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The mass formulas and decay constants of electrically charged and strange pseudoscalar mesons are
analyzed within the combined framework of the Nambu–Jona-Lasinio model and the 1=Nc expansion up to
Oð1=N2

cÞ. The light quark masses explicitly violating SUð3ÞL × SUð3ÞR chiral symmetry of the strong
interactions are taken to be of order Oð1=NcÞ. The Fock-Schwinger proper-time method and the Volterra
series are used to derive the effective action. A set of sum rules is obtained that relates the
phenomenological values of the masses of pseudoscalar mesons to the mass ratios of light quarks. It
is shown that combining the new sum rules with the experimental data on the decay width η → 3π allows
one to establish limits for the ratios: 0.47 < mu=md < 0.59 and 18.60 < ms=md < 19.66. A comparison
with the results of similar calculations in 1=Nc chiral perturbation theory is made.
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I. INTRODUCTION

Quantum chromodynamics (QCD), in the limit of a large
number of colors Nc [1,2], is a successful tool to reproduce
the qualitative features of strong interaction phenomena at
moderate energies of the order of the ρ-meson mass. To
succeed in the quantitative description of hadronic physics,
one should rely on the effective Lagrangian approach or on
lattice calculations. Various options of the QCD inspired
effective Lagrangian are discussed in the literature, differ-
ing in the content of the fields used and the rules of Nc
counting [3–13]. For instance, in [8,9], the properties of the
lightest pseudoscalar nonet were studied by the effective
Lagrangian arranged according to the powers of momenta,
masses of light quarks, and Nc. In particular, it was
assumed that the masses of light quarks are of the order
mi ¼ Oð1=NcÞ, where i ¼ u, d, s are flavors. This
approach is known now as 1=Nc chiral perturbation theory
(1=NcχPT) [11] wherein the η0 meson is included con-
sistently by means of the 1=Nc expansion. When Nc → ∞,
the axial Uð1ÞA anomaly is absent and the pseudoscalar
SUð3Þ singlet becomes the ninth Goldstone boson
associated with the spontaneous symmetry breaking of
Uð3ÞL ×Uð3ÞR → Uð3ÞV [14,15]. A simultaneous chiral
and 1=Nc expansion leads to an effective theory for the

pseudoscalar nonet that is not only internally consistent but
is also very useful in practice [16,17].
In view of the fruitfulness of Leutwyler’s idea to count

mi ¼ Oð1=NcÞ, we find it interesting to apply this counting
rule to calculations based on the low-energy meson
Lagrangian derived from the effective Uð3ÞL ×Uð3ÞR
symmetric four-quark interactions of the Nambu–Jona-
Lasinio (NJL) type [18,19]. Our interest in the NJL model
(in connection with the task of studying the properties of
the pseudoscalar nonet) is due to two reasons.
First, the model implies a specific mechanism of sponta-

neous chiral symmetry breaking (SχSB). Therefore, its use
allows us to express a number of arbitrary parameters,
known from the analysis of Leutwyler, through the char-
acteristics of the hadron vacuum, and thereby obtain their
numerical values. This makes it possible to study in detail
the four-quark mechanism of SχSB.
Second, in obtaining the meson Lagrangian it is impor-

tant to properly account for the effect of explicit violation
of chiral symmetry. For this purpose, we for the first time
use a new asymptotic expansion of the quark determinant
[20–22], which is based on the Volterra series. This series
together with the Fock-Schwinger proper-time method
turns out to be an efficient tool that allows one not only
to isolate divergent parts of quark loop diagrams but also to
accurately reproduce the flavor structure of coupling
constants of the effective meson Lagrangian. The latter
circumstance is fundamental in studying the explicit
violation of chiral symmetry in the NJL model.
The method used here differs significantly from the

schemes applied earlier in the NJL model to extract
the consequences of explicit chiral symmetry breaking.
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The noncommutativity of the mass matrix of quarks with
meson fields leads to an additional rearrangement of the
asymptotic series in powers of proper time. As a result, the
effective meson Lagrangian not only contains divergent
vertices (at removal of regularization in loop integrals) but
also has uniquely defined finite terms that vanish in the
limit of equal masses. These terms contain, apparently,
important additional information about isospin and flavor
symmetry breaking, which is absent in the standard meson
Lagrangian of the NJL model [23–28]. The study of
the physical consequences of accounting for these finite
contributions is a long-term goal of the approach devel-
oped here.
The pseudoscalar mesons offer an excellent ground for

checking the effectiveness of the asymptotic expansion
based on the Volterra representation. This concerns both the
mass formulas and other low-energy characteristics of the
light pseudoscalar nonet, primarily those associated with an
explicit violation of chiral symmetry. The counting rule
mi ¼ Oð1=NcÞ makes this task more tractable for the NJL
model. Indeed, any attempt to calculate the first correction
to the leading-order 1=Nc result within the standard
approach requires one to account for chiral logarithms, a
step that implies a major modification of the NJL model.
However, if mi ¼ Oð1=NcÞ, the contribution of chiral
logarithms starts only from the order ðmi=NcÞ ln mi. It
is with this circumstance that the possibility of effective
use of the 1=Nc NJL model for estimating the masses and
other characteristics of the pseudoscalar nonet of mesons is
connected. And it is in this case that the Volterra series
plays the main role in describing the effects of explicit
chiral symmetry breaking.
In this article, we deal with electrically charged and

strange pseudoscalars. The neutral states π0, η, and η0 are
considered in a separate article. This is due both to the
volume of the material presented and to the convenience of
its perception.
The article is organized as follows. In Sec. II, we briefly

describe the method for deriving the effective meson
Lagrangian based on four-quark interactions, and demon-
strate how the Volterra representation is embedded in the
general scheme of the Fock-Schwinger proper-time
method. In Sec. III, we discuss modifications related with
the 1=Nc treatment of the NJL gap equation. The mixing
between pseudoscalar and axial-vector fields is considered
in Sec. IV. The kinetic terms of the meson effective
Lagrangian are considered in Sec. V. Here we obtain the
decay constants of pseudoscalars by rescaling the corre-
sponding collective variables. The masses of the charged
pion and strange pseudoscalars are discussed in Sec. VI.
The Gasser-Leutwyler ellipse and other sum rules relating
pseudoscalar masses with light quark masses are discussed
in Sec. VII. Our numerical estimates and discussion on the
dependence of results on regularization used are given in
Sec. VIII. We summarize in Sec. IX.

II. EFFECTIVE LAGRANGIAN

Four-quark interactions are widely used to describe the
mechanism of SχSB and construct the effective action of
mesons at moderate energies [23,25–28]

L ¼ q̄ðiγμ∂μ −mÞqþ L4q: ð1Þ

Hereinafter in the text we use the standard Lorentz metric
convention gμν ¼ diagð1;−1;−1;−1Þ, where the indices μ,
ν take values in the set f0; 1; 2; 3g; γμ are the Dirac gamma
matrices, q̄ ¼ ðū; d̄; s̄Þ is a flavor triplet of Dirac four-
spinors with ū ¼ u†γ0, and m is a diagonal matrix m ¼
diagðmu;md;msÞ containing the masses of current up,
down, and strange quarks. The Lagrange density describing
four-quark interactions has the form L4q ¼ Lð0Þ þ Lð1Þ,
where the sum consists of G ¼ Uð3ÞL ×Uð3ÞR chiral
symmetric four-quark operators with spin zero and one,
respectively,

Lð0Þ ¼ GS

2
½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2�; ð2Þ

Lð1Þ ¼ −
GV

2
½ðq̄γμλaqÞ2 þ ðq̄γμγ5λaqÞ2�; ð3Þ

where a ¼ 0; 1;…; 8, the matrix λ0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
, and λi are

the eight Gell-Mann matrices of SUð3Þ. The coupling
constants GS and GV have dimensions ðmassÞ−2 and can be
fixed from the meson mass spectrum.
The spin-0 short-range attractive force between light

quarks ∼GSðq̄λaqÞ2 is responsible for the SχSB. If this
interaction is sufficiently strong GS ≥ Gcr, it can rearrange
the vacuum, and the ground state becomes superconduct-
ing, with a nonzero quark condensate. As a result, nearly
massless current quarks become effectively massive con-
stituent quarks. The short-range interaction can then bind
these constituent quarks into mesons.
For a theory described by the Lagrangian density (1),

the vacuum to vacuum amplitude is given by functional
integration

Z ¼
Z

½dq�½dq̄� exp
�
i
Z

d4xL
�

¼
Z

½dq�½dq̄�½dsa�½dpa�½dvμa�½daμa� exp
�
i
Z

d4xL0
�
;

ð4Þ

where

L0 ¼ q̄½iγμ∂μ þ sþ iγ5pþ γμðvμ þ γ5aμÞ�q

−
tr½ðsþmÞ2 þ p2�

4GS
þ trðv2μ þ a2μÞ

4GV
: ð5Þ
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The new Lagrangian L0 has the same dynamical content
as L since if we perform a functional integration over
collective variables sa, pa, v

