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The impact of a strong electromagnetic background field on otherwise perturbative QED processes is
studied in the momentum-space formulation. The univariate background field is assumed to have finite
support in time, thus being suitable to provide a model for a strong laser pulse in plane-wave
approximation. The usually employed Furry picture in position space must be equipped with some
regularizing procedure, also to ensure the Ward identity. The momentum space formulation allows
generically for an easy and systematic account of such expressions, both globally and order-by-order in the
weak-field expansion. In the limit of an infinitely long-acting (monochromatic) background field, these
terms become gradually suppressed, and the standard perturbative QED Feynman diagrams are recovered
in the leading-order weak-field limit. A few examples of three- and four-point amplitudes are considered to
demonstrate the application of our Feynman rules which employ free Dirac spinors, the free photon
propagator, and the free fermion propagator, while the external field impact is solely encoded in the
fermion-fermion-photon vertex function. Properties of the latter vertex function are elaborated in some
detail. The appearance of on/off shell contributions, singular structures, and Oleinik resonances is pointed
out.
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I. INTRODUCTION

With the advent of permanently increasing laser
intensities by advanced technologies [1] one gets access
towards the strong-field regime of quantum electrodynam-
ics (QED) [2] in a hitherto uncharted region of parameter
space. Among the famous examples are the “vacuum
break-down” by the Sauter-Schwinger effect (cf. [3–6]
for recent activities and entries to extensive citations) and
the unsettled implications [7–9] of the Ritus-Narozhny
conjecture (cf. [10] for an introduction). While QED
delivers unprecedentedly accurate results in certain regions
of the parameter space, at high energies of the involved
particles, and for processes in strong background fields
there is still room for testing the theory for “physics beyond
the Standard Model” or verifying long-standing predic-
tions. For instance, the soft-photon theorems—at the heart
of the infra-red (IR) structure of QED—seem to fail when
many hadrons are involved in the final state of high-energy

strong-interaction collisions. This issue triggered activities
for new detector concepts and plans of experimental
investigations at the Large Hadron Collider (LHC) [11].
In fact, Strominger’s IR triangle [12] finds recently much
interest culminating in “new symmetries of QED” [13],
see e.g. [14].
The current standard approach to calculations of QED

processes in strong background fields deploys the Furry
picture in position space. Fermions (electrons and posi-
trons) are dressed by accounting exactly for the (quasi-
classical) interaction with the electromagnetic background
field, while the interaction of fermions with photons is dealt
with in order-α perturbative expansion (α ≈ 1=137; the
fine-structure constant), see [15–17] for reviews. A con-
venient model of the laser field is accomplished in the
plane-wave approximation. The external field, taken as
given background (for backreaction dynamics, cf. [18,19]),
depends then only on one variable, the invariant phase
ϕ ≔ k · x ¼ ωt−, where kμ is the reference momentum of
the laser field with central frequency ω ≔ k0 and t− ¼
x0 − xk is the light-front time in a coordinate system where

k⃗ke⃗z. Due to the high symmetry, the Dirac equation can be
solved exactly, delivering the Volkov solution, which
depends trivially on three components of space-time and,
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generally, highly nontrivial on ϕ or t− via the background.
For a laser pulse, the background has finite support in the
variables ϕ and t−, and the details of the temporal structure
shape the final phase-space distribution in a distinct
manner. The limiting case of an infinitely long-acting
external field is called a monochromatic field. It is to be
contrasted with the sandwich field—where, like in the
situation of a passing gravitational wave—an observer sees
the vacuum, followed by the pulse, and is left afterward in
the vacuum again, irrespective of memory effects imparted
on test particles.
It is often taken for guaranteed that the weak-field

limit of the background field (which is a classical field)
and the monochromatic limit (i.e. infinite support at
constant strength) yields the standard perturbative QED
results obtained via Feynman diagrams in momentum
space. The role of loops is less obvious in that correspon-
dence. A particular situation is when considering a short
weak (classical background) field pulse; a straightforward
treatment by perturbative QED via Feynman diagrams does
not catch the features caused by the higher/lower Fourier
components of the weak field, see [20]. In particular, [21]
points out that, to preserve the Ward identity, one has to
supplement the Furry-picture position-space Feynman
diagrams by some terms related to regularization and
gauge invariance. It happens that a concise formulation
in momentum space1 provides, in a clear and systematic
manner, such necessary terms, with their origin and relation
to gauge invariance analogous to position space.
It is the goal of the present paper to dilate on the strong-

field QED Furry picture in the momentum space. Our
approach has been outlined in [23]. The key is to employ
Ritus matrices [24] and to accumulate all dependencies on
the external classical field in the dressed vertex [25,26],
while keeping vacuum photon and fermion lines for
propagators and in/out states. Our presentation enables
easy access to the systematic expansion of amplitudes and
probabilities/cross sections in powers of the classical laser
intensity parameter a0. In the lowest order of small a0 we
obtain “pulsed perturbative QED” which accounts for
temporal pulse shape effects [20,23]; the very special case
of a monochromatic external classical field recovers stan-
dard perturbative QED.
Our paper is organized as follows. In Sec. II we present

the formal development of the momentum-space Feynman
rules with emphasis on implementing gauge invariance
and preserving the Ward identity, the definition of the

fermion-fermion-photon vertex, and the graphical repre-
sentation. Section III is dedicated to several limiting cases;
the monochromatic limit is considered and some remarks
on soft factors are supplied as well. Examples of applica-
tions are introduced in Sec. IV. The explication of the
three-point amplitude, that is for the one-vertex processes
nonlinear Compton/Breit-Wheeler/one-photon annihila-
tion, is spelt out in Sec. V to demonstrate the path from
our rules towards the basic formulation of already exhaus-
tively analyzed phenomena. The two two-vertex processes
and related four-point amplitudes are dealt with in Sec. VI
with some details with respect to nonlinear two-photon
Compton and nonlinear Møller scatterings and crossing
channels. Special aspects of Oleinik resonances, singularity
structures, and the monochromatic limit are uncovered
here. We conclude in Sec. VII.

II. FEYNMAN RULES FOR FURRY PICTURE
IN MOMENTUM SPACE

A. Background-field description

The following considerations apply to Lorenzian null
fields, i.e. the classical background field has the structure

E⃗ ¼ −∂tA⃗ (electric field) and B⃗ ¼ ∇!× A⃗ (magnetic field)
with four-potential Aμ ¼ ðA0; A⃗Þ in Lorenz (∂μAμ ¼ 0) and
Weyl (A0 ¼ 0) gauge

Aμ ¼ m
jeja0gðϕ;ΔϕÞ½ε

μ
1 cosðξÞ cosðϕþ ϕCEPÞ

þ εμ2 sinðξÞ sinðϕþ ϕCEPÞ�; ð1Þ

where, in units with c ¼ ℏ ¼ 1, m and e denote the
electron’s rest mass and electric charge, εμ1;2 refer to the
laser’s polarization vector [e.g. εμ1 ¼ ð0; 1; 0; 0Þ and εμ2 ¼
ð0; 0; 1; 0Þ in a reference frame where kμ ¼ ωð1; 0; 0; 1Þ],
and the carrier envelope phase reads ϕCEP. Side conditions
specify further this model of a laser pulse in plane-wave
approximation:

k2 ≔ k · k ¼ 0 ðnull fieldÞ;
k · ε1;2 ¼ 0 ðtransversalityÞ; εi · εj ¼ −δij; ð2Þ

ξ ¼
�
0 or π

2
ðlin: polarizationÞ;

� π
4

ðcirc: polarizationÞ; ð3Þ

or elliptic polarization for other values of ξ. The quantity
gðϕ;ΔϕÞ denotes the pulse shape function (or envelope for
a shortcut) with Δϕ as the pulse width parameter. Scalar
products of four-vectors are henceforth noted as dot
products.

1The nontrivial relation of position-space Feynman rules and
momentum-space Feynman rules is phrased in [22] as follows.
“When deriving the momentum-space Feynman rules, we have
formally integrated over the position of the photon emission
vertex in spacetime, under the assumption that emission at long
distances should be sufficiently suppressed. Unfortunately, it is
not, a consequence of the fact that QED (like all unbroken gauge
theories) has long-range interactions.”
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B. Dressed vertex decomposition

The dressed vertex is defined by [25,26]

Δμ ≔
Z

d4xĒp0 ðxÞð−ieγμÞEpðxÞeik0·x ð4Þ

¼ −
ie
2π

Z
dlΓμðl; p; p0jkÞ

× ð2πÞ4δð4Þðpþ lk − p0 − k0ÞÞ; ð5Þ

where p (p0) is the in(out) going fermion four-momentum,
and the outgoing photon four-vector is denoted by k0.

