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We show that scalar quantum field theory in four Euclidean dimensions with globalOðNÞ3 symmetry and
imaginary tetrahedral coupling is asymptotically free and bounded from below in the large-N limit. While the
Hamiltonian is non-Hermitian, the full quantum effective action for the large-N theory only depends on the
square of that coupling which is real. A perturbative analysis uncovers that the renormalization group flow of
the quartic couplings connects a Gaussian ultraviolet fixed point to a strongly interacting theory in the
infrared. This realizes a renormalizable field theory which exhibits nontrivial dynamics, such as direct
scattering, while still being analytically tractable also nonperturbatively. Our findings open up a way to
address outstanding problems in strongly coupled theories from first principles.
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I. INTRODUCTION

Asymptotic freedom in the theory of the strong inter-
action is a hallmark for the fundamental description
of nature encoded in the Standard Model of particle
physics [1,2]. The phenomenon describes the change of
the interaction strength with the characteristic energy scale,
such that the theory becomes noninteracting at high energy-
momenta. In turn, interactions become strong at low
energies with striking phenomenological implications such
as the confinement of hadronic matter [3]. While dynamical
strong-interaction phenomena, like quantum bounds on
crucial observables such as viscosities [4] or relaxation
times [5], have been suggested by holographic models,
their analysis based directly on quantum theories with
scale-dependent interactions still remains elusive.
Asymptotic freedom is linked to local space-time

symmetries of non-Abelian gauge fields in the
Standard Model. However, it can in principle be realized
even for simple scalar field theories in four space-time
dimensions if the condition of Hermiticity is relaxed [6].
A known example is scalar field theory with negative
quartic self-interaction [7,8]. However, the energy of the
system cannot be bounded from below and the theory
is considered to be ill defined [6]. Nevertheless, it has
been suggested that the parity and time-reversal

symmetric theory may still possess a real and positive
eigenspectrum, obtained by an analytic continuation
procedure from the corresponding bounded theory with
positive interaction [8–11]. This fosters the discussion
about the remarkable possibility of a larger class of well-
defined asymptotically free theories without relying on
Hermiticity, which is a sufficient but not necessary
condition. The notion of asymptotically free scalar field
theories may also provide an important ingredient in our
understanding of the scalar Higgs particle with potential
consequences also for physics beyond the Standard
Model [12–14].
In this work, we show that both asymptotic freedom

and boundedness from below can be realized in scalar
quantum field theory in four Euclidean dimensions. We
demonstrate our finding for a theory with global OðNÞ3

FIG. 1. Renormalization group flow of the couplings as a
function of the renormalization scale μ=Λ. The flow connects the
asymptotically free UV with the strongly interacting IR, corre-
sponding to the upper (red) separatrices of Fig. 2.
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symmetry, where the dynamics can be studied via a
systematic large-N limit in the number of field compo-
nents φa¼ða1;a2;a3Þ with ai¼1;2;3 ¼ 1;…; N. To uncover its
scale dependence, we analyze the renormalization group
flow for the tensor field which features two real quartic
couplings, g1 and g2 (“pillow and double-trace”), and an
imaginary coupling, ig (“tetrahedral”), without the need
for any analytic continuation. It turns out that all the
couplings exhibit asymptotic freedom in a regime gov-
erned by the flow of the imaginary coupling, leading to a
renormalizable field theory with a well-defined ultraviolet
(UV) limit and a strongly coupled infrared (IR). The
renormalization group flow of the three couplings in this
case as a function of the renormalization scale μ with UV
scale Λ is displayed in Fig. 1.
In contrast to the more conventional N-component vector

field theories [15], such as describing the Higgs sector of the
Standard Model for finite N ¼ 4, the real bosonic tensor
field φa exhibits nontrivial dynamics involving direct
scattering already at leading order in the large-N expansion
while still being analytically tractable [16,17]. The latter
represents also a significant advantage compared to the
large-N limit in matrix models involving all planar Feynman
diagrams for quantum corrections [18,19]. It has been
remarked [20] that tensor quantum mechanical models
provide an alternative to the Sachdev-Ye-Kitaev model
[21,22] without disorder. Subsequently tensor field theories
have been shown to display strongly coupled infrared
fixed points in lower Euclidean space-time dimensions
d < 4 [23–26]. In the following, we reveal that this theory
becomes highly nontrivial in d ¼ 4.

