT_—|—Eq_kT_>, k9= <Eq+kT_—Eq_kT—>- (41)

For brevity, we set 7 = 1. To have the quasiparticle in a
definite spin state, we may assume the expectation values of
the creation and annihilation operators have nonvanishing
values only for particles or antiparticles when A = A’. For
example, (a’(1,q)b(4,p)) =0 and (a*(X,q)a(A,p)) x5y;.
Moreover, in order to perform the k_ integral analytically,
we expand the integrand with respect to k_ and retain the
terms up to O(k_) such as

k_ k_
eﬂ(ﬂ,q —l—?)e,’j <A,q —7>

k%
=T (A, q) + TH’(‘I”L('L q)+0(k),  (42)
where
Y (4, q) = €,(4, q)e; (4, q),
Mk, q) = (0g€,(2 9))€l (A @) = €4(3 q) (00 (A, ).

(43)

In the end, the expansion with respect to k_ provides us
with the Wigner functions up to O(#). Plugging those
expressions into Eq. (40), we then find

= ) W(hg.X), (44)

A=%£1,0

W (g, X)
Wi (A, q.X) = 228(q> — M?)
in
x [9(%)< Y (4, q) + = 5 T (A, )0“>
—0(-q)) (nﬁi? (=)

. )
+ %Hi})a(i, —q)a")]fz(q, X), (45)

) ot -

e

where we dropped the O(|k_|?) terms in the integrand
except for those contributing to the distribution functions.
Here we retrieve 7 for power counting. The distribution

function f;(g, X) is defined as

a0 = {{A[iquzx—q,xn o,
where
fi(g.X) —/%<a* (A,q—%)a(ﬂ,q +%) >e—ik--x
(47)
and
B O )
=1+ fi(-¢.X) (48)

from the commutation relation for bosons. Note that the
O(—qp) part in W= characterizes the outgoing vector
mesons.

For our purpose, we will only consider the symmetric
Wigner function with positive energy and up to O(#°),

- 1 .
W) (4.q.X) = EW<(;w) (1. q.X)

= 78(q* = M*)0(qo)1V™) (A, q) f,(q. X).
(49)

where AW = A + A% Note that we shall have

ﬂ
2ZH “(2,q) = q -7, (50)
A==%1,0

where we have neglected the # corrections and antisym-
metric components. The corresponding on-shell kinetic
equation reads
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q-of, =X%P,(4.q) (1 + f;) = =P, (2. q)fs. (51)

where P*(2,q) = e¥(4, q)e*) (A, q)/2. Here TS corre-
sponds to the self-energies for the scattering processes led
by the effective quark-meson interaction. In this frame-
work, we have p;; < f;. As proposed in Ref. [60], when
there are no preexisting vector mesons such that f; <1
and the coalescence time At is sufficiently short,” Eq. (51)
gives rise to

At A
f/l ~ E—Z<W’Ppﬂ(ﬂ’ CI)'
q

(52)

B. Quark coalescence scenario

Applying the meson-quark interaction characterized by
an effective Lagrangian L;, = g,I"- Vipy [92] with T*
begin an effective form factor, the self-energy can be
rearranged into the form

dk q q
SH = | —Tr|IHSS | =+ k|IPSS |-k
[l Gee)si(5-4)

x6(q0 - eg(a/2+ ) —e5(a/2=K)).  (53)

Tr[y”S;y/’Sg] = 4Tr, [;7’”’ <.7-"q<.7-"§ +Py-P; Vi Vi —A; - A +

where €,/;(p) = \/Ip|* + m;, .. Here S7 and S5 denote the

on-shell lesser propagators of quarks and antiquarks. More
precisely, we introduce

$540) = [ 255400 (54

<

by integrating the off-shell Wigner functions S 2/a(p) over
the zeroth component of its four momentum. Note that Tr
also includes the trace over color space. For simplicity, we
may assume [* = y#. Based on the decomposition of the
quark Wigner functions [93],

:Sv< = F< iP< 5 Y<H A< 5 S
= +iP~y’ + Yut YVt Ouys

5 (55)

where o, = i[y,.7,]/2, it is found that

Sqaﬁsgﬂ <(uy,<p) < 4<p) <(uv g<p)

2 >
(56)
Here we hide the momentum dependence above for brevity. Taking [69]
mj:(q) =4q- V(q)7 P = 0, mS;w(q) = _euy/)o’quo—(q)’ (57)
for free fermions since we only consider the tree-level interaction for coalescence and hence
mymaS* (p)Sa(p') = (p' - Asp - A = p- Pl As - AS) + AP A p - p + prprAs - AS
_ p/ﬂA;Pp . Ag — p”A;”p’ . A;, (58)
and
mamaS (p)S5u(p') = 2(p' - Ajp - Az = p- pl A - A7), (59)
where Ag" = A" (p) and AZ" = AZ¥(p’), one obtains
o< o< pv<(p)p/v'<(p/) < < - p'p/
35 005 01)] = 1w [P0 Dy ) v () = A5 ) 450 (1 -
mgmg mgyimg
P Az (p)p - Ag (') <(u <p)( <(u <p)(. p-r
- s < 1—
o SV V) + A AT ) (1=
) (u <p)( 1
PP s e L PYAT D) PRAT Y
- cAS 2 70 W As 2 7a W, . 60
pr Az (p)- A7 (P) + — Az () + p— Az (p) (60)

The spatial dependence of £, is also neglected.
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The expression above also works for the on-shell Wigner functions S (p) and S5 (p’). Since the contributions from vector
and axial-vector components of quark/antiquark Wigner functions are disentangled, we make the decomposition

dedp6 o< o</ ! & <up &<pp
1 Qo< P QC<(p'\| — Rt V) Z PS> =
T[S @) s; )] = [ Lot 55 (S5 ()] = £ + £ (61)
where

. Vi(p)p' Vi <lyags

s =t e [LELDL 0Dy p) i)+ Vi 00V ) | (62)

979
and
P A5 (p)p - A5 ()

ol (1)
q"q

]4—«4;(#([7)«4;/))([7/)

mymg

p-p\_pp PrAT (p) A7)
1= _ < CA<(p/ <(n' < 63
X( mqmé) Mgy Arp)- Ai )+ mymg “mgmg P AEF mqmq gy PR (63)
[
with py = €,, p;, = €, and the on-shell Wigner functions,” <u _ P 65
q/q ) 2—pOqu/é 170:€q/q<P — MZJF’"[]M. ( )

o) = [ L0V (p).
= |4 00 o) A 0). (64)

Given the explicit form of V7. (p) and A~ (p), one may

Furthermore, given p = ¢/2 + kand p’ = q/2 — k in light
of Eq. (53) and the on-shell conditions for quarks and
antiquarks, we have

2 2
derive f; from Eq. (52) by calculating Eq. (61). 2= +mg q gk = my — Mg (66)
We may now take the explicit form of the vector- 2 4 2
component for Wigner functions of quarks and antiquarks
up to O(hY), Using Egs. (65) and (66), one finds
|
. Tr, _ pp K gP
£ = — vef qu) [’72 (my +my)? - ¢*) + L2 —2k”kﬂ} (67)
€q (5 +P)€q (z —P)
and
2 2
£ = atr o[ A ) - s ) et el ) S AT AT )
¢ a 2m,my m,mg
Lm0 oty 0 ) - (SLL 2K e s
2mqmq a 2mgmg  momg) ! 1
—2k) A" +2k) A (pf
Mgy Mgy p=$tk.p'=4-k
where we have also utilized p - A7, (p) = 0 for free fermions, which results in
*We have assumed both V;/;(p) and A2 (p) can be rearranged into the functions proportional to &( p? mf] 12)-
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Tro(f qu Vq)

eq(%+k)€q<g—k)

Z<M]P,{)ﬂ(/’L Q) =

and

((mg +mg)* = ¢%)

3 (¢ = ny a2l (2. 0)P

(69)

i;ﬂpppu(/l’ Q) = 4Trc{ A(;(p) : A; (pl)

2mqmq

4k AS (p)k - Ag(p’)l

2k - e(A,
+\ e(.q

mgmyg

W a<ioy. a<(
P Aq<p) At?(p)

+<<mq+mm31>_2 Dnefetig) Apleog) A5p] - L CDAD Gt e
_4Relk - (d q;A;(p’) eha)l, A;(,,)} | - 70
where |, = {p =%+ k p' =% —k}. Overall, (£, + £7)P,, (4. q) can be rearranged as
(&5 + )P, (2. q)
e ey
~ e [ 2Re(e20) - A7 )" (o) A5 01) + o (2 A )k A5 )
+ 2Re(k - (@) A7 (p) - € (. @)k - A5 () + 2Re(k - (A >A<<p'>-e*<z,q>>k-A;<p>)}}w, (1)

where

Nm = (Mz - (mq + mc_j)2)' (72)

N =

For the application to spin alignment, it is generally
believed that the ¢ meson as our focus is an s-wave particle.
Consequently, we only consider the contact interaction and
classical collision term for quark coalescence and ignore
contributions from the orbital angular momentum of
constituent quarks. Nevertheless, it was recently pointed
out in Ref. [94] by the operator product expansion that J /y
could have a non-negligible contribution from the orbital
angular momentum of quarks to its spin and a similar
scenario might be applicable to ¢ mesons. In order to
address the involvement of the orbital angular momentum
in our approach, we may need to modify the contact
interaction from the effective Lagrangian for quark-meson
interaction or incorporate the 7 correction pertinent to spin-
orbit interaction in the collision term for the kinetic
equation of ¢ mesons (see e.g. the construction of the
collision term of QKT for photons [91]). Alternatively, one
may incorporate the contribution from e.g. p-wave wave
functions for vector mesons in the recombination model
[95] with further inclusion of spin degrees of freedom. Such

generalization is however beyond the scope of current work
and may be pursued in the future. Furthermore, the addi-
tional effect from the orbital angular momentum upon spin
alignment should be associated with a certain source from
the QGP medium like vorticity, which is believed to be
suppressed in high-energy collisions yet relevant in low-
energy collisions.

