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We use an algebraic approach to the calculation of Landau levels for a uniform magnetic field in the
symmetric gauge with a vector potential A⃗ ¼ 1

2
ðB⃗ × r⃗Þ, where B⃗ is assumed to be constant. The

magnetron quantum number constitutes the degeneracy index. An overall complex phase of the wave
function, given in terms of Laguerre polynomials, is a consequence of the algebraic structure. The
relativistic generalization of the treatment leads to fully relativistic bispinor Landau levels in the
symmetric gauge, in a representation which writes the relativistic states in terms of their nonrelativistic
limit, and an algebraically accessible lower bispinor component. Negative-energy states and the massless
limit are discussed. The relativistic states can be used for a number of applications, including the
calculation of higher-order quantum electrodynamic binding corrections to the energies of quantum
cyclotron levels.
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I. INTRODUCTION

This paper is about nonrelativistic and relativistic
Landau levels for spin-1=2 particles, pertinent to a uniform
magnetic field. We aim to develop algebraic relations,
which describe the energetically degenerate Landau levels
in terms of cyclotron and magnetron quantum numbers.
Furthermore, we aim to generalize the treatment to the
fully relativistic domain, where the Landau levels become
eigenstates of the magnetically coupled Dirac equation.
Landau levels, including the relativistic case, are important
for many physical processes, first and foremost perhaps, in
the context of the determination of fundamental physical
constants, for quantum cyclotron processes in Penning
traps [1–4]. Among the many other applications, we
mention the description of the quantum Hall effect [5–9],
2D quantum dots [10], particle production in the magnetars
[11], and processes related to synchrotron radiation [12,13].
The constant, uniform magnetic field is assumed to be

directed along the z axis, and used in the form B⃗T ¼ BTêz,
where we use the subscript T to denote the possible
application to a Penning trap [1,2]. Landau levels are
normally calculated [14] in the Landau gauge A⃗ ¼ −Byêx
[see Eq. (112.1) of Ref. [15] ]. Upon solving the corre-
sponding Schrödinger equation, one finds that in the
Landau gauge, energy eigenstates are also eigenstates of

the x component px of the momentum operator. The
momentum component px becomes a parameter which
shifts the center of oscillation for the effective harmonic
oscillator potential, which acts onto the motion in the y
direction [see Eq. (112.5) of Ref. [15] ]. In the Landau
gauge, the value of px does not affect the energy of the state
and becomes a continuous degeneracy index.
Here, we use the so-called symmetric gauge [10,16],

where the vector potential is taken as A⃗ ¼ 1
2
ðB⃗T × r⃗Þ. In the

symmetric gauge, for the nonrelativistic case, the eigen-
functions and energies are in principle known [10,16].
Here, we augment the theory by identifying the raising and
lowering operators of the cyclotron and magnetron motions
as the determining dynamic variables of the problem. This
enables us to fully clarify the origin of the degeneracy of
the (nonrelativistic) Landau levels in the symmetric gauge,
and greatly simplify the evaluation of matrix elements of
eigenstates.
We also find the fully relativistic generalization of the

Landau levels, corresponding to the relativistic quantum
cyclotron states in the limit of vanishing axial frequency.
The relativistic states can be used as input for higher-order
quantum electrodynamic calculations of quantized-field
effects in Penning traps [4], and any physical systems
where relativistic effects become important. Units with
ℏ ¼ c ¼ ϵ0 ¼ 1 are used throughout this paper.

II. NONRELATIVISTIC PROBLEM

We start our treatment of Landau levels in the symmetric
gauge, inspired by an electron in a Penning trap [1,2,17],
where an additional electric quadrupole potential leads
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to axial confinement. In the limit of a vanishing axial
frequency, the cyclotron and magnetron levels of the
Penning trap become equal to Landau levels. In general,
quantum cyclotron states are described [1,2,17] by the
quantum numbers klns, where k ¼ 0; 1; 2;… is the axial
excitation, l ¼ 0; 1; 2;… is the magnetron quantum num-
ber, n ¼ 0; 1; 2;… is the cyclotron quantum number, and
s ¼ �1 is the spin projection quantum number.
The kinetic momentum π⃗T ¼ p⃗ − eA⃗, in the symmetric

gauge, can be written as

π⃗T ¼ π⃗k þ p⃗⊥; ð1aÞ

π⃗k ¼ p⃗k −
e
2
ðB⃗T × r⃗Þ; p⃗k ¼ pxêx þ pyêy; ð1bÞ

B⃗T ¼ BTêz: p⃗⊥ ¼ pzêz: ð1cÞ

Here, e is the electron charge. As already mentioned,
we use the symmetric gauge for the vector potential
A⃗ ¼ 1