By inserting the Ritus matrices, e.g. Ep ¼ ð1þ e =k=A
2k·pÞ

expfiSpðxÞg with the Hamilton-Jacobi action SpðxÞ¼
−p ·x− 1

2k·p

R ϕ¼k·x
ϕ0

dϕ0½2ep ·Aðϕ0Þ−e2A2ðϕ0Þ�, the second
line follows, defining the dressed vertex function:

Γμðl; p; p0jkÞ ≔
Z

dϕ

�
1 − e

=k=A
2k · p0

�
γμ
�
1þ e

=k=A
2k · p

�

× expfSp0 − Sp þ p0 · x − p · xg ð6Þ

¼ γμB0ðlÞ þ Γμν
1 B1νðlÞ þ Γμ

2B2ðlÞ: ð7Þ

Note (i) the crucial “photon number parameter” l as Fourier
conjugate of the phase ϕ and (ii) the decomposition into
elementary vertices fγμ;Γμν

1 ;Γμ
2g, depending on fp; p0; kg,

γμ∶ Dirac matrix obeying ½γμ; γν�þ ¼ 2gμν; ð8Þ

Γμν
1 ¼ e

�
γμ=kγν

2k · p
þ γν=kγμ

2k · p0

�
; ð9Þ

Γμ
2 ¼ −e2

=kkμ

2k · pk · p0 ; ð10Þ

and phase integrals fB0; B
μ
1; B2g, depending on l as well

B0 ¼
Z

∞

−∞
dϕ expfilϕþ iGðϕÞg; ð11Þ

Bμ
1 ¼

Z
∞

−∞
dϕ expfilϕþ iGðϕÞgAμðϕÞ; ð12Þ

B2 ¼
Z

∞

−∞
dϕ expfilϕþ iGðϕÞgA2ðϕÞ: ð13Þ

The function G reads

Gðϕ;ϕ0Þ ¼ αμ1

Z
ϕ

ϕ0

dϕ0Aμðϕ0Þ þ α2

Z
ϕ

ϕ0

dϕ0A2ðϕ0Þ; ð14Þ

where ϕ0 → −∞ is a useful choice for pulses and

αμ1¼e

�
p0μ

k ·p0−
pμ

k ·p

�
; α2¼−e2

�
1

k ·p0−
1

k ·p

�
: ð15Þ

The phase integral (11) in Eq. (7) needs a regularization
which takes care of the Ward identity k0 · Γ ¼ 0. As
explained in some detail in the next subsection, this is
accomplished by

B0ðlÞ ¼ πGδðlÞ − P
�
αμ1B1μ

l
þ α2B2

l

�
; ð16Þ

where the instruction P means taking Cauchy’s principle
value and

G¼ expfiGþgþexpfiG−g; G�≔ lim
ϕ→∞

Gð�ϕÞ: ð17Þ

C. Ward identity and regularization of B0

In the case of an external photon K attached to
the vertex Γ, the condition K · Γ ¼ 0 ensures the
independence on the arbitrary gauge function qðKÞ,
when the polarization four vector is gauged according
to ε → ε0 þ qK · Γ. Analogously, the photon propagator

Dμν ¼ i
K2þiϵ

�
−ημν þ ð1 − ξÞ KμKν

K2−iϵ

�
, connecting two adja-

cent vertices, does not leave any dependence of the gauge
parameter ξ on the structure Γ ·D · Γ if the same Ward
identity K · Γ ¼ 0 is fulfilled. Sandwiching the Ward
identity by Dirac spinors yields, for K ¼ k0,2

0 ¼ ūp0k0μΓμup

¼ ½ūp0k0μγμup�B0 þ ½ūp0k0μΓ
μν
1 up�B1ν

þ ½ūp0k0μΓ
μ
2up�B2; ð18Þ

where fB0; B1ν; B2g denote the phase integrals (11), (12),
(13) and fγμ0;Γμν

1 ;Γμ
2g are the elementary vertices (9), (10)

(for both we suppress the momentum dependence for now).
The free Dirac spinors in the side-condition (18) appear
either if the vertex is attached to in/out fermion lines or by
propagators, where the spin sum decomposition pþm ¼P

σ uσpūσp (analog for the other Dirac spinors) can be used.
The energy-momentum balance pþ lk ¼ p0 þ k0 holds at
each vertex, which is implied by the delta distribution
in the fully dressed vertex Γ, and the Ward identity (18)
of the dressed vertex function reads 0 ¼ ðlB0ðlÞþ
αμ1B1μðlÞ þ α2B2ðlÞÞ½ūp0=kup� upon using Dirac equations
in momentum space, ðp −mÞup ¼ 0 and ūp0 ðp0 −mÞ ¼ 0,
respectively. This implies a severe constraint for the phase
integrals:

2Strictly speaking, this treatment refers essentially to on shell
fermions. However, in gauge theories more general identities
appear, known as Ward-Takahashi identities, where some of the
external fermions are off shell. Such relations require further
considerations with respect to dressed vertex.
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0 ¼ lB0ðlÞ þ αμ1B1μðlÞ þ α2B2ðlÞ; ð19Þ

being equivalent to the Ward identity (18) and shows that
the phase integrals fB0; B1ν; B2g are not independent. The
relation (19) is a well-known formula, which appears in
several investigations of specific processes in strong-field
QED, e.g. [27] in the case of Compton scattering or for the
trident process [28]. However, the connection to the Ward
identity and, therefore, to gauge invariance was not
stressed there.
The Ward identity (18) must be solved for one of the

phase integrals, e.g. B0, in a distributional manner. This can

be formulated as follows. Let be b0ðlÞ a solution of Eq. (19),
i.e. 0 ¼ lb0ðlÞ þ αμ1B1μðlÞ þ α2B2ðlÞ, then b̂0ðlÞ ≔
b0ðlÞ þ GδðlÞ is a solution as well, where G is an arbitrary,
but finite, function of the momenta. This seems trivial,
becauselδðlÞ ¼ 0, but it turns out that this term leads to non-
negligible contributions. However, the Ward identity (19)
does not determine the delta distribution’s prefactor G.
Instead, it can be derived by regulating the integral in the
definition of B0, Eq. (11). Adapting the procedure in [29] for
Compton scattering in a generic case by inserting e−ϵjϕj with
ϵ > 0 in the integral in Eq. (11) we get

B0ðlÞ ¼ lim
ε→0þ

Z
∞

−∞
dϕe−εjϕjeilϕeiGðϕÞ ð20Þ

¼ lim
ε→0þ

�Z
0

−∞
dϕeðilþεÞϕeiGðϕÞ þ

Z
∞

0

dϕeðil−εÞϕeiGðϕÞ
�

¼ lim
ε→0þ

�
eðilþεÞϕeiGðϕÞ

ilþ ε

				0
−∞

−
i

ilþ ε

Z
0

−∞
dϕeðilþεÞϕGðϕÞeiGðϕÞ þ eðil−εÞϕeiGðϕÞ

il − ε

				∞
0

−
i

il − ε

Z
∞

0

dϕeðil−εÞϕGðϕÞeiGðϕÞ
�
; ð21Þ

where we use partial integration and the shortcutG0 ≔ d
dϕG.

Considering the nonintegral terms of B0, one gets

lim
ϵ→0þ

�
eðillþϵÞϕeiGðϕÞ

ilþ ϵ

				0
−∞

þ eðil−ϵÞϕeiGðϕÞ

il − ϵ

				∞
0

�

¼ 2 lim
ϵ→0þ

�
ϵ

ϵ2 þ l2

�
eiGð0Þ ¼ 2πδðlÞeiGð0Þ: ð22Þ

In the very last step, we perform the limit in a distributional
manner. To evaluate the other terms in Eq. (21), we consider
the integral

R
0
−∞ dϕeðilþϵÞϕG0ðϕÞeiGðϕÞ which is finite for

every ϵ ≥ 0 due to the proportionalityG0ðϕÞ ∼ AμðϕÞ for all
ϕ, where Aμ is assumed to vanish at the lower limit of the
integral, e.g. limϕ→−∞ AμðϕÞ ¼ 0. The same holds for the
other integral, so the limit in these integrals can be executed
to get

lim
ϵ→0þ

�
i

ilþ ϵ

Z
0

−∞
dϕeilϕG0eiG þ i

il − ϵ

Z
∞

0

dϕeilϕG0eiG
�

ð23Þ

¼ lim
ϵ→0þ

1

2

��
i

ilþ ϵ
þ i
il − ϵ

�Z
∞

−∞
dϕeilϕG0eiG

þ
�

i
ilþ ϵ

−
i

il − ϵ

�

×

�Z
0

−∞
dϕeilϕG0eiG −

Z
∞

0

dϕeilϕG0eiG
��

; ð24Þ

where we apply the identity uwþ vz ¼ uþv
2
ðwþ zÞ þ

u−v
2
ðw − zÞ with fu; v; w; zg ∈ C. Starting with the first

term in Eq. (24), we get

lim
ϵ→0þ

1

2

�
i

ilþ ϵ
þ i
il − ϵ

�Z
∞

−∞
dϕeilϕG0eiG

¼ P
�
1

l

Z
∞

−∞
dϕeilϕG0eiG

�
ð25Þ

by using

lim
ϵ→0þ

Z
b

a
dx

x2

x2 þ ϵ2
HðxÞ ¼ P

Z
b

a
dxHðxÞ; ð26Þ

with an arbitrary function H∶ða; bÞ → C. The second term
in Eq. (24) contains again a delta-distribution,

lim
ϵ→0þ

1

2

�
i

ilþ ϵ
−

i
il − ϵ

�

×

�Z
0

−∞
dϕeilϕG0eiG −

Z
∞

0

dϕeilϕG0eiG
�

ð27Þ

¼ iπδðlÞ
�Z

0

−∞
dϕeilϕG0eiG −

Z
∞

0

dϕeilϕG0eiG
�

ð28Þ

¼ iπδðlÞ
�Z

0

−∞
dϕG0eiG −

Z
∞

0

dϕG0eiG
�
; ð29Þ
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where we use δðxÞHðxÞ ¼ δðxÞHð0Þ in the last step. To
evaluate these integrals, we use G0eiG ¼ −iðeiGÞ0,Z

0

−∞
dϕG0eiG −

Z
∞

0

dϕG0eiG ¼ 1

i

�
eiG

				0
−∞

− eiG
				∞
0

�

¼ 1

i
ð2eiGð0Þ − eiGþ − eiG−Þ

ð30Þ
with the abbreviation G� ≔ limϕ→∞Gð�ϕÞ. Finally, we
insert Eqs. (22) and (24) in Eq. (21) and repeat the evaluation
as above, to obtain

