
Charged meson masses under strong magnetic fields:
Gauge invariance and Schwinger phases

D. Gómez Dumm ,1,2 S. Noguera ,3 and N. N. Scoccola2,4
1IFLP, CONICET—Departamento de Física, Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, C.C. 67, (1900) La Plata, Argentina

2CONICET, Rivadavia 1917, (1033) Buenos Aires, Argentina
3Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC,

E-46100 Burjassot (Valencia), Spain
4Physics Department, Comisión Nacional de Energía Atómica,
Avenida del Libertador 8250, (1429) Buenos Aires, Argentina

(Received 14 June 2023; accepted 5 July 2023; published 20 July 2023)

We study the role of the Schwinger phase (SP) that appears in the propagator of a charged particle in the

presence of a static and uniform magnetic field B⃗. We first note that this phase cannot be removed by a
gauge transformation; far from this, we show that it plays an important role in the restoration of the
symmetries of the system. Next, we analyze the effect of SPs in the one-loop corrections to charged pion
and rho meson self-energies. To carry out this analysis we consider first a simple form for the meson-quark
interactions, and then we study the πþ and ρþ propagators within the Nambu-Jona-Lasinio model,
performing a numerical analysis of the B dependence of meson lowest energy states. For both πþ and ρþ

mesons, we compare the numerical results arising from the full calculation—in which SPs are included in
the propagators, and meson wave functions correspond to states of definite Landau quantum number—and
those obtained within alternative schemes in which SPs are neglected (or somehow eliminated) and meson
states are described by plane waves of definite four-momentum.
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I. INTRODUCTION

The study of the behavior of charged particles in the
presence of an intense magnetic field within the framework
of relativistic quantum field theory has a long history
(see, e.g., Ref. [1] and references therein). In recent years,
the interest in this topic has been renewed in the context of
the physics of strong interactions [2–4]. The motivation
arises mostly from the realization that intense magnetic
fields might play an important role in the study of the
early Universe [5], in the analysis of high energy noncentral
heavy ion collisions [6,7], and in the description of compact
stellar objects like the magnetars [8,9]. It is well known that
magnetic fields also induce interesting phenomena like the
chiral magnetic effect [10–12], the enhancement of the
QCD quark-antiquark condensate (“magnetic catalysis”)
[13], and the decrease of critical temperatures for chiral
restoration and deconfinement QCD transitions [14].

In the above context, the study of the properties of
magnetized light hadrons shows up as a very relevant task.
In fact, this subject has been addressed by several works in
the framework of various approaches to nonperturbative
QCD. These include, e.g., Nambu-Jona-Lasinio (NJL)-like
models [15–29,29–37], quark-meson models [38,39],
chiral perturbation theory [40–42], hidden local symmetry
[43], path integral Hamiltonians [44,45], and QCD sum
rules [46]. In addition, results for the π and ρ meson spectra
in the presence of background magnetic fields have been
obtained from lattice QCD (LQCD) calculations [14,47–51].
In models with explicit quark degrees of freedom,

like, e.g., the NJL model or the meson-quark model, the
determination of meson properties demands the evaluation
of quark loops. In the presence of a magnetic field B⃗, the
calculation of these loops requires some care due to the
appearance of Schwinger phases (SPs) [52] associated with
quark propagators. These phases are not invariant under
either translational or gauge transformations. When all
external legs in the quark loop correspond to neutral
particles, SPs cancel out, and one can take the usual
momentum basis to diagonalize the corresponding loop
correction; this is the case, for example, of one-loop
corrections to neutral meson self-energies. In contrast,
when some of the external legs correspond to charged
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particles—as in the case of the one-loop correction to a
charged meson mass—Schwinger phases do not cancel,
leading to a breakdown of translational invariance that
prevents proceeding as in the neutral case. In this situation,
some existing calculations within the NJL model
[15,18,22,23,26,30,34] just neglect Schwinger phases; if
this is done, one can set meson transverse momenta to
zero, considering only the translational invariant part of
the quark propagators to determine charged meson
masses. In fact, it has even been argued [53] that this
way to proceed would be consistent with gauge invari-
ance. On the other hand, a method that fully takes into
account the translational-breaking effects introduced by
SPs has been presented in Ref. [27] for the calculation of
charged pion masses, and then it has been subsequently
extended for the determination of the charged pion masses
at finite temperature [28], for the analysis of other charged
pion properties [31], for the determination of charged
kaon [35] and rho meson masses [37], and for the study of
diquark and nucleon masses [54]. This method, based on
the use of the eigenfunctions associated to magnetized
relativistic particles, allows one to diagonalize the charged
meson polarization functions in order to obtain the
corresponding meson masses.
The main objective of this paper is to clarify the role

played by Schwinger phases in the calculation of quark
loops associated to the determination of charged meson
properties in the presence of an external magnetic field.
One important point to be shown is that these phases cannot
be “gauged away”: if a SP does not vanish in a given gauge,
it cannot be removed by any gauge transformation. In fact,
the assumption of neglecting SPs might be considered at
best as some kind of approximation in which the polari-
zation functions are forced to be gauge invariant, instead of
gauge covariant, as they should be. To be fully consistent
and self-contained we devote the first few sections of this
paper to reviewing some properties of the SP as well as to
providing the explicit form of quantum fields and propa-
gators for particles with spin 0, 1=2, and 1. Then, we
dedicate one section to the determination of one-loop
corrections to the charged pion and rho meson self-
energies in the context of the quark-meson model, and
another section is devoted to the calculation of charged
pion and rho meson masses in the framework of the NJL
model. Throughout these calculations we focus on the role
of SPs and the preservation of gauge properties of the
involved quantities. In this way we uncover the issues that
appear when the SPs are neglected, providing further
support to the method introduced in Ref. [31]. We also
show that the assumption of neglecting SPs may have a
significant qualitative impact on the theoretical predic-
tions for the behavior of meson masses under a strong
magnetic field.
This work is organized as it follows. In Sec. II we review

the definition of the SP and state its explicit form in

commonly used gauges. Then, we show how the SP plays
an important role in the preservation of the expected
symmetries of the system—although it is not itself trans-
lational and gauge invariant—and we discuss the related
constraints on the form of the invariant part of charged
particle propagators. In Sec. III we present the explicit
form of charged particle quantum fields in the presence of
an external magnetic field. The corresponding expressions
are given in a quite general form, in terms of eigenfunc-
tions associated to the more commonly used gauges.
In Sec. IV we provide the explicit form of the charged
particle propagators; this is done in terms of both the field
eigenfunctions and the product of a SP and a gauge
invariant function obtained using the Schwinger proper
time method. Next, in Sec. V we determine the leading
order correction to the charged pion and to the charged rho
meson self-energies for some typical quark-meson inter-
action Lagrangian. In particular, we show that these
corrections are diagonal in the basis of the corresponding
meson eigenfunctions. We also show that this implies
taking into account some transverse momentum fluctua-
tions, which would have been neglected by disregarding
the SP (and considering plane wave meson wave func-
tions). In Sec. VI we extend the analysis to the calculation
of the charged pion and rho meson masses in the
framework of the NJL model. To give an idea of the
importance of properly taking into account the SP,
we perform a numerical analysis of the effect of the
magnetic field on these masses, comparing the results
obtained from the expressions that include/neglect the SP.
Finally, in Sec. VII we provide a summary of our work,
together with our main conclusions. We also include
Appendixes A–C, and D to provide some formulas related
with the formalism used throughout our work.

II. SCHWINGER PHASE AND CHARGED
PARTICLE PROPAGATORS

A. Gauge transformations and gauge fixing
for a constant magnetic field

We start by considering the electromagnetic field
strength Fμν associated with a general electromagnetic
field AμðxÞ,

Fμν ¼ ∂
μAν − ∂

νAμ: ð2:1Þ

Throughout this work we use the Minkowski metric
gμν ¼ diagð1;−1;−1;−1Þ, while for a space-time coordi-
nate four-vector xμ we adopt the notation xμ ¼ ðt; x⃗Þ, with
x⃗ ¼ ðx1; x2; x3Þ. We also consider the covariant derivative
Dμ that appears in the field equations associated with an
electrically charged particle,

Dμ ¼ ∂
μ þ iQAμ; ð2:2Þ
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where Q is the particle electric charge. Now, under a gauge
transformationΛðxÞ the electromagnetic field transforms as

Aμ → Ãμ ¼ Aμ þ ∂
μΛ: ð2:3Þ

While the electromagnetic field strength Fμν is invariant
under this transformation, the operator Dμ transforms in a
covariant way, namely

Dμ → D̃μ ¼ e−iQΛðxÞDμeiQΛðxÞ: ð2:4Þ
So far we have considered a general external electro-

magnetic field AμðxÞ. In what follows we concentrate
on the case associated with a static and uniform magnetic
field B⃗. The tensor Fμν is given in this case by

Fij ¼ Fij ¼ −ϵijkBk; F0j ¼ 0; ð2:5Þ
with i, j ¼ 1, 2, 3, whereas the corresponding electromag-
netic field can be written as

AμðxÞ ¼ 1

2
xνFνμ þ ∂

μΨðxÞ; ð2:6Þ

where ΨðxÞ is, in principle, an arbitrary function. For any
form of this function one obtains a particular gauge.
Without losing generality, one can now choose the axis
3 to be parallel (or antiparallel) to the magnetic field,
writing B⃗ ¼ ð0; 0; BÞ. In addition, one can take ΨðxÞ to
be only a function of the spatial coordinates that are
perpendicular to B⃗, i.e., x1 and x2. The reason is that only
the components F12 and F21 of the field strength tensor are
different from zero, which implies that only ∂1A2 and ∂2A1

are relevant. In what follows we adopt this coordinate
choice.
For the considered situation, some commonly used

gauges are

Symmetric gauge ðSGÞ;

ΨðxÞ ¼ 0; AμðxÞ ¼
�
0;−

B
2
x2;

B
2
x1; 0

�
; ð2:7Þ

Landau gauge 1 ðLG1Þ;

ΨðxÞ ¼ B
2
x1x2; AμðxÞ ¼ ð0;−Bx2; 0; 0Þ; ð2:8Þ

Landau gauge 2 ðLG2Þ;
ΨðxÞ ¼ −

B
2
x1x2; AμðxÞ ¼ ð0; 0; Bx1; 0Þ: ð2:9Þ

In what follows, we refer to them as “standard gauges.”
According to the above introduced coordinate

choice, given a four-vector Vμ we find it convenient to
distinguish between “parallel” components, V0 and V3, and
“perpendicular” components, V1 and V2. Thus, we intro-
duce the definitions

Vμ
k ≡ ðV0; 0; 0; V3Þ; Vμ

⊥ ≡ ð0; V1; V2; 0Þ: ð2:10Þ

In addition, we define the metric tensors

gμνk ¼diagð1;0;0;−1Þ; gμν⊥ ¼diagð0;−1;−1;0Þ: ð2:11Þ

The scalar products of parallel and perpendicular vectors
are thus given by

Vμ
kWkμ ¼ Vk ·Wk ¼ V0W0 − V3W3;

Vμ
⊥W⊥μ ¼ −V⃗⊥ · W⃗⊥ ¼ −ðV1W1 þ V2W2Þ;

Vμ
kW⊥μ ¼ 0: ð2:12Þ

B. Schwinger phase

We introduce here the so-called Schwinger phase, which
will be a relevant quantity throughout this work. Given a
particle P with electric charge QP, we denote the associated
SP by ΦPðx; yÞ; its explicit form is [52]

ΦPðx; yÞ ¼ QP

Z
y

x
dξμ

�
AμðξÞ þ 1

2
Fμνðξν − yνÞ

�
; ð2:13Þ

where Fμν is assumed to be constant, and the integration is
performed along an arbitrary path that connects x with y. In
general, the SP is found to be not invariant under either
translations or gauge transformations. On the other hand,
the integral in Eq. (2.13) is shown to be path independent;
thus, it can be evaluated using a straight line path. In this
way, using Eq. (2.6) one can obtain a closed expression for
the SP associated to a static and uniform magnetic field in
an arbitrary gauge. It reads as

ΦPðx; yÞ ¼
QP

2
xμFμνyν −QP½ΨðxÞ −ΨðyÞ�: ð2:14Þ

From Eqs. (2.3) and (2.6), it is seen that under a gauge
transformation the SP transforms as

ΦPðx;yÞ→ Φ̃Pðx;yÞ¼ΦPðx;yÞ−QP½ΛðxÞ−ΛðyÞ�: ð2:15Þ
The expressions for the SP in the particular gauges

introduced above can now be readily obtained from
Eq. (2.14). We have

SG∶ ΦPðx; yÞ ¼ −
QPB
2

ðx1y2 − y1x2Þ; ð2:16Þ

LG1∶ ΦPðx; yÞ ¼ −
QPB
2

ðx2 þ y2Þðx1 − y1Þ; ð2:17Þ

LG2∶ ΦPðx; yÞ ¼
QPB
2

ðx1 þ y1Þðx2 − y2Þ: ð2:18Þ

It is worth noticing that in all cases the SP includes products
that mix the coordinates of the points xμ and yμ. Clearly,
there is no way in which these combinations could be
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expressed in terms of the difference between a scalar
function evaluated at xμ and the same function evaluated
at yμ. Therefore, it follows from Eq. (2.15) that if the SP does
not vanish in a given gauge it will be nonvanishing in any
gauge. This means that the SP cannot be “gauged away.”