μ
a, and aμa in (5), we obtain the

original expression (4). Notice that s ¼ saλa, p ¼ paλa,
vμ ¼ vμaλa, and aμ ¼ aμaλa.
In the world of zero quark bare masses m ¼ 0, L0 is

invariant under global G ¼ Uð3ÞL ×Uð3ÞR transforma-
tions. In particular, the group G acts on the quark fields
as follows:

q0 ¼ ðPRVR þ PLVLÞq ¼ eiαeiγ5βq; ð6Þ
where the projection operators PR;L are PR ¼ ð1þ γ5Þ=2,
PL ¼ ð1 − γ5Þ=2. It is convenient to choose finite unitary
transformations VR;L ∈ G in the form of a product of two
exponents VR ¼ eiαeiβ, VL ¼ eiαe−iβ, where α ¼ αaλa,
β ¼ βaλa, and the parameters αa and βa are real. Then it
follows that

s0 þ ip0 ¼ VLðsþ ipÞV†
R;

v0μ þ a0μ ¼ VRðvμ þ aμÞV†
R;

v0μ − a0μ ¼ VLðvμ − aμÞV†
L: ð7Þ

Let us use the freedom of choice of dynamical variables
in (5) to carry out the transition to a nonlinear realization
of chiral symmetry for Goldstone particles. To do this, we
represent the complex 3 × 3matrix sþ ip as the product of
the unitary matrix ξ and the Hermitian matrix σ̃,

sþ ip ¼ ξσ̃ξ: ð8Þ

From the covariance of this expression under the action
of the group G, it follows that the matrices ξ and σ̃ are
transformed as

ξ0 ¼ VLξh† ¼ hξV†
R; σ̃0 ¼ hσ̃h†; ð9Þ

where h is a unitary compensating transformation belong-
ing to the maximal subgroup H ⊂ G, leaving the vacuum
invariant, and arising under the action of the chiral group G
on the coset representative ξ of the G=H manifold. In these
variables we have q̄ðsþ iγ5pÞq ¼ Q̄ σ̃Q, where the new
quark fields are given by Q ¼ ðξPR þ ξ†PLÞq. A nonlinear
realization of G becomes a linear representation when
restricted to the subgroup H [29,30]. Indeed, one can see
that the field Q transforms as the fundamental representa-
tion of the subgroup H: Q0 ¼ hQ.
Having done similar redefinitions in the rest of the

Lagrangian (5), we find L0 → L00, where

L00 ¼ Q̄ðiγμdμ −M þ σÞQþ 1

4GV
trðV2

μ þ A2
μÞ

−
1

4GS
tr½σ2 − fσ;Mg þ ðσ −MÞΣ�: ð10Þ

Notice the replacement σ̃ ¼ σ −M made in (10). The
matrix M is diagonal M ¼ diagðMu;Md;MsÞ, and its
elements are considered as the masses of constituent
quarks Q. We assume on this step that chiral symmetry
is realized in the Nambu-Goldstone sense (as mi → 0); i.e.,
heavy constituent masses result from dynamic symmetry
breaking and are controlled by the gap equation [see below
Eq. (38)]. In turn, σðxÞ describes quantum fluctuations of
the σ̃ field around a physical vacuum.
The corresponding collective variables for vector,

axial-vector, scalar, and pseudoscalar fields are given by
Hermitian matrices Vμ ¼ Va

μλa, Aμ ¼ Aa
μλa, σ ¼ σaλa,

ϕ ¼ ϕaλa, where

Vμ ¼
1

2
½ξðvμ þ aμÞξ† þ ξ†ðvμ − aμÞξ�;

Aμ ¼
1

2
½ξðvμ þ aμÞξ† − ξ†ðvμ − aμÞξ�;

Σ ¼ ξmξþ ξ†mξ†; ξ ¼ exp

�
i
2
ϕ

�
: ð11Þ

The pseudoscalar field ϕ is dimensionless; later on, when
passing to the field functions of physical states, it will
acquire the required dimension of mass. The vector Vμ and
axial-vector Aμ fields are chosen to transform as V 0

μ ¼
hVμh†, A0

μ ¼ hAμh†.
The symbol dμ ¼ ∂μ − iΓμ in (10) denotes the covariant

derivative, where

Γμ ¼ ξðþÞ
μ þ Vμ þ γ5ðξð−Þμ þ AμÞ; ð12Þ

ξð�Þ
μ ¼ i

2
ðξ∂μξ† � ξ†∂μξÞ: ð13Þ

It is easy to establish that Γμ is a connection on G=H
satisfying the standard transformation rules under the local
action of G,

Γ0
μ ¼ hΓμh† þ ih∂μh†: ð14Þ

To be precise, this is how ξðþÞ
μ is transformed. The other

fields in Γμ are the covariant objects with similarity
transformations.
To exclude quark degrees of freedom in the functional

integral

Z ¼
Z

½dQ�½dQ̄�½dσa�Dμ½ϕa�½dVμ
a�½dAμ

a�ei
R

d4xL00
; ð15Þ

it is necessary to integrate over the quark variables. Before
we do this, let us clarify that the G invariant measure
Dμ½ϕa� in Z is related to the curvature of the G=H group
manifold parametrized by the pseudoscalar variables ϕa. It
is easy to find an explicit expression for this differential
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form, but we will not need it in what follows. Therefore, we
better proceed directly to the calculation of the real part of
the effective meson Lagrangian taking the integral over
quark fields. The result is a functional determinant

WE ¼ ln j detDEj ¼ −
Z

∞

0

dt
2t

ρt;Λ Trðe−tD†
EDEÞ; ð16Þ

representing a real part of the one-loop effective action in
Euclidian (E) space as the integral over the proper-time t.
Here, D ¼ iγμdμ −M þ σ → DE. Note that the rules we
use to continue to Euclidean space are standard and can be
found, for instance, in [22]. The symbol “Tr” denotes the
trace over Dirac (D) γ-matrices, color (c) SUð3Þ matrices,
and flavor (f) matrices, as well as integration over
coordinates of the Euclidean space: Tr≡ trI

R
d4xE, where

I ¼ ðc;D; fÞ. The trace in the color space is trivial: It leads
to the overall factor Nc ¼ 3.
The dependence on matter fields inDE after switching to

the Hermitian operator

D†
EDE ¼ M2 − d2 þ Y ð17Þ

is collected in the 3 × 3 matrix Y,

Y ¼ σ2 − fσ;Mg þ i½γαðσ −MÞ; dα� þ
1

4
½γα; γβ�½dα; dβ�;

ð18Þ

and the covariant derivative dα,

dα ¼ ∂α þ iΓα; ð19Þ

Γα ¼ Vα − ξðþÞ
α þ γ5EðAα − ξð−Þα Þ; ð20Þ

where Γα is a connection in a curved factor space of
Goldstone fields (in four-dimensional Euclidean space a
convention that the Greek indices α and β run from 1 to 4
is used).
In (16), to regularize quadratic and logarithmic diver-

gences in the proper-time integrals we introduce the kernel
ρt;Λ which provides two subtractions on the same mass
scale Λ,

ρt;Λ ¼ 1 − ð1þ tΛ2Þe−tΛ2

; ð21Þ

which in the NJL model was used, for instance, in [31]. The
ultraviolet cutoff Λ characterizes the scale of SχSB; i.e.,
above this scale four-quark interactions disappear and QCD
becomes perturbative. Obviously, the value of Λ depends
on the regularization scheme used, and it generally varies in
the interval 0.65–1.3 GeV [31,32]. In the present paper, we
apply the proper-time regularization with Λ ¼ 1.1 GeV.
This value, as will be shown above, is phenomenologically
justified and is consistent with an estimate of the chiral

symmetry breaking scale ΛχSB ≤ 4πfπ [33], where fπ ¼
92.2 MeV is the pion decay constant.
The functional trace in (16) can be evaluated by the

Schwinger technique of a fictitious Hilbert space. The use
of a plane wave with Euclidian four-momenta k, hxjki, as a
basis greatly simplifies the calculations (details, for in-
stance, are given in [22]) and leads to the representation of
the functional trace by the integrals over coordinates and
four-momenta

WE ¼ −
Z

d4xd4k
ð2πÞ4 e−k

2

Z
∞

0

dt
2t3

ρt;Λ trIðe−tðM2þAÞÞ: ð22Þ

The self-adjoint operator A is given by

A ¼ −d2 − 2ikd=
ffiffi
t

p þ Y; ð23Þ

where a summation over four-vector indices is implicit.
To advance further in our calculation of (22), we use the

Volterra series

e−tðM2þAÞ ¼ e−tM
2

�
1þ

X∞
n¼1

ð−1Þnfnðt; AÞ
�
; ð24Þ

where the expression in the square brackets is the time-
ordered exponential OE½−A�ðtÞ of AðsÞ ¼ esM