C. Nonrelativistic approximation

We shall now make further simplification. By working in
the rest frame of vector mesons, the polarization vector is
aligned with the spin quantization axis, €*(4,0) =

(0,€;) = ¢,. The kinematic conditions in Eq. (66) then
give rise to
o mem
0 M
1
k|> = e [(mé - mé)2 + M* —2M? (mé + m%)} . (73)

g = Mmg=m, which
yields kg =0 and N,, = 2|k|>. Next, we consider the
nonrelativistic limit for quarks and antiquarks such that

k' — 0, which allows us to approximate p ~p’ ~ q/2 — 0

We may focus on the case when m
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for fvg/3 ;/ g and €/ Apparently, this appr0x1mat10n is only valid when M — (m, + m;) << M. Note that A<0 are

suppressed compared with / in the nonrelativistic limit.® Considering ¢4 as a real vector, we could make a replacement

for the k-related terms in the integrand by employing the relations,

1=272) ... . B o —k-
( 22)9,1,7 0] =n" + ke, 7= &

Kkl — |k? |22€ie) — i

which yield

20k-e(hq)P _ _2kP2
_ o
N Ny,

’

2k AZ(p)k - AZ (') = kP32 = 1)(e; - A7 (p)e; - AZ(p) — (1 = 22) A7 (p) - AZ (P')].
Re(k-e(2.q) A7 (p) - €"(2.q))k- A7 (p') — —2*|kl*e; - A7 (p)es - AF (P,

Re(k - (4. q) A7 (') - €*(1.q))k - A7 (p) — —2*|k[e; - A7 (p)es - AF (p').
for p = p’ ~ q/2. It turns out that

. o N, (1-2%)
5+ )Py (hq) = ="

For a complex ¢/, it is expected that one could simply replace (e, - A;(q/2)e; - A7 (q/2)) by Re(e; - A

Az (g/2)) in the final result.

Setting
€= (0,1,0) € ——L('Ol) € —L(—'Ol)
0 — s Lo ’ +1 — \/il” ’ —l_\/z 1, Y, 5
we derive
NAt 4Tr (A7 (q/2) A7 (q/ 2))}
~——T 7)1 —
fo(q) E, re(f vl Vq) { Tr.( fvg qu) 40
and
NAt 2Tr (A7 (q/2)A;%(q/2) + A7 (q/2) A5 (q/ 2))]
N —— i) |1 —
fj:l (Q) Eq Trc(ququ) |: Trc(ququ) q:O’
where

N wdlk| 1 N,lk[*(1-2z%) M(M? — 4m?)3/?
N = dz—" S(M =2+ |k|? + m?) =
[) (277)/—1 ¢ m? ( [kl +m%) 247m?

is an overall constant, while its explicit form is unimportant for the normalized spin-density matrix.

Tr[fvg(q/2)fva(q/2) —4(e, - A7 (q/2)e, - A5 (q/2))].

(79)

2(a/2)e;

(81)

(82)

(83)

>When ignoring the energy conservation such that N,, = 2|k|2, one may naively drop the higher-order terms of O(|k|?) in Eq. (71)

such as 2|k - e(4, q)>/N,,. However, such terms should be maintained as the leading-order contribution.

®By using Aq/q( )=p Aq/q( )/ po,» We now have A<0 (q/2 tk)~ ik’A<’ ( )/(M/]2 £ ko) ~ 0 when k' < M.
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Eventually, in the nonrelativistic limit, it is found that

fo(q.X)
fo(q. X) + fi1(q. X) + f-1(q. X)
| = ATre(As (9/2) A7 (0/2))
Tr.(fvgfva)
3_421.:”,_2Trc( 2a/2)A7(q/2)”
Tr.(fvgfva)

Poo(%X) =

(84)

for ¢ = 0. When considering the global spin alignment,
Eq. (84) could be further revised as

JdZx - qfo(q.X)

poo(q) = [d=x - q(folq. X) + f1(q. X) + f_1(q. X))
_ 1-Te(Py(a/2)P5(a/2)) 40 (85)
3= T TPy (a/2)Py(a/2)g0
where
o v o 4] AR PTRICA (0. X) A7 (p. X))
R s TR
(86)

which is equivalent to
J dZx - pTre[(T s (P, X) T35 (P, X))]
JdZx - pTr[Ng(p. X)NG(p. X)]
(87)

Tre (P4 (p)P5(p)) =

4 [ dEx - q(2NZ{AY (q/2.X) A3 (¢/2. X)) +

in the nonrelativistic limit. Equation (85) is found to be
structurally similar to Eq. (35) yet with some subtle
differences. For isotropic spin correlations, pgy(g) = 1/3
for both Egs. (35) and (85). With weak spin correlations,
Eq. (85) reduces to
1 1 X A D252 Y 1Y

Poo R~ 3 + §Trc(<73q7yz;> + (PyPs) —2(PyP3)),  (88)
which is analogous to the form of Eq. (36) despite an overall
factor of 2 difference for the spin-correlation corrections.
Comparing Tr. (P, PL) with (Pi,Py), in addition to how we
trace over the color degrees of freedom, as will be further
expatiated below, one immediately notices a factor of 4
difference and the integration of local and nonlocal corre-
lations, for which the latter difference does not occur when
the involved spin correlations are constant in position space.
Nevertheless, due to nonlocality of (P;P}) as opposed to
Tr, (75;75;), they are physically distinct quantities. As
previously proposed in e.g. Refs. [15,90], (P;P%) could
be responsible for probing the correlation of spin polariza-
tion of a A hyperon and of an A, whereas it does not directly
contribute to spin alignment of vector mesons. This newly
derived pg(q) is also different from the one in Ref. [58], for
which the spin correction on quark Wigner functions is
presumably governed by the local spin-polarization pseu-
dovector as a consistent treatment with the quark model,
whereas we directly derive the spin-dependent corrections
from the Wigner functions of quarks in AKT.

Tracing over color space, the relevant spin correlation for
spin alignment reads

(A5 (q/2,X) A% (q/2.X)))

Tr.(P(q/2)P}(q/2)) =

from which it is found that not only the color-singlet
components but also the color-octet components of Wigner
functions are involved. In high-energy nuclear collisions,
the quark coalescence occurs at the late time when the
vector component of Wigner functions reaches thermal
equilibrium, for which fV4/3 are suppressed. On the
contrary, nonequilibrium effects upon the axial-vector
component should play an important role for spin polari-
zation or correlation. In such a case, both (Aj.AY) and
(Af‘/A?f) need to be considered for spin alignment. The

|

JdZx - q(2NZfY,(q/2.X)

_JdZx - q((@y(q/2.X)ag (q/2. X)) + (ag'(¢/2. X)ag (q/2.X))/ (2N?))

@2 X F @2 X foan X))

|

scenarios for (A5 AY) and (A4 AY) triggered by color
fields are schematically illustrated in Fig. 1. Moreover,
unlike (A5 AS) expected to be positive, (A" A%") should be
negative based on the charge-conjugation symmetry im-
plying A% = — A%’

IV. SPIN ALIGNMENT FROM THE GLASMA

We now evaluate py, from Eq. (85) in the glasma state,
for which we shall compute the spin correlation,

Tr.(P(q/2)P}(q/2)) ~

mgmg [ dZ - q(fv,(a/2.X)fv;(q/2. X)) ’

(90)
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where we have dropped the nondynamical contribution in late times and the f‘\‘,q /g in equilibrium and taken €,/;(q/2) =

my/; for the nonrelativistic limit.

From Ref. [82] by solving the linearized Yang-Mills equation, with small rapidity, the nonvanishing color-field

correlators can be written as

. /s 1 P X" nm
(ES/(XET (X)) :—EgzNC(S”“ e“‘e«"”/L /l (w0 qql x J1(qX()J1(IX5), (91)
ai (v pdJj (! 1 2 ad gin gjm XH " / "
<BL(X )BL (X") = _59 N 6 p L (g, vy ) ——x Jl(qu)Jl(lXO), (92)
\q.u v
X" n
(E%(X')BY*(X")) = —17 PN, 5 ¢in / / (unov0) Lo Ty (gX) o (IXD), (93)
Ligu J Lilw q
bl n
(BEXE(X) = iy PN oden [0 / (00 T 11 (aX)10(15). (94)
Ligu J Lilv q
XI/
E= ) =3 N [* [T @) < doaxp(ixg) (95)
Ligu J Lilw
XH
(B (X")B¥*(X")) = 2N 54 A /L . (uy,v1) X Jo(gXh)Jo(1X), (96)
iq.u v

where Q- (u,,v,)

(G (uy,v1)Go(uy,v))
F hy(up, v )hy(uy,vy)]

Q?(ML’ HJ_) =
(97)

with G|, and h;, corresponding to the unpolarized and
linearly polarized gluon distribution functions of nuclei 1
and 2, respectively, and

d*q, iq, (X'
42 iq (X'—u),
Aq u / (277-')2 / e

Here Vi represents the transverse component of an
arbitrary spatial vector V' with respect to the z axis as
the beam direction, where A, B, = ),_, A'B'. Conse-
quently, for X, = Y, =0, only the correlations between
longitudinal color fields exist, which take the form

1
(E*(0. X )E=(0.Y 1)) » EQZNC(N% —1DQ (X1, Y1),

(98)

(B*(0.X1)B(0,Y)) 5 g*N (N2 = )Q_(X 1, Y,).

(99)

We may further adopt the Golec-Biernat Wiisthoff (GBW)
dipole distribution such that [82,96]

Qi (uy,v) =Quy,v,)=

OF (1= e~ Glu—uiP/4\ 2
g'Nz ( O3 |uy — v¢|2/4) ’
(100)

where Q, denotes the saturation momentum.

