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In this work we study the influence of external electric field and temperature on the chiral phase
transition of quantum chromodynamics. We use the two-flavor linear sigma model coupled with quarks in a
thermal and electrized medium to evaluate the effective quark mass and the Schwinger pair production. To
this end, we apply one-loop correction to the fermionic sector of the model and the simple tree-level
approximation in the mesonic contributions. The electric fields strengthen the partial restoration of the
chiral symmetry when applied with finite temperature in a crossover transition. The expected decrease
of the pseudocritical temperature as a function of the electric field is observed until electric fields reach
eE ≈ 13.5m2

π . For stronger electric fields, the effect is the opposite, which is in a very good agreement
with previous results obtained with four-point nonrenormalizable models, showing that this effect is
independent of renormalizability issues. We also show the thermal and electric effects on the behavior of
the Schwinger pair production.
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I. INTRODUCTION

Experimental efforts over the last few decades can give us
very strong evidence of the formation of quark-gluon plasma
in the relativistic heavy-ion collisions (HIC) [1–3]. If one
assumes basic ideas from classical electromagnetism, one
can obtain that strong magnetic fields perpendicular to the
reaction plane can be present in peripheral heavy-ion
collisionswith eB ∼ 1019 G [4]. This is a preliminary sketch
of more sophisticated computational techniques that predict
magnetic fields of the same order of magnitude depending
on the impact parameter, electrical conductivity, and
the collision time [5–7]. Besides that, recent numerical
simulations predict that strong magnetic and electric
fields should be present in peripheral HIC, which is the
case observed in asymmetrical collisions [8–11]. In such
situations, e.g., Cuþ Au collisions, strong electric fields are
expected due to the difference of electric charges in the
region where the nuclei overlap. It is also feasible to

anticipate the emergence of strong electric fields by pre-
dictions of event-by-event fluctuations of proton position
within the colliding nuclei ofAuþ Au and Pbþ Pb [12–15]
at the usual collision energy scale

ffiffiffi
s

p ¼ 2.76 TeV andffiffiffi
s

p ¼ 200 GeV from ALICE and RHIC respectively.
Additionally, the presence of electric fields can be very
interesting to better understand anomalous transport proper-
ties as the chiral separation effect [4,16–18], the chiral
magnetic effect [19], and several other quantities in the
phase diagram of quantum chromodynamics (QCD).
Despite the numerical evidence about strong electric

fields in HIC, there is still little effort to increment QCD
phase diagram analysis in such an environment. In lattice
QCD, the main reason concerns technical issues similar to
the sign problem [20,21] which makes such applications
very difficult, regardless of a few recent works with some
improvements [21–24]. In this way, the current literature
about electric fields in QCD is restricted basically to low
energy effective models and some applications in quantum
field theories, such as the case of the Nambu–Jona-Lasinio
(NJL) model and its extensions [25–31], chiral perturbation
theory [32,33], Dyson-Schwinger equations [34,35], and
λϕ4 theory [36–38]. Most of these models are in good
agreement with regard to the partial restoration of the chiral
symmetry guided by electric fields, namely inverse electric
catalysis (IEC). In the case of the NJL model, some
different regularization techniques have also been used
to evaluate not just the behavior of the effective quark mass
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but also the Schwinger pair production [27], even in more
complex environments including electric fields [28,29].
If simultaneously to the electric fields we include the
temperature, the two-flavor NJL [25,26] results indicate
that both quantities will strengthen the partial chiral
symmetry restoration, with the decreasing of the pseudo-
critical temperature as a function of the electric fields until
eE ∼ 13.5m2

π , where an opposite behavior is predicted,
which until now is due to inconclusive reasons [26]. The
same qualitative result has been obtained in the context of
the λϕ4 self-interacting scalar field theory [36].
In the present work we explore for the first time, the two-

flavor linear sigmamodel (LSMq) coupled with quarks with
a constant electric field and finite temperatures.We apply the
one-loop correction in the fermionic sector of the model and
the usual tree-level approximation for the mesonic sector.
Inspired by the regularized expressions of the pure electric
field part in the thermodynamic potential, developed in the
context of the NJL model [25,26], we apply these sets of
equations in the renormalizable version of LSMq.Our aim is
to reanalyze all the basic physics of the model, i.e., effective
quark masses, Schwinger pair production, and observe how
the pseudocritical temperature for chiral symmetry restora-
tion behaves as a function of the electric fields. These
quantities must be enough to know how the renormaliz-
ability affects the results in comparisonwith previous results
obtained in the NJL model.
The work is organized in the following structure: In