C. Charged particle propagators in a static
and uniform magnetic field

Let us now study the propagators of charged particles.
We start by considering the propagator of a spin zero
meson, e.g., a charged pion, which we denote as ΔπQðx; yÞ
with Q ¼ �1. The particle charge is then given by
Qπ ¼ Qe, where e denotes the proton charge.
The equation that defines the meson propagator is

ðDμDμ þm2
πÞΔπQðx; yÞ ¼ −δð4Þðx − yÞ: ð2:19Þ

If we now perform a gauge transformation, using Eq. (2.4)
we get

ðD̃μD̃μ þm2
πÞe−iQπΛðxÞΔπQðx; yÞ ¼ −e−iQπΛðxÞδð4Þðx − yÞ;

ð2:20Þ
hence, the propagator has to transform according to

ΔπQðx; yÞ → Δ̃πQðx; yÞ ¼ e−iQπΛðxÞΔπQðx; yÞeiQπΛðyÞ;

ð2:21Þ
which is the natural extension of a gauge covariant trans-
formation for the case of a bilocal object. It is seen that the
phase difference appearing in the transformed propagator is
just the same quantity that appears in Eq. (2.15) for the
gauge-transformed SP. Therefore, one can always write the
meson propagator as

ΔπQðx; yÞ ¼ eiΦπQ ðx;yÞΔ̄πQðx; yÞ; ð2:22Þ
where Δ̄πQðx; yÞ is a gauge invariant function; the gauge
dependence of the propagator is carried by the SP, which
has a well defined expression.
Since we are dealing with a system subject to a static and

uniform magnetic field, the invariance under translations in
time and space, under rotations around any axis parallel to
the magnetic field, and under boosts in directions parallel to
the magnetic field is expected to be preserved. Translations
in time, as well as translations and boosts in the direction
of B⃗, can be treated in the same way as in the case of a free
particle, since they do not involve the axes 1 or 2. Thus, let
us focus on the translations in the plane perpendicular to B⃗
and in the rotations around the B⃗ direction. Noticeably, the
expected invariance seems to be at odds with the fact that
the charged pion propagator is known to be not invariant
under these transformations. The aim of the following
discussion is to clarify this point and see how the invariance
implies further constraints on the form of the propagator.

Let us first consider space translations in the
perpendicular plane, i.e., a general transformation of the
form xμ → x0μ ¼ xμ þ bμ⊥. From Eq. (2.6), under this
transformation one has

AμðxÞ → Aμ
t ðxÞ

≡Aμðx0Þ

¼ AμðxÞ − 1

2
Fμνb⊥ν þ ∂

μΨðx0Þ − ∂
μΨðxÞ: ð2:23Þ

It is rather easy to see that this is fully equivalent to a gauge
transformation

AμðxÞ → ÃμðxÞ ¼ AμðxÞ þ ∂
μΛtðx;b⊥Þ; ð2:24Þ

with

Λtðx; b⊥Þ ¼ Ψðx0Þ − ΨðxÞ − 1

2
xμFμνb⊥ν: ð2:25Þ

From Eq. (2.25) we can readily get the expressions of
Λtðx; b⊥Þ in the particular gauges introduced in the
previous subsections. We have

SG∶ Λtðx; b⊥Þ ¼ −
B
2
ðx1b2 − x2b1Þ; ð2:26Þ

LG1∶ Λtðx; b⊥Þ ¼
B
2
b2ð2x1 þ b1Þ; ð2:27Þ

LG2∶ Λtðx; b⊥Þ ¼ −
B
2
b1ð2x2 þ b2Þ: ð2:28Þ

A similar relation between the translation xμ→x0μ¼xμþbμ⊥
and the gauge transformation in Eqs. (2.24) and (2.25) can
be obtained for the Schwinger phase. Under the trans-
lation, the SP transforms as

ΦπQðx; yÞ → ΦπQ;tðx; yÞ
≡ΦπQðx0; y0Þ

¼ Qπ

2
x0μFμνy0ν −Qπ½Ψðx0Þ − Ψðy0Þ�; ð2:29Þ

whereas performing the corresponding gauge transforma-
tion one gets

ΦπQðx;yÞ→ Φ̃πQðx;yÞ
¼ΦπQðx;yÞ−Qπ½Λtðx;b⊥Þ−Λtðy;b⊥Þ�: ð2:30Þ

Taking into account the form of Λtðx; b⊥Þ in Eq. (2.25)
we observe that ΦπQ;t ¼ Φ̃πQðx; yÞ. Now we can turn back
to Eq. (2.19), writing the propagator as in Eq. (2.22).
From the above equations it is seen that under the
considered translation the operator ðDμDμ þm2

πÞ and
the factor exp½iΦπQðx; yÞ� transform in the same way
as under the gauge transformation Λtðx; b⊥Þ. Together
with the requirement that Eq. (2.19) be translational
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invariant, this implies that the gauge invariant factor
Δ̄πQðx; yÞ has to also be translational invariant. Thus, we
can write

Δ̄πQðx; yÞ ¼ Δ̄πQðx − yÞ; ð2:31Þ

and it is possible to obtain a Fourier transform
Δ̄πQðvk; v⊥Þ that satisfies

Δ̄πQðx − yÞ ¼
Z

d4v
ð2πÞ4 e

−ivðx−yÞΔ̄πQðvk; v⊥Þ: ð2:32Þ

Notice that in this expression we have made it explicit
that one gets in general different dependences on parallel
and perpendicular momenta.
We consider now a rotation of arbitrary angle α around

an axis parallel to the magnetic field B⃗. The effect of such
a rotation on an arbitrary vector vμ acts only on the
perpendicular component vμ⊥. Choosing the axis 3 in the
direction of B⃗, for a rotation matrix R3̂ðαÞ we have
x0μ ¼ Rμ

νxν, with

Rμ
ν ≡ R3̂ðαÞμν ¼

0
BBB@

1 0 0 0

0 cos α − sin α 0

0 sin α cos α 0

0 0 0 1

1
CCCA: ð2:33Þ

At this point it is important to specify if we adopt an active
or a passive point of view for the rotation; here we adopt
the passive point of view and define x̄0μ ¼ R̄μ

νxν, with
R̄≡ R3̂ð−αÞ. From Eq. (2.6), under the rotation R3̂ðαÞ the
electromagnetic field transforms as

AμðxÞ → Aμ
rðxÞ

¼ Rμ
νAνðx̄0Þ

¼ −
1

2
Rμ

τFτδR̄δ
νxν þRμ

τ
∂ΨðzÞ
∂zτ

����
z¼x̄0

: ð2:34Þ

Noting that Rμ
τFτδR̄δ

ν ¼ Fμν, the result in Eq. (2.34) can
be reinterpreted as a gauge transformation

AμðxÞ → ÃμðxÞ ¼ AμðxÞ þ ∂
μΛrðx; αÞ; ð2:35Þ

where

Λrðx; αÞ ¼ Ψðx̄0Þ −ΨðxÞ: ð2:36Þ

As in the case of the translations, the equivalence between
the rotation R3̂ðαÞ and the gauge transformation Λrðx; αÞ is
also obtained for the SP, i.e., one gets ΦπQ;rðx; yÞ ¼
Φ̃πQðx; yÞ. The explicit expressions for the function
Λrðx; αÞ in the standard gauges read as

SG∶ Λrðx; αÞ ¼ 0; ð2:37Þ

LG1∶ Λrðx; αÞ ¼ −
B
2
sin α

h
2x1x2 sin αþ ððx1Þ2 − ðx2Þ2Þ cos α

i
; ð2:38Þ

LG2∶ Λrðx; αÞ ¼
B
2
sin α

h
2x1x2 sin αþ ððx1Þ2 − ðx2Þ2Þ cos α

i
: ð2:39Þ

Turning back once again to Eq. (2.19), and writing the
propagator as in Eq. (2.22), we observe that under a rotation
R3̂ðαÞ the operator ðDμDμ þm2

πÞ and the factor eiΦπQ
ðx;yÞ

transform in the sameway as under the gauge transformation
Λrðx; αÞ. This equivalence, together with the requirement
that Eq. (2.19) be invariant under R3̂ðαÞ rotations, implies
that Δ̄πQðx − yÞ has to be invariant under these transforma-
tions. Since, in addition, the propagator has to be invariant
under boosts along the axis 3, one can conclude that the
Fourier transform Δ̄πQðvk; v⊥Þ defined in Eq. (2.32) can
depend only on the quantities v2k and v2⊥.
An entirely similar analysis can be performed for the

case of spin 1=2 and spin 1 particles. Thus, the spin 1=2
fermion propagator Sfðx; yÞ can be written as

Sfðx; yÞ ¼ eiΦfðx;yÞS̄fðx − yÞ; ð2:40Þ

with

S̄fðx − yÞ ¼
Z

d4v
ð2πÞ4 e

−ivðx−yÞS̄fðvk; v⊥Þ: ð2:41Þ

Here the propagator is a matrix in Dirac space that involves
products of the γμ Dirac matrices. Owing to the invariance
under rotations around the axis 3 (i.e., the B⃗ axis)
and under boosts in that direction, it is easy to see that
S̄fðvk; v⊥Þ has to be a function of v2k, v2⊥, γk · vk
and γ⃗⊥ · v⃗⊥.
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In the case of a charged vector meson propagator, for
instance, a ρ meson propagator Dνγ

ρQ
ðx; yÞ, we can write

Dνγ
ρQ
ðx; yÞ ¼ eiΦρQ ðx;yÞD̄νγ

ρQ
ðx − yÞ; ð2:42Þ

with

D̄νγ
ρQ
ðx − yÞ ¼

Z
d4v
ð2πÞ4 e

−ivðx−yÞD̄νγ
ρQ
ðvk; v⊥Þ: ð2:43Þ

Similarly to the previous cases, invariance under rotations
around the axis 3 and under boosts in that direction implies
that D̄νγ

ρQ
ðvk; v⊥Þ will be given by a linear combination of

tensors of order 2 built from the tensors gμνk , gμν⊥ , Fμν, and

the vectors vμk, v
μ
⊥, with coefficients given by functions that

depend only on v2k and v2⊥.
Obviously, the above statements can be corroborated

by carrying out detailed calculations of the propagators.
This is sketched in Sec. IV, where the explicit forms of
Δ̄πQðvk; v⊥Þ, S̄fðvk; v⊥Þ, and D̄νγ

ρQ
ðvk; v⊥Þ are given.

In conclusion, we have seen that the Schwinger phase
carries all gauge, translation, and rotation noninvariance
that is present in particle propagators. In fact, this should
not be surprising, since the breakdown of translational and
rotational symmetry is precisely produced by the gauge
choice. When calculating a physical quantity we specify a
particular gauge and use propagators that, in general,
break both translational and rotational invariance; how-
ever, all these symmetries are simultaneously recovered in
the final result.