Since the color fields from the glamsa decay in time, we
only need to consider the dynamical contribution on spin
correlations led by strong color fields in early times. From
Egs. (32) and (98) and the GBW distribution giving rise to
Q(X,X) = 0%/(¢*N?), in the nonrelativistic limit, it is
found that’

sz (@' (a/2, X)ag (a/2, %)
hzgz 0 ' '
~ =g GV €aa) PB OB (X)), o
ROIN: = 1) .
— e 0 OV () (101)

"In fact, when including finite k beyond the nonrelativistic
approximation, the color-field correlators involved could be non-
local. E.g., one should consider the integration of (B4/(0,X, —
ki Xo/M)B“(0,X | +k,X,/M)) over k for ¢ = 0. With energy
conservation and the GBW distribution, (B*(0, X | )B*(0,X))
in Eq. (101) should be replaced by Cz(Q,Xo)(B“(0,X,)
B(0.X,)), where Cy(Q,Xy) = (1 - exp[~Q2X3 (M? — 4m?)]
M?))/(Q?X3(M? — 4m?)/M?) and finally one should take X as
the freeze-out time. Nonetheless, one also needs to include the
contributions from chromo-electric fields at finite k.
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FIG. 2. Numerical results for Z(Q,X,) and 7(Q,X,) at small
QsXO'
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FIG. 3. The ratio of Z(Q,X,) and J(Q,X,).

where we introduce a shorthand notation f$>(€p) =

fV(€,.0). On the other hand, from the color-singlet
contribution led by local four-field correlations (see
Ref. [90] and similar calculation of the longitudinal
correlation in Appendix C), we obtain

(aq (q/2.X)ag (¢/2.X))

RN =18 0 3
~ @) Nine et Veg2))P2(0, X8, (102)

where Z(Q,XP) corresponds to a dimensionless factor
depending upon QX" with X' denoting a thermalization
time as the ending time of the glasma phases.8 For
simplicity, we neglect the transition period between the
glasma and QGP. The exact value of Z(Q,X) has to be
numerically computed from the multidimensional integral
as shown in Ref. [90]. From the symmetry of color fields
in the glasma, we expect that (a;*(q/2, X)a3" (q/2, X)) is
equal to (a; (¢/2.X)a; (¢/2.X)) in Eq. (102). On the

*In principle, Eq. (101) should also depend on X% where
(B“(X)B“(X))x,—o should be more precisely replaced by
((BY(0.X) — B (X", X))(B* (0, X) — B“(X®.X))). We con-
sider the case for [B4(0,X)| > |[B“ (X, X)|.

80001 — (Qso) /

., 6000

<
‘.i 4000
~

2000

QsXO

FIG. 4. Numerical results for Z(Q,X,), J(QsXo), Z5(Q:X),
and J3(Q,Xy) up to O, X, =5.

other hand, (aj(q/2,X)az; (q/2,X)) corresponds to
(ag (¢/2.X)a; (¢/2.X)) in Eq. (102) by replacing
7(Q,X!)  therein  with J(Q,X¥) calculated in
Appendix C. The numerical results of 7(Q,X,) and
J(Q,X,) and their ratio are shown in Figs. 2 and 3,
respectively. Also, as shown in Fig. 4, 7;(Q,X,) and
T 3(Q,X,) correspond to the dominant terms contributing
to Z(Q,X,) and 7 (Q,X,) at large Q,X,. See Ref. [90] and
Appendix C for the explicit definitions of Z and J 3.
Consequently, for Q.X, =5, we could approximate
Z(Q:X,) # 15(Q,Xo) and J(Q,Xo) ~ J5(Q,X,) with
the numerical results illustrated in Fig. 5. Except for
the contributions from color fields, we also have

2
<azf<q/2,x>azf<q/z,x>>mz—%éB%(O)<ag,,/zf<v0)<eq/2>>2
(103)

from U(1) magnetic fields generated by colliding nuclei.
Accordingly, in light of Eq. (90), we make a decom-
position for the spin correlatiors contributing to spin
alignment (in the nonrelativistic limit) induced by color
fields from the glasma and electromagnetic fields,

’

50000 . //
40000

<) 30000
20000

10000

Ck)q

FIG. 5. Numerical results for Z5(Q,X,) and 75(Q,X,) at up to
0.X, = 10.
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Tro (P} (q/2)P}(g/2)) = Ty + T, + Ty, (104)
with
L ROHNZ = 150, , £V (€g2)
Mo = - 16N3m? th ) (105)
qu(eq/2)qu(€q/2)
H)) = [ = I(Qthh>
sin S §11’1 (Q Xth)
hz(N% - I)Q?(aeq/zfv (eq/2>)2f(QsX;)h)
44, 4 oth th ) (106)
64(2”) Nem qu(eq/2)qu(€q/2)
and
n?e?B?(0)(o, © (¢ 2
e PEBOOLA )

Am> [V, (€4/22)fV(€q2)

where ft‘?q sa(€q2) =1/ (e™T 4 1) as the thermal distribu-
tion for quarks and antiquarks at zero chemical potentials
and nonrelativistic limit with 7 being the freeze-out
temperature on a coalescence hypersurface.

We then estimate the order of magnitude for the spin
alignment of ¢» mesons as an example in RHIC and LHC at
sufficiently high collision energies that the glasma phase
could exist. Consequently, we will consider three sets of
saturation momenta, Q, = 1, 2, and 3 GeV. For other
approximations, we adopt the same setup in Ref. [90]. We
take 72 = 1 and postulate f§9) = 1/(e‘/M + 1) as an early-
time distribution function of quarks and antiquarks with
A~ Qs> €y such that o, f 5?) ~ —1/(4Q;). For other
numerical parameters, we take m =~ 500 MeV as the con-
stituent quark mass for strange quarks, 7 = 150 MeV as the
freeze-out temperature at chemical equilibrium, and X{' =
0.5 fm as the thermalization time at the end of the glasma
phase. For the maximum collision energy at RHIC, we
anticipate Q, = 1 GeV, which yields 7 ~1.67 ~ 700
for Q,XM~25, and approximate’ B~ B(0)6” with
|eB(0)] ~ 140 MeV [98], which results in

i~ 3957,
Tt ~ —0.025".

~m2 and m,

H)) = I ~ 1.6IT%¢ ~

sin s sin

0.58.
(108)

For LHC energies, we could have Q,=2-3 GeV.
Considering Q, =2 GeV, which yields 7 ~0.87 ~
6800 for QX ~ 5, and |eB(0)| ~ 10m2, it is found that

°In fact, the event-by-event fluctuating electromagnetic fields
can engender sizable contributions for ITgy, ~ B2 [97], but the
magnetic-field contribution is relatively suppressed by those from
color fields and thus not our primary interest in the present work.

i~ —15.687, I =TI ~ 08I ~

sin sin s
i~ —0.58".

90.8,
(109)

For Q;, =3 GeV with the same setup of the case for

O, =2 GeV, which yields T~ 0.8:7 ~ 19700 for
0,X ~ 7.5, one obtains
ioa=35187, TP =TI ~0.811% ~ 1331,

i~ —0.2267, (110)

where the change of 1, with the same magnitude of
leB(0)| stems from the Q;> suppression due to the
approximation, 9, f gﬁ)) ~—1/(4Q;). As opposed to T,
here I are rather sensitive to the value of X{". When
choosing X = 0.2 fm, we then have QX ~2 with 7 ~
247 ~260 for O, =2 GeV and QX" ~3 with 7 ~
1.27 ~ 1400 for Q, = 3 GeV. We accordingly acquire

L) = I ~2.410% ~3.5 (111)
for O, =2 GeV and
L) =TI ~ 1.211%, ~ 94 (112)

for O, =3 GeV. Superficially, the results seem to be
unrealistically large even when focusing on just the con-
tributions from T, while all these values should be further
suppressed by the spin-relaxation effects in the QGP phase.
Note that IT;, here is much larger than (P P;) obtained in
Ref. [90] due to the absence of strong suppression coming
from 1/(Q?Ar) with Ay the transverse area of the QGP led
by nonlocality.

On the other hand, ITZ, led by two-field correlations
should be in principle more dominant than H;in induced by
four-field correlations according to the weak-field expansion
of the QKT. Nevertheless, due to nonperturbtive properties
of the glasma, the hierarchy is not guaranteed and the four-
field correlations could surpass two-field correlations at
larger Q,. From the numerical results, around O, = 2 GeV,
depending on the choice of X%, one could have either
T | > 1| or [TI% | < |TTiL|, where the former implies
the breakdown of our perturbtive approach. We may still
estimate pgq based on the primary contribution from
anisotropic IT, at Q, = 2 GeV with a certain assumption
of X For Q, = 3 GeV, T/} overwhelms I1%; and thus our
estimate becomes invalid. A nonperturbative treatment is
presumably needed at higher collision energies.

As discussed in the previous section, the quarks and
antiquarks may emerge at the time later than the initial
time with strongest color fields and electromagnetic fields.
In practice, we shall consider f}(e,,X,)~ fi,) (€p)

O(X, — XJ) with X{ being the time for emergence of
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quarks or antiquarks in the glamsa state and thus we have to evaluate

2

(a8 a/2.X)a (a/2.00)

_rg

a7 el v (6q/2) (B (X)B (X)) xo.