2

Ae−sM
2

,
accordingly

fnðt;AÞ¼
Z

t

0

ds1

Z
s1

0

ds2 � ��
Z

sn−1

0

dsnAðs1ÞAðs2Þ���AðsnÞ:

ð25Þ

This series generalizes the standard large mass expansion
of the heat kernel to the case of unequal masses. If masses
are equal, this formula yields the well-known large mass
expansion with standard Seeley-DeWitt coefficients
anðx; yÞ [34]. In fact, formula (24) is an extension of
Schwinger’s method used to isolate the divergent aspects
of a calculation in integrals with respect to the proper
time [35,36] to the noncommutative algebra ½M;A� ≠ 0
(see also [37]).
Inserting Eq. (24) into (22) with the following integra-

tions over four-momenta kα and the proper-time t one
finds—after the continuation to Minkowski space the one-
quark-loop (1QL) contribution to the effective meson
Lagrangian in the form of the asymptotic series

L1QL ¼ −
Nc

32π2
X∞
n¼1

trbnðx; xÞ; ð26Þ

where coefficients bnðx; xÞ depend on the meson fields
and quark masses. These coefficients contain the full
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information about both the effective meson vertices and the
corresponding coupling constants. The first two coeffi-
cients are [22]

trb1 ¼ trDf

�
−J0∘Y −

1

4
ðΔJ0∘ΓμÞΓμ

�
; ð27Þ

trb2 ¼ trDf

�
Y
2
J∘Y −

1

12
ΓμνðJ∘ΓμνÞ

�
þ trDΔb2; ð28Þ

where Γμν ¼ ∂
μΓν − ∂

νΓμ − i½Γμ;Γν�.
For convenience, along with the usual matrix multiplica-

tion, we use here the nonstandard Hadamard product [38],
which is the matrix of elementwise products ðA∘BÞij ¼
AijBij. The Hadamard product is commutative unlike regular
matrix multiplication, but the distributive and associative
properties are retained. In addition, the following notations
are used.
The proper-time integral J0 is considered as a diagonal

matrix with elements given by ðJ0Þij ¼ δijJ0ðMiÞ, where

J0ðMiÞ ¼
Z

∞

0

dt
t2
ρt;Λe−tM

2
i ¼ Λ2 −M2

i ln

�
1þ Λ2

M2
i

�
:

ð29Þ

This matrix collects contributions of one-loop Feynman
diagrams, known as a “tadpole.”
The other set of proper-time integrals in (28) is given by

the matrix J with elements Jij ¼ J1ðMi;MjÞ,

Jij ¼
1

Δij
½J0ðMjÞ − J0ðMiÞ�

¼ 1

Δij

�
M2

i ln

�
1þ Λ2

M2
i

�
−M2

j ln

�
1þ Λ2

M2
j

��
ð30Þ

with Δij ¼ M2
i −M2

j . If the masses are equal Mi ¼ Mj, it
gives the diagonal elements

Jii ≡ J1ðMiÞ ¼ ln

�
1þ Λ2

M2
i

�
−

Λ2

Λ2 þM2
i
: ð31Þ

It can be seen from this expression that the integral diverges
logarithmically at Λ → ∞. To stress this, we use the
subscript 1 in labeling such integrals to distinguish them
from the quadratic divergence of integrals J0.
The last set of proper-time integrals that we will need in

the following is given by the matrix ΔJ0 with elements
ðΔJ0Þij ¼ ΔJ0ðMi;MjÞ. Here

ΔJ0ðMi;MjÞ ¼ 2J0ðMi;MjÞ − J0ðMiÞ − J0ðMjÞ ð32Þ

and

J0ðMi;MjÞ ¼
Λ2

2
þ Λ4

2Δij
ln
Λ2 þM2

i

Λ2 þM2
j

−
1

2Δij

�
M4

i ln

�
1þ Λ2

M2
i

�
−M4

j ln

�
1þ Λ2

M2
j

��
:

ð33Þ

In the coincidence limit Mi → Mj, we have

lim
Mi→Mj

J0ðMi;MjÞ ¼ J0ðMiÞ;

and therefore ðΔJ0Þii ¼ 0. In the case of unequal masses,
the difference (32) is finite (at Λ → ∞) and thus gives us an
example of a contribution that does not occur in the
standard approach to the NJL model.
Recall that the standard meson NJL Lagrangian

absorbs only divergent parts of one-loop quark diagrams
[25,26,39]. They are represented by the first term in (27)
and the first two terms in (28). Contrary to the standard
approach, the coefficients b1 and b2 additionally have many
(about hundred) finite contributions of Feynman diagrams
compactly assembled in the second term in (27) and the
third term in (28). Each of them vanishes in the chiral limit;
therefore they break either isotopic or SUð3Þf symmetry.
The appearance of these new vertices is understandable—
they arise as a finite difference when subtracting two or
more divergent integrals with different masses. Both the
structure and the coupling constant of any finite vertex are
uniquely fixed by the Volterra series. Since for the tasks
considered here, we do not need the expression of trDΔb2,
we do not give its explicit form, but refer the interested
reader to the work [22], where the corresponding expres-
sions were obtained.
It is easy to understand why there are no finite terms in

the standard approach. The reason is contained in the
treatment of the heat kernel exp½−tðM2 þ AÞ�. To find the
asymptotics of this object, one usually separates a com-
mutative matrix μ: M2 þ A ¼ μ2 þ Aþ ðM2 − μ2Þ to fac-
torize it from the exponent. As a result, the expansion of
the heat kernel contains only standard Seeley-DeWitt
coefficients

e−tðM2þAÞ ¼ e−tμ
2
X∞
n¼0

tnanðx; xÞ: ð34Þ

The mass scale μ is arbitrary. For example, this parameter
may be identified with the average constituent quark mass
μ ¼ trM=3 [26] or with the constituent quark mass in the
chiral limit μ ¼ M0 [27]. In both cases, the integration over
proper time t in (34) yields couplings ∝ JnðμÞ which are
not sensitive to the flavor content of quark-loop integrals.
The explicit violation of chiral symmetry is carried out only
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due to the corresponding part of Y and the term M2 − μ2.
This approach leads to the different pattern of the flavor
symmetry breaking and does not contain the finite terms as
well because usually only the first two field-dependent
terms in (34) (n ¼ 1, 2) are considered.
An attempt made in [26] to restore the flavor dependence

of the coupling constants by replacing the divergent
integrals JnðμÞ by the expressions following from the
direct calculations of corresponding Feynman graphs is
inconsistent mathematically, although being correct quali-
tatively. In such a way it is impossible to trace the pattern of
an explicit chiral symmetry breaking without distorting it.
The Volterra series (24) not only gives a rigorous founda-
tion of the substitutions made in [26] but also associates
with them a definite finite part.
So, as a result of the calculations performed, we finally

arrive to the effective meson Lagrangian given by

L00 → Leff ¼ L1QL þ
1

4GV
trfðV2

μ þ A2
μÞ

−
1

4GS
trf½σ2 − fσ;Mg þ ðσ −MÞΣ�: ð35Þ

This Lagrangian contains all the information about chiral
symmetry breaking, including effects induced by unequal
quark masses. In what follows we will be interested only in
the part of this Lagrangian that is responsible for the
physics of pseudoscalar mesons.

III. GAP EQUATION AND 1=Nc EXPANSION

First, let us exclude from the effective Lagrangian (35)
the linear in σ term (the tadpole). The corresponding
contributions are contained in L1QL and the last term
in (35). Singling them out, e.g.,

trDfð−J0∘YÞ → 8
X

i¼u;d;s

J0ðMiÞMiσi; ð36Þ

we arrive at the Lagrangian

Lσ ¼
X

i¼u;d;s

σi

�
Mi −mi

2GS
−

Nc

4π2
MiJ0ðMiÞ

�
: ð37Þ

Requiring that the tadpole term vanishes, we obtain a
self-consistency equation

Mi

�
1 −

NcGS

2π2
J0ðMiÞ

�
¼ mi; ð38Þ

which relates the mass of light quark mi to the mass of
heavy constituent quarkMi. This equation can be rewritten
in terms of the quark condensate

hq̄λiqi ¼ −
Mi −mi

2GS
: ð39Þ

In the strong coupling regime

GSΛ2 >
2π2

Nc
¼ 6.58; ð40Þ

each of three (i ¼ u, d, s) Equations (38) has a nontrivial
solution, which describes a gap in the spectrum of
fermions. This solution signals that the ground state
becomes superconducting, with a nonzero quark conden-
sate. Knowing that spontaneous breaking of chiral sym-
metry is present in QCD at large Nc [1,2], we conclude that
GSNc ¼ const, and Λ ∼Oð1Þ in the large-Nc limit.
Let us emphasize the difference between the approaches

associated with the two alternative assumptions made for
the current quark-mass counting rule at large Nc.
If we assume that mi ¼ Oð1Þ, then both parts of the gap

equation (38) are present in leading order in 1=Nc. As a
consequence, one should look for an exact solution of the
gap equation. The result can also be presented as a series in
powers of current quark masses [40]. In this case, it is always
possible to estimate the accuracy of the expansion used by
comparing the truncated result to the exact solution.
The counting rule mi ¼ Oð1=NcÞ yields that the right-

hand side of Eq. (38) at leading 1=Nc order (LO) tends to
zero; chiral symmetry is restored at mi ¼ 0; and the masses
of all constituent quarks are equal to the same value M0,
which is determined by the equation