2
ðB⃗T × r⃗Þ, rather than A⃗0 ¼ −Byêx, which yields

the same magnetic field. The gauge transformation Λ ¼
− 1

2
BTxy leads from A⃗ ¼ 1

2
ðB⃗T × r⃗Þ to A⃗0. We note that

the physical interpretation of a wave function can depend
on the gauge (see p. 268 of Ref. [18]). The choice
A⃗ ¼ 1

2
ðB⃗T × r⃗Þ leads to wave functions which are con-

fined in the x and y directions, while, with the choice
A⃗0, one obtains unconfined wave functions in the y
direction.
Furthermore, the choice A⃗ ¼ 1

2
ðB⃗T × r⃗Þ is generalizable

to the case of a nonvanishing additional electric quadrupole
trap field [1,2]. The nonrelativistic Hamiltonian is given as
follows:

H0 ¼
ðσ⃗ · π⃗TÞ2

2m
¼ Hk þ

ωc

2
σz þ

p2
z

2m
; ð2Þ

ωc ¼ −
eBT

m
¼ jejBT

m
: ð3Þ

Here, jej ¼ −e is the modulus of the electron charge. The
spin-independent part of the Hamiltonian relevant for the
xy plane is

Hk ¼
π⃗2k
2m

¼
p⃗2
k

2m
þ ωc

2
Lz þ

mω2
c

8
ρ2

¼ ωc

�
a†cac þ

1

2

�
; ð4Þ

where the a†c and ac are the raising and lowering operators
of the cyclotron motion. We have set the electric quadru-
pole potential of the trap equal to zero, wherefore, in the
sense of Refs. [1,2], the magnetron frequency vanishes.

The cyclotron (c) and magnetron (m) raising (a†c and (a†m)
and lowering operators (ac and am) are given as follows:

ac ¼
1ffiffiffi
2

p
�
ã0px − iã0py −

ix
2ã0

−
y
2ã0

�
; ð5aÞ

a†c ¼ 1ffiffiffi
2

p
�
ã0px þ iã0py þ

ix
2ã0

−
y
2ã0

�
; ð5bÞ

am ¼ 1ffiffiffi
2

p
�
ã0px þ iã0py −

ix
2ã0

þ y
2ã0

�
; ð5cÞ

a†m ¼ 1ffiffiffi
2

p
�
ã0px − iã0py þ

ix
2ã0

þ y
2ã0

�
: ð5dÞ

In these formulas, the generalized (magnetic) Bohr radius is
(we temporarily restore factors of ℏ and c)

ã0 ¼
ffiffiffiffiffiffiffiffi
mc2

ℏωc

s
ℏ
mc

¼ ℏ
αcmc

¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

jejBT

s
¼ lB; ð6Þ

where we have set αc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωc=ðmc2Þ

p
(αc is a generalized

fine-structure constant), and lB is the magnetic length [5].
The relations (5) can be inverted,

px ¼
1

2
ffiffiffi
2

p
ã0

½ac þ a†c þ am þ a†m�; ð7aÞ

py ¼
i

2
ffiffiffi
2

p
ã0

½ac − a†c − am þ a†m�; ð7bÞ

x ¼ iã0ffiffiffi
2

p ½ac − a†c þ am − a†m�; ð7cÞ

y ¼ −
ã0ffiffiffi
2

p ½ac þ a†c − am − a†m�: ð7dÞ

The nonvanishing commutators are as follows:

½ac; a†c� ¼ ½am; a†m� ¼ 1: ð8Þ

All other commutators vanish, which means that, in
particular, the cyclotron and magnetron excitation numbers,
together with the z component of the momentum and the
spin projection quantum number s, form a complete set
of commuting observables for the nonrelativistic spin-
independent problem. The eigenfunctions are given as
follows:

HNRψknlsðr⃗Þ ¼ ENRψknlsðr⃗Þ; ð9aÞ

ENR ¼ ωc

�
nþ sþ 1

2

�
þ k2

2m
: ð9bÞ
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Here, k ∈ R is a continuous quantum number character-
izing the momentum component in the z direction.
The energy eigenvalue is independent of the magnetron
quantum number l. The momentum in the z component
and the spin component of the eigenstate can be split off:

ψklnsðr⃗Þ ¼ ψnlðρ⃗Þ
eikzffiffiffiffiffiffi
2π

p χs; ð10aÞ

ρ⃗ ¼ xêx þ yêy; ð10bÞ

χþ1 ¼
�
1

0

�
; χ−1 ¼

�
0

1

�
: ð10cÞ

According to Refs. [1,2,17], one uses the quantum
numbers klns (in this, alphabetically inspired, sequence)
by convention. However, for the spin-independent, two-
dimensional, nonrelativistic case, we use the designation
nl, in correspondence with the hydrogen atom where the
first index indicates the quantum number which determines
the energy (for a comprehensive discussion, see Chap. 4
of Ref. [19]). One may search for the general formula for
the nonrelativistic eigenfunction ψnlðρ⃗Þ, which fulfills the
equation

Hkψnlðρ⃗Þ ¼ Enψnlðρ⃗Þ; En ¼ ωc

�
nþ 1

2

�
; ð11Þ

whereHk is given in Eq. (4). The solution reads as follows:

ψnlðρ⃗Þ ¼
2−

1
2
ðjn−ljþ1Þffiffiffi
π

p
ã0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðn;lÞ!
maxðn;lÞ!

s �
ρ

ã0

�jn−lj

× ijn−ljLjn−lj
minðn;lÞ

�
1

2

�
ρ

ã0

�
2
�

× eiðn−lÞφ exp
�
−
1

4

�
ρ

ã0

�
2
�
: ð12Þ

Here, ρ ¼ jρ⃗j and φ ¼ arctanðy=xÞ. The complex phase
ijn−lj is a consequence of the application of the raising
operators on the ground states [see also Eq. (13a)].
A comparison of Eq. (12) with the literature is indicated.

In Eq. (2) of Ref. [20], one obtains a corresponding result.
The spin-independent wave function obtained in Ref. [20]
is equal to our wave function if one replaces k (in the
notation of Ref. [20] by minðn;lÞ, andm (in the notation of
Ref. [20]) by n − l (in our notation). Furthermore, one may
point out that the wave functions given in Eq. (2) of
Ref. [20] are specialized to the case ωc ¼ 2. In Ref. [8], this
restriction is lifted. The parameter l0 defined in Eq. (28) of
Ref. [8] is equal to our parameter ã0.
In Eq. (A31) of Ref. [10], the authors obtain a corre-

sponding result. Their parameter l (which, in the con-
ventions of Ref. [10] can become negative) is equal to our

n − l. The inclusion of additional electric fields into the
formalism is discussed in Refs. [1,2,17] and in Ref. [21].
Our formalism clearly identifies the cyclotron excitation,

which is linked to the quantum number n that determines
the energy, and the magnetron quantum number l, which
does not shift the energy but shifts the orbit further outward
with increasing l for given n (see Figs. 1 and 2). When
one increases l by 1, the wave function acquires a phase
factor expð−iφÞ. The cyclotron and magnetron excitations
can be associated with the action of mutually commuting
raising operators, acting on the ground state, and the
quantum numbers n and l belong to mutually commuting
observables.
Indeed, the nonrelativistic eigenfunctions can be

obtained from the ground state by the operation of the
raising operators,

ψnlðρ⃗Þ ¼
1ffiffiffiffiffiffiffiffiffi
n!l!