III. QUANTUM FIELDS OF CHARGED
PARTICLES IN A MAGNETIC FIELD

A. A set of basic functions

Let us consider a charged scalar particle in a static and
homogeneous magnetic field. We introduce the scalar
functions FQðx; q̄Þ, solutions of the eigenvalue equation

DμDμFQðx; q̄Þ ¼ fq̄FQðx; q̄Þ; ð3:1Þ

where Q is the particle electric charge, Dμ is the covariant
derivative defined in Eq. (2.2), and the corresponding
electromagnetic field AμðxÞ is of the form given by
Eq. (2.6). In Eq. (3.1), q̄ stands for a set of four labels
that are needed to completely specify each eigenfunction.
One can be more explicit and write the eigenvalue equation
in the form

�
∂
μ
∂μ −QB⃗ · L⃗þQ2

4
ðx⃗ × B⃗Þ2

�
eiQΨðxÞFQðx; q̄Þ

¼ fq̄eiQΨðxÞFQðx; q̄Þ; ð3:2Þ

where Lk ¼ iϵklmxl∂m. From this equation it is seen that
while the eigenfunctions FQðx; q̄Þ are gauge dependent,
the eigenvalues fq̄ are not. As discussed in the previous
section, the magnetic field can always be taken to lie along
the axis 3, and thenΨðxÞ can be assumed to depend only on
the two spatial coordinates perpendicular to B⃗, x1, and x2.
Consequently, as in the case of a free particle, the
eigenvalues of the components of the four-momentum
along the time direction, q0, and the magnetic field
direction, q3, can be taken as two of the labels required
to specify FQðx; q̄Þ. On the other hand, as is well known,
the eigenvalues of Eq. (3.1) are given by

fq̄ ¼ −½ðq0Þ2 − ð2kþ 1ÞBQ − ðq3Þ2�; ð3:3Þ

where BQ ≡ jQBj, and k is a non-negative integer, to be
related with the so-called Landau level. This means that
the eigenvalues depend only on three of the labels included
in q̄. There is a degeneracy, which arises, of course, as a
consequence of gauge invariance; to fully specify the
eigenfunctions, a fourth quantum number χ is required,
i.e., one has q̄ ¼ ðq0; k; χ; q3Þ.
Although it is not strictly necessary, the quantum number

χ can be conveniently chosen according to the gauge in
which the eigenvalue problem is analyzed [55]. In particu-
lar, since for the standard gauges SG, LG1, and LG2 one
has unbroken continuous symmetries, in those cases it is
natural to consider quantum numbers χ associated with the
corresponding group generators. Usual choices are

SG∶ χ ¼ {; non-negative integer; associated toL3ðeigenvalue of L3∶ m ¼ signðQBÞð{ − kÞÞ; ð3:4Þ

LG1∶ χ ¼ q1; real number; eigenvalue of − i
∂

∂x1
; ð3:5Þ

LG2∶ χ ¼ q2; real number; eigenvalue of − i
∂

∂x2
: ð3:6Þ
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The explicit forms of the functions FQðx; q̄Þ for the
above standard gauges and quantum numbers χ are given in
Appendix A. They are shown to satisfy the completeness
and orthogonality relations

XZ
q̄

FQðx; q̄Þ�FQðy; q̄Þ ¼ δð4Þðx − yÞ; ð3:7Þ

Z
d4xFQðx; q̄0Þ�FQðx; q̄Þ ¼ δ̂q̄q̄0 : ð3:8Þ

Here we have introduced some shorthand notation whose
explicit form depends on the chosen gauge. For SG we have

XZ
q̄

≡ 1

ð2πÞ2
X∞
k;{¼0

Z
dq0

2π

dq3

2π
;

δ̂q̄q̄0 ≡ ð2πÞ4δkk0δ{{0δðq0 − q00Þδðq3 − q03Þ; ð3:9Þ

while for LG1 (LG2) we have

XZ
q̄

≡ 1

2π

X∞
k¼0

Z
dq0

2π

dqi

2π

dq3

2π
;

δ̂q̄q̄0 ≡ ð2πÞ4δkk0δðq0 − q00Þδðqi − q0iÞδðq3 − q03Þ; ð3:10Þ

where i ¼ 1 (i ¼ 2). For later use we also find it convenient
to define q̆ ¼ ðk; χ; q3Þ, s ¼ signðQBÞ, and

XZ
fq̄Eg

¼
XZ
q̄

2πδðq0 − EÞ: ð3:11Þ

It can be shown that the functions FQðx; q̄Þ satisfy the
useful relations [56]

D0FQðx; q̄Þ ¼ −iq0FQðx; q̄Þ;
ðD1 � iD2ÞFQðx; q̄Þ

¼ ð∓ sÞ½ð2kþ 1 ∓ sÞBQ�1=2FQðx; q̄k∓sÞ;
D3FQðx; q̄Þ ¼ −iq3FQðx; q̄Þ; ð3:12Þ

where q̄k�s ¼ ðq0; k� s; χ; q3Þ. We also notice that under a
gauge transformation ΛðxÞ the functions FQðx; q̄Þ [with
q̄ ¼ ðq0; k; χ; q3Þ] transform as

FQðx; q̄Þ → F̃Qðx; qÞ ¼ e−iQΛðxÞFQðx; q̄Þ: ð3:13Þ

B. Spin 0 charged particles: The charged pions

Let us start by considering the gauged Klein-Gordon
action for a pointlike charged pion in the presence of a
static and homogeneous magnetic field. We have

SKG ¼ −
Z

d4x πQðxÞ�ðDμDμ þm2
πÞπQðxÞ; ð3:14Þ

where, as in Sec. II C, we have denoted the pion charge by
Qπ ¼ Qe, withQ ¼ �1. From the action in Eq. (3.14) one
gets the associated gauged Klein-Gordon equation, namely

ðDμDμ þm2
πÞπQðxÞ ¼ 0: ð3:15Þ

We notice that, taking into account Eq. (2.4), the gauge
invariance of the gauged Klein-Gordon action requires
that under a gauge transformation ΛðxÞ the πQðxÞ field
transform as

πQðxÞ → π̃QðxÞ ¼ e−iQπΛðxÞπQðxÞ: ð3:16Þ

Using the notation introduced in the previous subsection,
the quantized charged pion field can be written as

πQðxÞ ¼ π−QðxÞ†

¼
XZ
fq̄Eπ g

1

2Eπ

�
aQπ ðq̆ÞFQðx; q̄Þþa−Qπ ðq̆Þ†F−Qðx; q̄Þ�

�
:

ð3:17Þ

Here the pion energy is given by Eπ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2kþ 1ÞBπ þ ðq3Þ2
p

, with k ≥ 0, while the func-
tions FQðx; q̄Þ are given by

FQðx; q̄Þ ¼ FQπ
ðx; q̄Þ: ð3:18Þ

According to Eqs. (3.7) and (3.8), they satisfy the relations

X
q̄

FQðx; q̄Þ�FQðy; q̄Þ ¼ δð4Þðx − yÞ; ð3:19Þ

Z
d4xFQðx; q̄Þ�FQðx; q̄0Þ ¼ δ̂q̄q̄0 : ð3:20Þ

On the other hand, the creation and annihilation operators
in Eq. (3.17) satisfy the commutation relations

½aQπ ðq̆Þ; a�Q
π ðq̆0Þ� ¼ ½aQπ ðq̆Þ†; a�Q

π ðq̆0Þ†�
¼ ½aQπ ðq̆Þ; a−Qπ ðq̆0Þ†� ¼ 0;

½aQπ ðq̆Þ; aQπ ðq̆0Þ†� ¼ 2Eπð2πÞ3δkk0δχχ0δðq3 − q03Þ: ð3:21Þ

Note that according to the above definitions the operators
aQπ ðq̆Þ and a−Qπ ðq̆Þ turn out to have different dimensions
from the creation and annihilation operators that are usually
defined in absence of the external magnetic field.
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C. Spin 1=2 charged particles: The quarks

Let us consider the gauged Dirac action for a pointlike
quark of flavor f in the presence of a static and homo-
geneous magnetic field. We express the quark charge as
Qf ¼ Qfe, with Qu ¼ 2=3, Qd ¼ −1=3 for f ¼ u, d. The
gauged action is given by

SD ¼
Z

d4x ¯ψfðxÞði=D −mfÞψfðxÞ; ð3:22Þ

where, as usual, ψ̄f ¼ ψ†
fγ

0 and =D ¼ γμDμ; the associated
gauged Dirac equation reads as

ði=D −mfÞψfðxÞ ¼ 0: ð3:23Þ

In a similar way as in the case of the charged pion, gauge
invariance of the gauged Dirac action requires that under a
gauge transformation ΛðxÞ the field ψfðxÞ transforms as

ψfðxÞ → ψ̃fðxÞ ¼ e−iQfΛðxÞψfðxÞ: ð3:24Þ

The quantized quark fields are given by

ψfðxÞ ¼
XZ
fq̄Ef g

X
a¼1;2

1

2Ef
fbfðq̆; aÞUfðx; q̄; aÞ

þ dfðq̆; aÞ†Vfðx; q̄; aÞg; ð3:25Þ

where the quark energy is given by Ef ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ 2kBf þ ðq3Þ2
q

, with k ≥ 0; for k ¼ 0, only the

value a ¼ 1 in the sum over a is allowed. Once again
we use here the definitions q̄ ¼ ðq0; k; χ; q3Þ, q̆ ¼
ðk; χ; q3Þ, Bf ¼ jQfBj, and s ¼ signðQfBÞ. The spinors
Uf and Vf in Eq. (3.25) can be written as

Ufðx; q̄; aÞ ¼ EQfðx; q̄ÞuQf
ðk; q3; aÞ;

Vfðx; q̄; aÞ ¼ Ẽ−Qfðx; q̄Þv−Qf
ðk; q3; aÞ; ð3:26Þ

where EQfðx; q̄Þ and Ẽ−Qfðx; q̄Þ are Ritus functions [57].
Their explicit forms are

EQðx; q̄Þ ¼
X
λ¼�

ΓλFQðx; q̄λÞ;

Ẽ−Qðx; q̄Þ ¼
X
λ¼�

ΓλF−Qðx; q̄−λÞ�; ð3:27Þ

with Γ� ¼ ð1� S3Þ=2, S3 ¼ iγ1γ2 being the three compo-
nent of the spin operator in the spin one half representation.
We have also used the definition q̄λ ¼ ðq0; ksλ; χ; q3Þ, with
ks� ¼ k − ð1 ∓ sÞ=2. The explicit form of the spinors
uQf

ðk; q3; aÞ and v−Qf
ðk; q3; aÞ in Eq. (3.26), as well

as the anticommutation relations between the fermion
creation and annihilation operators and some properties
of the functions EQðx; q̄Þ are given in Appendix B. Using
these properties it is easy to show that the spinors Uf and
Vf satisfy orthogonality and completeness relations,
namely [56]

Z
d4x Ūfðx; q̄; aÞUfðx; q̄0; a0Þ ¼ 2mfδ̂q̄q̄0δaa0 ;Z
d4x V̄fðx; q̄; aÞVfðx; q̄0; a0Þ ¼ −2mfδ̂q̄q̄0δaa0 ;Z

d4x V̄fð−x; q̄; aÞUfðx; q̄0; a0Þ ¼
Z

d4x Ūfðx; q̄; aÞVfð−x; q̄0; a0Þ ¼ 0 ð3:28Þ

and

1

2mf

XZ
q̄

X
a

½Ufðx; q̄; aÞŪðx0; q̄; aÞ − Vfð−x; q̄; aÞV̄fð−x0; q̄; aÞ� ¼ δð4Þðx − x0Þ: ð3:29Þ

On the right-hand side of this last equation, an identity in Dirac space is understood.

D. Spin 1 charged particles: The charged rho mesons

We consider here the gauged Proca action for a charged pointlike rho meson in the presence of a static and homogeneous
magnetic field. Expressing the rho charge as Qρ ¼ Qe, with Q ¼ �1, we have

SP ¼
Z

d4x

�
−
1

2
ρQ;μνðxÞ†ρQμνðxÞ þm2

ρρ
Q;μðxÞ†ρQμ ðxÞ þ

i
2
QρFμν½ρQμ ðxÞ†ρQν ðxÞ − ρQν ðxÞ†ρQμ ðxÞ�

�
; ð3:30Þ
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where ρQμν ¼ Dμρ
Q
ν −Dνρ

Q
μ . The associated gauged Proca

equation reads as

DμDμρ
Q
ν ðxÞ þm2

ρρ
Q
ν ðxÞ − 2iQρFν

αρQα ðxÞ ¼ 0; ð3:31Þ
with

DμρQμ ðxÞ ¼ 0: ð3:32Þ
In the same way as in the previous cases, gauge invariance
of the gauged Proca action requires that under a gauge
transformation ΛðxÞ the rho field transforms as

ρQμ ðxÞ → ρ̃Qμ ðxÞ ¼ e−iQρΛðxÞρQμ ðxÞ: ð3:33Þ
The quantized charged rho field can be written as

ρQ;μðxÞ ¼
XZ
fq̄Eρg

X
c

1

2Eρ

h
aQρ ðq̆; cÞWμ

Qðx; q̄; cÞ

þ a−Qρ ðq̆; cÞ†Wμ
−Qðx; q̄; cÞ�

i
; ð3:34Þ

where the rho energy is given by Eρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ ð2kþ 1ÞBρ þ ðq3Þ2
q

, and we have used the defi-

nitions of q̄ and q̆ introduced in the previous subsections,
together with Bρ ¼ jQρBj and s ¼ signðQρBÞ. It is impor-
tant to point out that in this case the sum over the integer
index k starts at k ¼ −1, instead of zero.
The functions Wμ

Qðx; q̄; cÞ in Eq. (3.34) are given by

Wμ
Qðx; q̄; cÞ ¼ RQ;μνðx; q̄ÞϵQ;νðk; q3; cÞ; ð3:35Þ

where, as in the case of spin 1=2 fields [see Eqs. (3.26)], we
have separated the wave function into a function RQ;μν that
depends on x and q̄ and a polarization vector ϵQ;νðk; q3; cÞ,
the index c denoting the polarization state. Explicit
expressions for these vectors—dictated by the orthogon-
ality relation Eq. (3.32)—are given in Appendix C. In fact,
we note that for k ¼ −1 there is only one possible
polarization vector; this means that the index c can only
take the value c ¼ 1 in this case. For k ¼ 0 two polarization
vectors can be constructed; thus in that case c can take
values of 1 and 2, while for k ≥ 1 the sum over c in
Eq. (3.34) runs over the full set of values c ¼ 1, 2, 3.
The functions RQ;μν are given by

RQ;μνðx; q̄Þ ¼
X

λ¼−1;0;1
FQρ

ðx; q̄λÞϒμν
λ ; ð3:36Þ

where q̄λ ¼ ðq0; k − sλ; χ; q3Þ (notice that this definition of
q̄λ is different from the one used in the case of charged
fermions). There are various possible choices for the
tensors ϒμν