Sec. II we present the formalism details of LSMq including
effects of an electric field and finite temperature. In Sec. III
we show the equations of the one-loop correction for the
fermionic contribution including thermoelectric effects.
The numerical results are present in Sec. IV and the
conclusions in Sec. V. Appendix A is devoted to the explicit
computation of the minimum of the effective potential.

II. LAGRANGIAN OF THE SU(2) LSMq WITH
ELECTRIC FIELDS

The Lagrangian of the SU(2) LSMq in an external
electromagnetic field is given in Euclidean space by the
following expression [39]:

L ¼ ψ̄ ½i=Dþ gðσ þ iγ5τ⃗ · π⃗Þ�ψ þ 1

2
½ð∂μσÞ2 þ ð∂μπ⃗Þ2�

þ Uðσ; π⃗Þ − 1

4
FμνFμν; ð1Þ

where Aμ and Fμν ¼ ∂μAν − ∂νAμ are respectively
the electromagnetic gauge and tensor fields, g is
the Yukawa coupling constant, τ⃗ are isospin Pauli
matrices, Q is the diagonal quark charge1 matrix,

Q ¼ diagðqu ¼ 2=3; qd ¼ −1=3Þ, Dμ ¼ ð∂μ þ ieQAμÞ is
the covariant derivative, and we adopt Aμ ¼ −δμ4x3E in
order to include in the z direction a constant electric
field. In this model, we have the following quantum
fields: ψ ¼ ðψuψdÞT which are the quark fermion fields
and the mesonic degrees of freedom as given by the σ and π⃗
fields. The purely mesonic potential, Uðσ; π⃗Þ, in Eq. (1), is
given by

Uðσ; π⃗Þ ¼ 1

2
m2ðσ2 þ π⃗2Þ þ λ

24
ðσ2 þ π⃗2Þ2 − hσ; ð2Þ

where λ; m2 and h are constants fixed by experimental
parameters as the σ and π meson masses and the pion decay
constant, fπ . The value of h ¼ fπm2

π ensures the explicit
breaking of the chiral symmetry, i.e., the SUð2Þv group. We
adopt, for simplicity the mean field values of hσi≡ ϕ
and hπ⃗i≡ π⃗ ¼ 0.
The tree-level effective potential in a constant electric

field for the LSMq is given by

F0 ¼ Uðϕ; π⃗Þ − 1

4
E2; ð3Þ

this representation is useful for making clear some of our
renormalization procedures to the one-loop fermionic
correction to the effective potential.
The meson and quark masses, at the tree-level approxi-

mation, are given by [39]

m2
σ ¼ m2 þ λ

2
ϕ2; ð4Þ

m2
π ¼ m2 þ λ

6
ϕ2; ð5Þ

M ¼ gϕ; ð6Þ
where ϕ is the vacuum expectation value of the σ field.

III. ONE-LOOP FERMIONIC CONTRIBUTION

In this work we treat the mesonic sector at tree level and
include quantum corrections only in the fermionic sector.
The one-loop correction to the fermionic contributions at
eE ¼ T ¼ 0 is given by [40–43]

F1
vac ¼ −2NcNf

Z
d4p
ð2πÞ4 logðp

2
0 þ E2

pÞ þ C; ð7Þ

where C is a mass-independent constant that can be
ignored, and Nc and Nf are the number of colors and
flavors, respectively. The energy dispersion relation, Ep, is
given by

E2
p ¼ M2 þ p2: ð8Þ

1Our results are expressed in Gaussian natural units where
1 GeV2 ¼ 1.44 × 1019G and e ¼ 1=

ffiffiffiffiffiffiffiffi
137

p
.
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In the MS scheme [39], we obtain for Eq. (7) the
following expression:

F1
vac ¼

NcNfM4

16π2

�
log

�
Λ2

M2

�
þ 3

2

�
; ð9Þ

whereΛ is the renormalization scale. In the present scheme,
one needs to include the counterterms m2 → m2 þ Δm2

and λ → λþ Δλ [39], where

Δm2 ¼ λm2

16π2ϵ
; ð10Þ

Δλ ¼ 2λ2 − 24NcNfg4

16π2ϵ
ð11Þ

δε ¼ m4

16π2ϵ
; ð12Þ

where we have included a vacuum energy counterterm
Δε [39].
When considering a constant electric field, the one-loop

fermion contribution can be written in the proper-time
formalism [44]

F1ðE;MÞ ¼
X
f

Nc

8π2

Z
∞

0

ds
e−sM

2

s2
Ef cotðEfsÞ; ð13Þ

where Ef ¼ jqfeEj. We can verify the validity of the last
expression by evaluating the analytic extension derived by
Schwinger [44], i.e., eE → ieB, where we obtain the exact
expression to the LSMq with a constant magnetic field in
the z direction [25,26].
The integration in Eq. (13) has divergences with different

sources. First, we treat the divergence in the lower limit of
integration, s ¼ 0, by using the separation of divergences
from Schwinger’s work in QED [44]. For this purpose we
use the Taylor expansion of the cotðEfsÞ function for
Efs ≪ 1:

cotðEfsÞ∼
1

Efs
−
Efs

3
−
ðEfsÞ3
45

þOððEfsÞ5Þ; Efs≪ 1:

Using the expansion in Eq. (13), we can avoid the
divergences in the region s ¼ 0∶

F1ðE;MÞ ¼
X
f

Nc

8π2

Z
∞

0

ds
e−sM

2

s3

�
Efs cotðEfsÞ − 1

þ ðEfsÞ2
3

�
þ Nc

8π2
X
f

Z
∞

1

Λ2

ds
e−sM

2

s3

−
Nc

24π2
X
f

E2
f

Z
∞

1

Λ2

ds
e−sM

2

s
: ð14Þ

In Eq. (14) the first three terms are the finite electric field
contributions, which were regularized with respect to the
ultraviolet divergence from the contributions near s ¼ 0. In
the second term of the second line, we have the fermionic
contribution from the vacuum given in Eq. (9) and the field
contribution, proportional to E2, that must be regularized
and renormalized. For simplicity, we define the one-loop
fermionic contribution as

F1ðE;MÞ ¼ F1
vacðMÞ þ F1

medðE;MÞ þ F1
fieldðE;MÞ;

where we have separated F1 in the vacuum, medium, and
field contributions. Each term is given by the following
expressions:

F1
medðE;MÞ ¼

X
f

Nc

8π2

Z
∞

0

ds
e−sM

2

s3

×

�
Efs cotðEfsÞ − 1þ ðEfsÞ2

3

�
; ð15Þ

F1
vacðMÞ ¼ Nc

8π2
X
f

Z
∞

1

Λ2

ds
e−sM

2

s3
;

¼ NcNfM4

16π2

�
log

�
Λ2

M2

�
þ 3

2

�
; ð16Þ

F1
fieldðE;MÞ¼−

Nc

24π2
X
f

E2
f

Z
∞

1

Λ2

ds
e−sM

2

s

¼−
Nc

24π2
X
f

E2
f

�
− log

�
M2

Λ2

�
−γEþO

�
M2

Λ2

��
;

ð17Þ

where γE is the Euler-Mascheroni constant. Usually, the
divergence proportional do E2 is renormalized and incor-
porated in the 1

2
E2 from the Lagrangian Eq. (1). For

renormalization purposes, we set E2 → Z2E2, where

Z2 ¼
�
1þ Nc

X
f

4q2f
3ð4πÞ2ϵ

�
: ð18Þ

The details of the last contribution are evaluated in
Ref. [39], in the case of a constant magnetic field, but in
our case we do not consider the one-loop mesonic
contributions.
Now we work with the divergent contributions present in