p ða†cÞnða†mÞlψ00ðρ⃗Þ; ð13aÞ

ψ00ðρ⃗Þ ¼
1

ã0
ffiffiffiffiffiffi
2π

p exp

�
−

ρ2

4ã20

�
: ð13bÞ

The number operators count the number of cyclotron and
magnetron excitations,

a†cacjn;li ¼ njn;li; a†mamjn;li ¼ ljn;li: ð14Þ

The wave functions ψnlðρ⃗Þ are eigenfunctions of the
Hamiltonian Hk, while their energy eigenvalue only
depends on the cyclotron quantum number n, and is
independent of the magnetron quantum number l. The
magnetron quantum number l ¼ 0; 1; 2;… acts as a
degeneracy index for the Landau level. Here, the magnetron
degeneracy index is countable and leads to a more intuitive
form of the wave function, which is normalizable to unity.

FIG. 1. We display the probability density jψ ðn¼0Þ;ðl¼0Þðρ⃗Þj2 of
the cyclotron ground state, as given in Eq. (12). It is radially
symmetric and nonvanishing at the origin.
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Wave functions are orthonormal,Z
d2ρψ�

nlðρ⃗Þψn0l0 ðρ⃗Þ ¼ δnn0δll0 : ð15Þ

A total of four example wave functions are plotted in
Figs. 1 and 2. Furthermore, one has the relationZ

d3rψ†
klnsðρ⃗Þψk0l0n0s0 ðρ⃗Þ ¼ δðk − k0Þδnn0δll0δss0 : ð16Þ

(For the spinor case, we need to use ψ† because it is a
two-component wave function.) With increasing magnet-
ron quantum number, the states spread further away from
the origin, as is evident from the expectation valueZ

d2ρρ2jψnlðρ⃗Þj2 ¼ ð2þ 2nþ 2lÞã20: ð17Þ

This trend is depicted in Fig. 2.

III. RELATIVISTIC LANDAU LEVELS

Before we indulge in the calculations, let us remember
that the problem of a relativistic electron coupled to a
uniform electric or magnetic field, has been discussed in the
literature before, notably, in a comprehensive treatise given
in Ref. [22]. In unnumbered equations between Eqs. (10)
and (11) of Sec. 3 of Chap. 3 of Ref. [22], the relativistic
eigenstate of the magnetically coupled Dirac equation is
given in terms of parabolic cylinder functions (Weber
functions, denoted as Dn). The vector potential is taken
in the Landau gauge. Alternative discussions of the
relativistic states are given in Sec. 4 of Chap. 26 of
Ref. [12] and in Sec. 6 of Chap. 2 of Ref. [23]. Our goal
here is to find a representation of the relativistic eigenstates
which allows us to clearly identify the connections of the
nonrelativistic limit with the fully relativistic state.
We here aim to find the relativistic Landau levels in the

symmetric gauge. Let us recall the nonrelativistic (NR)
Hamiltonian and its eigenstates,

HNRψNR ¼ ENRψNR; HNR ¼ ðσ⃗ · π⃗TÞ2
2m

; ð18Þ

ENR ¼ ωc

�
nþ sþ 1

2

�
þ k2

2m
: ð19Þ

The kinetic momentum in the trap is π⃗T ¼ p⃗ − eA⃗T, while
the vector potential A⃗T for the uniform magnetic field of the
trap can be written as

π⃗T ¼ p⃗ − eA⃗T; A⃗T ¼ 1

2
ðB⃗T × r⃗Þ: ð20Þ

The Dirac Hamiltonian for a uniform magnetic field is

HD ¼ α⃗ · π⃗T þ βm; ð21Þ

FIG. 2. The cyclotron states with n ¼ 2 all have the same
nonrelativistic energy 5

2
ωc. The probability density jψ ðn¼2Þlðρ⃗Þj2

vanishes at the origin. With increasing magnetron excitation
l ¼ 0, 6, 12, the states spread away from the origin. The
azimuthal dependence of the wave function is given by the
factor exp½iðn − lÞφ�. The plot surfaces are shaded according to
the imaginary part of the wave function, with lighter regions
indicating a positive imaginary part, and darker regions indicating
a negative imaginary part of the wave function.
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α⃗ ¼
�
0 σ⃗