λ ; here we use

ϒμν
0 ¼ gμνk ; ϒμν

�1 ¼
1

2
ðgμν⊥ ∓ Sμν3 Þ; ð3:37Þ

whereSμν3 ¼ iðδμ1δν2 − δμ2δ
ν
1Þ is the three component of the

spin operator in the spin one representation. Orthogonality
and completeness relations for the functionsRQ;μν, as well as
other useful relations involving these functions and the ϒμν

λ
tensors, are given in Appendix C. In that Appendix we also
quote the commutation relations between the creation and
annihilation operators for the charged rho fields.
As discussed in Appendix C, for k ≥ 0 an additional

vector, orthogonal to the physical polarization vectors,
can be introduced [see Eq. (C18)]. We keep for this new
vector the notation ϵμQðk; q3; cÞ, taking for the polarization
index the value c ¼ 0, and we refer to the associated
polarization as “longitudinal.” If we extend the set of
charged rho meson wave functions Wμ

Qðx; q̄; cÞ by includ-
ing the corresponding “longitudinal” wave function
Wμ

Qðx; q̄; 0Þ≡RQ;μνðx; q̄ÞϵQ;νðk; q3; 0Þ, we get for these
functions orthogonality and completeness relations, namely
Z

d4xWμ
Qðx; q̄0; c0Þ�WQ;μðx; q̄; cÞ ¼ −ζcδ̂q̄q̄0δcc0 ð3:38Þ

and

XZ
q̄

Xcmax

c¼cmin

ζcW
μ
Qðx; q̄; cÞ�Wν

Qðx0; q̄; cÞ ¼ −gμνδð4Þðx − x0Þ:

ð3:39Þ
In these equations the coefficients ζc are defined as ζ0 ¼ −1,
ζ1 ¼ ζ2 ¼ ζ3 ¼ 1, while cmin and cmax are given by

cmin¼
�
1 if k¼−1
0 if k≥0

; cmax¼
8<
:
1 if k¼−1
2 if k¼0

3 if k≥1

: ð3:40Þ

IV. EXPLICIT FORM OF THE CHARGED
PARTICLE PROPAGATORS

A. The spin 0 charged particle propagator

As discussed above, the charged pion propagator
ΔπQðx; yÞ satisfies Eq. (2.19), and its behavior under a
gauge transformation is given by Eq. (2.21). Using the
functions FQðx; q̄Þ defined in Eq. (3.18) and the properties
of the functions FQðx; q̄Þ discussed in Sec. III A, it can be
easily seen that ΔπQðx; yÞ can be expressed as

ΔπQðx; yÞ ¼
XZ
q̄

FQðx; q̄ÞΔ̂πQðk; qkÞFQðy; q̄Þ�; ð4:1Þ

with

Δ̂πQðk; qkÞ ¼
1

q2k −m2
π − ð2kþ 1ÞBπ þ iϵ

: ð4:2Þ
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In fact, from this expression of the propagator, taking
into account the gauge transformation properties of
the functions FQðx; q̄Þ in Eq. (3.13), it is immediately
seen that it transforms in the covariant way given
by Eq. (2.21).
In addition, as is well known, an alternative form for

the charged pion propagator can be obtained using the

Schwinger proper time method. If ΔπQðx; yÞ is written as in
Eqs. (2.22) and (2.32), i.e.,

ΔπQðx;yÞ¼eiΦπQ ðx;yÞ
Z

d4v
ð2πÞ4e

−ivðx−yÞΔ̄πQðvk;v⊥Þ; ð4:3Þ

one gets

Δ̄πQðvk; v⊥Þ ¼ −i
Z

∞

0

dσ
1

cosðσBπÞ
exp

�
−iσ

�
m2

π − v2k þ v⃗2⊥
tanðσBπÞ
σBπ

− iϵ

��
: ð4:4Þ

This expression can also be obtained starting from
Eq. (4.1), as shown, e.g., in Appendix D of Ref. [3].
Notice that, as expected from the discussion in Sec. II C,
Δ̄πQðvk; v⊥Þ depends only on v2k and v2⊥.

B. The spin 1=2 charged particle propagator

The spin 1=2 charged particle propagator Sfðx; yÞ
satisfies the equation

ði=D −mfÞSfðx; yÞ ¼ δð4Þðx − yÞ: ð4:5Þ

In terms of the Ritus functions in Eq. (3.27), it can be
expressed as

Sfðx; yÞ ¼
XZ
q̄

EQfðx; q̄ÞŜfðk; qkÞĒQfðy; q̄Þ; ð4:6Þ

where

Ŝfðk; qkÞ ¼
Π̂s þmf

q2k −m2
f − 2kBf þ iϵ

; ð4:7Þ

with the definitions Π̂μ
s ¼ ðq0; 0;−s ffiffiffiffiffiffiffiffiffiffi

2kBf
p

; q3Þ and
ĒQfðy; q̄Þ ¼ γ0EQfðy; q̄Þ†γ0. The above expression can
be obtained using the relations in Appendix B.
Moreover, taking into account the gauge transformation
properties of these functions [see Eq. (3.13)], from Eq. (4.6)
it is easy to see that under a gauge transformation ΛðxÞ the
propagator transforms, as it should, in the covariant way

Sfðx; yÞ → S̃fðx; yÞ ¼ e−iQfΛðxÞSfðx; yÞeiQfΛðyÞ: ð4:8Þ

As in the case of spin 0 particles, an alternative form
of this propagator can be obtained using the Schwinger
proper time method. If Sfðx; yÞ is written as in Eqs. (2.40)
and (2.41), i.e.,

Sfðx; yÞ ¼ eiΦfðx;yÞ
Z

d4v
ð2πÞ4 e

−ivðx−yÞS̄fðvk; v⊥Þ; ð4:9Þ

one gets

S̄fðvk; v⊥Þ ¼ −i
Z

∞

0

dσ exp

�
−iσ

�
m2

f − v2k þ v⃗2⊥
tanðσBfÞ
σBf

− iϵ

��

×

�
ðvk · γk þmfÞð1 − sγ1γ2 tanðσBfÞÞ −

v⃗⊥ · γ⃗⊥
cos2ðσBfÞ

�
: ð4:10Þ

The derivation of this expression starting from Eq. (4.6) can be found, e.g., in Ref. [58]. We note that S̄fðpk; p⊥Þ satisfies
the constraints imposed by the invariance under rotations around the axis 3 (i.e., the B⃗ axis) and under boosts in that
direction discussed in Sec. II C.

C. The spin 1 charged particle propagator

The spin 1 charged particle propagator Dνγ
ρQ
ðx; yÞ satisfies the equation

½ðDαDα þm2
ρÞgμν −DμDν þ 2iQρFμν�Dνγ

ρQ
ðx; yÞ ¼ δμ

γδð4Þðx − yÞ; ð4:11Þ
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it can be expressed as

Dνγ
ρQ
ðx; yÞ ¼

XZ
q̄

RQ;ναðx; q̄ÞD̂ρQ;αβðk; qkÞRQ;γβðy; q̄Þ�;

ð4:12Þ

with

D̂ρQ;αβðk;qkÞÞ¼
−gαβþð1−δk;−1ÞΠαðk;qkÞΠβðk;qkÞ�=m2

ρ

q2k−m2−ð2kþ1ÞBρþ iϵ
:

ð4:13Þ

Here we have introduced the four-vector Πμðk; qkÞ,
given by

Πμðk; qkÞ ¼
�
q0; i

ffiffiffiffiffiffiffiffiffiffi
Bρ=2

q 
 ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
−

ffiffiffi
k

p �
;

− s
ffiffiffiffiffiffiffiffiffiffi
Bρ=2

q 
 ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p þ
ffiffiffi
k

p �
; q3

�
: ð4:14Þ

This vector, which is defined only for k ≥ 0, plays in some
cases a role equivalent to the one played by the four-
momentum vector for B ¼ 0. It is easy to see that

Πμðk;qkÞ�Πμðk;qkÞ¼ðq0Þ2−ð2kþ1ÞBQ−ðq3Þ2; ð4:15Þ
which is equal to m2

ρ for q0 ¼ Eρ.
Taking into account the properties of RQ;μν functions

quoted in Appendix C, it can be shown that Dνγ
ρQ
ðx; yÞ,

expressed as in Eq. (4.12), satisfies Eq. (4.11). Moreover,
using the gauge transformation properties of the functions
FQðx; q̄Þ [see Eq. (3.13)] it is easy to see that, as in the case
of spin 0 and spin 1=2 particles, the propagator transforms
in a covariant way under a gauge transformation.
As in the previous cases, an alternative form for the

charged ρ meson propagator can be obtained using the
Schwinger proper time method. IfDμν

ρQ
ðx; yÞ is written as in

Eqs. (2.42) and (2.43), i.e.,

Dμν
ρQ
ðx;yÞ¼eiΦρQ

ðx;yÞ
Z

d4v
ð2πÞ4e

−ivðx−yÞD̄μν
ρQ
ðvk;v⊥Þ; ð4:16Þ

one gets

D̄μν
ρQ
ðvk; v⊥Þ ¼ i

Z
∞

0

dσ
cosðσBρÞ

exp

�
−iσ

�
m2

ρ − v2k þ v⃗2⊥
tanðσBρÞ
σBρ

− iϵ

��

×

�
Oμν

1 ðvÞ −
�
2sin2ðσBρÞ − 1þ v⃗2⊥

m2
ρ
tan2ðσBρÞ þ i

Bρ

2m2
ρ
tanðσBρÞ

�
Oμν

2 ðvÞ

−
1

m2
ρ

h
Oμν

3 ðvÞ þ ½1þ tan2ðσBρÞ�Oμν
4 ðvÞ þOμν

5 ðvÞ
i

þ i

�
sinð2σBρÞ þ

v⃗2⊥
m2

ρ
tanðσBρÞ þ

iBρ

2m2
ρ

�
Oμν

6 ðvÞ þ i tanðσBρÞ
m2

ρ
Oμν

7 ðvÞ
�
; ð4:17Þ

where

Oμν
1 ðvÞ ¼ gμνk ; Oμν

2 ðvÞ ¼ gμν⊥ ; Oμν
3 ðvÞ ¼ vμkv

ν
k
�;

Oμν
4 ðvÞ ¼ vμ⊥vν⊥�; Oμν

5 ðvÞ ¼ vμ⊥vνk� þ vμkv
ν⊥�; Oμν

6 ðvÞ ¼ −iQρFμν=Bρ;

Oμν
7 ðvÞ ¼ iQρ½Fμαv⊥αvνk

� þ vμkv⊥α
�Fαν�=Bρ: ð4:18Þ

This expression can be obtained from Eq. (4.11) using the
same methods as in the previous cases. In fact, an
equivalent result has been obtained for the W boson
propagator in Ref. [59]. Once again, it is found that
D̄μν

ρQ
ðpk; p⊥Þ satisfies the constraints imposed by the

invariance under rotations around the axis 3 (i.e., the B⃗
axis) and under boosts in that direction discussed in
Sec. II C.

V. MESON-QUARK INTERACTIONS AND
ONE-LOOP CORRECTIONS TO CHARGED

MESON TWO-POINT CORRELATORS

In the previous section we have considered charged
noninteracting boson and fermion fields in the presence of
an external magnetic field; let us now analyze the situation
in which these particles interact with each other. The type
of interactions to be considered here are quite generic.
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In fact, they can be found in several effective approaches
for low energy strong interactions, such as, e.g., meson-
quark models in hadronic physics and meson-nucleon
models in nuclear physics. As simple but relevant issues,
in this section we discuss the one-loop corrections to the
charged pion and rho meson two-point correlators. It is
worth mentioning that in the presence of an external
magnetic field these mesons turn out to get mixed. Since
in this paper we are mainly concerned about the role played
by the Schwinger phase in this type of calculation, these
mixing terms will be neglected; i.e., the corrections to spin
0 and spin 1 meson self-energies will be treated separately.