(113)

In such a case, we have not only nonvanishing (B“(X)B“(X)) but also (B“*(X)B“(X)).
To analyze the possible correction from a nonzero X{J, we first calculate (B%(X)B% (X)) with X, # 0. By using

[d?q, = [dqqdb,, [d*l, = [dild6, and

/dgq / d@leiqi(xl_“)ieilL(Y,_“)i = (2ﬂ)210(q|XJ_ — MJ_|)10(I|YJ_ — V]

we find

X X
/ / Q_ (g v1) % Jo(qXo)To(1Xy)
Ligu J Lilw

), (114)

dqgdl
2/(2%2 ql/dzuj_/dzvj_g—(uj_vUJ_)JO(QXO)JO(IXO)JO(‘]|XJ__uJ_DJO(lXJ__”J_D

d?iiy d*v 8(Xo — |uy])8(Xo — |
:/ uJ_ 21]J_ Q_(MJ_,/UJ_) ( 0 |uf_|) _( 0 |UJ_|) , (115)
(27) iy [|9, ]
|
where we have applied the orthogonal condition for Bessel it is found that
functions,
iz (3 pa Qi(NZ-1)
S Sk —s) g (BE(X)BE(X)) = =7 Tp:(Q:Xo)  (120)
/ drrd,(kr)J,(sr) = , (116) TN
0 s

and the change of wvariables, i, =X, —u, and
v, = X | — v, to reach the second equality. When adopt-
ing the GBW distribution, we have Q_(u,,v )=
Qu,,v,)=8Q(i,,v,). It is more convenient to work
in polar coordinates,

/d/d:/ dmm/o dlo. 1o,
2r 2
x/ d&u/ do,.
0 0

For an integrand depending on only ©;; = 0; — 0;, we
could make the change of variables such that (see
Appendix B for the derivation)

2 27
0 0

2r 27
:/ d®;,,7-,27t~7:(®;,,77) —/ d®u,a®u,q‘;[-7:(®u,@)

(117)

2r 0
Given that Q(u,, v, ) only depends on
iy =0, P = |a P+ o, > = 2]ay||p)|cos Oz 5, (119)

and accordingly

(/2. X)a (a/2.X))

o POINE=1) (T5.(0,X)
16N3 272

)(aeq/zf(é”(eq/z))% (121)

where

2
IBz(QsXO) = A d®u.@~(2” - Gﬁ,@)

1-— e—Q%Xg(l—COSG)m)/Z 2
122
- (Q%X%(l —cos ®u,u)/2> (122)

can be evaluated numerically. Note that Z . (Q,X,) = 27°
when Q,X, — 0.

Next, we shall consider the contribution from dynami-
cally generated transverse chromomagnetic fields,

(BT (X)BT (X))

1, 5 X X g
= -39 NC(NC_I) QJr(ML?vL)
2 Ligu J Ll ql

x J1(gXo)J1(IXo).

(123)
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for which

X X
QJr(uL’
Ligu J Lilw

1(gX0)J,

(1Xy) = _/ dqdl

X —u) (X =)
ql/a’zuL/deQ+ u,v,) ( u)i( V)1

X —uy||X — vy

X J1(61X0)11(IX0)J1(¢1|X¢ —u ) (X —vy])

d*uy d*v, ] 01 6(Xo — [y [)o(Xo — |4 ])
— 79_(” , U ) Ll _ — ’ (124)
/ (21)? o CHREHE
by using
gr o —u)\ (Y - U)]
do, | do,~— e 1K1l (=0 — —(27)? L X, - Y, —v,|). 125
[ do, [ o eiixo-e (0 g I = DAY =), (125)
Given
W v = . ][7. ] (cos®y; + cosb; ;). (126)
where 6; ; = 0; + 0;, and taking the GBW distribution, it is found that
d*it, d*v 1) v
_/ iy ZDJ_Q—(”L’UL) i} v 6(Xo — |iy|)5 g —[v.])
(27) |a, [*o,|
1 Q4 2r 1 - e_Q.%X%(l_COSGHJ‘)/Z 2
:243/ d@)”[sin(aw—(271—@)5,,—,)005(9;,@} — (127)
4n=g'Nz Jo ' ' ’ TINOEXG(1 = cos ©;5)/2

by using the relations in Appendix B. Consequently, one
finds

40A2
2y sy ) = SNV, 0.x,), (128)

which yields

v (0/2.0035 (a/2.X)

RO (En ) 6, A R (129
where
Tp,(0,X) = /O ” d(zm {(271’ ~©,,)c0s®,, —sin Qw]

l—e —02X}(1-c0s ©;;)/2 \ 2
<Q2X (1 — €Os G()u b)/z)
One can consistently check Zg,(Q,Xy) =0 when
Q‘\'XO - 0.

By symmetry, it is expected that (ag (q/2,X)
ag' (q/2.X)) = (ay*(q/2. X)ag*(q/2.X)). The numerical
results of Z,(Q,X) and Zp,(Q,X) are shown in Fig. 6.
Notably, even at late time up to QX ~ 10 such that /p, is

(130)

|

about 10 times smaller, we still have I ~ 1. When
assuming f}(e,. X) is created after X§ = 0.1 fm, one
finds I1%, ~ —10.3 for Q; =2 GeV and I1!  are nearly
unchanged because of the dominant contribution in late
times within the glasma [90], while the magnitude of U(1)
magnetic fields rapidly drops to |eB’(X{)| ~ 0.01m2 [97] in
LHC energies, from which IT{, becomes negligible. The
same scenario is applicable to the high-energy collisions at
RHIC. In principle, a more rigorous estimation of II5, is
proportional to Z (Q,X{) — Zp (Q,X{'), while this should
not give significant suppression by order of magnitude
provided Xg is not too close to X. Finally, we may roughly
conclude the spin alignment of ¢ mesons from the glasma
for O, ~ 1-2 GeV in an approximate equation,

IBz,By

FIG. 6. Numerical results for Zp, (Q,X,) and Zp,(Q,X).

016020-18



SPIN ALIGNMENT OF VECTOR MESONS BY GLASMA FIELDS

PHYS. REV. D 108, 016020 (2023)

20} /

— INgl — ING&l

,,,,, v
[MSin

000 005 010 015 020 025 030
X3'(fm)

FIG. 7. Magnitudes of spin correlations from the color-octet
and color-singlet contributions for Q; = 2 GeV.

1

~—3+106_2ng/7§, (131)

£00

where X' represents the freeze-out time at chemical
equilibrium of the QGP and recall 7y is an unknown
parameter characterizing the effect of spin relaxation.
Assuming the spin relaxation results in about 10 times
suppression of the dynamical spin correlation, the contri-
bution from color fields for spin alignment will be around
the same order as the experimental measurement.

In practice, the first-principle study of the spin relaxation
potentially applicable to heavy ion collisions has been so
far conducted in weakly coupled QGP up to the leading
logarithmic order in coupling [69,76,78], where the cor-
responding collision term for dynamical spin relaxation in
AKE is far from a relaxation-time form. In the heavy-quark
limit m > T, we may naively adopt the relaxation rate
derived in Ref. [78] and approximate1

2 2
oret LG Co(F)mpT
() T I, (132)
where C,(F) = (N?-1)/(2N.) and m3 = ¢*T*(2N .+
N;)/6. Taking N, =N; =3, a, = ¢*/(4r) ~1/3, and
T =200 MeV as the average temperature of QGP, one
obtains (73)~! ~ 0.04 GeV. For X;! ~ 5 fm, it is found that

20/ 2 0.11 and pyy ~ 0.24 from Eq. (131). Although
there is a rough agreement with the experimental meas-
urement for pg, of ¢ mesons at small transverse momenta in
LHC [43], we emphasize that the estimation is subject to
several approximations and phenomenological postulations
and a more sophisticated analysis is required for quanti-
tative comparisons. There have been great efforts devoted
to modeling the dynamical spin polarization and relaxation
from collisional effects in QGP and our result of spin
polarization (correlation) from glasma effects can be used

As also found in Refs. [69,78], the O(T/m) term can be
written as a momentum diffusion term and neglected here.

30} ‘ ‘ ‘,

25F  — I, — Ml '

20

,,,,, vy
Mg~ == |né¥t|

[ aidd|
N
(4]

1.0 15 2.0 25 3.0
Qs(GeV)

FIG. 8. Magnitudes of spin correlations from the color-octet
and color-singlet contributions for Xg"‘ =0.2 fm.

as an initial condition for future simulations in the
QGP phase.

Before ending this section, we further elaborate how our
result is contingent on the choices of Q, and X{. In
general, at a fixed Q,, choosing a smaller X seems to
result in the dominance of [T | over |TI |. Nonetheless,
when X' is too close to the initial time X, = 0, |TI,| also
drops since the initial color field encoded in [[IZ,| is
actually the difference between the initial color field at
X, = 0 and the one at X, = X' as manifested by Eq. (31).
Consequently, in our approximation, we also have to
choose a sufficiently large X' such that O(|B*(0,X)| —
|BY(X, X)|) ~ O(|B*(0,X)]) as the validity for neglect-
ing late-time fields at the end of the glasma phase when
evaluating IT,. Moreover, as mentioned previously, we
ignore the transition between the glasma and QGP phases,
whereas the adopted X' = 0.2 fm is the same as the proper
time for matching the glasma phase and preequilibrium
state described by effective kinetic theory at the LHC
energy in Ref. [99]. To clarify the valid region for [T | >
T |, |TEY,| in our estimation, we plot the spin correlations
from the color-octet and color-singlet contributions with
Xg‘ dependence at fixed Q, = 2 GeV and with O, depend-
ence for fixed X' = 0.2 fm in Figs. 7 and 8, respectively.
Here 1, are calculated by including the field difference
between X, = 0 and X, = X%, which yield"

th
15, (0§) = 5(0) (1 - 20200p) + 2250
th
1 xg) = g 0) 72 25, (1)

"Here TIZ,(X™) is proportional to ((B%(0)— B“(XM))
(B(0) — B*“(XWM"))), where we omit the spatial dependence.
Accordingly, the terms associated with Q(X{") and Zp.(Q, X
therein are led by the contributions from (B (0)B*(X{)) and
(B (XM B (X[)), respectively.
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and thus manifest the X dependence. It is found that our
estimation is approximately valid when 0.1 < Xth <
025fm at Q,=2GeV or 15Q0,<23GeV for
X =0.2 fm.