B0ðlÞ ¼ ðeiGþ þ eiG−ÞπδðlÞ − P
�
1

l

Z
∞

−∞
dϕeilϕG0eiG

�
:

ð31Þ
Note the independence on both Gð0Þ and ϕ0 as a conse-
quence of Eqs. (21), (22), and (30). Considering G0ðϕÞ ¼
αμ1AμðϕÞ þ α2A2ðϕÞ [cf. Eq. (14)] and the definitions of Bμ

1

aswell asB2 in Eqs. (12) and (13), respectively, we canwrite
B0 in terms of the other phase integrals as

B0ðlÞ ¼ πδðlÞðeiGþ þ eiG−Þ − P
�
αμ1
l
B1μðlÞ þ

α2
l
B2ðlÞ

�

ð32Þ
¼ πδðlÞGþ B̂0ðlÞ; ð33Þ

where we introduce the abbreviation

Gðp; p0; kÞ ≔ exp ðiGþðp; p0; kÞÞ þ exp ðiG−ðp; p0; kÞÞ
ð34Þ

with the asymptotic values G� (17) of the non-
linear phase (14) as well as the finite phase integral

B̂0ðlÞ ≔ −P½α
μ
1

l B1μðlÞ þ α2
l B2ðlÞ�. Finally, it is easy to

see that the regularized version (32) of the phase integral
solves Eq. (18), which implies the solution of the Ward
identity Eq. (19).

D. Final version of the vertex decompositon

Inserting the regularized version of the phase
integral (32), the dressed vertex function (7) decomposes
eventually as

ΓμðlÞ ¼ Γμ
divðlÞ þ Γμ

regðlÞ; ð35Þ
Γμ
divðlÞ ≔ γμπGδðlÞ; ð36Þ

Γμ
regðlÞ ≔

�
Γμν
1 ðlÞ − P

γμαν1
l

�
B1νðlÞ

þ
�
Γμ
2 − P

γμα2
l

�
B2ðlÞ: ð37Þ

We have suppressed the pertinent arguments p; p0; k in all
functions, but highlighted the l dependence. The term
labeled by “div” could be named “gauge invariance restora-
tion term”, since it emerges just from that requirement.
One may interpret these parts of the dressed vertex as

follows. The divergent part Γμ
div, Eq. (36), enforces l ¼ 0.

Therefore, it can be considered as part of the dressed vertex
function with no momentum exchangewith the background
field. This has no contribution to one-vertex processes like
nonlinear Compton scattering or nonlinear Breit-Wheeler
pair production due to the vanishing physical phase space,
i.e. there is neither single-photon absorption nor single-
photon emission in perturbative QED. However, for proc-
esses with more than one vertex, e.g. the trident process,
the vanishing momentum exchange from the background
field to one vertex may eventually be compensated due to
the momentum transfer at another vertex. Since the only
dependence of this nontransfer term on the background
field is condensed in the factor G, the leading order in Aμ

of the whole nonvanishing term is constant through
G ¼ 2þOðAμÞ. The finite part Γμ

reg, Eq. (37), may be
interpreted as a part of the dressed vertex function with a
genuine momentum transfer from the background field
to the vertex, which is indicated by the occurring principal
value in the finite part B̂0ðlÞ of the regularized phase
integral (32), considering the other phase integrals are
regular for l → 0. Moreover, since the elementary vertices
(9), (10) as well as the kinematic factors αi (15) are
independent of the background field, the leading order
of the finite part Γμ

reg of the vertex function Γμ is linear in
Aμ, i.e. there is no Aμ-independent term in an expansion of
Γμ with respect to the background field.
The decomposition of the vertex function implies the

following modification of standard Feynman rules in
momentum space: use

R
dl
2π ð−ieÞΓμðlÞ for the fermion-

fermion-photon vertex, instead of −ieγμ, and integrate over
internal momenta. While an N-vertex Furry-picture dia-
gram in position space involves N space-time integrals
(cf. [15] of how to process the expressions), in momentum
space one meets N integrations over the respective vertex-
attached “photon number parameter” l.

E. Expansion in powers of a0
One benefit of our momentum space formulation is the

possibility of a straightforward series expansion of the
amplitude in powers of a0. The temporal pulse shape is
imprinted transparently in the weak-field limit. To begin
with, we introduce for the bookkeeping of powers of a0 the
tilde notation: every quantity with a tilde is free of any
dependence ona0, e.g.Aμða0;ϕÞ ¼ a0Ã

μðϕÞ, which implies

G ¼ a0α
μ
1

Z
ϕ

ϕ0

dϕ0Ãμðϕ0Þ þ a20α2

Z
ϕ

ϕ0

dϕ0Ã2ðϕ0Þ

¼ a0Ã1 þ a20Ã2; ð38Þ
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expfiGg ¼
X∞
N¼0

aN0 G̃N ¼
X∞
N¼0

aN0
X
ðm;nÞ

G̃mnjmþ2n¼N;

G̃mn ≔
imþ2n

m!n!
Ãm
1 Ã

n
2; ð39Þ

when using the abbreviations Ã1 ≔ αμ1
R ϕ
ϕ0

dϕ0Ãμðϕ0Þ
and Ã2 ≔ α2

R ϕ
ϕ0

dϕ0Ã2ðϕ0Þ. The quantities G̃N ¼P
m;n∈N ðm;nÞ G̃mn use the re-indexing with index set

N ðm; nÞ ≔ fðm; nÞ ∈ N2jmþ 2n ¼ Ng, e.g. fð0; 0Þg for
N ¼ 0, fð1; 0Þg for N ¼ 1, and fð2; 0Þ; ð0; 1Þg for N ¼ 2.
Analogously, the phase integrals (12), (13) become sums

of Fourier transforms:

Bμ
1 ¼

X∞
N¼0

a1þN
0 B̃μ

1;N; B̃μ
1;N ≔

Z
∞

−∞
dϕeilϕG̃NÃ

μ; ð40Þ

B2 ¼
X∞
N¼0

a2þN
0 B̃2;N; B̃2;N ≔

Z
∞

−∞
dϕeilϕG̃NÃ

2: ð41Þ

Proceeding in such a manner we represent the vertex
functions (36), (37) as

Γμ
div ¼

X∞
N¼0

aN0 Γ̃
μ
divN; Γ̃μ

divN ¼ πγμδðlÞðG̃þ
N þ G̃−

NÞ;

ð42Þ

Γμ
reg ¼

X∞
N¼1

aN0 Γ̃
μ
regN;

Γ̃μ
regN ¼

�
Γμ
1ν − P

γμα1ν
l

�
B̃ν
1;N−1

þ ΘðN − 1Þ
�
Γμ
2 − P

γμα2
l

�
B̃2;N−2; ð43Þ

where the Heaviside distribution ensures to take onlyN > 1

contributions in the last term. We note (i) Γ̃μ
divN¼0 ¼

2πγμδðlÞ due to G̃�
N¼0 ¼ 1; δðlÞ enforces l ¼ 0 meaning

that this vertex part does not exchange energy-momentum
with the external field, and (ii) theN ¼ 1 contribution toΓμ

reg

is solely related to B̃μ
1 ¼

R∞
−∞ dϕeilϕÃμðϕÞ, i.e. the Fourier

transform of the background field; it is the only linear
contribution (in a0 and the background field), while con-
tributions ∝ aN0 with N > 1 are nonlinear in the back-
ground field.
In a follow-up paper, we show in more detail that, in

leading order of a series expansion in powers of a0, the
standard momentum Feynman rules are recovered and
explicate the next-to-leading order (NLO) terms.

F. Graphical representations

The above vertex function decomposition facilitates the
following graphical representation with the a0 expansion in
the bottom lines:

ð44Þ

ð45Þ

Each expression must be supplemented by a factor of −ieδð4Þðpþ lk − p0 − k0Þ. The pertinent arguments l; p; p0; k are
not displayed here. Note that the expanded vertex functions in (45) are ∝ aN0 , thus allowing for easy bookkeeping.
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III. SOME LIMITING CASES:
Δϕ → ∞, a0 → 0, k0 → 0, k → 0

Having prepared the momentum space formulation and
related Feynman rules, we now turn to some limiting cases.
These include the monochromatic limit Δϕ → ∞, the
weak-field limit a0 → 0 and recovery of standard pertur-
bative Feynman rules, and the soft limits k0 → 0 and k → 0
as well.

A. Monochromatic limit: Δϕ → ∞
The above formalism is devised to include arbitrary

shape functions gðϕ;ΔϕÞ. For specified (explicitly given)
temporal pulse structures, GðϕÞ can be explicated and the
phase integrals B0, B

μ
1 and B2 can be executed to arrive at

special functions (cf. [30] for such an example with
respect to nonlinear Compton). A very special case is the
monochromatic plane-wave background field, often
named infinitely-extended plane-wave (IPW). Formally,
Δϕ → ∞ and the envelope function in Eq. (1) obeys
gðϕ;ΔϕÞ ¼ 1 for all ϕ ∈ R. Setting ϕ0 ¼ 0 is a suitable
choice for monochromatic plane-wave backgrounds, since
then the initial condition is known due to Aμðϕ0Þ ¼
aεμ1 cos ξ and the nonlinear phase defined in (14) is finite
for finite values of ϕ. The distinction of Γμ

div and Γμ
reg is no

longer suitable, since also B0, B
μ
1 and B2 in Γ

μ
reg contribute

to the so-called δ-comb, which refers to individual
harmonics. The carrier-envelope phase ϕCEP is irrelevant
and can be skipped.