A. Pion-quark interactions and one-loop correction
to the charged pion two-point correlator

Let us consider the quark-pion interaction Lagrangian

LðπqÞ
int ¼ gsψ̄ðxÞiγ5τ⃗ψðxÞπ⃗ðxÞ: ð5:1Þ

Here, ψðxÞ stands for a fermion field doublet; for definite-
ness, we take it to be

ψðxÞ ¼
�
ψuðxÞ
ψdðxÞ

�
; ð5:2Þ

where the fields ψfðxÞ, with f ¼ u, d, are associated to u
and d quarks. Using the same notation as in previous
sections, we have Qu ¼ 2e=3, Qd ¼ −e=3, e being the
proton charge. As usual, τi are the Pauli matrices, and pion
charge and isospin states are related by π�¼ðπ1∓ iπ2Þ=

ffiffiffi
2

p
,

π0 ¼ π3. The gauge transformation properties for charged
fields given in the previous section guarantee that the
interaction Lagrangian in Eq. (5.1) is gauge invariant.
We analyze now the leading order correction (LOC) to

the two-point πþ correlator. One has

iΔðLOCÞ
πþ ðy; y0Þ

¼ i2

2

Z
d4x d4x0h0jT½πþðyÞπþðy0Þ†LðπqÞ

int ðxÞLðπqÞ
int ðx0Þ�j0i;

ð5:3Þ

where the contributions that lead to vacuum-vacuum
subdiagrams have been omitted [60]. Considering the

relevant terms in LðπqÞ
int we have

ΔðLOCÞ
πþ ðy; y0Þ

¼ −ig2s
Z

d4x d4x0Δπþðy; xÞJπþðx; x0ÞΔπþðx0; y0Þ;

ð5:4Þ

where Jπþðx; x0Þ is the polarization function in coordinate
space,

Jπþðx; x0Þ ¼ −2NctrD½iSuðx; x0Þiγ5iSdðx0; xÞiγ5�; ð5:5Þ

trD denoting trace in Dirac space.
We also introduce the πþ polarization function in q̄ space

(or Ritus space), Jπþðq̄; q̄0Þ, defined by

Jπþðq̄; q̄0Þ ¼
Z

d4x d4x0Fþðx; q̄Þ�Jπþðx; x0ÞFþðx0; q̄0Þ:

ð5:6Þ

This equation can be inverted using the completeness
relation for the functions FQðx; q̄Þ [Eq. (3.19)], obtaining

Jπþðx; x0Þ ¼
XZ
q̄;q̄0

Fþðx; q̄ÞJπþðq̄; q̄0ÞFþðx0; q̄0Þ�: ð5:7Þ

From this last relation, together with Eq. (4.1) and the
orthogonality relation Eq. (3.20), the leading order correc-
tion to the πþ propagator can be written as

ΔðLOCÞ
πþ ðy; y0Þ ¼ −ig2s

XZ
q̄;q̄0

Fþðy; q̄ÞΔ̂πþðk; qkÞJπþðq̄; q̄0Þ

× Δ̂πþðk0; q0kÞFþðy0; q̄0Þ�; ð5:8Þ

where Δ̂πþðk; qkÞ is given by Eq. (4.2).
Note that none of the functions appearing in the rhs of

Eq. (5.6) is by itself an invariant quantity. However, being

LðπqÞ
int ðxÞ gauge invariant, so must be Jπþðq̄; q̄0Þ. In fact, on

the basis of gauge, translational, and rotational symmetries,
we expect Jπþðq̄; q̄0Þ to be of the form Jπþðq̄; q̄0Þ ¼
δ̂q̄q̄0 Ĵπþðk; qkÞ. In the following we will see how this comes
out by explicit calculation.
We start by considering Eq. (5.5), writing the quark

propagators in the form given by Eqs. (2.40) and (2.41).
In this way we get

Jπþðx; x0Þ ¼ eiΦπþðx;x0ÞJ̄πþðx − x0Þ; ð5:9Þ

where

J̄πþðx − x0Þ ¼
Z

d4v
ð2πÞ4 e

−ivðx−x0ÞJ̄πþðvk; v⊥Þ; ð5:10Þ

with

J̄πþðvk; v⊥Þ

¼ −2Nc

Z
d4p
ð2πÞ4 trD½iS̄

uðpþ
k ; p

þ⊥Þiγ5iS̄dðp−
k ; p

−⊥Þiγ5�:

ð5:11Þ
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Here we have used the definition p�
μ ¼ pμ � vμ=2. In

addition, in Eq. (5.9) we have made use of the relation

ΦQuðx; x0Þ þΦQdðx0; xÞ ¼ ΦQu−Qdðx; x0Þ ¼ ΦQπþ ðx; x0Þ:
ð5:12Þ

We see from the above equations that Jπþðx; x0Þ can be
written as the product of a SP and a function J̄πþðx − x0Þ,
which is both gauge and translational invariant. Thus, under
a gauge transformation the polarization function transforms
in the same way as the SP. On the other hand, as in the case
of a bare charged pion propagator, invariance under
rotations around the axis 3 (i.e., the B⃗ axis) and under
boosts in that direction imply that J̄πþðvk; v⊥Þ has to be a
function of v2k and v2⊥; this is indeed corroborated by the
explicit form given below.
Replacing Eq. (5.9) in Eq. (5.6), and taking into account

Eq. (3.18), we get

Jπþðq̄; q̄0Þ¼
Z

d4v
ð2πÞ4hπþðq̄;q̄

0;vk;v⊥ÞJ̄πþðvk;v⊥Þ; ð5:13Þ

where

hPðq̄; q̄0; vk; v⊥Þ

¼
Z

d4xd4x0FQP
ðx; q̄Þ�FQP

ðx0; q̄0ÞeiΦPðx;x0Þe−ivðx−x0Þ:

ð5:14Þ

It is easy to see that hPðq̄; q̄0; vk; v⊥Þ is gauge invariant,
given the gauge transformation properties of the SP and the
functions FQP

ðx; q̄Þ. One can carry out its explicit calcu-
lation in any of the standard gauges, SG, LG1, and LG2,
obtaining

hPðq̄; q̄0; vk; v⊥Þ ¼ δχχ0 ȟPðk; qk; k0; q0k; vk; v⊥Þ: ð5:15Þ

Here δχχ0 stands for δ{{0, δðq1 − q01Þ and δðq2 − q02Þ for SG,
LG1, and LG2, respectively, while the function
ȟPðk; qk; k0; q0k; vk; v⊥Þ is given by

ȟPðk; qk; k0; q0k; vk; v⊥Þ
¼ ð2πÞ4δð2Þðqk − q0kÞð2πÞ2δð2Þðqk − vkÞfkk0 ðv⊥Þ;

ð5:16Þ

with

fkk0 ðv⊥Þ ¼
4πð−iÞkþk0

BP

ffiffiffiffiffiffi
k!
k0!

r �
2v⃗2⊥
BP

�k0−k
2

Lk0−k
k

�
2v⃗2⊥
BP

�

× e−v⃗
2⊥=BPeisðk−k0Þϕ⊥ : ð5:17Þ

We have used here the definition BP ¼ jBQPj and intro-
duced the angle ϕ⊥, given by v⃗⊥ ¼ jv⃗⊥jðcosϕ⊥; sinϕ⊥Þ.
Note that in the present case BP ¼ Bπ ¼ ejBj and
s ¼ signðBÞ.
As stated, J̄πþðvk; v⊥Þ is found to be a function of v⃗2⊥

[see Eq. (5.24) below]. Performing the integral over ϕ⊥,
one arrives at the expected form

Jπþðq̄; q̄0Þ ¼ δ̂q̄q̄0 Ĵπþðk; qkÞ; ð5:18Þ
where

Ĵπþðk; qkÞ ¼
Z

∞

0

djv⃗⊥j2J̄πþðqk; v⊥Þρkðv⃗2⊥Þ; ð5:19Þ

with

ρkðv⃗2⊥Þ ¼
ð−1Þk
Bπ

e−v⃗
2⊥=BπLk

�
2v⃗2⊥
Bπ

�
: ð5:20Þ

It is worth recalling that, due to the presence of the
nonvanishing Schwinger phase ΦQπþ ðx; x0Þ, the polariza-
tion function Jπþðx; x0Þ is not just a function of x − x0, and
therefore it cannot be diagonalized by a Fourier transform
into momentum space. Instead, one can obtain a diagonal,
gauge invariant function Jπþðq̄; q̄0Þ ¼ δ̂q̄q̄0 Ĵπþðk; qkÞ
through the above described transformation into q̄ space.
As shown by Eq. (5.19), the Fourier transform J̄πþðqk; v⊥Þ
of the translational invariant part of Jπþðx; x0Þ does not
coincide with Ĵπþðk; qkÞ; in fact, the latter can be obtained
from the integration of J̄πþðqk; v⊥Þ over the perpendicular
momentum v⊥, weighted by the function ρkðv⃗2⊥Þ given by
Eq. (5.20). On the other hand, in the absence of the SP in
Eq. (5.14) one could replace the functions FQP

ðx; q̄Þ by
plane waves, and the function hπþ in Eq. (5.13) would be
simply given by ð2πÞ8δð4Þðq − q0Þδð4Þðq − vÞ; this is,
indeed, what is done in the case of neutral mesons.
Given that Jπþðq̄; q̄0Þ is diagonal in q̄ space, from

Eq. (5.4) the LOC to the propagator can be written as

ΔðLOCÞ
πþ ðy; y0Þ ¼

XZ
q̄

Fþðy; q̄ÞΔ̂ðLOCÞ
πþ ðk; qkÞFþðy0; q̄Þ�;

ð5:21Þ
where

Δ̂ðLOCÞ
πþ ðk; qkÞ ¼ Δ̂πþðk; qkÞΣ̂πþðk; qkÞΔ̂πþðk; qkÞ; ð5:22Þ

with

Σ̂πþðk; qkÞ ¼ −ig2s Ĵπþðk; qkÞ: ð5:23Þ

To get the final form of Ĵπþðk; qkÞ from Eq. (5.19) we
need the explicit expression of J̄πþðvk; v⊥Þ. The latter can
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be readily obtained from Eq. (5.11), taking into account the
invariant part of the quark propagators given in Eq. (4.10).
One has

J̄πþðvk; v⊥Þ ¼ −
iNc

4π2

Z
1

−1
dx

Z
∞

0

dz
tþ

e−zϕðx;v
2
kÞe−ðt2þ−t2−Þv⃗2⊥=ð4tþÞ

×

��
mumd þ

1

z
þ ð1− x2Þ

v2k
4

�
ð1− tutdÞ

þ
�
1

tþ
−
�
1−

t2−
t2þ

�
v⃗2⊥
4

�
ð1− t2uÞð1− t2dÞ

�
;

ð5:24Þ
where we have used the definition

ϕðx; v2kÞ ¼ ðm2
u þm2

dÞ=2 − xðm2
u −m2

dÞ=2 − ð1 − x2Þv2k=4;
ð5:25Þ

as well as

tu ¼ tanh ½ð1 − xÞzBu=2�;
td ¼ tanh ½ð1þ xÞzBd=2�;
t� ¼ tu=Bu � td=Bd: ð5:26Þ

Replacing this expression in Eq. (5.19) and performing the
integral over v⊥ we finally obtain

Ĵπþðk; qkÞ ¼ −
iNc

4π2

Z
1

−1
dx

Z
∞

0

dz e−zϕðx;q
2
kÞ 1

αþ

�
α−
αþ

�
k

×

��
mumd þ

1

z
þ ð1 − x2Þ

q2k
4

�
ð1 − tutdÞ

þ α− þ kðα− − αþÞ
αþα−

ð1 − t2uÞð1 − t2dÞ
�
;

ð5:27Þ
where we have defined α� as

α� ¼ tu
Bu

þ td
Bd

� Bπ
tu
Bu

td
Bd

¼ tþ � Bπ
tu
Bu

td
Bd

: ð5:28Þ

The integral on the rhs of Eq. (5.27) is divergent, so it has
to be regularized. This can be done, e.g., by subtracting the

B ¼ 0 contribution, leaving a finite B-dependent piece. In
addition, an analytical extension of the function Ĵπþðk; qkÞ
can be performed for large positive values of q2k.

We end this subsection by noting that ΔðLOCÞ
πþ ðy; y0Þ can

be expressed in an alternative way. By looking at
Eqs. (2.22) and (2.31) for the bare propagator together
with Eq. (5.9) for the polarization function, one can foresee
that the translational noninvariance of the dressed propa-
gator will be carried by Schwinger phases at any order of
the calculation. On this basis, we explicitly separate the
corresponding SP in the LOC to the propagator, writing

ΔðLOCÞ
πþ ðy; y0Þ ¼ eiΦπþðy;y0ÞΔ̄ðLOCÞ

πþ ðy; y0Þ: ð5:29Þ

Then we can use Eqs. (2.22), (2.31), (5.4), and (5.9) to
obtain

Δ̄ðLOCÞ
πþ ðy; y0Þ ¼ −ig2s

Z
d4x d4x0eiφðy−x0;x−y0Þ

× Δ̄πþðy − xÞJ̄πþðx − x0ÞΔ̄πþðx0 − y0Þ;
ð5:30Þ

where

φðy − x0; x − y0Þ
¼ Φπþðy; xÞ þΦπþðx; x0Þ þΦπþðx0; y0Þ þΦπþðy0; yÞ

¼ Qπ

2
ðyμ − x0μÞFμνðxν − y0νÞ: ð5:31Þ

It is worth noticing that the phase φðy − x0; x − y0Þ is in
general nonvanishing for nonzero B. Moreover, it is
invariant under gauge transformations, translations, rota-
tions around the direction of B⃗, and boosts in that direction.
This implies that once the SP has been extracted, the

remaining factor Δ̄ðLOCÞ
πþ ðy; y0Þ should have all the associ-

ated invariance properties; in particular, one should be able

to write Δ̄ðLOCÞ
πþ ðy; y0Þ ¼ Δ̄ðLOCÞ

πþ ðy − y0Þ. Indeed, using the
Fourier transforms defined in Eqs. (2.32) and (5.10), and
changing variables x and x0 to z ¼ y − x0 and z0 ¼ x − y0
we obtain