1 −
NcGS

2π2
J0ðM0Þ ¼ 0: ð41Þ

The nontrivial solution of the gap equationMiðmiÞ must
be understood now as an asymptotic series

MðmÞ ¼
Xn
k¼0

MkðmÞ þ oðMnðmÞÞ; ð42Þ

where at m → 0, i.e., at Nc → ∞, each next term in the
right-hand side of (42) is infinitesimally small in compari-
son with the previous one. The essential difference of the
series (42) from the standard solution of the gap equation is
that MkðmÞ may collect additional contributions from the
meson loop diagrams. For instance,M0 may obtain a 1=Nc
correction from a scalar tadpole graph which contributes
to M1ðmÞ. In the following, for the sake of simplicity, we
shall restrict our consideration to the mean-field approxi-
mation, i.e., neglect the quantum effects due to scalar fields.
On the contrary, a pseudoscalar tadpole gives a leading
(in the chiral limitmi → 0) nonanalytic contribution only at
higher-order m=Nc lnm to the term M2ðmÞ, and therefore
does not affect the first two terms of the asymptotic
series (42). Correspondingly, at the next, M3ðmÞ, step, it
is necessary to take into account the contribution of two-
loop meson diagrams, and so on. This implies a corre-
sponding modification of both the effective potential and
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the gap equation. Thus, even in the mean-field approxi-
mation a full account of current quark masses by the naive
summation of the Taylor series does not work here, because
it does not account for essential contributions of chiral
logarithms arising at higher powers of light quark masses.
For specific calculations, it is necessary to limit oneself

only to those terms that do not exceed the accuracy of the
calculations performed. So, up to the next to leading order
(NLO) correction included, we can write

MiðmiÞ ¼ M0 þM0ð0Þmi þ oðM2ðmÞÞ: ð43Þ

Here we suppose that the quark condensate is the leading
order parameter of the spontaneously broken symmetry. It
follows then from (39) that M0 ¼ OðN0

cÞ. As we will see
later, the 1=Nc correction to the mass formulas of charged
pseudoscalars is small, which speaks in favor of the
hypothesis just adopted.
The second term of the asymptotic expansion (43) can

easily be determined by differentiating Eq. (38) under the
assumption that mi are independent variables. At the first
step, we have M1ðmÞ ¼ M0ð0Þm, where

M0ð0Þ ¼ π2

NcGSM2
0J1ðM0Þ

≡ a: ð44Þ

Since J1ðM0Þ is a monotonically decreasing positive
definite function of M0 in the region M0 > 0, we conclude
that a > 0. It follows that the first correction increases the
mass of the constituent quark.

IV. PA MIXING

To address the physical pseudoscalar fields, it is neces-
sary to eliminate the mixing of pseudoscalars with axial-
vector fields (PA mixing), and also to separate the kinetic
part of the free Lagrangian of pseudoscalars in L1QL.

The first goal is achieved by redefining the axial-vector
field [41]

Aμ ¼ A0
μ − κA∘ξð−Þμ ; ð45Þ

where the nonet of axial-vector fields is given by

Aμ ¼

0
BBB@

fuμ
ffiffiffi
2

p
aþ1μ

ffiffiffi
2

p
Kþ

1Aμffiffiffi
2

p
a−1μ fdμ

ffiffiffi
2

p
K0

1Aμffiffiffi
2

p
K−

1Aμ

ffiffiffi
2

p
K̄0

1Aμ fsμ

1
CCCA:

The nine pseudoscalar fields are collected in a Hermitian
matrix

ϕ ¼ ϕaλa ¼

0
BB@

ϕu

ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþffiffiffi

2
p

π− ϕd

ffiffiffi
2

p
K0ffiffiffi

2
p

K−
ffiffiffi
2

p
K̄0 ϕs

1
CCA;

where the diagonal elements are

ϕu ¼ ϕ3 þ
1ffiffiffi
3

p ðϕ8 þ
ffiffiffi
2

p
ϕ0Þ;

ϕd ¼ −ϕ3 þ
1ffiffiffi
3

p ðϕ8 þ
ffiffiffi
2

p
ϕ0Þ;

ϕs ¼
1ffiffiffi
3

p ð
ffiffiffi
2

p
ϕ0 − 2ϕ8Þ: ð46Þ

After the replacement (45) PA-mixing terms contained in
L1QL and in the second term of (35) can be canceled by an
appropriate choice of a matrix κA. To demonstrate this, it is
necessary to consider the following terms of the effective
meson Lagrangian:

Lðb1Þ
1QL →

Nc

32π2
fðΔJ0Þud½ð1 − κAudÞ∂μπþ þ 2a0þ1μ�½ð1 − κAudÞ∂μπ− þ 2a0−1μ�

þ ðΔJ0Þus½ð1 − κAusÞ∂μKþ þ 2K0þ
1Aμ�½ð1 − κAusÞ∂μK− þ 2K0−

1Aμ�
þ ðΔJ0Þds½ð1 − κAdsÞ∂μK0 þ 2K00

1Aμ�½ð1 − κAdsÞ∂μK̄0 þ 2K̄00
1Aμ�g; ð47Þ

where the symbol (b1) indicates that the considered contribution is due to the coefficient b1.
The next contribution owes its origin to the coefficient b2, namely its part described by the first term of Eq. (28),

Lðb2Þ
1QL →

Nc

16π2
fðMu þMdÞ2J1ðMu;MdÞ½ð1 − κAudÞ∂μπþ þ 2a0þ1μ�½ð1 − κAudÞ∂μπ− þ 2a0−1μ�

þ ðMu þMsÞ2J1ðMu;MsÞ½ð1 − κAusÞ∂μKþ þ 2K0þ
1Aμ�½ð1 − κAusÞ∂μK− þ 2K0−

1Aμ�
þ ðMd þMsÞ2J1ðMd;MsÞ½ð1 − κAdsÞ∂μK0 þ 2K00

1Aμ�½ð1 − κAdsÞ∂μK̄0 þ 2K̄00
1Aμ�g: ð48Þ
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It remains to take into account the last contribution
related to the PA mixing, which arises due to the second
term in (35). This contribution is

−
1

2GV
ðκAuda0−1μ∂μπþ þ κAusK0−

1Aμ∂μK
þ

þ κAdsK̄00
1Aμ∂μK

0Þ þ H:c: ð49Þ

Collecting the results (47), (48), and (49), we find that
the matrix κA is symmetric ðκAÞij ¼ ðκAÞji, with elements
given by

κ−1Aij ¼ 1þ 8π2

NcGV ½2ðMi þMjÞ2Jij þ ΔJ0ij�
: ð50Þ

In the chiral limit this result coincides with the standard
NJL approach, but it differs in the general case. It follows
then, that GV ¼ Oð1=NcÞ, and, in particular, for Eq. (44)
we find

a ¼ GV

GS
ðκ−1A0 − 1Þ; ð51Þ

where the index 0 means that the function of the quark
masses ðκ−1A Þij is calculated in the chiral limit mi → 0, i.e.,

κ−1A0 ¼ 1þ π2

NcGVM2
0J1ðM0Þ

¼ Z0

Z0 − 1
: ð52Þ

The last equality relates κ−1A0 with the constant Z [25,26,42]
commonly used in the NJL model to get rid of the
PA-mixing effect, Z0 ¼ limmi→0Z.
The first two terms in the expansion of Eq. (50) in

powers of 1=Nc are given by

κ−1Aij ¼ κ−1A0

�
1 −

mi þmj

2M0

ða − δMÞ
�
þOð1=N2

cÞ; ð53Þ

where

δM ¼ a

�
1 − 2ð1 − κA0Þ

�
1 −

Λ4J1ðM0Þ−1
ðΛ2 þM2

0Þ2
��

: ð54Þ

Notice that ΔJ0ij contributes to (53) only starting from the
1=N2

c order. As we will show soon, δM determines the first-
order correction to the current algebra result for masses
of electrically charged and strange pseudoscalars. It is a
function of four parameters Λ, GS, GV , and M0 that
determines the structure of the hadron vacuum.