Eq. (15), that occurs in the proper-time integration when
Efs ¼ nπ in the cotangent function, with n ¼ 0; 1; 2; 3….
These divergences are associated with the instabilities in
the vacuum due to the electric field, which gives rise to the
Schwinger pair production of quarks. We extend analyti-
cally to the complex plane the integration and separate the
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real from the imaginary part. This procedure is developed
in detail in Ref. [25]. This gives rise to the following result:

ℜðF1
medðE;MÞÞ¼ Nc

2π2
ðEfÞ2

�
ζ0ð−1Þþπ

4
yfþ

y2f
2

×

�
γE−

3

2
þ lnyf

�
−

1

12
ð1þ lnyfÞ

þ
X∞
k¼1

k

�
yf
k
tan−1

�
yf
k

�

−
1

2
ln

�
1þ

�
yf
k

�
2
�
−
1

2

�
yf
k

�
2
��

; ð19Þ

where yf ¼ M2

2Ef
and ζ0ð−1Þ ¼ 1=2 − logðAÞ with A ¼

1.282417… being the Gleisher-Kinkelin constant [45].
The imaginary part of the one-loop effective potential is

ℑðF1ðE;MÞÞ ¼ −
Nc

8π

X
f

E2
f

X∞
k¼1

e
−M2πk

Ef

ðkπÞ2 : ð20Þ

The thermoelectric contribution, derived in Appendix B,
is evaluated in the imaginary-time formalism. The result is
given by

ℜðF1
thermðE;M; TÞÞ ¼ −

Nc

2π2
X∞
n¼1

ð−1ÞnEf

Z
∞

0

ds
e−sM

2

s

× cotðEfsÞe
−

Efn
2

4j tanðEfsÞjT2 ; ð21Þ

where the summation is over the Matsubara frequencies.
The thermoelectric contribution is finite due to the Fermi-
Dirac distribution, written in the proper-time formalism.
The full thermodynamic potential, including the tree-level
potential F0 in Eq. (3), is given, therefore, by

ℜðFðE;M; TÞÞ ¼ ℜðF0 þ F1ðE;MÞ þ F1
thermðE;M; TÞÞ:

ð22Þ

It is possible to show that, given the thermodynamic
potential, we can derive the Schwinger pair production rate,
i.e., ΓðE; T;MÞ ¼ −2ℑðF1ðE;M; TÞÞ [25,26].
In order to fix Λ, at E ¼ T ¼ 0, we choose the physical

point ϕ ¼ fπ , which configures the partially conserved
axial vector current relation in this model, at the minimum
of the effective potential [39], i.e.,

dðℜFðE;M; TÞÞ
dϕ

				
ϕ¼fπ

¼ 0: ð23Þ

To obtain the behavior of the effective quark mass as a
function of the temperature and electric fields, we evaluate
the gap equation, given in Appendix A.

IV. NUMERICAL RESULTS

In this section we present and discuss our numerical
results. The model requires fixing three independent para-
meters: the mass parameter m, the boson-fermion coupling
g, and the boson self-coupling λ. These parameters are fixed
in such a way to obtain with LSMq the vacuum values
of pion mass, mπ ¼ 140 MeV; pion decay constant,
fπ ¼ 93 MeV; the σ meson mass, mσ ¼ 800 MeV; and
effective quark masses M ¼ 300 MeV [39]. The σ meson
mass is chosen at the upper end of the state f0ð500Þ [46].
With these experimental inputs, we obtain the following
set of parameters: g¼3.2258, m2¼−290600MeV2, and
λ ¼ 215.19.We also need to fix the renormalization scaleΛ.
Oncewe have determined the parametersm, g, and λwe can
choose the value of Λ where the minimum of the one-loop
effective potential in the vacuum remains the same at tree-
level value (ϕ ¼ 93 MeV).A similar procedurewasmade in
[39], and the value obtained for the renormalization scale
was Λ ¼ 181.96 MeV.
In Fig. 1 we can see the effective quark mass as a

function of the temperature for different values of electric
fields. For low values of electric fields, we can see the
partial restoration of chiral symmetry as we increase the
temperature. This effect is strengthened for higher values of
electric fields, which is very clear for strong enough values,
e.g., eE ¼ 15m2