Finally, we further comment on higher-order corrections
in 7 expansion upon spin alignment. In principle, one could

further incorporate the /> corrections for AKE and A< 2/d

albeit unavailable in literature at this moment, which may
give rise to O(A?) corrections on py, from Eq. (63) in our
model of coalescence. Such corrections should be sup-
pressed provided the 7/ expansion holds. On the other hand,
there could be possible O(#?) corrections for py, from V= o/

led by Eq. (62). Nevertheless, the existence of such
corrections implies that V; 5 are out of equilibrium (for

the vector-charge degrees of freedom) and the effects could
be probed by spin-independent observables. As a result, at
least in high-energy nuclear collisions, it is unlikely that
such corrections could be prominent for light quarks
including strange quarks at small transverse momenta.
We hence assumed V. in thermal equilibrium without

quantum corrections in our setup.

V. SPIN ALIGNMENT FOR VECTOR MESONS
WITH FINITE MOMENTA: QUALITATIVE
ANALYSES

Previously, we focused on the spin alignment of
vector mesons in the rest frame.'” We may now investigate
its momentum dependence in the lab frame. As stated in
the previous section, the contribution from color-singlet
correlations should be theoretically regarded as a higher-
order correction compared with the color-octet ones.
Consequently, we focus on the color-octet contribution,

Tr. (P} (q/2)Py(q/2))
Jd=x-qlag(q/2. X)ag (q/2. X))
TONZm? [dEy - qfY,(9/2.X)f;(9/2.X)
=g [dZx - q(B{(0.X)BY(0.X)) (0, fv(€g2. 0))
8Nem? [ dZx - qfv,(4/2. X)f\5(q/2. X) ’
(134)

for ¢ = 0 in the nonrelativistic limit for quarks and anti-
quarks, where B¢ denotes the chromomagnetic field in the
rest frame of vector mesons. Utilizing Eq. (88) in the weak-
correlation limit by augmentation with the spin-relaxation
correction from a color-octet relaxation time, we have

In Sec. IV, we calculate the spin correlations from color fields
of the glasma in the lab frame along with vector mesons in the rest
frame. Accordingly, the estimation of spin alignment therein is
actually for vector mesons with nearly zero momenta in the lab
frame.

) _lN_hz 2 —2Xeq/TR deX qHB( )(agqﬂfv( q/2> ))
03 T2NZm? [dZy - qf %, (€q2) f S (€q/2) ’

(135)

where TIz(X) = (B#(0, X)B&(0, X)) + (B%(0, X)B%
(0,X)) — 2(B:*(0, X)B:* (0, X)). Despite the negligible
size of momentum corrections from quarks and antiquarks,
we may simply conduct the Lorentz boost on the color fields
to approximate the spin alignment of vector mesons with
finite momenta in the lab frame, which will be helpful to
qualitatively understand transverse-momentum and central-
ity dependence of spin alignment.
We could rewrite B¢ in terms of the color fields in the lab
frame through
B = y(BY + €lky EY) —

(y=1)Be-$di, (136

where y = 1/+/1 = > with v/ = ¢'/+/|q|> + M*> and
?" = v'/|v|]. In principle, |g| here cannot be too large;
otherwise the relativistic corrections upon quarks and
antiquarks should be considered. By dropping the corre-
lations between a chromomagnetic field and an electric one
and those between color fields along different directions,
we accordingly find

(BY(X)B'(X)) =r*((B“(X)B“(X))

etk el (ES(X)ES (X))

=2y (= 1) (B (X) B ()3
=179 Y (BUX)BY(X) (137)

and thus

(B (X)BY (X)) ~ 77 (B (X)B¥ (X))
+ ek peK v (E{(X)ES (X)) + O(Jv[4),

(138)
where 77 = 1 + |[v|> = v? x y> — v? + O(|v|*), which yields

(B (X)B{ (X)) » 73(B“(X)B™ (X)) + vy (E“(X)E*(X)),

(139)

(BE (X)BE (X)) 7 (B (X) B (X)) + 03 (4 (X) E*(X).

(140)

(B (X)B (X)) # y*(B*(X)B*(X)) + vy (E*(X) E*(X))
+ 02(E®(X)EY(X)), (141)

up to O(|v|?) for |v,,| > |v,| at central rapidity.
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TABLE I. Competing effects for spin alignment from color fields.

Small Py Large-Pr Central Noncentral
Glasma , pho’" < 1/3 ph " <1/3 ph <1/3 P <1/3
Effective potential \pg’éj/"’ ~1/3]20 ‘pW/W —1/3|>0 pg’éf/ll’ <1/3 pg(-)f/'// >1/3

For color fields from the glasma, as shown in the previous section, the correlators of longitudinal color fields dominate
over those of transverse ones and (E*(X)E* (X)) = (B*(X)B* (X)) with the GBW distribution. Then Eq. (135) becomes

| (02— 208 = e [ d5y - q(B*(0.X)B(0.X))(0,,, Fu(eg2.0))?

Poo —5

In practice, v, , could depend on spatial coordinates, but
here we may consider just the average velocities. Recall
that x and y correspond to the directions parallel and
perpendicular to the reaction plane, respectively. It is hence
anticipated that v7 > v} in most cases. Therefore, in the
high-energy nuclear collisions with the presence of glasma,
we expect poy < 1/3 and the deviation decreases with
larger transverse momenta (but not too large) and less
central collisions, for which v? — 2v? increases.
Generically, we may consider two potential sources of
color fields. One stems from the color fields generated by
the glasma state, while the other comes from only the
internal color fields characterizing an effective potential that
binds the pair of a quark and an antiquark. The spin
alignment induced by the glasma only exists in relatively
|

T2NZm? [ dZx - qf%,(e4/2) /05 (€q)2)

1 Rg (0} = 203)e™ /% [ dEy - q(B*(0,X)B(0,X))(9,,,fv(€g2.0))

(142)

|

high-energy nuclear collisions. On the other hand, the
effective potential could play a more dominant role in
low-energy collisions, where the contribution from external
color fields vanishes as well. However, the magnitude of
such a potential term entails nonperturbative calculations
such as the lattice simulations, which is beyond the scope of
the present work. For simplicity, we also assume the
screening effect in the QGP phase such that the non-
dynamical contribution of internal color fields at late time
can be neglected. Unlike the color fields from the glasma,
the effective potential should be approximately isotropic.
We hence postulate (E“(X)E“ (X)) = (B*“(X)B*(X)) =
(BY(X)B“(X)). In the weak-correlation limit, Eq. (88)
accordingly yields

P00—§~

As opposed to the case in high-energy collisions, we could
possibly have poy > 1/3 given v > 2037 from the effective
potential at low-energy noncentral collisions and the
deviation may increase with larger transverse momenta
Pr (but not too large) and more peripheral collisions.
Nonetheless, the effective potential also gives rise to pgy <
1/3 in central collisions. In practice, the effect from the
glasma and from the effective potential possibly coexist for
¢ mesons and J/y, which should compete with each other
in sufficiently high-energy collisions, while the latter effect
is unlikely present for K*° although the glasma effect on K*°
needs to be further investigated. As a result, the spin
alignment for K*° may only occur at high-energy collisions
with the glasma effect that yields pgy < 1/3. Nonetheless,
these two effects could be more prominent in distinct
kinematic regions or centrality conditions. In Table I, we
roughly summarize the qualitative behaviors of pg led by

36Nem? [[dXy - qf\,(€4/2) V5 (€q/2)

(143)

individual effects, where we also expect that the spin
alignment of J/y at high collision energies follows similar
behaviors as those of ¢ mesons although it is unlikely that
charm and anticharm quarks will reach thermal equilibrium.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we estimate the spin alignment of vector
mesons induced by color fields in the glasma phase via the
newly derived equation with local spin correlation in the
quark coalescence scenario. We find that both the color-
singlet and color-octet components of the axial-charge
current densities for quarks and antiquarks contribute to
the associated spin correlators, which are dynamically
generated through the background color fields. Based on
our estimates the resulting spin alignment could be sig-
nificant. We identify and discuss the limitations of our
perturbative approach contingent upon the saturation
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momentum and lifetime of the glasma. We also qualita-
tively analyze the spin alignment of vector mesons with
nonzero momentum in a self-consistent framework with
color fields originating from both the glasma and effective
potential characterized by isotropic internal color fields,
which may result in opposite signs for py — 1/3 for
different transverse meson momenta and collisions of
different centrality. The differences for spin alignment
between these two scenarios stem from the intrinsic spatial
anisotropy of the color fields and the momentum
anisotropy of vector mesons, respectively. As briefly
discussed in Sec. IV, our estimates for spin correlations
are subject to several approximations. Here we reiterate
some potential issues and propose future research direc-
tions. Most importantly, the validity of our estimate is
sensitive to the value of the thermalization time X{ where
the glasma phase ends. Our numerical study indicates that
our estimate breaks down around QX ~ 2-5. However,
the order-of-magnitude estimates for spin correlations still
reveal non-negligible contributions to spin alignment from
the glasma effect. In addition to the need for developing a
more rigorous approach to treat the nonperturbative dynam-
ics of color fields for spin transport of quarks, it is also
crucial to have more reliable estimates for the spin
relaxation after the end of the glasma phase. As shown
in weakly coupled gauge theories, the collision terms
responsible for spin relaxation are far more complicated
than the relaxation-time form [28,29,69,76,78].