II. TENSOR FIELD THEORY WITH IMAGINARY
TETRAHEDRAL COUPLING

The scalar field φaðxÞ, with x a Euclidean space-time
point, is a real tensor of rank three transforming in the
trifundamental representation of OðNÞ3 [24]. The classical
action of the theory reads in four dimensions:

S½φ� ¼
Z

d4x
�
1

2
φaðxÞð−∂2 þ m̄2ÞφaðxÞ

þ 1

4

�
ḡ1P̂

ð1Þ
ab;cd þ ḡ2P̂

ð2Þ
ab;cd þ iḡδ̂tabcd

�

× φaðxÞφbðxÞφcðxÞφdðxÞ
�
; ð1Þ

where m̄ denotes the real mass parameter and we take the
coupling parameters ḡ1, ḡ2 and ḡ to be real such that iḡ
appearing in Eq. (1) is purely imaginary. The correspond-
ing three interaction terms in the action reflect the three
OðNÞ3 invariant contraction patterns (pillow, double-trace
and tetrahedral):

δ̂pab;cd ¼ 1

3N2

X3
i¼1

δaiciδbidi
Y
j≠i

δajbjδcjdj ;

δ̂dab;cd ¼ N−3
Y3
i¼1

δaibi
Y3
j¼1

δcjdj ;

δ̂tabcd ¼ N−3=2δa1b1δc1d1δa2c2δb2d2δa3d3δb3c3 ; ð2Þ

which relate to the orthonormal projectors P̂ð1Þ ¼ 3ðδ̂p −
δ̂dÞ and P̂ð2Þ ¼ δ̂d. Their scaling with N is determined such
that the theory has a well-defined large-N limit.
The full quantum theory is described in path-integral

quantization by a functional integral whose norm,

����
Z

Dφe−S½φ;ḡ1;ḡ2;iḡ�
���� ≤

Z
Dφje−S½φ;ḡ1;ḡ2;iḡ�j

¼
Z

Dφe−S½φ;ḡ1;ḡ2;iḡ≡0�; ð3Þ

is bounded by the corresponding model with real action
S½φ; ḡ1; ḡ2; iḡ≡ 0�, since the couplings ḡ1 and ḡ2 are real.
The theory is thus stable and bounded from below if ḡ1
and ḡ2 are positive.
The imaginary tetrahedral coupling parameter iḡ intro-

duces an oscillatory term in the functional integral. This is
difficult to compute with standard importance sampling
techniques, where the situation is reminiscent of the
notorious sign problem, as e.g. in quantum chromodynam-
ics at nonzero baryon number density [27]. However, in our
case it poses no particular problem for first-principles
computations using large-N techniques.
The quantum theory in the large-N limit is conveniently

described in terms of a free-energy functional Γ½G�, which
is the two-particle irreducible (2PI) effective action [28,29].
It is a functional of the full propagator Gabðx; yÞ, which is
determined self-consistently from a variational principle
δΓ½G�=δGabðx; yÞ ¼ 0. The 2PI effective action can be
written as

Γ½G� ¼ 1

2
Tr lnG−1 þ 1

2
Tr½G−1

0 G� þ Γ2½G�: ð4Þ

Here the classical inverse propagator is given byG−1
0;abðx;yÞ≡

δ2S=δφaðxÞδφbðyÞ, and Γ2½G� contains all 2PI contributions
(Feynman graphs that are not disconnected by cutting two
propagator lines). Considering the OðNÞ3 symmetric regime
with Gabðx; yÞ ¼ Gðx; yÞQ3

i¼1 δaibi , we get at leading order
large-N:

Γ2½G�
N3

¼ ḡ2
4

Z
d4xG2ðx; xÞ þ ḡ2

8

Z
d4xd4yG4ðx; yÞ: ð5Þ
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The self-consistent propagator reads in Fourier space:

G−1ðpÞ¼p2þ m̄2þ ḡ2

Z
d4q
ð2πÞ4GðqÞ

þ ḡ2
Z

d4q
ð2πÞ4

d4k
ð2πÞ4GðqÞGðkÞGðpþqþkÞ: ð6Þ

Apart from the different factors and couplings in front of
the tadpole term ∼ḡ2 and sunset (or melon) contribution
∼ḡ2, this equation is of the same form as the one obtained in
the OðNÞ symmetric N-vector model from a 2PI two-loop
expansion [30]. We emphasize that, while the correspond-
ing equation is only valid at weak coupling in the N-vector
model, Eq. (6) is exact in the large-N limit of the OðNÞ3
tensor field theory we consider.
In the large-N limit, but at all orders in perturbation

theory, the tetrahedral coupling enters the 2PI effective
action (5), and consequentially the two- and four-point
correlation functions, only quadratically (cf. also the
discussion in Ref. [25]). Therefore, the purely imaginary
tetrahedral coupling simply leads in the large-N quantum
effective action to some sign changes with respect to the
real case.
The next-to-leading-order contribution to the 2PI effec-

tive action is suppressed by N−1=2 [29]. It consists of
double tadpoles with only one tetrahedral vertex such that
the next-to-leading contribution exhibits an imaginary
term. Its presence leads to two classes of subleading
imaginary contributions in correlation functions. First,
one gets a shift in the bare mass. However, since the
physical mass is fixed by a real infrared renormalization
condition, in our case this is without consequence.
Second, one obtains a subleading term in the four-point
kernel corresponding to the tetrahedral pattern of identi-
fication of tensor indices. The latter backreacts on the two-
loop β functions [cf. Eq. (2.40) of Ref. [31] ] and brings in
corrections ∼iN−1=2. While imaginary contributions arise,
the large-N behavior is not singular and the corrections
with respect to the leading-order behavior are organized in
powers of N−1=2, such that the Euclidean model remains
asymptotically free and stable: Although they acquire
small imaginary parts, the couplings g1, g2 maintain a
positive real part and the N−1=2 corrections do not spoil the
boundedness from below of the real part of the action.
Therefore, the real effective action (5) is exact in the large-
N limit which is well controlled.

III. RENORMALIZATION GROUP FLOW

To demonstrate that the theory realizes asymptotic
freedom, we study the perturbative renormalization group
flow of the quartic couplings. Their flow is described in
terms of β functions, which encode how quantum correc-
tions change the corresponding renormalized couplings g,
g1, and g2 with the renormalization scale μ: β≡ μ∂μgðμÞ

and analogously for g1ðμÞ and g2ðμÞ. The corresponding
system of β functions of the model has been investigated in
d < 4; see Refs. [24,25] and subsequent work.
If one considers all couplings to be real, in d ¼ 4 the

theory exhibits triviality; i.e. it becomes noninteracting
corresponding to a Gaussian fixed point in the IR as
μ → 0. For the case of an imaginary tetrahedral coupling
we are discussing in this work, we find a strikingly different
behavior. We obtain the corresponding beta functions in the
large-N limit and at two-loop order for the massless theory,
which is sufficient for our considerations, from Ref. [24] as

β ¼ −
2g3

ð4πÞ4 ; ð7aÞ

β1 ¼ 2

�
g21 − g2

ð4πÞ2 þ g1g2

ð4πÞ4
�
; ð7bÞ

β2 ¼ 2

�
g22 − 3g2

ð4πÞ2 þ 5g2g2

ð4πÞ4
�
: ð7cÞ

Since the β function for the tetrahedral coupling (7a) is
independent of the other couplings at this order, for given
coupling value gΛ at some UV scale Λ its flow is solved by

g2ðμÞ ¼ g2Λ

1 − 4g2Λ
ð4πÞ4 ln ðΛ=μÞ

: ð8Þ

This demonstrates that g2ðμÞ approaches zero logarithmi-
cally as μ increases. Conversely, g2ðμÞ grows toward the
IR and, to lowest order in perturbation theory, the coupling
diverges at μ� ¼ Λ exp½−ð4πÞ4=ð4g2ΛÞ�. At two-loop order
in the large-N limit we additionally infer that, corresponding
to the negative sign of the β function for the tetrahedral
coupling, the anomalous dimension [24] γϕ¼−g2=ð2ð4πÞ4Þ
is also negative, similar to other theories with negative β
functions [32,33].
The flow of the other two couplings, which depend on