π and eE ¼ 18m2
π. Additionally, for all of

these cases, the transition is a crossover. Although the two
effects combine themselves to partially restore the chiral
symmetry, they are different physical phenomena, i.e., the
temperature excites the system weakening the interaction in
the chiral condensate. On the other hand, the electric fields
accelerate the charges with different signs in opposite
directions, inducing the chiral condensate to be less likely
to happen as we increase the strength of the electric field.
When we increase the electric fields, the transition

occurs to lower values of temperatures, indicating IEC
of the pseudocritical temperature. However, in the purple
dotted line, for eE ¼ 18m2

π, we cannot distinguish by Fig. 1

FIG. 1. Effective quark mass as a function of the temperature
for different values of electric fields.
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in a very clear way if we have electric catalysis (EC) or
IEC. The phenomena EC and IEC will be easier to verify
when we plot the pseudocritical temperature as a function
of the electric field.
We can see the effective quark masses as a function of

the electric fields for different values of temperature in
Fig. 2. The analysis indicates that, at low temperatures, the
electric fields partially restore the chiral symmetry breaking
at eE ≫ 15m2

π as indicated previously in Fig. 1. For low
values of the electric fields, we can see the influence of the
thermal effects on the partial restoration of the chiral
symmetry. On the other hand, as we increase the strength
of the electric field, Fig. 2 shows the effect of the electric
field on the partial restoration of the chiral symmetry.
In Fig. 3, we show the pseudocritical temperature for

chiral symmetry restoration as a function of the electric
field. The pseudocritical temperature is calculated as the
maximum of the −∂M=∂T. We can clearly see the IEC
effect, which turns into EC for very high values of electric
fields, i.e., eE > 13.5m2

π , where we have the increasing of

the pseudocritical temperature as a function of the electric
fields. This result is in good qualitative agreement with the
previous works with SU(2) NJL and Polyakov–Nambu–
Jona-Lasinio (PNJL) models [26]. Therefore, the phenome-
non observed previously in both NJL and PNJL that the
IEC change to EC after a critical value of the electric field
cannot be attributed to the regularization issues, which are
inherent to nonrenormalizable models. As our results now
show, using a renormalizable model one obtains, qualita-
tively, the same behavior that was previously observed in
the NJL and PNJL models. We also would like to mention
that, this result is important to guide our comprehension of
the effects of electric fields in peripheral HIC, since we are
considering constant electric fields. More realistic scenarios
with time-dependent electric fields must be explored in the
near future. However, numerical simulations with event-
by-event fluctuations provide enough results to support that
electric fields can be present in the late stages of the
formation of quark-gluon plasma [13]. Once the spectators
are far away from the collision, the remnants become
the source of electromagnetic fields. At this point, the
high electric conductivity of the medium plays an important
role in delaying the suppression of electromagnetic
fields [4,47]. Such a scenario would lead to a decreasing
value of the pseudocritical temperature as a function of the
electric fields.
The Schwinger pair production as a function of the

temperature is given in Fig. 4. We can see that, for lower
values of electric fields, e.g., eE ¼ 5m2

π , the production is
almost zero in the low-temperature limit, and slightly
changes at T > Tpc, indicating that the high temperatures
can strengthen the pair production in an electric medium.
As we increase the electric fields, the pair production grows
in the low-temperature region and substantially increases
after the pseudocritical temperature, which we can see in
the situations eE ¼ 10m2

π and eE ¼ 15m2
π . At very high

electric fields, the Schwinger pair production almost
does not change in the full temperature range considered.

FIG. 2. Effective quark mass as a function of the electric field
for different values of temperature.

FIG. 3. The pseudocritical temperature for chiral symmetry
restoration as a function of the electric field in the LSMq (solid
line) and NJL SU(2) (dashed line) [26].

FIG. 4. The Schwinger pair production of quarks as a function
of the temperature for different values of the electric fields.
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These results are in good agreement with the previous two-
flavor NJL model results [25,26].
In Fig. 5 are shown our results for the Schwinger pair

production as a function of the electric field normalized by
the pion mass squared. It is clear from this figure that non-
negligible effects start to appear around eE ¼ 5m2

π and for
fixed electric fields the temperature enhances the pair
production. Above eE ¼ 18m2

π the pair production satu-
rates. Again, these results are in qualitative agreement with
previous NJL and PNJL calculations.