The color-field induced diffusion terms that are
neglected in the weak-field limit may further cause the
suppression of spin correlations. Furthermore, the sudden
truncation of the glasma phase is unrealistic, which further
raises the issue of the connection between spin transport of
quarks in the glasma phase and in the QGP in the
framework of QKT. On the other hand, the nonrelativistic
approximation for constituent quarks and antiquarks is
adopted here, which reduces the nonlocal correlator of

color fields to the local one. For a quantitative estimation of
the spin correlation via nonperturbative approaches like
lattice simulations, the spatial separation between color
fields should be taken into account. Overall, a more precise
estimation for color-field effects beyond the nonrelativistic
approximation will be required for a reliable comparison
with the growing data for relativistic heavy ion collisions.
Our formalism provides for a framework in which this is, in
principle, possible.
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APPENDIX A: ANALYTIC SOLUTION

4xl
(X —z/d4k/d

and

le{Z) (p7

where X = X — X’. Note that the convention for Fourier transformation here is

FROM AKE
Considering
GH
p- 0w (p.x) = G4(p.x) - LD )
T
one finds
dAX e ik (X- X)G/,l X, )'d
pX—l/d4k/ 1 ( ) (A2)
2m) k- p+ipytT! +ie’
which can be decomposed into
a'(p.X) =, (p. X) + ay (p. X). (A3)
where
|
—thX’)k. ; -NGu(x. X'
( p+ lli(ifz ) 2( 2 ) (A4)
(k-p+ipgt ') +e €0
d*sx .
X) = /d4k/Wn5(k-p+ ipor e RXGH(X, X'), (AS)
7
d*x ik-X' /
fp.k) = [ Z—ze"* f(p. X'). (A6)

(27)

Assigning p, = (p. 0,0, p,) hence we obtain
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doXydoX, —iko8Xo+ik.0X,
P X = l/dkodk / 0 . e : — GM(X’X/N&X o
(2m)*  kopo — k,p, + ipoT vy

which yields

p, —ﬂ/dk /d5X0d5X . sgn(6X,) ikz(6XZ—5XOpz/p0)—§X0/TGﬂ(X’5X)|5X »
Po o

déXydsX, sgn(6X) X/
= [ R 55X, — 0Xop.  pu)e G X6 o, o

X [sgn(6X)G* (X, 6X)e=%0/"]

2 Po 8X,,=0.6X.=p.6X./po

by using
/00 dke™ ™" /(k + a) = —insgn(x)e™.

Similarly, it is found that

1
P X) /dkodk /d5XOd5X 20k = ksps/ po + It )e"'kO‘SXO”"z‘SXZG”(X,X')
Po

d5Xo s,
/ ) XolrGr(X, X' )|5XX_),=O,5XZ:p:5XZ/pU7
Po

and thus

doXo )
a'(p.X / o e™%/rGr(X, X) ‘ﬁXXV}.:O.(SXZ:pZ&XZ/pO’

where we have used 1 4 sgn(x) = 20(x).

APPENDIX B: DERIVATION OF THE INTEGRAL

Considering the integral

a a a/2 a/2
1= ["ax ["ayFey) = [T as [ asraarzs v an),
0 0 —a)2 —a)2

we can introduce V =y —X and U =y + X and rewrite the integral as

:%</ dv/ a'U+/ dv/vadU+/_adv/vadU+/_ dV/ VdU)

XF((U-V+a)/2,(U+V+a)/2),

where the overall 1/2 factor comes from the Jacobian determinant.
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When F(x,y) = F(y —x) = F(V), the integral in Eq. (B2) reduces to

/= ([dv(a— V) +/_:dv(a+ V))J—‘(V)

- / AvaF(V) - / AVV(F(V) + F(=V)). (B3)

0

It is found that / = 0 when F (V) is an odd function with V.
On the other hand, when F(x,y) = F (V) cos U, the integral in Eq. (B2) becomes

I= (/)astin(a— V) +/_Zstin(a+ V)>.7-"(V)

= /u dVsinacos VF(V) — /u dVsinVcosa(F(V)+ F(=V)). (B4)
—a 0

For a = 2z, the integral further reduces to

I=-— / " AV sinV(FV) + F(=V)). (BS)
0

APPENDIX C: CALCULATION OF THE LONGITUDINAL SPIN CORRELATION

At mid-rapidity # — 0, in the small-momentum limit such that p = p /py <1 for py = ¢, = \/p* + m* being
on-shell, the longitudinal component of color singlet spin four-vector is obtained in Ref. [90]

@ (p.X) = =(T5 poatutoo))) [ [ o (ER000E 01
— 01 (BA(X)EY (X)) = 0 (B (X EY (X))
+(Xg - )(03(,, (ET(X")ES(X")) = 0xri0xn2 (ES (X')EF(X"))
o+ OO (S (X ES(X")) = B (BS(X)ES (X)) . (c1)
Equation (C1) can be used to obtain (@**(p, X)a**(p, Y)). Since, in the end we will integrate over spatial X and Y on the
freeze-out hypersurface with X, = Y, a further simplification can be made by symmetry, (a*(p,X)a**(p,Y)) =

(@**(p,Y)a*(p, X)) which suggest that the integrals involving variables X', Y’, X", and Y” should remain invariant under
(X' < Y', X" < Y"). It turns out that we can write

(@*(p,X)a**(p,Y)) = (a*“(p, X)a*(p,Y)), + (@(p,X)a*(p,Y))y + (@ (p, X)a@*(p, Y)) > (C2)

where

2C 2 X X' Y i
~ ~ g C pX [p, pY [p.
@ 0w 1) = (T2 0t ) [ [ [ ]
kX' K.X" JkY KY"

X |:aX”OaY”O< [ (X/)Ea] (X/I)Eb (Yl Eb Yl/ zaX//an/ < 5 (X/)Ea]

> (X”)B%(Y’)Eb] (Y”)>
— zaX”OaY’ <Ef2(X’)Ea] (X//)Bb Y/ Eb Y// > + aX’laY’ <Ba (X/)Ea] (X”)B%(Y’)Eb](Y”)>

2050y <Bf (X')E4 (X") Bl (V') EL (¥") +amay/< 4 (X')E (X")BY (V') E} (Y’/)ﬂ, (C3)
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(@<(p, X)a=(p,Y))u

g
1
-(Y 2

p.X)a
e pX' [pY [pY
( 2Po(apofv Po ) / / / /
k! X// k Y/ k! Y//
- (Y5

= Yy)oxadynidye (B (X)EG (XN EL(Y)ES(Y") )+ (Y = Vo)asadvn dyra E(X VB (X")EL (Y EG (V") )

Y()0x0yr20y1 < [Z(X’)E“] (X")ES (Y’)E”(Y”)> +(Yy - Yg))ax,,oay,,QaY,,z<E[az(x')Ea] (X”)Eb(Y’)Eb(Y”)>

+ Z(Yg aX/laY”laY”

_|_ 2(Y//

+ 2(Y// YO Ox12 0y Oyry ( B,

+ 2(Y// Y/ aszaY//zaY// B

[

YO aX/laY//zaY// <B[

and

(@ (p. X)a(p.Y)),y = <g22c Po(9p0.fv(Po) > / l

X/ Ea X// Eb Y/ Eb Y//
X/ Ea X// Eb Y/ Eb Y//
% X/ Ea X// Eb Y/ Eb (Y//

X/ Ea X// Eb Y! Eb(y//

> 2 Y//
> 2 Y//
> 2 Y//

2 Y//

aX/laY”laY”2< 5 (X)ES (X”) JER(YEL(Y")

Y()0x:10yn20yr: ( BY;

(B
Y}) axzay//lay//z@g (X')ES (X")ED (Y E}(Y")

X/ Ea X// Eb Y/ Eb Y// >
YO axfzayuzay/r2 B >

[ X/ Ea X/l Eb(y/ Eb Y// j|

pX  [pY [pY
X// ]_<.Y/ ]_C/ Y//

x [+ = X0) (Y5 = Y3) 01919y dyn { E{(X)ES (X" B} (Y) BB (Y") )

+ (X§ — X4) (Y — Y())axnlax//zaywlam<E§‘(X’)E7(X”)Eb(Y’)Eb(Y”)>

+ (Xg - X())(Yg - Yf))ax”zax”lay"zay"l<E (X’)E“(X” Eb Y’ Eb Y"

+ (X -

—2(Xg
+2(XY
—2(X!
- 2(x;

+2(XY

= 2(X5 = Xp)(Yg = Yé)ax"zax”]awzdwz<E§‘(X’)E§‘(X”)E'S(Y’)E'f(Y”)

Xo)(Yg =

X (¥ -
X (¥ -
~Xp) (¥ -
~Xp) (¥ -

= Xo)(¥Yg =

Y())0x20x72 0y 0y <E“(X’)E“(X” VES(YEL(Y")
Y()0xr0xr Oy Oy
Y(,)0xr Oxr1 Oyrayry
Y()0x10x710yr0yrs
Y()0x10x720ym0yny

Y()0x10x20y120y

E§ (X' E4(X")E} (V) E} (1)

E{(X')E3(X")E3(Y')E5(Y")

P

E{(X)ES(X")E5(Y)ET(Y")
E{(X)E{(X")E5(Y)E5(Y")

o~ T~

E§ (X' E{(X)ES (V) E} (")

N~~~ S S~ ~——

} . (C5)

In the above Egs. (C3)—(C5) the four-field correlators can be written in terms of two-field correlators as follows:

(@t (XN (X"l (V)b (Y") ) = (at (X ) (X)) (e (V)b (¥") ) + (@t (XN (¥') ) (ad (X (¥"))

+ (XN (r") ) (@ (X)ak(¥")).