V. KINETIC TERMS AND DECAY CONSTANTS

Our next task is to obtain the kinetic part of the free
Lagrangian of pseudoscalar fields. To do this, we need the
already known expressions (47) and (48), and, in addition,

one should write out the corresponding contribution of the
second term in (35) that was omitted in (49)

1

4GV
ðκ2Aud∂μπþ∂μπ− þ κ2Aus∂μK

þ
∂μK− þ κ2Ads∂μK̄

0
∂μK0Þ:

ð55Þ

Collecting all these contributions, one finds, for instance
in the case of charged pions, that the kinetic term is
given by

Lπþπ−
kin ¼ ∂μπ

þ
∂μπ

−
�
κ2Aud
4GV

þ Nc

32π2
ð1 − κAudÞ2

× ½2ðMu þMdÞ2J1ðMu;MdÞ þ ΔJ0ud�
�

¼
�
κAud
4GV

�
∂μπ

þ
∂μπ

−: ð56Þ

To give this expression a standard form, one should
introduce the physical pion fields π�ph,

π� ¼
ffiffiffiffiffiffiffiffiffi
4GV

κAud

s
π�ph ¼

1

fπ
π�ph: ð57Þ

The dimensional parameter fπ is nothing other than the
weak decay constant of a charged pion. Similar calculations
in the case of kaons give the values of the corresponding
weak decay constants

fK� ¼
ffiffiffiffiffiffiffiffiffi
κAus
4GV

r
; fK0 ¼

ffiffiffiffiffiffiffiffiffi
κAds
4GV

r
: ð58Þ

The resulting expressions require a more detailed
discussion.
First, they differ from the standard result of the NJL

model, where the constant fπ is estimated through the
quark analog of the Goldberger-Treiman relation. The latter
is a result of current algebra. Therefore, it is valid only in
the leading order of expansion in current quark masses. It
can be easily shown that in the chiral limit the formula (57)
coincides with the result of the standard approach.
Second, using Eq. (53), one obtains from (57) and (58)

the first-order corrections to the current algebra result

fij ¼ F

�
1þmi þmj

4M0

ða − δMÞ
�
; ð59Þ

where

F ¼
ffiffiffiffiffiffiffiffiffi
κA0
4GV

r
¼ Oð

ffiffiffiffiffiffi
Nc

p
Þ ð60Þ
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is the pion weak decay constant in the chiral limit. In
particular, it follows then that

fK�

fπ
¼ 1þms −md

4M0

ða − δMÞ: ð61Þ

It is instructive to compare our result (59) with the result
of 1=NcχPT. In this approach the corrections to fπ and fK
are determined by the constant K6 ¼ 4B0Lr

5=F
2 [43],

where the low-energy coupling constant Lr
5 counts of

OðNcÞ, and the constant B0 ¼ OðN0
cÞ is related to the

quark condensate. Such a comparison yields

a − δM
4M0

↔ K6: ð62Þ

That demonstrates the full agreement between the two
approaches at this stage.
It is well known that the numerical values of the

ratio (61) calculated by the various groups of authors using
the NJL model lie between 1.02 and 1.08 [32] and thus
underestimate the experimental value fK=fπ ¼ 1.19. As
we show below, formula (61) perfectly reproduces the
experimental value, as it also takes place in 1=NcχPT.

VI. MASS FORMULAS AND CURRENT
QUARK MASSES

Let us establish now the mass formulas of π�, K�, K0,
and K̄0 mesons. To do this, we need the corresponding
contribution arising from the last term of the Lagrangian (35)

1

4GS
trfMΣ → −

1

4GS
½ðMu þMdÞðmu þmdÞπþπ−

þ ðMu þMsÞðmu þmsÞKþK−

þ ðMd þMsÞðmd þmsÞK̄0K0�: ð63Þ

Note that Lagrangian L1QL does not contribute to the
pseudoscalar masses.
Now, after redefinitions of fields in Eq. (63), we finally

arrive to the result

Lmass ¼ −
GV

GS

�
1

κAud
ðMu þMdÞðmu þmdÞπþphπ−ph

þ 1

κAus
ðMu þMsÞðmu þmsÞKþ

phK
−
ph

þ 1

κAds
ðMd þMsÞðmd þmsÞK̄0

phK
0
ph

�
: ð64Þ

It follows then that the masses are

M̄2
π� ¼ 1

4GSf2ud
ðMu þMdÞðmu þmdÞ; ð65Þ

M̄2
K� ¼ 1

4GSf2us
ðMu þMsÞðmu þmsÞ; ð66Þ

M̄2
K0 ¼ 1

4GSf2ds
ðMd þMsÞðmd þmsÞ: ð67Þ

Here and below, the overline indicates that the masses were
obtained without taking into account electromagnetic
corrections. It should be emphasized that Eqs. (65)–(67)
differ from similar expressions obtained in [25,26] and in
other available works where the NJL model has been used.
In our result the sum of the current quark masses is
factorized; i.e., the Gell-Mann–Oakes–Renner relation [44]
is already satisfied at this level. Obviously, all above
NJL-based results coincide in the limit of exact SUð3Þf
symmetry. However, when calculating the first 1=Nc
correction, these approaches lead to different results.
In favor of Eqs. (65)–(67), as we will now see, is their
agreement with the results of similar calculations made in
the 1=NcχPT.
Expanding expressions (65)–(67) in the 1=Nc series,

one not only can obtain the known result of the current
algebra [45]

μ̄2
π� ¼ B0ðmu þmdÞ;

μ̄2K� ¼ B0ðmu þmsÞ;
μ̄2K0 ¼ B0ðmd þmsÞ; ð68Þ

where the constant B0 is related to the quark condensate
hq̄qi0 ≡ hūui0 ¼ hd̄di0 ¼ hs̄si0

B0 ¼
2GVM0

GSκA0
¼ M0

2GSF2
¼ −

hq̄qi0
F2

; ð69Þ

but also can move further and obtain the first-order
correction

m̄2
πþ ¼ μ̄2πþ

�
1þmu þmd

2M0

δM

�
; ð70Þ

m̄2
Kþ ¼ μ̄2Kþ

�
1þmu þms

2M0

δM

�
; ð71Þ

m̄2
K0 ¼ μ̄2K0

�
1þmd þms

2M0

δM

�
: ð72Þ

These relations agree with those of 1=NcχPT [8]; i.e., the
following correspondence between parameters takes place:

δM
2M0

↔ K3 ¼ 8
B0

F2
ð2Lr

8 − Lr
5Þ: ð73Þ

As pointed out in [46], in chiral perturbation theory
Lr
8 cannot be determined on purely phenomenological

grounds. Treating Lr
8 as a free parameter, one may obtain

both the positive and the negative signs for the difference
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2Lr
8 − Lr

5. In the framework of 1=NcχPT, Leutwyler
managed to establish the generous low bound for the range
where a truncated 1=Nc expansion leads to meaningful
results: 2Lr

8 − Lr
5 > 0. Based on formulas (62) and (73), it

is easy to express these low-energy constants in terms of the
NJL model parameters

Lr
5 ¼

ða − δMÞGSF4

8M2
0

; Lr
8 ¼

aGSF4

16M2
0

: ð74Þ

As a consequence of (73), we find the 1=Nc correction
ΔM considered in [8]

ΔM ¼ 8

F2
ðM2

K −M2
πÞð2Lr

8 − Lr
5Þ ↔

ms − m̂
2M0

δM; ð75Þ

where m̂ ¼ ðmu þmdÞ=2. The value of ΔM characterizes
the degree of breaking of SUð3Þf symmetry. Although ΔM

cannot be calculated within the framework of 1=NcχPT,
the estimate 0 < ΔM ≤ 0.13 was obtained in [47] based on
additional reasonable considerations.
In the model studied here, the sign of δM coincides with

the sign of the ratio δM=a in Eq. (54), which, as it is shown
in Fig. 1, is a monotonically increasing function of the
variable M0 (at M0 ≥ 0) and becomes strictly positive
beginning with a certain valueM0min. Thus, any solution of
Eq. (41) with M0 > M0min gives δM > 0. As we will show
later, the value of δM is uniquely determined in the model,
but first we should discuss the role of Daschen’s theorem in
the parameter-fixing procedure.
Let us return to mass formulas. From (70)–(72) it

follows that

m̄2
Kþ − m̄2

K0 þ m̄2
πþ

m̄2
K0 − m̄2

Kþ þ m̄2
πþ

¼ mu

md
−
msδM
2M0

�
1 −

m2
u

m2
d

�
; ð76Þ

m̄2
Kþ þ m̄2

K0 − m̄2
πþ

m̄2
K0 − m̄2

Kþ þ m̄2
πþ

¼ ms

md
þmuδM

2M0

�
m2

s

m2
d

− 1

�
: ð77Þ

The current algebra result arises from here in the leading
order of the chiral expansion,

mu

md
¼ μ̄2Kþ − μ̄2K0 þ μ̄2πþ

μ̄2K0 − μ̄2Kþ þ μ̄2πþ
≡ Rx; ð78Þ

ms

md
¼ μ̄2Kþ þ μ̄2K0 − μ̄2πþ

μ̄2K0 − μ̄2Kþ þ μ̄2πþ
≡ Ry: ð79Þ

Additionally, one may wish to take into account the
electromagnetic interaction of charged particles, which
increases the masses of these states:

μ2πþ ¼ μ̄2πþ þ Δ2
el; μ2

π0
¼ μ̄2

π0
¼ μ̄2πþ ; ð80Þ

μ2Kþ ¼ μ̄2Kþ þ Δ̃2
el; μ2K0 ¼ μ̄2K0 : ð81Þ

The difference between the masses of the charged and
neutral pions μπþ > μπ0 is due primarily to the electromag-
netic interaction. The contribution of the strong interaction
is proportional to ðmd −muÞ2 and is thereby negligibly
small. Using the Dashen theorem [48]

Δ2
el ¼ Δ̃2

el; ð82Þ

which is a strict result of the current algebra, one arrives at
the well-known Weinberg ratios [45]

mu

md
¼ 2μ2

π0
− μ2πþ þ μ2Kþ − μ2K0

μ2K0 − μ2Kþ þ μ2πþ
¼ 0.56; ð83Þ

ms

md
¼ μ2Kþ þ μ2K0 − μ2πþ

μ2K0 − μ2Kþ þ μ2πþ
¼ 20.18: ð84Þ

Taking into account the first 1=Nc correction in (76)
and (77) and after the inclusion of electromagnetic cor-
rections, we arrive to the Leutwyler inequalities [8]

mu

md
>

2m2
π0
−m2

πþ þm2
Kþ −m2

K0

m2
K0 −m2

Kþ þm2
πþ

≡ RxD; ð85Þ

ms

md
<

m2
Kþ þm2

K0 −m2
πþ

m2
K0 −m2

Kþ þm2
πþ

≡ RyD; ð86Þ

which are valid at δM > 0 (here and below, the subscript D
marks expressions that are derived with the Dashen
theorem). If δM < 0, the reverse inequalities are fulfilled.
The specific case δM ¼ 0 indicates that the first correc-

tion to the result of the current algebra vanishes and
the Weinberg ratios are satisfied, which is possible if

0.1 0.2 0.3 0.4 0.5 0.6 0.7

–1.0

–0.5

0.5

1.0

FIG. 1. The ratio δM=a [see Eq. (54)] is shown as a function of
M0 (in GeV) at fixed values of Λ ¼ 1.1 GeV, GS ¼ 6.4 GeV−2,
and GV ¼ 3.6 GeV−2. For such a parameter setting, the point
M0min ¼ 0.244 GeV satisfies both the requirement δM ¼ 0 and
Eq. (41).
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M0 ¼ M0min. In this case, at Λ ¼ 1.1 GeV, the rest of
the six parameters GS, GV , mu, md, ms, and Δ2

el can be
fixed by the phenomenological values of the masses mπ0 ,
mπþ , mK0 , mKþ , the weak decay constant of the pion
fπ ¼ 92.3� 0.1 MeV, and the requirement that the
first-order correction to the current algebra result is
suppressed δM ¼ 0 (in this case the Dashen theorem is
exact). As a result, we obtain M0 ¼ M0min ¼ 236 MeV,
GS ¼ 6.35 GeV−2, GV ¼ 4.28 GeV−2; the magnitude of
the quark condensate is h0jq̄qj0i0 ¼ −ð265 MeVÞ3; the
light quark masses are mu ¼ 2.8 MeV, md ¼ 5.0 MeV,
and ms ¼ 101 MeV. The parameter characterizing the
relative magnitude of the breaking of isotopic symmetry
compared to the breaking of SUð3Þf symmetry is

R ¼ ms − m̂
md −mu

¼ 44: ð87Þ

All these results are summarized in Table I [see set
(a) with δM ¼ 0].
The numerical values given in Table I for set (a) appear

to be reasonable in the u and d sectors. However, in the
strange sector the NLO correction M1ðmsÞ ¼ 432 MeV is
almost twice as large as the LO result M0 ¼ 236 MeV.
This strongly violates the main condition of the asymptotic
expansion (42) and means that our assumption δM ¼ 0 fails
for a strange quark. Thus we are led to conclude that
δM > 0. As we already mentioned above, Leutwyler [8]
obtained a similar inequality ΔM > 0 [both parameters are
related through Eq. (75)], from the in-depth analysis of the
spectrum of neutral states π0, η, η0 with the inclusion of
effects caused by the breaking of Uð1ÞA symmetry and the
Zweig rule and classified it as a generous lower bound for
the region where a truncated 1=Nc expansion leads to
meaningful results. We come to a similar conclusion based
solely on the NLO solution of the gap equation.
If the first correction is nonzero and M0 > M0min, i.e.,

δM > 0, the value of the quark condensate increases.
Consequently, the light quark masses decrease.
Therefore, the above estimates for the masses mu, md,
and ms should be considered as an upper bound of
the model.

VII. THE GASSER-LEUTWYLER ELLIPSE AND
HIGHER-ORDER CURVES

Let us return to the analysis of mass formulas (70)–(72)
at δM ≠ 0. A number of sum rules that do not involve δM
can be obtained from these formulas.
Gasser and Leutwyler [43] considered the simplest case

described by a second-order curve in two independent
variables x ¼ mu=md and y ¼ ms=md. We arrive at this
curve using two ratios

R1 ¼
m̄2

Kþ

m̄2
πþ

¼ mu þms

mu þmd

�
1þms −md

2M0

δM

�
; ð88Þ

R2 ¼
m̄2

K0 − m̄2
Kþ

m̄2
K0 − m̄2

πþ
¼ md −mu

ms −mu

�
1þms −md

2M0

δM

�
; ð89Þ

from which it follows that

Q2 ≡ R1

R2

¼ m2
s −m2

u

m2
d −m2

u
: ð90Þ

The right-hand side of this expression depends only on the
ratios x and y of the light quark masses. The locus of these
points is an ellipse:

y2 − x2ð1 −Q2Þ ¼ Q2: ð91Þ

Note that replacing m̄Kþ ↔ m̄K0 in the left-hand side of
Eqs. (88) and (89) reduces to replacing mu ↔ md in the
right-hand side, and it would seem that we arrive at a new
relation:

Q̃2 ≡ m̄2
K0

m̄2
πþ

m̄2
Kþ − m̄2

πþ

m̄2
K0 − m̄2

Kþ
¼ m2

s −m2
d

m2
d −m2

u
: ð92Þ

However, it is easy to see that this equation coincides
with (90) because Q2 ¼ Q̃2 þ 1.

TABLE I. The six parameters of the model Λ, GS;V , mu;d;s, and electromagnetic correction to the masses of charged mesons, Δ2
el, Δ̃

2
el,

are fixed by using the meson massesmπ0 ,mπþ ,mK0 ,mKþ , the weak pion decay constant fπ , and the cutoffΛ as an input [input values are
marked with an asterisk ( �)]. In the first row of the table, set (a), the condition δM ¼ 0 is used as the seventh input value. This set
describes a hypothetical case of the complete absence of the first 1=Nc correction to the mass formulas (70)–(72). Set (b) describes a
realistic case when the first correction is nonzero (here fK and η → 3π decay rates are used as additional input values). All units, except
½GS;V � ¼ GeV−2 and dimensionless ratio R [see Eq. (87)], are given in MeV.

Set δM Λ GS GV mu md ms M0 −hq̄qi1=30 Mu Md Ms F fπ fK R

(a) 0� 1.1� 6.35 4.28 2.8 5.0 101 236 265 248 257 668 89.0 92:2� 131 44
(b) 0.67 1.1� 6.6 7.4 2.6 4.6 84 274 275 283 290 567 90.5 92:2� 111� 40
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Taking into account electromagnetic corrections, accord-
ing to the Dashen theorem, we obtain an ellipse with a
semimajor axis Q → QD,

Q2 → Q2
D ¼ ðm2

K0 −m2
π0
Þðm2

Kþ −m2
πþ þm2

π0
Þ

m2
π0
ðm2

K0 −m2
Kþ þm2

πþ −m2
π0
Þ ;

R1 → R1D ¼ 1þm2
Kþ −m2

πþ

m2
π0

;