V. CONCLUSIONS

In this work, we have studied within the linear sigma
model with quarks, the quark matter at finite temperature
with a background of electric fields. One of the main
motivations of this study was the estimation of the effects of
the strong electric fields on the chiral symmetry restoration
scenario within a renormalizable model, and performing
the comparison with previous results obtained in SU(2)
versions of NJL and PNJL models [26].
Our numerical results have shown that the constituent

quark masses decrease when we increase the strength of
the electric fields, as a signature of the partial restoration
of the chiral symmetry. We have computed the evolution of
the pseudocritical temperature for chiral symmetry restora-
tionTpc as a function of the electric fields. In the literature, as
expected, usually the pseudocritical temperature for chiral
symmetry restoration decreases as we increase the electric
field strength. In [26] within the SU(2) PNJLmodel we have
shown, for the first time in the literature, a very interesting
effect where for strong enough electric fields the pseudoc-
ritical temperature for chiral symmetry restoration starts to
increase after a critical value of the electric field. This effect
was founded also within LSMq and also propagates to all
quantities, as to the Schwinger pair production. In the
context of λϕ4 theory similar results were found, which
show IEC for weak electric fields and EC for strong electric

field strength [36]. Our work provides strong evidence that
the nonmonotonic behavior of the pseudocritical temper-
ature of chiral symmetry restoration as a function of the
electric field is a characteristic of QCD, regardless of
whether we are working with a renormalizable or non-
renormalizable effective model of QCD.
An improvement of the present work is the study of the

inclusion of baryon density effects in the presence of
thermal and background electric fields. We are currently
exploring these avenues in PNJL and LSMq and will report
on the findings elsewhere in the near future.
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APPENDIX A: GAP EQUATION

In this section, we will deal with the derivative of the real
part of the effective potential. For simplicity, we will define
ℜðFÞ≡ F. The minimum of the effective potential is given
by dF=dϕ ¼ 0, where M ¼ gϕ, as follows:

dF0

dϕ
þ dF1

vacðMÞ
dϕ

þ dF1
medðE;MÞ
dϕ

þ dF1
fieldðE;MÞ
dϕ

þ dF1
thermðE;M; TÞ

dϕ
¼ 0; ðA1Þ

where the first term in Eq. (A1) concerns the tree-level
potential, which gives

dF0

dϕ
¼ dUðϕ; π⃗Þ

dϕ

¼ m2ϕþ λ

6
½ϕ2 þ π⃗2�ϕ − h

¼ m2ϕþ λ

6
ϕ3 − h;

where we assume that the mean field value π⃗ → hπ⃗i ¼ 0.
The second term in Eq. (A1) is the one-loop correction to
the fermionic contribution, given by

dF1
vacðMÞ
dϕ

¼ NcNfgM3

4π2

�
log

�
Λ2

M2

�
þ 3

2

�
−
NcNfgM3

8π2
:

ðA2Þ

FIG. 5. The Schwinger pair production of quarks as a function
of the electric fields for different values of the temperature.
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The medium and field contributions combine them-
selves as

dF1
medðE;MÞ
dϕ

þ dF1
fieldðE;MÞ
dϕ

¼ −
X
f

gMNc

4π2

Z
∞

0

ds
e−sM

2

s2
½Efs cot ðEfsÞ − 1�

¼
X
f

gMNc

2π2
Ef

�
π

4
þ yfðγE − 1þ ln yfÞ

þ
X∞
k¼1

�
tan−1

yf
k
−
yf
k

��
: ðA3Þ

The last term in Eq. (A1) concerns the one-loop
thermoelectrical contribution, which is given by

dF1
thermðE;M; TÞ

dϕ
¼ −

gMNc

2π2
X∞
n¼1

ð−1Þn
Z

∞

0

ds
e−sM

2

s
Ef

× cotðEfsÞe
−

Efn
2

4j tanðEfsÞjT2 : ðA4Þ

Therefore, we obtain the gap equation for numerical
analysis.