(Co)

Now keeping in mind (@**(p, X)) vanishes (see Ref. [90]), the terms with color structure (a4 (X")ag(X")) (a5 (Y")a5(Y"))
will not contribute in Egs. (C3)~(C5). Moreover, all the terms associated with dy Ej; (X') Ef, (X") in Egs. (C3) and (C4) will

vanish since such terms involve the integral
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X! X!
[ oenns @)1 1XDOGO0KE) = [ ou (aX5)11(1X)O(XEO(XE) =0,

0 0

In the end, summing over all the nonvanishing contribution from Egs. (C3)—(C5) one can obtain

.
@07 .1~ (T2 polos oo ) [7+ 24 73] ©)

where the terms J| =T+ Jp, Jo=TJc+JIp and J3 = Jg+ Jr are the nonvanishing contribution from
Egs. (C3)—(C5) respectively. The expressions for J 4, Jg, Jc» Ip>» T, Jr in terms with two field correlators are
as follows:

p.X' pY p.Y'

IR A A
% [6;(/16”(<B“3(X’)Bb3(Y’)><E“1(X”)Eb1(Y”)> i <Ba1(X/)Bb1(Y/)><Ea3(X//)Eb3(Y//)>)
20310y ((BRX)BR(Y) ) (B (XER(v") ) + (B (X)BP2(v') ) (ES (X )E (v")))

+ axrzay,2(<3a3 (X’)B”3(Y’)><E"2(X”)Eb2(Y”)> + <B“2(X’)B”2(Y’)><E“3(X”)Eb3(Y”)>)}, (C8)

R
x [aX/laY,l (<B“3 (X’)E“(Y”)><E”1(X”)B”3(Y/)> + <B‘”(X’)Eb3(Y”)><E“3 (X”)B“(Y’)>)
+ 20010y ((BEXVE(V) (B (XB(V) ) + (B (X)ER (1) ) (E2(X") B2 () )

+ dadyn (B2 OOER(r) ) (E2(XNBR(Y')) + (BR(XNER (")) (E2(X")B2(V)) )| (C9)

S A I A

k/ X// /—(,YI /—(/,YU
x [+2(Y6’ — Y1)ay1 Oy Oyt <B“ (X)EL( Y’)><E (X")EL(Y") >
= 2(¥g = ¥y)ox 0y B EL(Y) ) (B (X" EL(Y))

4 2(YY = Y))dx1Oyrady { BE(X)VEL(Y <E (X")E5(Y")

— 2(Y! = Y}) 011 Oyrdyn { BE(X')EL(Y') Y E4(X")EL(Y"
0 0 3 2

(X E5(
)ES(
+2(Y — ¥§)9xn0yn 0y ( BS(X)ET(Y') ) ES(X")E5(Y"
—2(Y§ — Y{()0x20y1 0y VET(
+2(Y[ — Y{)0x20y720y JES(

BS(X")E5(Y') ) (ES(X")E5(Y")

) )
) )
N )
BA(X)EL (v') ) B3 (XM EL(Y"))
N )
) )

N o~ o~ o~

— (Y] — Y})xra0ynrdyrn{ BE(XVEL(Y' <E2 (X")Eb(Y") } (C10)
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20y, Oy Oy Oyra <E‘1‘ (X EL(v") V{ E4(X")EL(Y")

)Y ES(X")ES(¥')
)Y (B4 (X")ES(Y')

— 20y, OxryOyry Oy <E7 (X")E5(Y")

- 20x”10x”10m@m<<E? (X")EL(Y")
- Zaxlllaxllzayllzayﬁz (

\/\/\/\/
\/\/\/\/
— —— ~—

(E3(x)EL (r) ) (BS(X")ER(Y')

20y dydydyns ((ES(X)EL () ) EL (X ER(Y)) ) |. (C13)

Now, first using Egs. (91), (92), (95), and (96) in Egs. (C8)—(C13) then using the following relations

p.X , 1 X,
/{,X’ G(X’X) ~2—po// (X X )|X/1237X1A2.3’ (C14)
Xy 00 , )
o= dXi(1 + sgn(Xo — X)), (C15)
0 —0o0
X %
Ox,j / Guy) = / 0, ;G(uy), (C16)
Lig.u Liqu

we can obtain

4N25ab5ab Y
64Po Ligu J Ll J Lig L

/Vl/y
X |:( l auxawcg (uJ_v UL)Q—(MIJJ ”l)ﬂm(xo, YO? q, l’ C],, l/)
q

qy Al

ql auxava (Ml, /UL)'Q'Jr(u/J_v U/J_)plh(XO’ Y()’ q, IR q/, l/))

/yl/x
- 2< " a ava—<uJ_v UJ_)Q—(MIL’ Ul>p1a(X07 YOv q, L qla l/)
q

L
ql —— 0,50,y (ML’UL)Q%(”/J_’U/J_)plb(XO’YO’q’Lq/vl/))

q/xl/x
+ ( q l auya Q (MJ_’ UL)Q—(u/L’ vl)pla(xo’ YO? q, l’ q,’ ll)

X JX

q*l

70uyavy9+(”b v ) (v )pi(X0.Yo.q. 1.4, l’))] , (C17)

where

X Y, X! Y
pra(Xo. Yo.q. 1.4/, 1) = / A | ToaX) OO (g X (YOO
0

=16 / dx), / Ay}, / dx!! / dY!Jo(qX))To (1Y) (g X0) T, (YD)
x O(X, - X;)0(Y, = X5)O(Yy — Y5)O(X()0(Y()O(X5)O(Yy), (C18)
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X Y,
pio(Xo. Yo g1/ 1) = / ’ / ’ / / (GX0) T (1Y)O(X))O(¥y) Jod/X4)To(1'Y})O(XL)O(YY)

=16 / dx), / dy), / X} / dYJy (X)) (1Y) To(q' X0 To (YY)
x O(Xo - Y()0(Xy — X5)0(Y, — Y5)0(X;)0(Yo)0(Xg)0(Yy). (C19)

and

4N25ab5ab Y
Tolp X 1) == / / / /
p() Ligu J Lilw J Lig L'

Pqg”
X |:<l / GMQ (MJ_,’I}J_)()HXIQ (uL9UL)pIIa(X07YO C],l C] l/)
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X l/x

q
O 01,0100, () (K Vo 1) )| (c20)

where

X, Y X'
pia(Xo. Youa. .. ') = / ’ / ’ / / " Io(gXy)d, (1Y5)O(Xp)O(YE) T, (¢ X§) o (I V) O(X})O(Y))

0 0 0
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X 0 0 0

X, Y X! Y!
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and
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lx lxl/y ly lxl/)
l ql a a a Q (MJ_’UJ_)Q—(M/J_’”/J_) l ql 0 al)xaw —(MJ_’UJ_)Q—(M/J_’U/J_)
lx Ix l/x lv Ix l/x
+l 77 T 04y 0,y 0y 2 (ML’UL)Q—(MLUD‘FZ 77 2 0y 0y 0y Q_ (1, v, )Q_ (i, V')
x pp(Xo. Yo.q.1.4". 1), (C24)
where

X, Y X! Y/
pD(XO’ Y07 q, l’ q/’l/) = / 0/ ' / 0/ ’
X (/) 1" 1"

0
1/dX6/ dY’/ x/
X@XO

O(¥, - ¥()0(X;

0

and

(Yo = Yo)J0(gX0)J1 (1Y5)0(X5)O(Y5)J

1(4'X0)J1(I'Y5)0(X5)0(Y5)

dYg(Yg = Y)Jo(aXo)J1(1Y5)J1(4'X5)J1 (I'Yp)

— X1)O(Y, — Y1)O(X,)O(Y})O(X))O(Y?),
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g*N25%0 5P Y[l gt
X, Y N 02 ,52,9_ /’ QL i
JE(p ) 64p0 [_qu /J\_lb Aq u [_;l’,v’[ ql q/l/ ux —ox (ul UL) (ML vl)

g Yy el /xl/x
q / aux/auy’avx'avy’g—(uﬁg U/J_)Q—(uiﬂ UL) +

0yux' Oy ’avx’avy’g—(ulj_’ U/J_)Q—(ul’ UL)

al ql ql ql
qxlx 1y l/} 5 5 , , qy ly Ix l/y 5 , ,
ql q/l/ auy avy Q-(”L7 WL)'Q‘—(MJ_’ UJ_) + 2— ql /l/ a bx’a /Q_ (ui’ UL)Q—OU_’ ”l)
qy Fq~r 2 ! ! y lx Y 2 32 ! /
TR 0, 0,y 0y Q_ (1, 0" )Q_(uy,v,) — 24 T 050y Q- (' V' )Q_(uy,vy)
2q lx /yl/x Q , , Q 2 xlx /xl/y 5 Q , , Q
T 5 .0,.0,00,.Q_ (i, (uy, 19 "5 0,09 (i), (uy,
ql q/l; ux' Yuy' Yox' Upy (MJ_ UJ_) (MJ_ UJ_) + ql ql Yy Yoy (uJ_ UJ_) (uJ_ UJ_)
q)lx VY 2 / / A
-2 ql ql aux auy/an_(MJ_, vJ_)Q—(ulv Ul) X pE(XOv YO7 q, lvq ’ ) )’ (CZS)

where

Xy (Yo [X. [Y
pe(Xo. Yo 0.1, 1) = / / / //,“(xg—xwg—Yawl(qxw.<1Yg>@<xa>®<ya>fl<q/xg>fl<z/yg>®<x3>®<m

_16/ dX’/ dY’/ X”/ AY (XY = Xp) (Y0 = Y5) T, (gXp) T (1Ye) T (g XU T (1Y)

X O(Xo — X})0(Yo — Y})O(X) — XJ)O(Y) — Y1)O(X})O(Y})O(XL)O (YY), (C26)
and
4N25ab5ab Y qylx q/xl/y
j p’Xa Y / / / / |: a%xQ— u,,v aix,Q_ u/ ,7},
F( ) 64p0 Ligu J Lilv J Liq L0 ql q,l/ (L J_) (l L)
\ ly 1y l/y xlx Ix l/x
e 3,10,y Q (11, 11)0, 0,y Q_ (1t L 5,0,y Q (11, 11 )0y 0y Q_ (1, 0/
ql 77 (1,0 )0y (', ¢)+ a g " (uy,vp) yQ_ (', v'))
qxly /yl/x 2 2 / q P /xl/‘ 2 / /
ql /l/ avyg—(uLvUJ_)auy’Q—(uJJ ) l ql —7 00y Q‘ (MJJUJ_)aMX’Q—(uJ_’UL)
¢'l'q e 2 o q'r q/x " 2 2 /A
_24 TR T 00, Q_ (1, v, )05 Q_(u ') =2 TR 05 Q_(uy,v,)0,,Q_(u',v))
qylx 1y pix xly /xl/x 5 .
-2— TR 7 00y Q_ (14, 01 )0,y 0,y Q_ (1, 0 )+2 TR 05 Q_ (1,01 )0,0,yQ_(u,V))
qylyq/yl/x o ro ;o
- 27 q/l/ avyg—(ui’ UL)aux’auy’Q—(uJ_’ UJ_) X pF(XOv YO’ q, L, q, ) )’ (C27)
where