Δ̄ðLOCÞ
πþ ðy; y0Þ ¼ −ig2s

Z
d4r
ð2πÞ4

d4s
ð2πÞ4

d4t
ð2πÞ4 Δ̄πþðrk; r⊥ÞJ̄πþðsk; s⊥ÞΔ̄πþðtk; t⊥Þe−iðr−sþtÞðy−y0Þ

Z
d4zd4z0eiφðz;z0Þeiðr−sÞz0eiðt−sÞz;

ð5:32Þ

thus, we can write

Δ̄ðLOCÞ
πþ ðy; y0Þ ¼ Δ̄ðLOCÞ

πþ ðy − y0Þ ¼
Z

d4v
ð2πÞ4 e

−ivðy−y0ÞΔ̄ðLOCÞ
πþ ðvk; v⊥Þ: ð5:33Þ
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Now, noting that φðz; z0Þ depends only on the perpendicular components of z and z0, we get

Δ̄ðLOCÞ
πþ ðvk; v⊥Þ ¼ −ig2s

Z
d2r⊥
ð2πÞ2

d2t⊥
ð2πÞ2 Δ̄πþðvk; r⊥ÞJ̄πþðvk; r⊥ þ t⊥ − v⊥ÞΔ̄πþðvk; t⊥Þ

×
Z

d2z⊥ d2z0⊥eiφðz⊥;z
0⊥Þe−iðv⃗⊥−⃗t⊥Þ·z⃗0⊥e−iðv⃗⊥−r⃗⊥Þ·z⃗⊥ ; ð5:34Þ

and finally we can perform the integrals over z⊥ and z0⊥ and make the change of variables

r⊥ ¼ v⊥ −
ffiffiffiffiffiffi
Bπ

2

r
u⊥; t⊥ ¼ v⊥ −

ffiffiffiffiffiffi
Bπ

2

r
u0⊥; ð5:35Þ

obtaining

Δ̄ðLOCÞ
πþ ðvk; v⊥Þ ¼ −i

g2s
ð2πÞ2

Z
d2u⊥ d2u0⊥e

iφ


 ffiffiffiffi
2
Bπ

p
u0⊥;

ffiffiffiffi
2
Bπ

p
u⊥
�

× Δ̄πþ

�
vk; v⊥ −

ffiffiffiffiffiffi
Bπ

2

r
u⊥

�
J̄πþ

�
vk; v⊥ −

ffiffiffiffiffiffi
Bπ

2

r
ðu0⊥ þ u⊥Þ

�
Δ̄πþ

�
vk; v⊥ −

ffiffiffiffiffiffi
Bπ

2

r
u0⊥

�
: ð5:36Þ

At this point we can remark on the important role played by the Schwinger phase, which is responsible for the existence of

the phase φð
ffiffiffiffi
2
Bπ

q
u0⊥;

ffiffiffiffi
2
Bπ

q
u⊥Þ [see Eq. (5.31)]. As shown in Eq. (5.36), the latter drives the fluctuation of transverse

momenta suffered by the charged particles when they propagate in the presence of the magnetic field. Were the phase
φðz⊥; z0⊥Þ omitted in Eq. (5.34), one would directly obtain

Δ̄ðLOCÞ
πþ ðvk; v⊥Þ ¼ −ig2sΔ̄πþðvk; v⊥ÞJ̄πþðvk; v⊥ÞΔ̄πþðvk; v⊥Þ; ð5:37Þ

losing any transverse momentum fluctuation.
A final comment on the B → 0 limit of Eq. (5.36) is pertinent. It is easy to see that in this limit the integral over u⊥ and u0⊥

only affects the phase φð
ffiffiffiffi
2
Bπ

q
u0⊥;

ffiffiffiffi
2
Bπ

q
u⊥Þ. To regulate the oscillatory integrals one can introduce factors e−ϵjuij, e−ϵju0ij, with

i ¼ 1, 2, and then take ϵ → 0þ, obtaining

lim
B→0

Δ̄ðLOCÞ
πþ ðvk; v⊥Þ ¼ −ig2s

�
lim
B→0

Δ̄πþðvk; v⊥Þ
��

lim
B→0

J̄πþðvk; v⊥Þ
��

lim
B→0

Δ̄πþðvk; v⊥Þ
�
: ð5:38Þ

This is the expected result. If there is no magnetic field,
there is no fluctuation of transverse momenta; this is a
consequence of translation invariance, which implies the
conservation of the four components of the momentum.
On the contrary, in the presence of a static and uniform
magnetic field the situation is different. As we have seen in
Sec. II, in that case translation invariance in the transverse
direction is realized in a nontrivial way, being related to
gauge transformations. In addition, in Sec. III we have seen
that the wave functions associated to charged particles
depend on the chosen gauge, and cannot be written in terms
of definite four-momentum states. In fact, this leads to a

fluctuation in the transverse spatial directions that is
translated into a fluctuation in the transverse directions
of the momentum. Our result in Eq. (5.36) shows how these
fluctuations affect the evaluation of the LOC to the pion
propagator, in particular, the part of the propagator that is
invariant under gauge transformations, translations, rota-
tions around the B⃗ axis, and boosts in the spatial direction
parallel to the magnetic field.
On the basis of charge conservation, it is not difficult to

realize that the appearance of a SP as in Eq. (5.29) will be
valid at any order of correction, and, therefore, it also
applies to the full propagator.
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B. Rho meson-quark interactions and one-loop correction to the charged rho meson two-point correlator

Let us consider the rho meson-quark interaction Lagrangian

LðρqÞ
int ¼ gvρ⃗μðxÞψ̄ðxÞγμτ⃗ψðxÞ: ð5:39Þ

As usual, ρ charge states are related to isospin states by ρ�μ ¼ ðρ1;μ ∓ iρ2;μÞ=
ffiffiffi
2

p
and ρ0μ ¼ ρ3;μ.

The leading order correction to the two-point ρþ correlator is given by

iDðLOCÞ
ρþ;μν ðy; y0Þ ¼

i2

2

Z
d4x d4x0h0jT½ρþμ ðyÞρþν ðy0Þ†LðρqÞ

int ðxÞLðρqÞ
int ðx0Þ�j0i: ð5:40Þ

Considering the relevant terms in LðρqÞ
int we have

DðLOCÞ
ρþ;μν ðy; y0Þ ¼ −ig2v

Z
d4x d4x0Dρþ;μαðy; xÞJαβρþðx; x0ÞDρþ;βνðx0; y0Þ; ð5:41Þ

where Jαβρþðx; x0Þ is the polarization function in coordinate space,

Jαβρþðx; x0Þ ¼ −2NctrD½iSuðx; x0ÞγβiSdðx0; xÞγα�: ð5:42Þ

As in the charged pion case, we introduce the polarization function in q̄ space (or Ritus space), Jαα
0

ρþ ðq̄; q̄0Þ, given by

Jαα
0

ρþ ðq̄; q̄0Þ ¼
Z

d4x d4x0Rþ;μαðx; q̄Þ�Jρþ;μνðx; x0ÞRþ;να0 ðx0; q̄0Þ: ð5:43Þ

Using the completeness relation, Eq. (C5), one gets

Jμνρþðx; x0Þ ¼
XZ
q̄;q̄0

Rþ;μαðx; q̄ÞJρþ;αα0 ðq̄; q̄0ÞRþ;να0 ðx0; q̄0Þ�: ð5:44Þ

Then, from Eq. (4.12) and the orthogonality relation [Eq. (C4)], the LOC to the propagator can be written as

DðLOCÞ
ρþ;μν ðy; y0Þ ¼ −ig2v

XZ
q̄;q̄0

Rþ
μαðy; q̄ÞD̂αα0

ρþ ðk; qkÞJρþ;α0β0 ðq̄; q̄0ÞD̂β0β
ρþ ðk0; qkÞRþ

νβðy0; q̄0Þ�: ð5:45Þ

One can also take into account the explicit form of the functions Rþ
μν in Eq. (3.36) to write Jαα

0
ρþ ðq̄; q̄0Þ as

Jαα
0

ρþ ðq̄; q̄0Þ ¼
Xþ1

λ;λ0¼−1

ðϒμα
λ Þ�ϒνα0

λ0

Z
d4xd4x0FQρþ ðx; q̄λÞ�FQρþ ðx0; q̄0λ0 ÞJρþ;μνðx; x0Þ; ð5:46Þ

where q̄λ ¼ ðq0; kλ; χ; q3Þ, kλ ¼ k − sλ, s ¼ signðQρþBÞ ¼ signðBÞ.
Proceeding as in the πþ case, we go back to Eq. (5.42) and write the quark propagators in the form given by Eqs. (2.40)

and (2.41). This leads to

Jμνρþðx; x0Þ ¼ eiΦρþðx;x0Þ
Z

d4v
ð2πÞ4 e

−ivðx−x0ÞJ̄μνρþðvk; v⊥Þ; ð5:47Þ

where

J̄μνρþðvk; v⊥Þ ¼ −2Nc

Z
d4p
ð2πÞ4 trD

h
iS̄uðpþ

k ; p
þ⊥ÞγνiS̄dðp−

k ; p
−⊥Þγμ

i
; ð5:48Þ
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with p�
μ ¼ p�

μ þ vμ=2. Replacing these equations into Eq. (5.46) we get

Jαα
0

ρþ ðq̄; q̄0Þ ¼
Z

d4v
ð2πÞ4

Xþ1

λ;λ0¼−1

ðϒμα
λ Þ�ϒνα0

λ0 J̄ρþ;μνðvk; v⊥Þhρþðq̄λ; q̄0λ0 ; vk; v⊥Þ; ð5:49Þ

where the function hP is given by Eq. (5.14). As in the case of the charged pion, in the standard gauges one can carry out
explicit calculations that lead to

Jαα
0

ρþ ðq̄; q̄0Þ ¼ ð2πÞ4δð2Þðqk − q0kÞδχχ0
Z

d2v⊥
ð2πÞ2

X
λ;λ0

ðϒμα
λ Þ�ϒνα0

λ0 J̄ρþ;μνðqk; v⊥Þfkλk0λ0 ðv⊥Þ; ð5:50Þ

where fkk0 ðv⊥Þ is given by Eq. (5.17) and δχχ0 stands for δ{{0, δðq1 − q01Þ and δðq2 − q02Þ for SG, LG1, and LG2,
respectively.
To proceed further, one can carry out the calculation of J̄μνρþðvk; v⊥Þ from Eq. (5.48). As expected from symmetry

arguments, the explicit calculation shows that one can write

J̄μνρþðvk; v⊥Þ ¼
X7
i¼1

ciðvk; v⊥ÞOμν
i ðvÞ; ð5:51Þ

whereOμν
i ðvÞ are the operators defined in Eq. (4.18) and ciðvk; v⊥Þ are scalar functions that depend on v2k and v2⊥. Then one

has

Jαα
0

ρþ ðq̄; q̄0Þ ¼ ð2πÞ4δð2Þðqk − q0kÞδχχ0
X7
i¼1

Z
djv⃗⊥j2
8π2

ciðqk; v⊥ÞZαα0
i ðk; k0; v2⊥Þ; ð5:52Þ

where

Zαα0
i ðk;k0;v2⊥Þ ¼

Z
2π

0

dϕ⊥
X
λ;λ0

ðϒμα0
λ Þ�ϒνα

λ0 Oi;μνðvÞfkλk0λ0 ðv⊥Þ:

ð5:53Þ

By performing the above integral for each one of the
operators Oi;μνðvÞ, it is seen that Zαα0

i ðk; k0; v2⊥Þ ∝ δkk0 , and
consequently Jαα

0
ρþ ðq̄; q̄0Þ can be written as

Jαα
0

ρþ ðq̄; q̄0Þ ¼ δ̂q̄q̄0 Ĵ
αα0
ρþ ðk; qkÞ: ð5:54Þ

The expression for Ĵαα
0

ρþ ðk; qkÞ can be obtained taking into
account the Schwinger form of the translational invariant
part of quark propagators; see Eq. (4.10). In this way, for
k ≥ 0 we obtain

Ĵαα
0

ρþ ðk; qkÞ ¼
X7
i¼1

diðk; qkÞOαα0
i ðΠÞ; ð5:55Þ

where Πμðk; qkÞ is the four-vector defined in Eq. (4.14).
The explicit expressions of the functions diðk; qkÞ are
given in Appendix D. As one can see from Eqs. (D2),
for the particular case k ¼ −1 (where Πμ is not defined),

we get d2ð−1; qkÞ ¼ d6ð−1; qkÞ, while the remaining

coefficients are zero. In this case one has Ĵαα
0

ρþ ð−1; qkÞ ∝
Oαα0

2 þOαα0
6 ¼ 2ϒαα0

−s .
From Eq. (5.45), we see now that the one-loop correction

to the charged rho meson two-point correlator can be
expressed as

DðLOCÞ
ρþ;μν ðy; y0Þ ¼

XZ
q̄

Rþ
μαðy; q̄ÞD̂ðLOCÞαα0

ρþ ðk; qkÞRþ
να0 ðy0; q̄0Þ�;