σ⃗ 0

�
; β ¼

�
12×2 0

0 −12×2

�
; ð22Þ

where we use the Dirac matrix in the Dirac representation.
We search for bispinor solutions of the form

HDΨ ¼ EDΨ; Ψ ¼
�
ψ1

ψ2

�
≡Ψklns: ð23aÞ

We note that Ψ denotes the relativistic bispinor wave
function, while ψ is the nonrelativistic counterpart. We
use the following ansatz for the relativistic eigenstates:

ψ1 ¼ NψNR; ψ2 ¼ N
σ⃗ · π⃗T
ED þm

ψNR: ð23bÞ

Acting with HD on Ψ, one obtains

HDΨ ¼ N
�
m12×2 σ⃗ · π⃗T
σ⃗ · π⃗T −m12×2

� ψNR

σ⃗·π⃗T
EDþmψNR

!

¼ N

0
B@ m

�
1þ 2ENR

EDþm

�
ψNR

σ⃗ · π⃗T
�
1 − m

EDþm

�
ψNR

1
CA

¼! NED

 
ψNR

σ⃗·π⃗T
EDþmψNR

!
¼ EDΨ: ð24Þ

From the secular equation for the upper component, one
obtains

ED ¼ m

�
1þ 2ENR

ED þm

�
¼ mþ 2mENR

ED þm
: ð25Þ

This can be rewritten as follows:

ED −m ¼ 2mENR

ED þm
; E2

D −m2 ¼ 2mENR: ð26Þ

The Dirac energy ED is thus obtained as follows,

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2mENR

q
¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ENR

m

r

¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ωc

m
ð2nþ sþ 1Þ þ k2

m2

r
: ð27Þ

Somewhat surprisingly, the state with quantum numbers
n ¼ 0 and s ¼ −1, and k ¼ 0, has exact rest mass
energy even in the fully relativistic formalism. A check
of the eigenvector property for the lower component is
successful. We start from the expression in round brackets

(lower component) in the second line of Eq. (24) and
obtain:

�
1 −

m
ED þm

�
¼ ED

ED þm
¼ ED

1

ED þm
: ð28Þ

In view of the Taylor expansion
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p ¼ 1þ ϵ
2
− ϵ2

8
þ

ϵ3

16
þOðϵ4Þ, we can write for positive energy in the limit

k → 0

EDðk→ 0Þ ¼mþ ωc

2m
ð2nþ sþ 1Þ− 1

8

�
ωc

m
ð2nþ sþ 1Þ

�
2

þ 1

16

�
ωc

m
ð2nþ sþ 1Þ

�
3

: ð29Þ

This is consistent with Eqs. (90), (96) and (105) of
Ref. [17]. We set ωc ¼ α2cm, where αc is the cyclotron
coupling constant. The normalization of the relativistic
states according to

R
d3rjψNRj2 ¼

R
d3rjΨj2 ¼ 1 leads to

the relation

Z
d3rΨ†ðr⃗ÞΨðr⃗Þ ¼ N 2

�
1þ 2mENR

ðED þmÞ2
�
¼! 1; ð30Þ

N ¼
�
1þ 2mENR

ðED þmÞ2
�
−1=2

: ð31Þ

In the above formulas for the relativistic states, the
dependence on the quantum numbers klns has been
suppressed for notational simplicity. Restoring the quantum
numbers, one finds that

Z
d3rΨ†

klnsðρ⃗ÞΨk0l0n0s0 ðρ⃗Þ ¼ δðk − k0Þδnn0δll0δss0 : ð32Þ

For completeness, it is perhaps useful to remark that, if
desired, one can easily write the entire operator σ⃗ · π⃗T in
terms of cyclotron, magnetron and spin ladder operators,
and express the lower component ψ2 of the fully relativistic
state, in terms of nonrelativistic eigenstates of raised and
lowered quantum numbers.