X Y X/ Y/
prXoYoadg )= [ 7 % [R0-xp) 0 - Va1 (axp) ()OO (g X Fppe(XpeTs)

=16 [ ax, [ ary [T axg [ argxg-x0)05 - Yo @X0) 1 070 X001
X B(Xg — X;)0(¥o — Y)O(X) — X{)O(Yg ~ Y))O(X;)0(¥y)O(X))O(¥}). (c28)

We next carry out integration over variables ¢, [;, ¢, and ', and X, Y|, X{;, and Y{j. For convenience, we make the
following decomposition [90] of ¢, [,
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(X - M)J_

| oy
qz _ |XL — ML| ' = gZCOS 91 + ®Y vl] sin 91- (C29)

gcosf, +®X «q;8in6,, 17N

where ®"f =7 i Y \v |2 A similar decomposition can be taken for ¢', and /', . The angular variables 6, and 6, will appear in

Jd*q, = [dqqdf, and [d*l, = [dlld6, which can accordingly be evaluated by using the formulas

2r 2r .
/ dOeie<s0 = 27],(|al)., / dOei*es0 cos O = 2irl,(a). (C30)
0 0

2z X
/ dfeia<s9sin 9 = 0. (C31)
0

After carrying out integration over angular variables, we perform integration over variables ¢, [, ¢/, and I’ using the
formula (116). Finally, carrying out integration over X{,, Y{, X, and Y{ and defining new variables s, =X, —u,,
s\ =X,-u\,t, =Y, —v,, ¢, =Y, — v/, we can obtain

Ja(p. X, Y) ~ +

g'Ne(NZ - 1) /L O(Xo —[s1[)O(Yo — [t [)O(s | = |s' NO(|r4| — |7, ])
4(2”)4p w,vu' v |sl|‘tl||sﬁ_||tl|

[ A,yA/‘a a Q (ul’ UL)Q—(MIJJ 113_) + ﬁi?iauxauxg-&-(ulv UJ_)Q+(MIJ_’ Ul))
2S00 (11, 01)Q (1, ) + 5 0Oy R (11, 02, (1 )

(70,0, Q- (1. 1)@ ) + $170,0,Q (uv,)Q ()| (€32)

where 8 =s' /|s\| and [} = [d*u, [d®v, [ [d*V.

Ta(p. X Y)%Lg“N?(N?— 1)/L O(Xo —[s.NOYo — |£, NO(s.| =[5 DO(I#, | — [r.])

42n)*py  Juwarw [s e fls 12|

[( 00 (11, 0 )0,0 Q@ () + 87200 (11, v1) 0,0, (1, . 1))
( i;ﬁ_auxg (ML, UL)avy’Q—(u/J_’ U,J_) + SJ_t/xa Q (uis UL)a1;y’Q+(u/J_’ U/J_))

+ (S‘lf}iauyg—(uj_v vl)avy’g—(u/JJ 1]3_) tlxéuyg (MJ_, yl_)avy’g-&-(ull’ vlj_))i| ’ (C33)

jc(p,X,Y)erng%(Né]l)/l G(XO_|SL‘)®(Y0_|Z‘J_|)®<!SJ_|_|sﬁ_|)®(‘tl|_|tﬁ_|)
427)°p5  Juwww s llec s’ []7) |

x (L] - Itl\)[tiﬁ’ft”‘a Q (1. 01)0,00,0Q (. 0')) + T 37710, Q (1. v1)0,00,,Q (). )
— P800, (1), v1)0,,0,0Q (. V) = B 87770, Q_(uy,v,)0,y0,yQ_(u', v))

— P10, Q (1, v1)0,0 0,0 Q_ (V') — P 85170,,Q (1), 0,)0,00,yQ_(u, )

+ 187770, Q_ (4. v,)0,,0,,Q (V) + th’ft/V()qu_(uJ_, )0,y 0,y Q_ (1t , U/J_)} , (C34)
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Tolp.X Y)NJFZQ“I\@(N%—U/L O(Xo — |s.[)0(Yo — |7, )O(s .| = |5/ DO, | — |2, ])

A2)'py Juwarat [slleclls’ 117, |

X (|tJ_| - |t/J_|) {ﬁgﬁtfattxavxaﬂxg—(uJ_v UL)Q—<M/J_’ U/J_) + iiglj}illyauxavxavyg—(uJ_’ UJ_)Q—(M/J_’ U/J_)

A

- ,iﬁ_gztﬁauxavyavxg—<uj_v UJ_)Q—(M/L’ U/L) - a}_g‘/Jy_,i/J)fauxavyava—(uLv UJ_)Q—(M/L’ U/L)
- ﬁgﬁiﬁau)’avxavxg—<uj_v UJ_)Q—(MIL’ Ul) - }is‘/jﬁﬁauyavxavyg—(ul_’ 'UJ_)Q—(“/L’ UIL)
+ 7557,

yavyavxg—(ul_’ UJ_)Q—(M/J_’ U/J_) + Pj_ﬁj_r}ﬁauyavyavyg—(ul’ DJ_)Q—(M/J_’ U/J_) ’ (C35)

JTe(p.X.Y) =

w/l [(ISL—Isll)(|t1|—IIL|)Q_(M,M)

4(27)*pi [s" s [17 2L ]

o v

ux —vx

AV AIXAY A AV AIYAY Ay
X {sis’ft’lﬂfaz 02 ,Q_ (' V) + 88T FL 170,000,y 0,00,y Q_ (1, V)

/X AIXGX Bix 1) X VY2 32 1o

+ 8 ST 170,00,y 000 0y Q_(u' V') ) + 81 37F 170, 0, Q_ (', v))
o RIXGY 3 32 1 Y axgx pix 32 1

+ 28810 1707 0,00,y Q_(u' V) =28 371 1707 ,0,00,,Q_(u' V)

=28\ 31 17 0%,07 Q_ (', v ) = 28 81 770, 0,00,00,, Q_ (', v,
+ 28 87 170,00,y 07, Q_ (', 0) = 287 871117 0,00, 0%, Q_(u V')

x O(Xo = [s 0o = [rLNO([sL| =[5/ NO(rL] [\ ])

x O(|s L [)0([tL))O(|s' NO(|7L]), (C36)

AN2 (N2 _ D y
jF(p,X,Y)zM + |:(|SL| ls Dzl = 1201

42n)*py Juwarw | (173 (s fles
X [giﬁf;ﬁ_?ﬁa%xg—(ul’ UL)aix’Q—(u/J_’ U/J_) + S‘ﬂ_‘ez}iﬂ_;zauat)g—(ul’ U_L>aux’auy’g—<ulj_’ v/J_)
S 0000 @ (11 01) 00Oy @ (i, 0,) + LB R0 (1,0 )2, () 0))
+ 2818171 110,,0,Q (1, v1)0%,Q_ () v ) = 280 817 170,,0,,Q(u 1, v1)0; Q. (u, V)
— 28 8P 02, Q (g, v,)02 Q_ () v ) — 28 871 770,,0,,Q_ (1), v,)0,00,,Q_ (1, V)
~y A

AX A GIx 32 / / A ALY gix 32 / /
+ 28 3T 105, Q_(u v )0,0 0,y Q_ (V') = 28 87 1705, Q_ (), v,)0,00,yQ_(u, vl)]

x O(Xo = [sL[)O([sL| = |s' . NOYo = 7L )07 | = |r.[)O([s O[O )7, ])- (C37)

Now we adopt the GBW type of gluon distribution [82],

4 1= —Q}uy—v, /4 2 4 1— —O3[s =1, —r . P/4\ 2
Qi(ula UL) = Q(”L7vl) = Qs < ¢ ) = QS ( ¢ > y (C38)
g

N2\ QHuy —w,P/4)  g*N2Z\Q¥s, —t) —r|*/4

where Q, is the gluon saturation momentum and r;, =X, — Y.
Carrying out integration over variables u, v, w’, v/, we can write 7, + J, + J3 = J, which depends on py, X, = Y,
r1, and @,. It turns out that J is given by

gy ONEWNE=1) OF T(0.Xo Qilrul.0)) €39
’ r) - 4(2. 4 4 8N4 2 ’ ( )
(77:) po g c Qs

j(Po» QsXO’ Qs|rj_
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where 0, =cos™'(r}/|r.|) and J(Q,Xo,Q.|r.].0,) =
jl(QsXO’ Qs|rJ_|’0r) + jZ(QsXO’ Qs‘rl_|’9r) + ‘-73(QsX0’

O,|r1|,0,) is a dimensionless quantity obtained after carry-
ing out the eight-dimensional integrals. The behavior of

jl(QsXOv Qs‘rl|’9r) + \A72(QSX0» Qs|rl|76r) + j3(QsX07
QO,|r1|,0,) with respect to QX for fixed values Q|r | =

0.05 and 6, = /2 is shown in Fig. 9. Since [J,3
(0,X0,0.05,0,) % T 25(0,X,,0.05,0), for numerical effi-
ciency, we approximate J 123(05X0.0,0) = N4 123(0Xo.
0.05,7/2) and also 7(Q,X,.0,0) ~ J(0,X,.0.05,7/2).
The same approximation is applied to Z 123 and 7 (see
Ref. [90]). For brevity, we denote 7(Q,X,) = J(0Q,X,.
0,0) and similarly for Z(Q,X,), :71,2.3(QSX0), and
Z125(QXp).

e,=§, Q|r.|=0.05

50000
40000
I
& 30000
(o]
20000

10000

QSXO

FIG.9. Numerical results for 7, 75, J3 as a function of Q,X,.
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