R2 → R2D ¼ 1 −
m2

Kþ −m2
πþ

m2
K0 −m2

π0
; ð93Þ

which gives QD ¼ 24.3, R1D ¼ 13.3, R2D ¼ 0.0225 for
physical values of the masses. Obviously, the point ðx; yÞ ¼
ðRxD; RyDÞ belongs to this ellipse. Below, for the sake
of brevity, this point is called the Weinberg point, where
δM ¼ 0 and, consequently, the Weinberg ratios (83)
and (84) are satisfied.
Consider now a set of arbitrary ratios Ri (i ¼ 1; 2;…)

combined from the meson masses (70)–(72),

Ri ¼ ki

�
1þ li

md

2M0

δM

�
; ð94Þ

where coefficients ki and li are functions of x and y. It is
clear that by taking two arbitrary elements of the given set,
say Ri and Rj, we can eliminate the dependence on
mdδM=2M0 and arrive at the equation of the curve in the
ðx; yÞ plane

kikjðli − ljÞ ¼ likiRj − ljkjRi: ð95Þ

If li ¼ lj, the equation simplifies to kiRj ¼ kjRi. This
curve, where i ¼ 1, j ¼ 2, is an ellipse (91). If li ≠ lj, the
curve (95) is of a higher order, and consequently the
allowed values of x and y do not belong to the ellipse.
Hence, we have a set of alternative sum rules to determine
the light quark-mass ratios. The ellipse is distinguished by
two properties: (i) It survives even after accounting for
chiral logarithms. (ii) It has an additional symmetry with
respect to replacement mu ↔ md. Nevertheless, in the
approximation considered here, it is difficult to give a
preference to one of curves. Let us describe the most
important property of the family.
For this purpose, note that the family (95) is enclosed

between two curves. The first one is given by the ratios R1

[see Eq. (88)] and R3,

R3 ¼
m̄2

Kþ þ m̄2
K0 − m̄2

πþ

m̄2
Kþ − m̄2

K0 þ m̄2
πþ

¼ y
x

�
1þ

�
y
x
−
x
y

�
mdδM
2M0

�
: ð96Þ

In this specific case, Eq. (95) leads to the elliptic curve

xðy − 1Þðy − xR3Þ ¼ ðx − yÞð1þ xÞR1 þ y2 − x2; ð97Þ

which has two connected components one of which passes
through the Weinberg point and determines the lower
bound in Fig. 2. To plot the curve (97) we use the physical
values of the meson masses, where electromagnetic cor-
rections are taken into account in accord with the Dashen
theorem; i.e., R1 → R1D, and

R3 → R3D ¼ m2
Kþ þm2

K0 −m2
πþ

2m2
π0
þm2

Kþ −m2
K0 −m2

πþ
: ð98Þ

To establish the upper bound of the family (95) we
consider the ratios R3 and Rx. It leads to the fifth-order
curve

xyð1 − x2ÞðxR3 − yÞ ¼ ðy2 − x2Þðx − RxÞ: ð99Þ

It has three connected components. Figure 2 shows
the component passing through the Weinberg point. It is
also obtained with the Dashen theorem: R3 → R3D and
Rx → RxD; and it lies primarily above the ellipse specified
by Eq. (91). The other curves lie inside indicated bounda-
ries. The common property of the family is that all of them
pass through the Weinberg point. The existence of numer-
ous curves generated by mass formulas (70)–(72) does not
affect the Leutwyler inequalities (85) and (86). The ques-
tion which of the curves (sum rules) is more suitable for
approximating the final result can be clarified only after the
model parameters are fixed.

0.2 0.4 0.6 0.8 1.0
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FIG. 2. Ellipse (dashed line) specified by Eq. (91), where
Q → QD, and curves given by Eq. (97) (lower solid line) and
Eq. (99) (upper solid line) obtained with the Dashen theorem
(R1;3;x → R1D;3D;xD). The dot belonging to all three curves is the
Weinberg point. The curves intersect at the SUð3Þ limit point
ðx; yÞ ¼ ð1; 1Þ.
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VIII. NUMERICAL ESTIMATES

Let us fix the six parameters of the modelΛ,GS,GV ,mu,
md, ms, and electromagnetic corrections to the masses
of charged mesons Δel and Δ̃el. For a direct comparison
with the empirical data and 1=NcχPT results, we have used
the values for the pion and kaon decay constants,
fπ ≃ 92 MeV, fK ≃ 110 MeV, and the masses of pseudo-
scalar mesons: mπ0 , mπþ , mK0 , mKþ . Let us recall that
Δ2

el ≃m2
πþ −m2

π0
. In addition, as noted above, we choose

the cutoff Λ according to a generally accepted estimate
of the scale of spontaneous chiral symmetry breaking
ΛχSB ≃ 4πfπ [33]. To fix Δ̃el we use (following the
Leutwyler’s analyses [47]) the η → 3π decay. The latter
requires some clarifications.
The Dashen theorem is valid only in the leading order

of chiral expansion. Since δM ≠ 0, Eq. (82) no longer
holds. The inequality Δ̃2

el ≠ Δ2
el ¼ m2

πþ −m2
π0

should be
considered instead. It follows that the ratio (90) depends
now on Δ̃2

el,

Q2
D̃
¼

�
m2

K0

m2
π0

− 1

��
m2

K0

m2
K0 −m2

Kþ þ Δ̃2
el

− 1

�
: ð100Þ

In [47] it was argued that the value of Q2
D̃
can be extracted

accurately from the observed η → 3π decay width. The
reason is that electromagnetic contributions to this process
are suppressed, and, as a consequence, determination ofQ2

D̃
is less sensitive to the uncertainties therein. The current
knowledge based on η → 3π gives the range QD̃ ¼ 22.3�
0.8 [49], which leads to Δ̃el ¼ ð47.1 ∓ 4.5Þ MeV corre-
spondingly. For comparison, Δel ¼ 35.5 MeV. The gray
elliptic band in Fig. 3 corresponds to the range Δ̃el

indicated above. Similar bands are also plotted for the
higher-order curves. Obviously, the closer the value of Δ̃el
to Δel, the closer the curve is to the corresponding one
obtained taking into account Dashen’s theorem.
The interval we use slightly differs from the recent result

QD̃ ¼ 22.1� 0.7 [50]. Nonetheless, we prefer to consider a
more wider region because the lattice QCD collaborations
report on larger values: QD̃ ¼ 23.4� 0.6 [51] for
Nf ¼ 2þ 1 and QD̃¼23.8�1.1 [52] for Nf¼2þ1þ1

simulations.
The above estimate for Δ̃el means that the mass differ-

ence between charged and neutral kaons due to electro-
magnetic interactions is ðmKþ −mK0Þel¼ð2.2∓0.4ÞMeV.
It agrees with the result of lattice QCD calculations
ðmKþ −mK0Þel ¼ 1.9 MeV [53].
The input values give the following estimates for the

couplings GS ¼ 6.6 GeV−2 and GV ¼ 7.4 GeV−2. These
constants, in particular, describe the theory in the limit
Nc → ∞, i.e., when the masses of the current quarks
vanish and fπ ¼ fK ¼ F. This means that their values
should mainly determine some vacuum characteristics.
Indeed, after fixing the parameters, we see that

ffiffiffiffiffiffiffiffi
1

2GS

s
≃M0 ≃ jhq̄qi1=30 j;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0 − 1

4GVZ0

s
≃

ffiffiffiffiffiffiffiffiffiffiffi
1

16GV

s
≃ F: ð101Þ

Some of the numerical estimates are given in the second
line of Table I. For Z0 we have Z0 ¼ 1.32, and taking
into account the 1=Nc correction this gives Zπ ¼ 1.34,
ZK ¼ 1.51, which if averaged coincides with the estimate
of the standard NJL model Z ¼ 1.4 [25].
The Gell-Mann, Oakes, and Renner result for B0 is

modified at NLO by the factor, which is the ratio of the
squares of the masses of the pseudoscalar meson, to its
value at LO, i.e.,

B0 → BP ¼ B0

�
m̄2

P

μ̄2P

�
; ð102Þ

where P ¼ π�; K�; K0 − K̄0. Numerically the correction is
less than 1% for pions and around 11% for kaons. Thus, the
correction of Oðm2

i Þ in the 1=Nc expansion of the pseu-
doscalar masses is much less than the LO result. This
supports the assumption made that the quark condensate is
of the order Nc.
Mass formulas (70)–(72) allow one to obtain the absolute

values of the quark masses, if one knows the vacuum
characteristics encoded in the parameter B0 and in the ratio
δM=M0. We need also to take into account the electro-
magnetic corrections. Given that the difference of charge
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FIG. 3. The area of admissible values of the ratios x, y is formed
by the intersection of three bands corresponding to the interval
Δ̃el ¼ ð47.1 ∓ 4.5Þ MeV at the ellipse (gray band) and at curves
of higher order (97) and (99). The dot belonging to all three bands
is the estimate of the NJL model.
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and neutral pion masses has mainly an electromagnetic
origin, one finds

m̄2
π� ¼ m2

π� − Δ2
el ¼ m2

π0
;

m̄2
K� ¼ m2

K� − Δ̄2
el;

m̄2
K0 ¼ m2

K0 ; ð103Þ

where mπ0 , mπ� , mK� , and mK0 are the physical masses of
the states. We collect our results in the first line of Table II.
The error bars there indicate the change in values within the
range Δ̃el ¼ ð47.1 ∓ 4.5Þ MeV. The results of calculations
in 1=NcχPT [54] (second line) and data quoted by the
Particle Data Group (PDG) [55] (third line) are also
given there.
We can conclude that the results of the 1=Nc NJL model

are in a remarkable agreement with the estimates made
in [54]. This is also evidenced by the estimates we obtain
for a number of parameters of the 1=Nc chiral perturbation
theory. For the problem considered here these are the
following constants: Lr

5, L
r
8, ΔM, R. Our estimates are

Lr
5¼2.1×10−3; Lr

8¼1.3×10−3; ΔM¼0.10: ð104Þ

This agrees with the phenomenological estimates of these
low-energy coupling constants Lr

5 ¼ ð2.2� 0.5Þ × 10−3

and Lr
8 ¼ ð1.1� 0.3Þ × 10−3 in [43]. The parameter ΔM

cannot be calculated within 1=NcχPT. Our result is
compatible with the estimate 0 < ΔM ≤ 0.13 [8]. For the
ratio R the 1=NcχPT yields R ¼ 40.8� 3.2. Our calcu-
lations give R ¼ 40.3þ2.9

−2.8 . Let us also indicate the inde-
pendent estimate R ¼ 41� 4 obtained in the work [56].
Evaluation of the absolute values of the current quark

masses shows that our result differs little from the standard
estimates obtained in the NJL model. For comparison,
let us point out the paper [25], where it was found that
mu ¼ md ¼ 3 MeV and ms ¼ 80 MeV. Recall that the
resulting masses only make sense in the limited context of a
particular quark model and cannot be related to the quark-
mass parameters of the Standard Model. However, the
quark-mass ratios found here have a broader meaning
because they do not depend on the absolute normalization
of the quark mass.