the values of g, is depicted in Fig. 2. The blue lines
represent the values of g1ðμÞ=ð4πÞ2 (left graph) and
g2ðμÞ=ð4πÞ2 (right graph) for corresponding values
of gðμÞ=ð4πÞ2, where arrows point toward smaller (IR)
values of μ. The (upper) red and (lower) black lines
denote separatrices dividing the flow diagrams into
distinct regions. For all g > 0 above the black separatrix,
the theory exhibits a nontrivial IR behavior for g1
and g2, with vanishing β functions for the fixed values
g1=ð4πÞ2→1 and g2=ð4πÞ2 → 3=5. Importantly, in the
sector comprised between the red and the black separa-
trices, the renormalization group flow connects an ultra-
violet attractive Gaussian fixed point (red dot) to the
nontrivial infrared theory. All quartic couplings g, g1,
and g2 are thus found to exhibit asymptotic freedom along
these trajectories, which a posteriori justifies the validity of

ASYMPTOTIC FREEDOM IN A STRONGLY INTERACTING … PHYS. REV. D 108, 016019 (2023)

016019-3



our two-loop analysis of the corresponding β functions
in this regime. In particular, along the red separatrix the
couplings are positive at all scales. This realizes a renor-
malizable scalar field theory, where the nontetrahedral
quartic couplings are real and positive, thereby ensuring
that the corresponding path integral is bounded from below,
with a well-defined UV limit and a strongly coupled IR.
The corresponding flow of couplings as a function of the
renormalization scale μ is given in Fig. 1.

IV. CONCLUSION AND OUTLOOK

Our findings establish asymptotic freedom in a
well-defined strongly interacting scalar quantum field
theory in four Euclidean dimensions. This is a remark-
able result also in view of the fact that the tetrahedral
coupling driving the renormalization group flow in this
regime is purely imaginary. Despite this, the full quantum
effective action for the theory in the large-N limit only
depends on the square of that coupling which is real.
Correspondingly, the renormalization group β functions
we discussed are also real. These findings support the
exciting possibility of an extended class of well-defined
theories where the standard condition of Hermiticity is
relaxed [34,35].
The large-N limit of the tensor field theory we consid-

ered is so interesting because it is already highly nontrivial,
involving crucial processes such as direct scatterings for the
dynamics, and analytically tractable also nonperturbatively.
This is in contrast to the large-N limit in N-vector models,
where collisional processes are absent; or in matrix models,
where no general closed form for the nontrivial leading-
order dynamics is known.

So far, our findings concern the Euclidean field theory,
which is relevant for vacuum or equilibrium properties. It is
an important open question to what extent our results can be
taken over to Minkowski space-time, in particular, since
our arguments on boundedness use well-defined properties
of the Euclidean theory. This would make our theory a
versatile theoretical laboratory to investigate crucial open
dynamical questions, such as real-time dynamics in the
strong-coupling regime. While holographic models can
give very important insights at strong coupling [36,37], it is
typically difficult to include the relevant changes of the
interaction strength with the scale as is the case in an
asymptotically free theory.
At lowest nontrivial order in perturbation theory, we

found that the tetrahedral coupling grows without bound in
the IR. An important question is whether the renormaliza-
tion group flow is altered when the coupling becomes
nonperturbatively large. This question can be answered
from the full large-N result, which resums contributions
from perturbation theory to all orders in the coupling. In
order to derive the exact β functions in the large-N limit,
one needs to deal appropriately with the wave function
renormalization in conjunction with Eq. (6). Once this is
done, the all-order running of the four-point couplings
should be accessible by techniques similar to the ones
employed in Ref. [25]. A striking possible outcome would
be that the tetrahedral coupling g approaches a finite IR
value in the nonperturbative regime. Together with our
findings for g1 and g2 this would correspond to a proper
infrared fixed point. Its universal properties then allow one
to make very powerful statements about all possible strong-
coupling theories in the same universality class, which only
depends on general properties such as symmetries.

FIG. 2. Flow trajectories of g1 (left) and g2 (right) as obtained from Eq. (7), where arrows point in the direction of smaller scale μ. Bold
upper (red) and lower (black) lines denote separatrices, such that all models with coupling values at and below the red separatrix exhibit
asymptotic freedom, while for values above the red line a Landau pole is realized in the UV. All nonzero couplings above the black
separatrix feature a strongly interacting IR with positive values.
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