APPENDIX B: THE THERMOELECTRIC
CONTRIBUTION TO F1ðE;T;MÞ

We present here the main steps to obtain Eq. (21).
To this end, we start with the gap equation, and then by
integrating with respect to ϕ, we obtain F1ðE; T;MÞ.
At E ¼ T ¼ 0, one can derive the gap equation
Eq. (A1), in a very similar fashion as obtained in [48],
which reads as

dF0

dϕ
þ dF1

dϕ
¼ 0; ðB1Þ

dF1

dϕ
¼ gNc

X
f

1

β

X∞
n¼−∞

Z
d3p
ð2πÞ3 trSfðωn; p⃗Þ; ðB2Þ

where ωn ¼ ð2nþ 1ÞπT, n are the Matsubara frequ-
encies, β ¼ 1

T, SfðpÞ is the quark propagator in the
momentum space, and the trace is given in the Dirac
basis. When considering quarks in an electric field medium,
we can use the quark propagator given in Eq. (16) of

Ref. [27] in the limit B → 0, which has the following
structure:

iSfðpÞ ¼
Z

∞

0

ds exp ½−isM2 − iAðEf; sÞp2
k − isp2⊥�

× Πðp; Ef; sÞ: ðB3Þ

In the last expression p2
k ¼ ω2

n þ p3
3, p2⊥ ¼ p2

1 þ p2
2,

AðEf; sÞ ¼ tanhðEfsÞ
Ef

, and Πðp; Ef; sÞ is a function of

4-momenta, electric field, and it possesses a linear depend-
ence on the γμ matrices, which leads to the simple result
after the calculation of the trace

trΠðp; Ef; sÞ ¼ 4M: ðB4Þ

The next step involves taking s → −is, and evaluating
Gaussian integrations in p⊥ and p3, as given in Eq. (B2),
which results in

dF1

dϕ
¼−

MgNc

2π2
X
f

Z
∞

0

ds
e−sM

2

s

ffiffiffiffi
π

Ã

r
1

β

X∞
n¼−∞

e−Ãω
2
n ; ðB5Þ

in the last expression ÃðEf; sÞ ¼ tanðEfsÞ
Ef

. At this point, the

evaluation is quite similar to the case of finite magnetic
fields explored in Ref. [49]. We can now rewrite the
Matsubara sum in Eq. (B5) as,

X∞
n¼−∞

e−Ãω
2
n ¼ e−π

2ÃT2

ϑ3ð2πiÃT2; 4πiÃT2Þ; ðB6Þ

where, by definition

ϑ3ðz; xÞ ¼
X∞
n¼−∞

eiπxn
2þ2iπzn ðB7Þ

is the Jacobi ϑ3ðz; xÞ function. Now making use of the
inversion formula

ϑ3ðz; xÞ ¼
ffiffiffi
i
x

r
e
z2π
ix ϑ3

�
z
x
;−

1

x

�
; ðB8Þ

and identifying z ¼ 1
2
and x ¼ i

4πÃT2, we obtain

dF1

dϕ
¼ −

MgNc

4π2
X
f

Z
∞

0

ds
e−sM

2

s
Ef cotðEfsÞ

× ϑ3

�
1

2
;

i

4πÃT2

�
: ðB9Þ
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Now, using the following identity,

ϑ3

�
1

2
;

i

4πÃT2

�
¼ 1þ 2

X∞
n¼1

ð−1Þne−
Efn

2

4j tanðEfsÞjT2 ; ðB10Þ

we can obtain exactly the electric (not regularized) and thermoelectric contributions given in Eq. (A1), i.e.,

dF1

dϕ
¼ −

MgNc

4π2
X
f

Z
∞

0

ds
e−sM

2

s
Ef cotðEfsÞ −

MgNc

2π2
X
f

Z
∞

0

ds
e−sM

2

s
Ef cotðEfsÞ

X∞
n¼1

ð−1Þne−
Efn

2

4j tanðEfsÞjT2 : ðB11Þ

By a simple integration in ϕ, and ignoring an irrelevant constant of integration, we can achieve F1ðE; T;MÞ. The real
value in Eq. (21) is obtained by numerical evaluation and, for this expression, ℜðF1ðE; T;MÞÞ≡ F1ðE; T;MÞ.
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