Under these prepositions, Eq. (38) yields

Gðϕ;ϕ0 ¼ 0Þ ¼ −jα−j½sinðϕþ ΘÞ − sinðΘÞ�

− β

�
1

2
cosð2ξÞ sinð2ϕÞ þ ϕ

�
; ð46Þ

where α− ≔ aα1 · ε− is represented as α− ¼ jα−jeiΘ, and
a ¼ a0m=jej, β ≔ 1

2
a2α2. Insertion into Eqs. (11)–(13)

results in

B0ðlÞ ¼ 2π expfijα−j sinΘg
X∞
n¼−∞

δðl − β − nÞCn; ð47Þ

B�ðlÞ¼2πexpfijα−jsinΘg
X∞
n¼−∞

δðl−β−nÞCn∓1; ð48Þ

B2ðlÞ ¼ 2π expfijα−j sinΘg
X∞
n¼−∞

δðl − β − nÞ

×

�
Cn þ

1

2
cosð2ξÞðCnþ2 þ Cn−2Þ

�
; ð49Þ

and allows the representation of the fully dressed vertex as

ΓμðlÞ ¼
X∞
n¼−∞

δðl − β − nÞΓμ
IPWn; ð50Þ

Γμ
IPWn ≔ 2π expfijα−j sinΘg

�
γμCn þ

1

2
a½Γμ

þCn−1 þ Γμ
−Cnþ1� þ Γμ

2

�
Cn þ

1

2
cosð2ξÞðCnþ2 þ Cn−2Þ

�

; ð51Þ

where we use the abbreviation Γμ
� ≔ ε�;νΓ

μν
1 ; cf. Eqs. (66), (67) below for the definition of εμ� and the decomposition of Bμ

1

into B�. To make some intermediate steps more obvious, we note

B�ðlÞ ≔
Z

∞

−∞
dϕ expfiðl� 1Þϕþ iGðϕÞg ð52Þ

¼ expfijα−j sinΘg
Z

∞

−∞
dϕ exp

n
iðl� 1 − βÞϕ − ijα−j sinðϕþ ΘÞ − i

2
β cosð2ξÞ sinð2ϕÞ

o
: ð53Þ

Using the Jacobi-Anger expansion of the non-Fourier part one gets

exp

�
−ijα−j sinðϕþ ΘÞ − 1

2
iβ cosð2ξÞ sinð2ϕÞ



¼

X∞
n¼−∞

Cne−inϕ; ð54Þ

Cn ¼
X∞
s¼−∞

Jn−2sðjα−jÞJs
�
1

2
β cosð2ξÞ

�
e−iðn−2sÞΘ; ð55Þ

where Jn stand for Bessel functions of the first kind. The phase integral (53) reads then

B�ðlÞ ¼ expfijα−j sinΘg
X∞
n¼−∞

X∞
s¼−∞

Jn−2sðjα−jÞJs
�
1

2
β cosð2ξÞ

�
e−iðn−2sÞΘ

Z
∞

−∞
dϕ expfiðl� 1 − β − nÞϕg; ð56Þ

and the index shift n → n� 1 yields Eq. (48).
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B. Recovery of Feynman rules of perturbative QED

The relation to standard perturbative QED Feynman rules has two facets:
(i) Get the fermion-fermion-photon vertex from the dressed vertex by inspecting Eq. (45) and noting that, at a0 → 0 and

for off shell legs, G → 2 and the leading-order term in the sum
P∞

N¼1 � � � → a0 → 0, i.e.

where the small dot represents the standard perturbative QED vertex.
(ii) However, in the case of a monochromatic background and for on shell legs (e.g. for Compton), the leading-order

terms in the a0 expansion stem from the vertex

since (for on shell amplitude) we have

The powers of a0 are expelled off the regularized vertex, which becomes

with N attached laser field lines in all permutations.
On the level of cross-section, dσ=dΩ0dω0 ¼ I−1

γ

P jMj2dΦ0, with I γ ∝ a20. Therefore, for a0 → 0, only the term

survives, making the cross section ∝
P jMj2δ

�
ω0 − ω

1þω0
mð1−cosΘ0Þ

�
, where, upon executing the spin and polarization sums,P

, the Klein-Nishina cross section is recovered; the energy-momentum balance via the delta distribution arises from phase
space integration, dΦ0, and only for Δϕ → ∞.

C. Soft photons: k0 → 0

Lowest-order soft theorems3 allow for factorizing amplitudes as M ¼ Mhard × S, where S is the soft factor accounting
for the emission of a soft photon andMhard is the amplitude of hard interaction. Focusing first on the soft-photon emission
off an external leg, e.g. an incoming electron, the corresponding matrix element reads

3For the relation of soft-photon theorem and asymptotic symmetry (Ward identity) and memory effect within the infrared triangle,
see [12] and citations therein.
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ð57Þ

¼ −ie
Z

dl
2π

½ūðp0ÞMhardðp0; pþ lk − k0ÞSFðpþ lk − k0ÞΓμðl; pþ lk − k0ÞÞε�0μ ðk0ÞuðpÞ�; ð58Þ

where Mhard is part of the matrix element which
emerges from the interaction of the electron with other
nonsoft particles, ε0μðk0Þ denotes the polarization of the

emitted soft photon and SFðpÞ ¼ iðpþmÞ
p2−m2þiϵ is Feynman’s free

fermion propagator. Since k0 is small compared with the
electron momenta, one has Mhardðp0; pþ lk − k0Þ ≈
Mhardðp0; pþ lkÞ. Furthermore, we observe Γμðl; p; pþ
lk − k0Þ≡ Γμðl; p; p − k0Þ since the outgoing momentum
p0 appears only in the productp0 · k inΓμðl; p; p0Þ. Inserting
the decomposition (35) in the matrix element (58), the
infrared behavior of k0 must be examined for two parts:

(i) Gauge-restoration part Γμ
div: The corresponding

matrix element becomes Mdiv ¼ −ie
R

dl
2π ½ūðp0Þ

Mhardðp0; p þ lkÞSFðp þ lk − k0ÞπGðp; p − k0Þ
δðlÞγμε�0μ ðk0ÞuðpÞ�, where the l integration is

executed by employing the δ-distribution leading to
l ¼ 0. Considering the nonlinear Volkov phase G
defined in (14), we have limk0→0 Gðϕ; p; p − k0Þ ¼
Gðϕ; p; pÞ ≡ 0, which implies limk0→0 Gðp;
p − k0Þ ¼ 2. That means this part of the matrix
element has the same infrared behavior as ordinary
one-photon bremsstrahlung (cf. Secs. 6.1 in [31]
and 13.5 in [32]) Mdiv ≈ −½ūðpÞMhardðp0; pÞ
uðpÞ�ðe p·ε0

k0·pÞ, where e denotes the elementary electric

charge and we use SFðp − k0Þγμε�μ0uðpÞ → −i p·ε
0

p·k0

for k0 → 0.
(ii) Regularized finite part Γμ

reg: Considering the leading
order in powers of a0 and the monochromatic limit,
Δϕ → ∞, the diagram (58) recovers the standard
perturbative case:

ð59Þ

Therefore, we have a special case of a subleading Low

theorem, where one part of the matrix element, Mð1Þ
reg, has

an infrared pole and the other term, Mð2Þ
reg, does not. The

elaboration of the general version of the expressionsMð1;2Þ
reg

in (59) is relegated to separate work.

D. Soft-background field: k → 0

Similarly to Sec. III C, the soft interaction with the
background field refers to the limit k → 0, which is
equivalent to ω → 0, where we set kμ ¼ ωnμ with the
normalized reference momentum nμ. Consequently, this
soft limit needs to be examined separately for the two parts
of the dressed vertex:

(i) Regularized part Γμ
reg: Considering the elementary

vertices defined in Eqs. (9) and (10), we find

Γμν
1 ¼ eðγμ=nγν

2n·p þ γν=nγμ
2n·p0 Þ and Γμ

2 ¼ −e2 =nnμ
2n·pn·p0, which

are both finite in the limit ω → 0. On the contrary,
the kinematic factors αμ1 and α2 defined in (15) have
the typical form of Weinberg’s soft factors [32],
hence a divergence in the soft limit. Therefore, for

ω → 0, we have Γμν
1 ≪ γμαν

1

l and Γμ
2 ≪

γμα2
l for all

finite l. This leads to the soft limit of the finite
part of the dressed vertex (37), limω→0 Γ

μ
regðlÞ ¼

γμSsoft
reg ðlÞ, where the regularized soft factor reads

Ssoft
reg ðlÞ ¼ −P

�
αν1
l
B1νðlÞ þ

α2
l
B2ðlÞ

�
: ð60Þ

Linearizing the phase integrals in a0, i.e. consi-
dering only B̃μ

1;1ðlÞ given in (40) and dropping
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B2 ∝ a20, this soft factor results in Ssoft
reg ðlÞ →

− αμ
1

l

R
∞
−∞ dϕAμðϕÞeilϕ, which recovers the soft-

factor elaborated in [21] for the case of Bhabha
scattering. Furthermore, considering linear polariza-
tion Aμ ¼ aεμgðϕ;ΔϕÞ cosϕ and performing the
simultaneous limits a0 → 0 and Δϕ → ∞, the soft
factor reads Ssoft

reg ðlÞ → −aαμ1εμ ¼ aeðp·εk·p −
p0·ε
k·p0Þ,

which indeed is, up to a constant normalization,
Weinberg’s well-known soft factor.