ð5:56Þ

with

D̂ðLOCÞαα0
ρþ ðk; qkÞ ¼ D̂αβ

ρþðk; qkÞΣ̂ρþ;ββ0 ðk; qkÞD̂β0α
ρþ ðk; qkÞ;

ð5:57Þ

Σ̂ρþðk; qkÞ being the one-loop ρþ meson self-energy,

related to the polarization function Ĵρþðk; qkÞ by

Σ̂αα0
ρþ ðk; qkÞ ¼ −ig2vĴαα

0
ρþ ðk; qkÞ: ð5:58Þ

For the description of physical ρþ meson states, it is also
useful to project Ĵρþðk; qkÞ on the polarization state basis.
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In this way, one can define a matrix Jcc
0

ρþ ðk; qkÞ given by

Jcc
0

ρþ ðk; qkÞ ¼ ϵþ;αðk; q3; cÞ�Ĵαα0ρþ ðk; qkÞϵþ;α0 ðk; q3; c0Þ;
ð5:59Þ

where ϵþα ðk; q3; cÞ are the polarization vectors introduced in
Eq. (3.35). In the case k ¼ −1, i.e., the lowest Landau level,
only c ¼ 1 is allowed. One has

Ĵ11ρþð−1; qkÞ ¼ −i
Nc

4π2

Z
1

−1
dx

Z
∞

0

dz e−zϕðx;q
2
kÞ

×
ð1þ tuÞð1þ tdÞ

αþ

�
mumd þ

1

z
þ 1 − x2

4
q2k

�
;

ð5:60Þ
where ϕðx; q2kÞ, tf, and αþ have been defined in Eqs. (5.25),
(5.26), and (5.28), respectively. As in the case of the
charged pion [see Eq. (5.27) for Ĵπþðk; qkÞ], this expression
is divergent and has to be regularized. Again, this can
be done by subtracting the B ¼ 0 contribution, leaving a
well-defined B-dependent piece. In addition, the function
Ĵρþðk; qkÞ can be analytically extended for large positive
values of q2k.

VI. MAGNETIZED CHARGED PION AND RHO
MASSES IN THE NAMBU-JONA-LASINIO MODEL

In this section we consider an extended NJL model in the
presence of an external magnetic field. The corresponding
Lagrangian reads as

L¼ ψ̄ði=D−m0ÞψþGs

h
ðψ̄ψÞ2þðψ̄iγ5τ⃗ψÞ2

i
−Gvðψ̄γμτ⃗ψÞ2;

ð6:1Þ
where ψðxÞ is the u − d quark doublet defined in Eq. (5.2)
and Dμ is the covariant derivative in Eq. (2.2). Models
like the one described by Eq. (6.1) have often been used
to study the influence of an external magnetic field on
meson masses. In fact, the NJL model was introduced
more than 60 years ago for the description of spontaneous
chiral symmetry breaking and dynamical mass generation
[61,62]; then, during the late 80s and earlier 90s, the
approach was reinterpreted as an effective model for low
energy QCD [63–65]. For a large enough value of the
coupling constant Gs, it is seen that the model describes
adequately the breakdown of chiral symmetry, and leads
to a phenomenologically reasonable value for the chiral
quark-antiquark condensate at the mean field level. In
turn, this implies that the quarks acquire an effective
dynamical massMf ≈ 300–400 MeV ≫ m0. In the simple
model given by Eq. (6.1), it turns out that Mu ¼ Md even
in the presence of an external magnetic field; however, the
magnetic field can break this degeneracy if more general

flavor mixing interactions are included (for details see,
e.g., Ref. [36]).
In the above framework, mesons can be described as

quantum fluctuations in the large Nc approximation (which,
in this context, is equivalent to the well known random phase
approximation); i.e., they can be introduced via the summa-
tion of an infinite number of quark loops. Here we are
particularly interested in the masses of the charged pion
(lightest charged meson in the absence of the external
magnetic field) and the charged rho meson. Concerning
the latter, we recall that there has been some discussion about
the possibility that the presence of a strong magnetic field
may induce ρ� condensation. Our interest here is not to
perform a detailed analysis of meson masses in the presence
of the magnetic field but to study the effect of Schwinger
phases, showing how the results get modified if SPs are
neglected. Therefore, as done in Sec. V, we study here π�

and ρ� masses separately. A full analysis, in which πþ − ρþ
mixing is explicitly considered, can be found in Ref. [37].
Let us first take Gv ¼ 0 in Eq. (6.1) and concentrate just

on the charged pion mass. Following Ref. [66] we
introduce the charged pseudoscalar currents

jþðxÞ¼
ffiffiffi
2

p
ψ̄uðxÞiγ5ψdðxÞ; j−ðxÞ¼

ffiffiffi
2

p
ψ̄dðxÞiγ5ψuðxÞ:

ð6:2Þ
Next, we define the two-point function ΠPþðx; x0Þ as the
two-point correlator between these two currents. To zeroth
order in Gs we have

Πð0Þ
Pþðx; x0Þ ¼ h0jT½j−ðxÞjþðx0Þ�j0i ¼ Jπþðx; x0Þ; ð6:3Þ

where Jπþðx; x0Þ is given by Eq. (5.5). The full two-point
function in the large Nc approximation is obtained as

ΠPþðx; x0Þ

¼ Jπþðx; x0Þ þ 2iGs

Z
d4zJπþðx; zÞJπþðz; x0Þ

þ ð2iGsÞ2
Z

d4zd4z0Jπþðx; zÞJπþðz; z0ÞJπþðz0; x0Þ þ…

ð6:4Þ
Then from Eqs. (5.7) and (3.20) one readily gets

ΠPþðx; x0Þ ¼
XZ
q̄

Fþðx; q̄ÞĴπþðk; qkÞ

×
n
1þ 2iGĴπþðk; qkÞ

þ ½2iGĴπþðk; qkÞ�2 þ…
o
Fþðx0; q̄Þ�

¼
XZ
q̄

Fþðx; q̄ÞĴπþðk; qkÞK−1
πþF

þðx0; q̄Þ�; ð6:5Þ
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where we have defined

Kπþðk; qkÞ ¼ 1 − 2iGĴπþðk; qkÞ; ð6:6Þ

and Ĵπþðk; qkÞ is the function given by Eq. (5.27), in which we have replaced the quark massesmf by the dynamical masses
Mf. Thus, one can obtain the πþ pole mass for each Landau level k by solving the equation

Kπþjq2k¼m2

πþ
¼ 0: ð6:7Þ

Charged pion masses were determined for the first time in this way in Refs. [27,31]. For the lowest Landau level k ¼ 0 one
obtains

Ĵπþð0; qkÞ ¼ −
iNc

4π2

Z
1

−1
dx

Z
∞

0

dz
1

αþ
e−zϕðx;q

2
kÞ
��

MuMd þ
1

z
þ ð1 − x2Þ

q2k
4

�
ð1 − tutdÞ þ

1

αþ
ð1 − t2uÞð1 − t2dÞ

�
: ð6:8Þ

In the derivation of Eq. (6.5), it is worth paying attention
to Eqs. (5.7) and (5.18), which show that Jπþðx; x0Þ is
diagonal in the basis of eigenstates of the Klein-Gordon
operator in Eq. (3.15). In usual quantum field theory,
particle states are given at zero order in perturbation theory
by plane waves (i.e., they have definite four-momentum).
In contrast, in our case there is an external static and
uniform magnetic field that plays the role of a background;
consequently, as discussed in Sec. III, the zero order
charged particle states correspond to wave functions
expressed in terms of the functions FQðx; q̄Þ.
Tracing back the derivation of Eq. (6.5), we can see what

happens if the SP is neglected. The diagonal condition in
Eq. (5.18) arises in fact from Eqs. (5.13) and (5.14); if one
intends to make an approximation in which the SP in
Eq. (5.14) is removed, one should also replace the wave
functions by plane waves, FQP

ðx; q̄Þ → expð−iqxÞ, in order
to guarantee translational invariance. Thus, we denote this
procedure as “plane wave approximation” (PWA). Within
this approximation, the two-interacting quark state—or the
pion, in the context discussed in Sec. V—is no longer
specified by the set of quantum numbers q̄ ¼ ðq0; k; χ; q3Þ
but by the four-momentum qμ ¼ ðq0; q1; q2; q3Þ. In this way
one obtains

hPWA
P ðq; q0; vÞ ¼ ð2πÞ8δð4Þðq − q0Þδð4Þðq − vÞ; ð6:9Þ

losing the effect of the magnetic field in this part of the
calculation. After a trivial integration over v, according to
Eq. (5.13) one gets

JPWA
πþ ðq; q0Þ ¼ ð2πÞ4δð4Þðq − q0ÞĴPWA

πþ ðqk; q⊥Þ; ð6:10Þ

where

ĴPWA
πþ ðqk; q⊥Þ ¼ J̄πþðqk; q⊥Þ; ð6:11Þ

with J̄πþðqk; q⊥Þ given by Eq. (5.24) [notice that the
calculation of J̄πþðqk; q⊥Þ only involves the translational
invariant part of quark propagators; hence it is not affected
by Schwinger phases].
We notice that, in some sense, the result in Eq. (6.10) can

be misleading. Given that the magnetic field is assumed to
be uniform, one would expect the system to be invariant
under translations in space-time, and this seems to be
confirmed by the conservation of four-momentum arising
from Eq. (6.10). Nevertheless, in the presence of the
magnetic field it is found that translational invariance (in
the plane perpendicular to B⃗) is realized in a nontrivial way,
related to gauge transformations. We refer here to Sec. II, in
which this issue has been discussed in detail.
From the above results it is easy to see that within the

PWA one can define a πþ pole mass (taking q⊥ ¼ 0) as the
solution of the equation

KPWA
πþ jq2k¼m2

πþ
¼ 1 − 2iGĴPWA

πþ ðqk; 0Þjq2k¼m2

πþ
¼ 0; ð6:12Þ

where, according to Eq. (5.24),

ĴPWA
πþ ðqk; 0Þ ¼ −

iNc

4π2

Z
1

−1
dx

Z
∞

0

dz
1

tþ
e−zϕðx;q

2
kÞ
��

MuMd þ
1

z
þ ð1 − x2Þ

q2k
4

�
ð1 − tutdÞ þ

1

tþ
ð1 − t2uÞð1 − t2dÞ

�
: ð6:13Þ
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Comparing Eq. (6.13) with our result in Eq. (6.8), it is seen
that the PWA expression can be obtained from the full
result by the replacement αþ → tþ in the integrand. We
also note that Eq. (6.13) is consistent with Eq. (80) of
Ref. [53], where an alternative method has been used to
evaluate the effects of the magnetic field on charged pion
masses. The difference between Eqs. (6.13) and (6.8)
shows that the approach in Ref. [53] does not fully take
into account the effects arising from the presence of the
Schwinger phase.
An important point to be stressed is the fact that within

the PWA the two-quark state has zero total transverse
momentum. One can see, however, that this cannot be
possible: the two-quark state, as a whole, has to behave as a
charged bound system immersed in a magnetic field, whose
quantum ground state—which must have some nonvanish-
ing zero-point energy—cannot be described by a particle at
rest. In fact, the charged meson state cannot have any
definite momentum in the plane perpendicular to the
magnetic field. The situation can be better understood
by looking at Eq. (5.19), which shows that our result for
Ĵπþðk; qkÞ arises from the convolution of J̄πþðqk; v⊥Þ with
the function ρkðv⃗2⊥Þ given in Eq. (5.20). In fact, this
function describes the total transverse momentum distri-
bution due to the vibration of the two-quark quantum state

in the presence of the external magnetic field. Notice that,
expressed in this way, the plane wave approximation would
correspond to a distribution ρPWA

k ðv⃗2⊥Þ ¼ δðjv⃗⊥j2 − jq⃗⊥j2Þ.
Let us consider now the rho meson sector. As mentioned

above, for simplicity we analyze the situation in which the
ρþ − πþ mixing is neglected. The study of the ρþ meson in
this simplified scenario can be performed by eliminating
the pseudoscalar-pseudoscalar coupling ðψ̄iγ5τ⃗ψÞ2 in
Eq. (6.1). To proceed we introduce the charged vector
currents

jμþðxÞ ¼
ffiffiffi
2

p
ψ̄uðxÞγμψdðxÞ; jμ−ðxÞ ¼

ffiffiffi
2

p
ψ̄dðxÞγμψuðxÞ;

ð6:14Þ

and define the two-point function Πμν
Vþðx; x0Þ as the two-

point correlator between both currents. To zero order in Gv
we have

Πð0Þμν
Vþ ðx; x0Þ ¼ h0jT½jμ−ðxÞjνþðx0Þ�j0i ¼ Jμνρþðx; x0Þ; ð6:15Þ

where Jμνρþðx; x0Þ is given by Eq. (5.42). Now, as in the case
of the πþ, we can evaluate the full vector two-point function
in the large Nc approximation,