IV. NEGATIVE-ENERGY STATES

In Dirac theory, there is an energy gap between positive-
energy states with E ≥ m and negative-energy states with
E ≤ −m. It is relatively straightforward to check that the
states [cf. Eqs. (23a) and (23b)]

Φ ¼ N

 
− σ⃗·π⃗T

EDþmψNR

ψNR

!
ð33Þ
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with the same normalization factor N as for positive-
energy states [see Eq. (31)], have the property

HDΦ ¼ −EDΦ ð34Þ

and thus constitute the negative-energy (antiparticle) state
of Dirac theory. As compared with the positive-energy state,
the upper and lower components of the Dirac bispinor are
interchanged, and the upper spinor receives a minus sign.

V. MASSLESS LIMIT

In the limit m → 0, the gap between positive-energy and
negative-energy states vanishes. We recall that

ωcm ¼ jejBT ¼ l−2
B : ð35Þ

The Dirac energy (27) attains the massless limit

ED ¼m→0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−2
B ð2nþ sþ 1Þ þ k2

q
: ð36Þ

The square-root dependence on the quantum numbers
confirms the corresponding dependence, obtained on the
basis of the Weyl equation, given in Eq. (2.23) of Ref. [5].
The appropriate zero-mass limit of the normalization
factor is

N ¼m→0 1ffiffiffi
2

p ; ð37Þ

and the positive-energy solution is

Ψ ¼m→0

 1ffiffi
2

p ψNR

1ffiffi
2

p σ⃗·π⃗T
ED

ψNR

!
: ð38Þ

The negative-energy solution is

Φ ¼m→0

 
− 1ffiffi

2
p σ⃗·π⃗T

ED
ψNR

1ffiffi
2

p ψNR

!
: ð39Þ

VI. CONCLUSIONS

We have considered the calculation of both non-
relativistic as well as fully relativistic Landau levels in
the symmetric gauge where A⃗ ¼ 1

2
ðB⃗T × r⃗Þ, based on an

algebraic approach. The spin-independent part of the
nonrelativistic states finds a natural form in terms of the
cyclotron quantum number n, and of the magnetron
quantum number l. We find a universal representation
of the spinless nonrelativistic quantum state wave function

with quantum numbers n (cyclotron) and l (magnetron) in
Eq. (12). After including the spin and the axial motion, we
find the nonrelativistic spinor state with quantum numbers
n and l, and k (axial) and s (spin), as given in Eq. (10).
For the nonrelativistic wave function ψ ¼ ψklns,
the spin-independent form is given in Eq. (12), and the
nonrelativistic spinor form is given in Eq. (10). The
orthonormality relations are given in Eqs. (15) (for
the spin-independent part) and in Eq. (16) (for the spinor
wave function). While the magnetron quanta are raised
from the ground state by the magnetron raising operator a†m
[see Eq. (14)], the magnetron quantum number l does not
enter the formula for the energy of the Landau level [see
Eqs. (11) and (9)]. Inverting the relations given in Eq. (5),
one obtains a representation of the x, y, px and py operators
in terms of the raising and lowering operators of the
cyclotron and magnetron motions [see Eq. (7)].
In the context of the quantum Hall effect, Landau levels

have been considered in both the Landau as well as the
symmetric gauges [5]. They are also relevant to quantum
cyclotron states in Penning traps [1,2]. Indeed, in the limit
of vanishing axial confinement, the quantum cyclotron
states approach the Landau levels in the symmetric gauge,
and our formulas are essential elements in the discussion of
higher-order quantum electrodynamic corrections to quan-
tum cyclotron energy levels [4].
Based on an essential generalization of the nonrelativ-

istic problem (see Sec. II and Ref. [5]), we calculate the
fully relativistic Landau levels in the symmetric gauge, in
Sec. III. These relativistic states constitute solutions of the
magnetically coupled relativistic Dirac equation. The same
quantum numbers k, l, n and s, that we found for the
nonrelativistic problem, characterize the relativistic state.
The relativistic wave function is given in Eqs. (23a) and
(23b), with the normalization given in Eq. (30). The fully
relativistic form is needed as an essential ingredient in
the calculation of quantum electrodynamic corrections to
quantum cyclotron energy levels [4]. We mention relativ-
istic quantum dynamics in synchrotrons as a further
potential area of application. Negative-energy states are
discussed in Sec. IV, and the massless limit of the Dirac
bispinor solutions is discussed in Sec. V.
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