(ii) Gauge restoration part Γμ
div: First we note that

the integrals appearing in the prefactor of the
gauge restoration part G defined in Eq. (17),R�∞
ϕ0

dϕ0Aμðϕ0Þ and
R�∞
ϕ0

dϕ0A2ðϕ0Þ, are finite in
the soft limit ω → 0, whereas the exponents G�
of G diverge due to the presence of the factors
αμ1 and α2. This means, the factor G itself acts
like a soft factor, which highly oscillates in
the soft limit. However, considering the lineariza-
tion of this soft factor in a0, we find G →
iαμ1ð

Rþ∞
ϕ0

dϕ0Aμðϕ0Þ þ R
−∞
ϕ0

dϕ0Aμðϕ0ÞÞ, which again
recovers the form known from Weinberg’s soft
factors, but this time with the integrated fields acting
as polarization vectors.

In summary, it can be stated that in both cases, soft
photon emission and soft interaction with the background
field, generalized versions of typical soft factors appear,
which can be, in a suitable limit, connected to soft factors
well-known from monochromatic QED. However, the
cancellation of the soft factors shown here with higher-
order vertex corrections, i.e. finding a generalized version
of the Bloch-Nordsieck theorem, deserves separate work.

IV. EXAMPLES AND FUTURE APPLICATIONS

The above formalism is ready for direct numerical
applications. Elements are Dirac spinors, Dirac matrices,
the metric tensor, momentum, and polarization four-vectors;
fermion and photon propagators are as in free-field and could
be defined as standalone objects; most importantly, the
nonlinear phase integrals encode solely the external field
and require some care and numerical optimization. For a
given exclusive reaction, these elements are to be connected
by scalar and matrix products, thus delivering a few partial
amplitudes (e.g. direct and exchange terms or the multitude
of diagrams with the same out-state) to be summed up to one
complex number—the amplitudeM. Its mod square, jMj2,
is to be garnished to arrive eventually at probability or cross
section which depend on spins, polarizations, and invariants
referring to the initial state including the background field
and final phase space. Partial or complete integration over
the final phase-space variables need often specially adapted
procedures, while spin/polarization summations, if required,

are straightforward. Handling of the δ distributions is
analogous to position space formulation. All l dependence
is integrated out before squaring the amplitude, and

finally use ½ð2πÞ3δð3Þðpi−pfÞ�2→ ð2πÞ3V p0
i

pþ
i
δð3Þðpi−pfÞ,

where pþ ≔ 1
2
ðp0 þ p3Þ. We refrain here from such specific

numerologies but instead stress the need for an in-depth
understanding of the essential dependencies and singular
structures of M, as the core of jMj2, prior to numerical
evaluations.
To sketch applications of the presented formalism

we (re)consider one- and two-vertex processes related
to three- and four-point amplitudes of nonlinear (one- and
two-photon) Compton and Møller scattering processes.
The detailed application to nonlinear trident is relegated to
an accompanying paper. The following Sec. V recalls the
one-vertex processes by demonstrating how the above
rules lead to the known matrix elements, in particular for
nonlinear Compton with a few supplementing remarks on
nonlinear Breit-Wheeler. The next-to-one Sec. VI con-
siders the two two-vertex processes with emphasis on
nonlinear two-photon Compton and nonlinear Møller
scattering.

V. ONE-VERTEX PROCESSES/THREE-POINT
AMPLITUDE

The matrix element of one-vertex processes has, sym-
bolically, the structure M ∼ JμAμðkÞ with current
Jμ ∼ ½ūðp0ÞΓμuðpÞ�, where u is the free-field fermion wave
function, ū its adjoint, and AμðkÞ stands for the photon
(momentum k) wave function. Depending on the orienta-
tion of the four-momenta p, p0, and k, it refers to the
processes e−L → e−L

0 þ γ (nonlinear Compton), γ → e−L þ eþL
(nonlinear Breit-Wheeler) and e−L þ eþL → γ (nonlinear
one-photon annihilation), which are interrelated by cross-
ing symmetry, where the label “L” is a reminder of the laser
dressing of charged fermions. Due to CPT invariance,
e�L → e∓L applies.

A. Nonlinear Compton

The matrix element for nonlinear Compton (nlC) scat-
tering reads

MnlC ¼
Z

dl
2π

δð4Þðpþ lk − p0 − k0Þ

× ½ūðp0Þð−ieÞΓμðl; p; p0; kÞε�μ0ðk0ÞuðpÞ�; ð61Þ
where ε�μ0ðk0Þ stands for the polarization four-vector of the
outgoing photon, and we continue to mark tied fermion
lines by ½� � ��. The vertex decomposition (35) facilitates two
contributions, Mdiv

nlC and Mreg
nlC. The one related to Γμ

div (36)
refers to the “gauge-restoration part”,
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Mdiv
nlC ¼ 1

2
G
Z

dl
2π

δð4Þðpþ lk − p0 − k0ÞδðlÞ × ½ūðp0Þð−ieÞγμε�μ0ðk0ÞuðpÞ� ¼ 0; ð62Þ

which vanishes since the δðlÞ term, upon l integration, enforces the balance equation p − p0 − k0 for on shell momenta,
leaving no phase space. The nonzero term, related to Γμ

reg (37), becomes

Mreg
nlC ¼

Z
dl
2π

δð4Þðpþ lk − p0 − k0Þ
�
ūðp0Þð−ieÞ

��
Γμν
1 − P

γμαν1
l

�
B1νðlÞ þ

�
Γμ
2 − P

γμα2
l

�
B2ðlÞ



ε�μ0ðk0ÞuðpÞ

�
; ð63Þ

¼ −ie
2πkþ

δlfðp − p0 − k0Þ
�
ūðp0Þ

��
Γμν
1 − P

γμαν1
l0

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

∝e

B1νðl0Þ|fflfflfflffl{zfflfflfflffl}
∝a0

e ð���Þ

þ
�
Γμ
2 − P

γμα2
l0

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

∝e2

B2ðl0Þ|fflfflffl{zfflfflffl}
∝
a2
0

e2
ð���Þ



ε�μ0ðk0ÞuðpÞ

�
; ð64Þ

where in the last two lines the light cone coordinates are
employed, δlfðqÞ ≔ 1

2
δðq−Þδð2Þðq⊥Þ. The photon number

parameter is l0 ¼ ðpþk0Þ2−m2

2k·p . The matrix element (64) is the
starting point for many investigations of one-photon non-
linear Compton in a pulsed plane-wave background. To
make this relation explicit we rewrite Eq. (14) by means of
(1) and a ≔ a0m=jej as

GðϕÞ ¼ −Reα−
Z

ϕ

−∞
dϕgðϕ0Þ expfiðϕ0 þ ϕCEPÞg

−
1

2
a2α2

�
cos 2ξ

Z
ϕ

−∞
dϕ0gðϕ0Þ2 cosð2½ϕ0 þ ϕCEP�Þ

þ
Z

ϕ

−∞
dϕ0gðϕ0Þ2

�
; ð65Þ

where α� ≔ aα1με
μ
� with εμ� ≔ εμ1 cos ξ� iεμ2 sin ξ. Using

the abbreviation

B1�ðlÞ ≔
Z

∞

−∞
dϕ expf�ði½ϕþ ϕCEP�Þg

× expf−i½lϕþ GðϕÞ�g ð66Þ

the phase integrals [cf. (12), (13)] in (64) can be cast in the
form

Bμ
1ðlÞ ¼

1

2
afεμþB1−ðlÞ þ εμ−B1þðlÞg; ð67Þ

B2ðlÞ ¼ a2
Z

∞

−∞
dϕgðϕÞ2f1þ cos 2ξ cosð2½ϕþ ϕCEP�Þg

× expfiðϕþ ϕCEPÞg ð68Þ

yielding eventually Eq. (3.26) in [27] with many accom-
panying and subsequent works. The one-photon nonlinear
Compton process based on the one-vertex diagram seems
to be exhaustively analyzed (cf. [15] for a recent review).
The special setup of multicolor laser background fields, e.g.
the superposition of aligned optical and x-ray free-electron
laser (XFEL) beams, i.e. x-ray scattering at an electron
moving in the laser field [33,34], offer further interesting
facets, up to polarization gating to produce a monoener-
getic γ beam [35,36]). Furthermore, nonlinear Compton has
nonperturbative contributions (analog to nonlinear Breit-
Wheeler), and [37] shows how to isolate them.
With respect to power counting of e and a0, the

assignments are displayed in Eq. (64), where ð� � �Þ stands
for the series expansion of the expfiGg term.