The point in Fig. 3 inside the gray band corresponds to
the central value of the ratios mu=md and ms=md presented
by the set 1=Nc NJL in Table II.
It is also interesting to note that the bounds on the two

ratios mu=md and ms=md can be established solely on the
sum rules (95). Since all curves (95) intersect at a Weinberg
point, considering only the extreme curves automatically
cuts out the area belonging to the entire curve family in
question. In Fig. 3 we show two bands obtained on the
bases of the extremal curves (97) and (99), and from their
intersection one can deduce that

mu

md
¼ 0.50� 0.09;

ms

md
¼ 19.22� 0.62: ð105Þ

These ratios do not imply any definite value for the
parameter δM and therefore can be considered as the
maximum range for possible values mu=md and
ms=md that arises in the truncated theory based on
formulas (70)–(72). This result agrees well with the
values mu=md ¼ 0.474þ0.056

−0.074 and ms=md ¼ 19.5� 2.5
quoted by the Particle Data Group [55].
A narrower interval is obtained if we additionally require

the fulfillment of the Leutwyler’s inequalities (85) and (86),
i.e., δM > 0. In this case, the result reads

mu

md
¼ 0.53� 0.06;

ms

md
¼ 19.13� 0.53: ð106Þ

Since we are dealing with a nonrenormalizable model,
the results depend on the regularization scheme used.
Regularization is one of the elements that make up the
basis of the NJL model, and different versions of the model
differ in its choice. This aspect of the NJL model is
reviewed in detail by Klevansky [32]. The proper-time
regularization, which we use here, has also been carefully
analyzed in [57]. Nevertheless, we would like to dwell on
one property of the gap equation, which should be kept
in mind when comparing results of calculations with
experimental data. The solution of the gap equation (41),
M0ðΛÞ, changes drastically with Λ at a fixed value of GS.
Indeed, one easily finds that M0ð1.0 GeVÞ ¼ 19.7 MeV,
M0ð1.1 GeVÞ ¼ 274 MeV, M0ð1.2 GeVÞ ¼ 468 MeV for
GS ¼ 6.6 GeV−2. Such behavior is associated with the
original quadratic divergence of the integral J0ðM0Þ and is

TABLE II. The light quark masses (in MeV) and their ratios obtained in the 1=Nc NJL model are compared with the results of
1=NcχPT and PDG. In the first line, the error bars indicate the change in values within the range Δ̃el ¼ ð47.1 ∓ 4.5Þ MeV
correspondingly.

Set mu md ms mu=md ms=md ms=m̂ ms=mu R

1=NcNJL 2.57� 0.07 4.56−0.06þ0.08 83.7� 0.1 0.564−0.025þ0.023 18.3 ∓ 0.3 23.46 ∓ 0.02 32.5 ∓ 0.9 40.3þ2.9
−2.8

1=NcχPT [54] 0.553� 0.043 18.9� 0.8 24.4� 1.5 34.4� 3.7 40.8� 3.2
PDG [55] 2.16þ0.49

−0.26 4.67þ0.48
−0.17 93.4þ8.6

−3.4 0.474þ0.056
−0.074 19.5� 2.5 27.33þ0.67

−0.77
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typical for any of the regularization schemes commonly
used in the NJL model [32]. As a consequence, the cutoff Λ
is sharply fixed, because even a 1% change in the value
of the cutoff Λ leads to about a 7% change in the value
of M0, namely

Λ ¼ 1.10� 0.01 GeV; M0 ¼ 274� 20 MeV: ð107Þ

This observation is crucial for a systematic study of the
theoretical uncertainties associated with the regularization
scheme used in the NJL model. The reason is that all other
vacuum characteristics somehow depend on these two
parameters and GV . In particular, we find a ¼ 3.50−0.28þ0.33,

δM ¼ 0.67þ0.10
−0.12 , F ¼ 90.54þ2.82

−3.10 MeV, and jhq̄qi1=30 j ¼
275þ6

−7 MeV. The above estimates make it possible to
understand the magnitude of the theoretical uncertainties
associated with the regularization scheme we apply.
The property of the solution of the gap equation

mentioned above has a significant effect not only on the
value of M0 but also on the value of the first correction to
the masses of the constituent quarks, which is proportional
to the derivative M0ð0Þ ¼ a entering the truncated for-
mula (43). The mass of the strange quark Ms ¼ 567 MeV
indicated in Table I [see set (b)] follows from (43).
Although this result agrees with the estimate Ms ¼
522.2 MeV [58], obtained by numerically solving the
gap equation in the standard approach, there may be doubts
about the self-consistency of our calculations, since the
condition M0 ≫ M1 is not satisfied. Formally, it certainly
holds for Nc → ∞, but for Nc ¼ 3 the NLO correction
M1 ¼ ams ¼ 293 MeV to the LO result, M0 ¼ 274 MeV,
turns out to be comparable with it. The pictures emerging at
Nc ¼ ∞ and Nc ¼ 3 seem to be quantitatively different
from each other. Does this mean that the 1=Nc expansion is
inapplicable in the case of the s-quark? Of course not. There
are a number of similar examples [59]. Such a numerical
deviation occurs when a large dimensional parameter
penetrates into coefficients of the 1=Nc expansion. In the
case considered, that is B0 ¼ 2.5 GeV—a parameter asso-
ciated with the quark condensate. It enters a as

a ¼ B0

2M0

−
GV

GS
: ð108Þ

Because of B0 the pions and kaons are surprisingly heavy,
given the light quark masses [60]. The similar effect we
observe in the mass of the strange constituent quark. Indeed,
if one neglects the small mass of the up quark, the
corresponding part of Eq. (43) can be written as

Ms ≃M0 þ
μ̄2Kþ

2M0

�
1 −

2GVM0

GSB0

�
; ð109Þ

i.e., the NLO correction to the strange quark mass is
proportional to the kaon mass. PA transitions reduce factor

1 to 0.76, which together with another factor μ̄Kþ=ð2M0Þ
determines the magnitude of the correction M1. I should
emphasize that the same mechanism is behind the violation
of the M0 ≫ M1 condition at Nc ¼ 3 as behind the large
value of the kaon mass. The latter problem should be
explained by QCD.

IX. CONCLUSIONS

Here an attempt is made to implement, within the
framework of the NJL model, the well established idea
of Leutwyler, according to which the masses of light quarks
are 1=Nc suppressed. This hypothesis previously turned out
to be fruitful in constructing the effective Lagrangian of
the 1=NcχPT. Extending this idea to the NJL model, we
conclude that a coherent picture of masses and decay
constants of electrically charged and strange pseudoscalars
arises as well.
Let us emphasize that in the NJL model, the vertices of

the effective meson Lagrangian result from a direct
calculation of the one-loop quark diagrams. This procedure
needs to account for the effects of explicit chiral symmetry
breaking. Many authors have taken steps in this direction.
Still, we find that the approach presented above leads to
results and to a formulation of the situation that have not yet
been reported in the literature (excluding a short letter
published recently [61]). In particular, employing a recently
developed method based on the Fock-Schwinger proper-
time asymptotic expansion and the Volterra series, we
demonstrate that this tool fairly reproduces the symmetry
breaking pattern grasped by the effective Lagrangian of
the 1=NcχPT.
The mass formulas obtained take into account the first

1=Nc correction to the result of current algebra. At this
level it is possible to establish a set of mutually exclusive
relations that directly relate the masses of π�, K�, K0,
and K̄0 mesons to the ratios of quark masses. We show
that the η → 3π decay data do not allow giving preference
to any one of the relations, but single out a physically
significant range associated with all of them. The exist-
ence of such a range makes it possible to set limits for
the light quark-mass ratios 0.47 < mu=md < 0.59 and
18.60 < ms=md < 19.66, if one additionally requires that
the Leutwyler inequalities are satisfied.
We have not considered here neutral π0, η, and η0 states.

They are the subject of a separate work, which is being
prepared.
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