B. Nonlinear Breit-Wheeler

The matrix elements of nonlinear Breit-Wheeler (nlBW)
refer to

ð69Þ

and read, analogous to the nonlinear Compton as crossing channel in Eqs. (61)–(64),
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MnlBW ¼
Z

dl
2π

½ūðpeÞð−ieÞΓμðl;−pp; peÞε0μvðppÞ�δð4Þðk0 þ lk − pp − peÞ ð70Þ

¼ −ie
2πkþ

½ūðpeÞΓμðl0;−pp; peÞε0μvðppÞ�
				
l0¼ðpeþppÞ2

2k·k0

; ð71Þ

Mdiv
nlBW ¼ −ie

2πkþ
πGð−pp; peÞδðl0Þδlfðk0 − pp − peÞ½ūðpeÞγμε0μvðppÞ� → 0; ð72Þ

Mreg
nlBW ¼ −ie

2πkþ
δlfðk0 − pp − peÞ

�
ūðpeÞ

��
Γμν
1 ð−pp; peÞ − P

γμαν1ð−pp; peÞ
l

�
B1νðl;−pp; peÞ

þ
�
Γμ
2ð−pp; peÞ − P

γμα2ð−pp; peÞ
l

�
B2ðl;−pp; peÞ



ε0μvðppÞ

�
; ð73Þ

where Mdiv
nlBW → 0 is a result of combining the δ distribu-

tions δðl0Þδlfðk0 − pp − peÞ → δð4Þðk0 − pe − peÞ which
can not be satisfied by on shell momenta.
While, in nonlinear Compton, the initial electron

momentum may be zero, p⃗ ¼ 0, due to the action of
the external classical field, the electron can emit a real
photon(s), whatever the external-field central-frequency
ω > 0 is. One can imagine this as shaking off photons due
to the quiver motion in the external field. The crossing
channel, i.e. nonlinear Breit-Wheeler as one-photon decay,
γ0 → eþLe

−
L with matrix element ∝ k0μ½ūpΓμvp0 �), faces a

severe threshold, making nonlinear Compton and nonlinear
Breit-Wheeler quite distinctive, even the amplitudes are
related by crossing symmetry. The balance equations in the
monochromatic case read

lk� k0 ¼ �qþ q0 ð74Þ

with quasimomenta q ¼ pþ a20m
2=ð2p · kÞ and q0 ¼ p0 þ

a20m
2=ð2p0 · kÞ which facilitate q2 ¼ q02 ¼ m2�, lead to

lk · k0 ¼ q · qþm2� ðnlBW; upper signÞ; ð75Þ

lk · p ¼ k0 · q ðnlC; lower signÞ: ð76Þ

Explication for nonlinear Compton (head-on laser-electron
collisions) reads

k ¼ ðω;ω; 0; 0Þ; ð77Þ

p ¼ðm cosh y;−m sinh y; 0; 0Þ; ð78Þ

k0 ¼ðω0;ω0 cosΘ0;ω0 sinΘ0; 0Þ; ð79Þ

p0 ¼ðE0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 −m2 − ω02 sin2Θ0

p
;−ω0 sinΘ0; 0Þ; ð80Þ

where E ¼ m cosh y and jp⃗j ¼ m sinh y relates energy E
and momentum p⃗, E2 þ p⃗2 ¼ m2, with rapidity y, and

ω0ðl; cosΘ0Þ ¼ lω
1þ e−yκð1 − cosΘ0Þ ;

κ ≔ l
ω

m
− sinh yþ 1

2
a20e

−y; ð81Þ

E0 ¼ m2 − ω0ðm − ω0Þð1 − cosΘ0Þ
m − ω0ð1 − cosΘ0Þ ; ð82Þ

express ω0 and E0 as a function of cosΘ0. Forward
(backward) scattering is defined by cosΘ0 ¼ 1 (−1).
The out-electron angle is determined by sin θ0 ¼
−ω0 sinΘ0=jp0j.
In nonlinear Breit-Wheeler, the quasimomenta q

and q0 symmetrically enter the corresponding kinematic
equations. The threshold energy, for the monochromatic
case, is determined by k · k0 ¼ 2m2�. However, the sub-
threshold pair production is enabled in short pulses, as
emphasized in [38–42]. Temporal double pulses or
bichromatic pulses enhance further the pair rate, as
suggested in [43–45].
While Compton has a classical analog (shaking

off the e.m. field accompanying an accelerated charge
in the form of asymptotically outgoing waves), Breit-
Wheeler is said to be a quantum process, i.e. “converting
light into matter”. A particularly interesting aspect is
the relation to vacuum birefringence, see [46], which
is experimentally searched for in dedicated and highly
specialized and optimized setups, e.g. pursued by
Helmholtz International Beamline for Extreme Fields
(HIBEF) [47–50].
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VI. TWO-VERTEX PROCESSES/FOUR-POINT
AMPLITUDE

The two two-vertex diagrams have the symbolic matrix
elements (i) M ∼ ½ūðp0ÞΓμSFðQÞΓνuðpÞ�Aμðk1ÞAνðk2Þ
and (ii) M ∼ ½ūðp0ÞΓμuðpÞ�Dμν½ūðP0ÞΓνuðPÞ� with SF
and DμνðkÞ ¼ −iημν

k2þiϵ as fermion and photon propagators,
and the Minkowski metric ημν ≔ diagð1;−1;−1;−1Þ. They
have one (i) and two (ii) tied fermion lines. Again,
depending on the orientation of the four-momenta, several
processes related by crossing symmetry are conceivable:
(i) e−L → e−L

0 þ γ1 þ γ1 (nonlinear two-photon Compton,
cf. [51–54]), e−L þ γ → e−L

0 þ γ0 (nonlinear Compton
scattering, i.e. x-ray Compton scattering at an electron
moving in a nonaligned optical laser), γ1 þ γ2 → e−L þ eþL
(nonlinear two-photon Breit-Wheeler) and time-reversed
processes as well, in particular e−L þ eþL → γ1 þ γ2;
(ii) e−1L þ e−2L → e−1L

0 þ e−2L
0 (nonlinear Møller scattering),

e−L → e−L
0 þ e−L

00 þ eþL (nonlinear trident) and several cross-
ing channels as well (e.g. nonlinear Bhabha scattering
with s and t channel diagrams). Also, the involvement of
two different lepton species is conceivable, e.g. electrons
and muons.

We explicate now our momentum-space Furry-picture
Feynman-rules for nonlinear two-photon Compton
(Sec. VI A) and nonlinear Møller (Sec. VI B).

A. Two-photon nonlinear Compton

1. Diagrams and matrix element

The two-photon nonlinear Compton (2nlC) e−ðpÞþ
laser → γðk01Þ þ γðk02Þ þ e−ðp0Þ þ laser, in short e−L →
e0−L þ γ1 þ γ2, as a two-vertex tree-level diagram

ð83Þ

requires a somewhatmore intricate treatment, see [27,51–54],
despite the simple matrix element (direct term, i.e. left
diagram; the exchange term, i.e. right diagram, is to be
processed analogously)

S2nlC ¼
Z

dl
2π

dr
2π

d4Q
ð2πÞ4 δ

ð4Þðpþ lk − k01 −QÞδð4ÞðQþ rk − k02 − p0Þ

× ½ūðp0Þð−ieÞΓμðr;Q; p0jkÞε�0μ ðk02ÞSFðQÞð−ieÞΓνðl; p;QjkÞε�ν 0ðk01ÞuðpÞ�: ð84Þ
Collinear divergence and infra-red behavior as well as the on/off shell behavior of the fermion propagator provide some
challenges. In addition, the soft-photon theorem (cf. [55] for contemporary reasoning) might be explicated here.
We consider now only the structure of the direct matrix element (84), where p and p0 denote the momenta of the in and

outgoing electrons, and k01;2 are momenta of the outgoing photons with polarization four-vectors ε�0μ;νðk01;2Þ; Q refers to the
intermediate electron. Using one of the δ-distributions, the integral over the intermediate-electron momentum Q can be
solved analytically:

S2nlC ¼ −e2

ð2πÞ6
Z

dl
Z

drδð4Þðpþ ðrþ lÞk − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ½ūðp0ÞΓμðr;Q; p0jkÞSFðQÞΓνðl; p;QjkÞuðpÞ�;

ð85Þ
where Q is now related to the external momenta and the photon number parameters via

pþ lk − k01 ¼ Q ¼ k02 þ p0 − rk: ð86Þ

The remaining δ-distribution in (85) can be used to solve one of the photon-number parameter integrals by applying light
cone coordinates to the involved momenta,

δð4Þðpþ ðrþ lÞk − k01 − k02 − p0Þ ¼ δlfðp − k01 − k02 − p0Þδðpþ þ ðrþ lÞkþ − k0þ1 − k0þ2 − p0þÞ; ð87Þ

where δlfðqÞ ¼ 1
2
δð2Þðq⊥Þδðq−Þ. The second δ distribution in (87) can be used to solve one of the integrals over the photon

number parameter, e.g. the r integral, which leads to

S2nlC ¼ −e2

ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ
Z

dl½ūðp0ÞΓμðrl; Q; p0jkÞSFðQÞΓνðl; p;QjkÞuðpÞ�; ð88Þ
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where the two-photon number parameters are no longer
independent, but related by rl ≔ l0 − l with

l0 ≔
k0þ1 þ k0þ2 þp0þ −pþ

kþ
¼ ðk01 þ k02 þp0Þ2 −m2

2p · k
: ð89Þ

2. Singularity structures

One obvious source of singularities is the vanishing
denominator of the field-free electron propagator SFðQÞ.
Therefore, the general resonance condition is given if
the intermediate electron goes on shell, i.e. Q2 ¼ m2.
One convenient way to keep control of the propagator
singularity is to define the virtuality of the intermediate
electron, v ≔ Q2 −m2. Deploying Eq. (86), the virtuality is
a function of either one of the two photon-number
parameters,4

νl ≔ Q2ðlÞ −m2 ¼ ðp − k01Þ2 þ 2lk · ðp − k01Þ; ð90Þ

νr ≔ Q2ðrÞ −m2 ¼ ðk02 þ p0Þ2 − 2rk · ðk02 þ p0Þ; ð91Þ

where we have νl ≡ νrl¼l0−l. The resonance condition ν ≔
Q2 −m2 is then equivalent to νl ¼ νr ¼ 0. Written with
the virtuality νl, the denominator of the field-free fermion
propagator reads

1

Q2 −m2 þ iϵ
¼ 1

νl þ iϵ
¼ 1

2k · ðp − k1Þ
�

1

lon − lþ iϵ

�
;

ð92Þ

where we employ the replacement ϵ
2k·ðp−k0

1
Þ → ϵ and we use

the abbreviation

lon ¼
ðp − k01Þ2 −m2

2k · ðp − k01Þ
≠ 0: ð93Þ

Analogously, written with the virtuality νr, one gets

1

Q2 −m2 þ iϵ
¼ 1

νr þ iϵ
¼ 1

2k · ðk02 þ p0Þ
�

1

ron − rþ iϵ

�

ð94Þ

with ron ¼ ðk0
2
þp0Þ2−m2

2k·ðk0
2
þp0Þ ≠ 0. Consequently, the singularity

structure of the electron propagator in thematrix element (88)
is directly related to the values of the photon-number
parameters at the respective vertex, i.e. νl ¼ 0 ⇔ l ¼ lon
or equivalently νr ¼ 0 ⇔ r ¼ ron. As we will show in the
sequel, these types of singularities are the only ones, which
may appear in the matrix element (88).

3. Asymptotically vanishing-field case

As illustrated in Sec. II B in the case of plane-wave
pulses, i.e. asymptotically vanishing fields, the manifestly
gauge-invariant dressed vertex function Γμ decom-
poses into a finite Γμ

reg and a gauge-restoration Γμ
div part.

Consequently, inserting the decomposition by Eqs. (35)–
(37) into Eq. (88), the matrix element of strong-field two-
photon-Compton scattering becomes

ð95Þ

where the vertex structure of the particular matrix element introduces constraints on the respective photon-number
parameter. We consider term-by-term:

(i) No energy-momentum transfer: The first part of (95)
corresponds to the case, where both vertices are given by the divergent part of the dressed vertex, which implies that
for this diagram, there is no energy-momentum transfer with respect to the background field on neither of the
vertices. This follows also directly from the corresponding part of the 2nlC matrix element, which reads

Sð0Þ2nlC ¼ −e2π2

ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ
Z

dl½ūðp0ÞδðrlÞGðQ;p0ÞγμSFðQÞγνδðlÞGðp;QÞuðpÞ� ð96Þ

4There is only one virtuality for the intermediate electron, ν ≔ Q2 −m2. However, here we phrase the dependence of the virtuality on
the photon-number parameters as if they are independent, because the choice, which of the photon-number parameter integral in
equation (85) one wants to solve, is arbitrary. Consequently, both of the definitions (90) and (91) are equivalent, if and only if
r≡ rl ¼ l0 − l.
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¼ −e2π2

ð2πÞ6kþ δlfðp − k01 − k02 − p0Þδðr0ÞGðQ;p0ÞGðp;QÞε0�2μðk02Þε0�1νðk01Þ½ūðp0ÞγμSFðQÞγνuðpÞ�; ð97Þ

where the δ-distributions from the gauge-restoration
parts are solved by l ¼ 0 ¼ r0 ≡ l0. The remaining
δ-distributions only depend on the external particles.
Therefore, using (87) and (89) leads to

1

kþ
δlfðp − k01 − k02 − p0Þδðl0Þ ¼ δð4Þðp − k01 − k02 − p0Þ:

ð98Þ

However, there is no physical phase space solving
p − k01 − k02 − p0 ¼ 0 with all on shell momenta. Further-
more, for the first part of (95), the virtualities read

νl¼0 ¼ ðp − k01Þ2 −m2 ≠ 0; ð99Þ

νr¼0 ¼ ðk02 þ p0Þ2 −m2 ≠ 0: ð100Þ

Therefore, there is no singularity to cancel the vanishing

phase space, thus there is no contribution of Sð0Þ2nlC to the
matrix element.
(ii) Contribution from the left vertex: The second term in

the decomposition (95) represents the case, where at
the left vertex, the photon-number parameter does
not vanish, i.e. l ≠ 0, whereas, on the right vertex,
the photon-number parameter is identically zero:
rl ¼ l0 − l ¼ 0. The corresponding part of the
strong-field 2nlC matrix element is given by

Sð11Þ2nlC ¼ −e2π
ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ

Z
dl½ūðp0ÞδðrlÞGðQ;p0ÞγμSFðQÞΓν

regðl; p;QjkÞuðpÞ� ð101Þ

¼ −e2π
ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01ÞGðQ;p0Þ½ūðp0ÞγμSFðQÞΓν

regðl0; p;QjkÞuðpÞ�; ð102Þ

where l0 is given by Eq. (89) and Γμ
reg is the finite part of

the dressed vertex defined in Eq. (37). The Cauchy
principal-value operator in Γμ

reg ensures l0 ≠ 0. For this
part of the matrix element, the virtualities (90) and (91) read

νrl¼0 ¼ ðk02 þ p0Þ2 −m2 ≠ 0; ð103Þ

νl¼l0 ≡ νr¼0 ≠ 0; ð104Þ

thus, there is no singularity in Sð11Þ2nlC.
(iii) Contribution from the right vertex: The third term in

the decomposition (95) represents the case, where at
the right vertex, the photon-number parameter does
not vanish, i.e. rl ≠ 0, whereas, at the left vertex, the
photon-number parameter is identically zero, l ¼ 0.
The corresponding part of the strong-field 2nlC
matrix element is given as

Sð12Þ2nlC ¼ −e2π
ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ ×

Z
dl½ūðp0ÞΓμ

regðrl; Q; p0jkÞSFðQÞγμδðlÞGðp;QÞuðpÞ� ð105Þ

¼ −e2π
ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01ÞGðp;QÞ½ūðp0ÞΓμ

regðr0; Q; p0jkÞSFðQÞγμuðpÞ�; ð106Þ

where r0 ≡ l0 is given by Eq. (89) and Γμ
reg is again the

regularized finite part of the dressed vertex defined in
Eq. (37) and the Cauchy principal-value operator in Γμ

reg

ensures r0 ≠ 0. For this part of the matrix element, the
virtualities (90) and (91) read

νl¼0 ¼ ðp − k01Þ2 −m2 ≠ 0; ð107Þ

νr¼r0¼l0 ≡ νl¼0 ≠ 0; ð108Þ

thus, there is no singularity in Sð12Þ2nlC.
(iv) On shell and off shell contributions: The fourth term

in the decomposition (95) represents the case, where
on both vertices the photon-number parameters are
nonzero, i.e. l ≠ 0 and rl ≠ 0. The corresponding
part of the strong-field 2nlC matrix element reads
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Sð2Þ2nlC ¼ −e2

ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ
Z

dl½ūðp0ÞΓμ
regðrl; Q; p0jkÞSFðQÞΓν

regðl; p;QjkÞuðpÞ�; ð109Þ

where Γμ
reg is the finite part of the dressed vertex defined in

Eq. (37). The Cauchy principal value operator in Γμ
reg

ensures l ≠ 0 ≠ rl. However, according to Eq. (92), the
condition l ¼ lon, with lon defined in (93), is equivalent to

Q2 −m2 ¼ 0 inducing the propagator SFðQÞ ¼ ið=QþmÞ
Q2−m2þiϵ to

diverge in the limit ϵ → 0. This divergence can be handled
by applying the Sokhotski-Plemelj theorem,

lim
ϵ→0þ

1

Q2−m2þ iϵ
¼−iπδðQ2 −m2ÞþP

1

Q2 −m2
; ð110Þ

where, on the rhs, in the first term the denominator of the

propagator is removed and Q is set on shell,5 i.e. Q2 ¼! m2,

or equivalently l¼! lon, where lon is given in Eq. (93). In
the second term of the rhs of Eq. (110), the Cauchy
principal-value operator ensures that the denominator of
the propagator never vanishes, which removes the singu-
larity caused by Q2 ¼ m2. In the language of virtualities
introduced in Sec. VI A 2, this means for the first term of
the rhs of (110), the virtualities read νl ¼ νrl ¼ 0, i.e. the
intermediate electron goes on-shell. However, since for this

term, the denominator of the propagator is removed, the
on-shell intermediate electron does not induce a pole.
The second term of the rhs of Eq. (110) does not induce
a pole neither, because the Cauchy principal-value operator
protects the denominator of the electron propagator
from vanishing, i.e. P 1

Q2−m2 ¼ P 1
ν, which excludes the

value ν ¼ 0 from the integration region. Therefore, there is

no singularity in Sð2Þ2nlC.
In summary, it can be said, therefore, that in the case of

asymptotically vanishing background fields, Δϕ < ∞, the
matrix element (88) of two-photon Compton scattering
has no singularities except for a single light-front
δ-distribution, which ensures the conservation of the
transverse and the minus-components of the external
momenta.

4. Infinitely extended plane-wave/Oleinik resonances

The special case of a monochromatic plane-wave back-
ground field that is infinitely extended [see Eq. (1) with
Δϕ → ∞ or g ¼ 1] should be considered separately. Now,
the two-photon Compton matrix element (88) reads

SIPW2nlC ¼ −e2

ð2πÞ6kþ δlfðp − k01 − k02 − p0Þε0�2μðk02Þε0�1νðk01Þ
Z

dl
X∞

n;n0¼−∞

δðl − βðp;QÞ − nÞδðrl − βðp0; QÞ − n0Þ

× ½ūðp0ÞΓμ
IPWn0 ðrl; Q; p0jkÞSFðQÞΓν

IPWnðl; p;QjkÞuðpÞ�; ð111Þ

where the mode-wise dressed vertex function Γμ
IPWn is

given in Eq. (51). We mention that the functions
βðp;QÞ and βðQ;p0Þ do not depend on the photon-
number parameter l, since βðp;QÞ ¼ βðp; p − k01Þ
and βðQ;p0Þ ¼ βðp0 þ k02; p

0Þ, respectively. Therefore,
exchanging the integration and the two summations, one
can solve the integral by using one of the δ-distributions,
e.g. the first one, which leads to l ¼ lreso

n ¼
βðp; p − k01Þ þ n. Then, the respective virtuality (90)
results in

νl¼lreson
¼ −k01 · ðpþ fβp þ ngkÞ þ nk · p; ð112Þ

where we use the abbreviation βp ¼ a2e2
2

1
k·p. Finally, if one

employs the resonance condition νl¼lreson
¼ 0, for the

emitted photon with four-momentum k0μ1 ¼ ω0
1n

0μ
1 , one

finds for the resonance energy6

ω0reso
1;n ¼ nk · p

ðpþ fβp þ nÞkg · n01
: ð113Þ

Singularities of this type are called Oleinik resonances
[56,57], which were already identified for the nonlinear
two-photon Compton process in [33,53,54]. For further
investigations of the diagrams (114) with respect to Oleinik
resonances we refer the interested reader to [58–61] and
further citations therein, where one of the photon lines is
attributed to a “field photon” of a nucleus.
The multiphoton nonlinear Compton with more than two

vertices, e.g. [62,63], perpetuates this line of arguments and
offers a test bed of gluing techniques, such as developed
in [64,65].

5The symbolic expression ¼! indicates the ad hoc requirement
for “must be equal”.

6This formula for the resonance energy is already known, see,
e.g., [33,54].
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B. Nonlinear Møller

As a further application of the momentum-space Furry-picture Feynman rules to two-vertex processes we consider
nonlinear Møller scattering (nlM), i.e. e−Lðp1Þ þ e−Lðp2Þ → e−Lðp0

1Þ þ e−Lðp0
2Þ in the laser background field (1). Here, the

Oleinik resonances are attributed to the on shell contributions of the photon propagator, cf. [66]. The leading-order tree-
level two-vertex diagrams are

ð114Þ

The direct term (first diagram) corresponds to the matrix element

SnlM ¼
Z

dl
2π

dr
2π

d4Q
ð2πÞ4 ½ūðp

0
1Þð−ieÞΓμðr; p1; p0

1jkÞuðp1Þ�δð4Þðp1 þ rk − p0
1 −QÞ

×DμνðQÞ½ūðp0
2Þð−ieÞΓνðl; p2; p0

2jkÞuðp2Þ�δð4Þðp2 þ lk − p0
2 −QÞ; ð115Þ

where Dμν is the free-photon propagator. Executing the Q integration with one of the δð4Þ distributions yield

SnlM ¼ −e2

ð2πÞ6
Z

dl
2π

dr
2π

δð4Þðp1 þ p2 þ ½rþ l�k − p0
1 − p0

2Þ

× ½ūðp0
1ÞΓμðr; p1; p0

1jkÞuðp1Þ�DμνðQÞ½ūðp0
2ÞΓνðl; p2; p0

2jkÞuðp2Þ�; ð116Þ

where Q ¼ p1 þ rk − p0
1 ¼ p0

2 − lk − p2. The intermediate photon’s virtuality is defined by ν ≔ Q2, which is related to
the photon number parameters

rðνÞ ¼ ν − δp2
1

2δp1 · k
; lðνÞ ¼ ν − δp2

2

2δp2 · k
; ð117Þ

with δpn ≔ pn − p0
n, n ¼ 1, 2. Thus, the photon number parameters l and r are intervened. With aid of light cone variables,

the four-momentum balance can be rewritten as

δð4Þðp1 þ p2 þ ½rþ l�k − p0
1 − p0

2Þ ¼ δlfðp1 þ p2 − p0
1 − p0

2Þδðpþ
1 þ pþ

2 þ ½rþ l�kþ − p0þ
1 − p0þ

2 Þ ð118Þ

to execute the l integral in Eq. (116) with the result

SnlM ¼ −e2

ð2πÞ6kþ δlfðp1 þ p2 − p0
1 − p0

2Þ
Z

dr½ūðp0
1ÞΓμðr; p1; p0

1jkÞuðp1Þ�DμνðQÞ½ūðp0
2ÞΓνðlr; p2; p0

2jkÞuðp2Þ�; ð119Þ

where lr ≔ r0 − r with r0 ¼ ðpþ
1 þ pþ

2 − p0þ
1 − p0þ

2 Þ=kþ or

lr ¼
ðp0

1 þ p0
2 − p2Þ2 −m2

2k · p1

− r: ð120Þ

The decomposition (35) facilitates four contributions to the direct term:
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ð121Þ

Clearly, with respect to Eq. (36), the black-bullet vertices
do dependent on the background field since

and G� ¼ αμ1
R�∞
ϕ0

dϕAμðϕÞ þ α2
R�∞
ϕ0

dϕAðϕÞ2, meaning
that the first diagram, S0, links to the Møller scattering in
vacuum with momentum balance p1 þ p2 ¼ p0

1 þ p0
2,

thus reproducing standard perturbative QED. The back-
ground field, in particular, its temporal shape encoded in
gðϕ;ΔϕÞ, enters the other three diagrams. A suggestive
interpretation is proposed in [21]-Fig. 2 by attributing a
temporal ordering to the diagrams. For instance, the
second diagram, S11, would refer to virtual Compton
under the influence of the background field (correspond-
ing to the hatched vertex Γμ

reg), while the subsequent
virtual-photon absorption in the black vertex Γμ

div would
proceed after the impact of the external field. Such an
interpretation would ascribe the first diagram to pro-
ceeding before or after the action of the external field,
while the last diagram would refer to both subprocesses
within the action of the field; the third diagram, S12, would
be accordingly interpreted as virtual Compton prior
to the external impact. Independent of such an interpre-
tation, the fourth diagram, S2, facilitates on and off shell
contributions.
Analog to the sequence of steps in elaborating the matrix

elements in Sec. VA one can easily explicate the above
diagrams to obtain the decomposition of the four-point
amplitude corresponding to Eq. (2.23) in [21]. As pointed
out in Sec. III D, in the case of soft interactions with the
background field, the finite Γμ

reg and gauge restoration Γμ
div

parts of the dressed vertices factorize into a hard-scattering
part and a generalized soft factor. Consequently, this soft/
hard factorization also sets in for each diagram in the
decomposition (121). Therefore, in the simultaneous limits
a0 → 0 and Δϕ → ∞, the corresponding soft versions of
the five-point functions in perturbative monochromatic
QED appear, where soft photons couple to each fer-
mion line.
Considering again monochromatic plane-wave back-

ground fields and inserting (51) in the Møller matrix
element (119), we arrive at

SIPW
nlM ¼ −e2

ð2πÞ6kþ
X
n;n0

Z
drδðr − βðp1; p0

1; kÞ − nÞ

× δðlr − βðp2; p0
2; kÞ − n0Þ ð122Þ

× ½ūðp0
1ÞΓμ

IPWnðr; p1; p0
1Þuðp1Þ�DμνðQÞ

× ½ūðp0
2ÞΓμ

IPWn0 ðlr; p2; p0
2Þuðp2Þ�: ð123Þ

Solving the r integral, we find r ¼ βðp1; p0
1; kÞ þ n

and, therefore, the virtuality reads νðr ¼ β þ nÞ ¼
ðβðp1; p0

1; kÞ þ nÞ2ðp1 − p0
1Þ · kþ ðp1 − p0

1Þ2 meeting the
resonance condition ν ¼ 0 reveals similar Oleinik reso-
nances as shown in Sec. VI A 4.
Via crossing symmetry, the trident amplitude
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has a similar decomposition as given above by the four
direct-term diagrams, to be supplemented by the exchange
terms. The changed in- and out-phase space, however,
modifies the treatment/interpretation of individual contri-
butions, to be dealt with in a follow-up paper. The nonlinear
Møller scattering is laser-assisted, while the nonlinear
trident is laser-enabled. Oleinik resonances show up in
both channels [67].

VII. SUMMARY

Following [20,23] we present the comprehensive
momentum-space Furry-picture Feynman rules for QED
in an external classical background field. Our emphasis is
on formal aspects of gauge invariance and Ward identity,
thus providing a general framework well-suited for n-point
amplitudes. The special case of four-point amplitudes, dealt
with in [21] within a somewhat different formulation,
emerges naturally. Three-point amplitudes are considered
exhaustively in the past and are uncovered as well. The
benefit of our formalism is a systematic approach to the
weak-field approximation, i.e. the series expansion of
the scattering matrix element in powers of the laser
intensity parameter a0. The leading-order term represents
“pulsed perturbative QED” which accounts, in contrast to
standard perturbative QED, for the temporal structure of
the external classical field, where the Fourier transform of
that field enters decisively. The limiting case of a mono-
chromatic external classical field recovers the standard
perturbative QED in terms of Feynman graphs and their
rules of translation into amplitudes for processes with one
incoming photon impinging on a target, e.g. an electron or a
scattering electron-electron/positron system. The next-to-
leading order terms in a0 are determined by Fourier

transforms of the external classical field in various (non-
linear) combinations. The monochromatic limiting case
describes processes with two incoming photons impinging
on the target, thus referring to the two-photon channel, e.g.
k1 þ k2 þ e− → X, with X ¼ e−0eþe− for trident. When
considering one monochromatic laser field, k1 ¼ k2. One
may also deal with k1 ≠ k2, e.g. for the superposition of
optical laser and XFEL beams. We leave the explication of
such processes with respect to trident for separate work.
Elements of our QED momentum-space Furry-picture

Feynman rules are free Dirac spinors, free fermion propa-
gator, and free photon propagator, and the external field
impact is solely encoded in the fermion-fermion-photon
vertex function. By providing a suitable framework for the
evaluation of the latter vertex function, standard platforms
for the calculation of Feynman diagrams can be used for
strong-field QED processes.
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