Πμν
Vþðx; x0Þ ¼ Jμνρþðx; x0Þ þ ð−2iGVÞ

Z
d4z Jμαρþðx; zÞgαβJβνρþðz; x0Þ

þ ð−2iGVÞ2
Z

d4z d4z0Jμαρþðx; zÞgαα0Jα
0β0

ρþ ðz; z0Þgβ0βJβνρþðz0; x0Þ þ… ð6:16Þ

Using Eq. (5.44) together with Eqs. (C4) and (5.54), and
resumming the loop contributions, we obtain

Πμν
Vþðx; x0Þ ¼

XZ
q̄;q̄0

Rþ;μαðx; q̄ÞĴρþ;αα0 ðk; qkÞðK−1
ρþ Þα

0
β

×Rþ;νβðx0; q̄Þ�; ð6:17Þ

where

Kαβ
ρþðk; qkÞ ¼ gαβ þ 2iGVĴ

αβ
ρþðk; qkÞ: ð6:18Þ

In this way, taking q3 ¼ 0, the charged rho pole masses mρ

can be obtained for each Landau level by solving the
equation

det Kρþ ¼ 0 ð6:19Þ

for qμk ¼ ðEρ; 0; 0; 0Þ, E2
ρ ¼ m2

ρ þ ð2kþ 1ÞBρ.
In the limit B → 0, it can be seen from the coefficients

diðk; qkÞ in Appendix D that Ĵαβρþðk; qkÞ can be written in

terms of Oαβ
1 þOαβ

2 ¼ gαβ and Oαβ
3 ðΠÞ þOαβ

4 ðΠÞ þ
Oαβ

5 ðΠÞ ¼ ΠαΠβ�, where Πα → ðq0; 0; 0; q3Þ. In this limit
the ρþ meson can be taken to be at rest, and one gets three
degenerate masses that correspond to the ρþ polarization
states. On the other hand, for nonzero B the mass states
depend on the value of k. For the lowest Landau level
k ¼ −1, which corresponds to the lightest charged ρ state,
from the results in Appendix D it is seen that
d2ð−1; qkÞ ¼ d6ð−1; qkÞ, while the remaining coefficients
dið−1; qkÞ are zero. In addition, according to the definitions
in Appendix C, one has

−
1

2
ðOαβ

2 þOαβ
6 Þ ¼ −ϒαβ

−s

¼ ϵαþð−1; q3; 1Þϵβþð−1; q3; 1Þ�; ð6:20Þ

so we can write

Ĵαβρþð−1; qkÞ ¼ −2d2ð−1; qkÞϵαþð−1; q3; 1Þϵβþð−1; q3; 1Þ�:
ð6:21Þ
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Hence, it is found that for the lowest Landau level there is only one mass eigenstate, which corresponds to c ¼ 1 in the
polarization state basis. From the expressions in Appendix D the coefficient on the right-hand side of Eq. (6.21) is given by

−2d2ð−1; qkÞ ¼ −i
Nc

4π2

Z
1

−1
dx

Z
∞

0

dz e−zϕðx;q
2
kÞ ð1þ tuÞð1þ tdÞ

αþ

�
MuMd þ

1

z
þ 1 − x2

4
q2k

�

¼ Ĵ11ρþð−1; qkÞ; ð6:22Þ

consistently with the result found in Sec. V B; see
Eq. (5.60) (here the quark masses have been replaced by
the effective massesMu andMd). We see that the ρþ state is
in this case also an eigenstate of the spin operator S3, with
eigenvalue s3 ¼ s ¼ sgðQρBÞ. From Eq. (6.19), the mass
of this state can be obtained as the solution of

1 − 2iGV Ĵ
11
ρþð−1; qkÞ ¼ 0: ð6:23Þ

As in the charged pion case, it is interesting to see
how the results get modified if the plane wave approxi-
mation is used. As stated, in the PWA the Schwinger
phase Φρþðx; x0Þ is neglected, and one should replace
FQP

ðx; q̄Þ → expð−iqxÞ, which leads to RQ;μν ¼
expð−iqxÞPλϒ

μν
λ ¼ expð−iqxÞgμν. In this way, from

Eqs. (5.44) and (5.47) one gets

JPWA;μν
ρþ ðx;x0Þ¼

Z
d4q
ð2πÞ4

d4q0

ð2πÞ4e
−iqxgμαJPWA

ρþ;αα0 ðq;q0Þeiq
0x0gνα

0

¼
Z

d4v
ð2πÞ4e

−ivðx−x0ÞJ̄μνρþðvk;v⊥Þ; ð6:24Þ

and consequently

JPWA;αα0
ρþ ðq; q0Þ ¼ ð2πÞ4δð4Þðq − q0ÞJ̄αα0ρþ ðqk; q⊥Þ; ð6:25Þ

where J̄αα
0

ρþ ðqk; q⊥Þ is the quark loop function given by
Eq. (5.48). Notice that Eq. (6.25) can also be obtained from
Eq. (5.49), taking into account the PWA result in Eq. (6.9).
Within the PWA approximation the lowest energy ρþ

states correspond to the situation in which the meson is at
rest. It is easy to see that the pole masses for the different
polarization states can be obtained as the solutions of

det KPWA
ρþ ¼ 0; ð6:26Þ

where

KPWA;αβ
ρþ ¼ gαβ þ 2iGVJ̄

αβ
ρþðqk; 0Þ; ð6:27Þ

with q3 ¼ 0. We can compare the PWA result with the full
result for the lowest Landau level k ¼ −1 by taking the
projection of J̄αβρþðqk; 0Þ onto the polarization state s3 ¼ s,

i.e., taking the piece of J̄αβρþðqk; 0Þ proportional to −ϒαβ
−s.

The explicit calculation of the quark loop leads to the
equation

1 − 2iGV Ĵ
11;PWA
ρþ ðqk; 0Þ ¼ 0; ð6:28Þ

where

Ĵ11;PWA
ρþ ðqk; 0Þ

¼ −i
Nc

4π2

Z
1

−1
dx

Z
∞

0

dz e−zϕðx;q
2
kÞ ð1þ tuÞð1þ tdÞ

tþ

×

�
MuMd þ

1

z
þ 1 − x2

4
q2k

�
: ð6:29Þ

Hence, in the same way as in the case of the charged pion,
the mass of the lowest ρþ state within the PWA can be
obtained from the full result in Eq. (6.22) by replacing the
factor 1=αþ by 1=tþ in the integrand. It can be seen that the
expressions in Eqs. (6.28) and (6.29) are consistent with
Eq. (24) of Ref. [30], which shows that the method used in
that reference turns out to be equivalent to the PWA.
To complete this section, we find it worth estimating the

importance of taking into account Schwinger phases in the
calculation of charged meson properties as functions of
the magnetic field. Therefore, in what follows we analyze
the B dependence of πþ and ρþ masses, comparing the
results obtained from Eqs. (6.7) and (6.23) with those found
within the plane wave approximation, i.e., those obtained
from Eqs. (6.12) and (6.28).
We recall that the above expressions for the quark loop

integrals are divergent and have to be regularized. Here,
as done, e.g., in Refs. [30,37,53], we use the so-called
magnetic field independent regularization, in which we
subtract from the integrals the corresponding expressions in
the B → 0 limit, and then we add them in a regularized
form. In fact, as noticed in Ref. [30], to properly regularize
the function Ĵ11;PWA

ρþ ðqk; 0Þ in Eq. (6.29) it is necessary to
introduce a modification of the method, considering not
only the B → 0 limit but also a linear term in B. To perform
the numerical calculations, for definiteness we choose here
the same set of model parameters as in Ref. [37], viz.
m0 ¼ 5.833 MeV, Λ ¼ 587.9 MeV, and GsΛ2 ¼ 2.44,
where Λ is a 3D cutoff parameter that is introduced to
regularize the ultraviolet divergent quark loops in the B ¼ 0
limit. For vanishing external field, this parametrization
leads to an effective quark mass M0 ¼ 400 MeV and a
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quark-antiquark condensate hψfψ̄fi0 ¼ −ð241 MeVÞ3; in
addition, one obtains the empirical values of the pion mass
and decay constant in vacuum, namely mπ;0 ¼ 138 MeV
and fπ;0 ¼ 92.4 MeV. Regarding the vector couplings, we
take GvΛ2 ¼ 2.651, which leads to mρ;0 ¼ 770 MeV for
B ¼ 0. It is worth mentioning that we have checked that
our results remain basically unchanged if one uses other
standard parameters, like, e.g., those considered in
Refs. [30,53].
In Figs. 1 and 2 we display our numerical results for

the charged pion and charged rho mesons, respectively.
The curves show the values of the ratio EP=mP;0, where
P ¼ πþ; ρþ, as functions of eB. Here mP;0 is the particle
mass at B ¼ 0, while EP stands for the energy of the P

meson in its lowest state, i.e., Eπþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ þ Bπ

q
and

Eρþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρþ − Bρ

q
, where mP is the meson mass for

nonzero B. We stress that to determine the mass of the
lowest energy state from our full calculation one has to take
q3 ¼ 0 and k ¼ 0 (k ¼ −1) for the pion (rho meson),
whereas within the PWA one has to take q⃗ ¼ 0.
From Fig. 1 it is seen that, for the whole considered range

of values of eB, the PWA leads to values of the ratio
Eπþ=mπ;0 that are larger than those obtained from the full
calculation, in which the SP is properly taken into account.
In turn, the latter are larger than those obtained within the
“pointlike approximation” (PLA), in which the meson is
considered as a particle with no internal structure (in this

pointlike limit, one has EPLA
πþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π;0 þ eB
q

). On the other

hand, the results can be compared with the values arising

from LQCD calculations [50,51]. These are found to be
close to or even lower than those corresponding to the PLA,
which implies that the proper treatment of Schwinger
phases improves the agreement between LQCD results
and NJL model predictions for the dependence of Eπþ with
the magnetic field. It is also worth mentioning that, as
shown in Ref. [37], ρþ − πþ mixing effects (which have
been neglected in the calculations shown in Fig. 1) tend to
bring NJL results even closer to LQCD values.
Now, as can be seen from Fig. 2, the effect of taking into

account the SP is even more striking in the case of the
charged rho meson energy. Indeed, the results from PWA
and PLA approximations (dotted and dashed lines in the
figure) seem to indicate that Eρþ vanishes at some critical
magnetic field—driving in this way a possible ρþ meson
condensation—while this is not what comes out from the
full calculation, in which the SP is properly included (full
line in Fig. 2). Regarding LQCD calculations, in this case it
is found [45,50,67] that the ratio Eρþ=mρ;0 shows some
decrease for low values of eB, while for eB≳ 0.7 GeV2 it
tends to stabilize at a value of about 0.7; hence, no ρþ
meson condensation is expected from these results. In fact,
values consistent with the behavior predicted by LQCD can
be obtained within the NJL model—taking into account the
effect of the SP—by considering B-dependent couplings
[37]. We recall that these results correspond to the Landau
level k ¼ −1, for which there is no mixing between the ρþ
and the charged pion.

VII. CONCLUSIONS

In this paper we have studied the role of the Schwinger
phases appearing in the propagators of charged particles
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FIG. 1. Ratio Eπþ=mπ;0 as a function of eB. Here Eπþ stands for
the energy of the lowest πþ state (corresponding to the Landau
level k ¼ 0), while mπ;0 is the charged pion mass at vanishing
external magnetic field.
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FIG. 2. Ratio Eρþ=mρ;0 as a function of eB. Here Eρþ stands for
the energy of the lowest ρþ state (corresponding to the Landau
level k ¼ −1), while mρ;0 is the charged rho mass at vanishing
external magnetic field.
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in the presence of a static and uniform magnetic field B⃗.
These propagators are not gauge invariant objects; if
one performs a gauge transformation, they transform in
a well defined covariant way. In fact, it is seen that the
noninvariance can be isolated in a Schwinger phase ΦP, in
such a way that the propagator can be written as expðiΦPÞ
times a gauge invariant function. As a first result we
have shown that the SP cannot be removed by a
gauge transformation; far from this, we have seen that
it plays an important role in the restoration of the
symmetries of the system.
The presence of a static and uniform magnetic field

does not alter the homogeneity of space-time, although it
does break space isotropy. Still, isotropy is preserved in
transverse directions, taking the direction of B⃗ as a
symmetry axis. Therefore, the studied system has to be
invariant under translations, under rotations around the

direction of B
!
, and under boost transformations in this

direction. As a consequence of the existence of this set of
symmetries, for any Lorentz tensor one should distinguish
between “longitudinal” components (time components
and spatial components in the direction of B⃗) and
“perpendicular components” (spatial components in the
direction perpendicular to B⃗), which in general will show
different behaviors.
The equations that describe the dynamics of a charged

particle in a static and uniform magnetic field involve the
electromagnetic field Aμ. Even if one assumes that the
physical system has the above stated symmetries, it has to
be taken into account that both the homogeneity and the
transverse isotropy of space become broken when one
chooses a specific gauge to set Aμ. Looking at the
propagators of charged particles, we have shown that this
breakdown manifests itself in the SP, whereas the part of
the propagators that is invariant under gauge transforma-
tions is found to be also invariant under translations and
rotations around the direction of B⃗. Additionally, we have
seen that a translation in a direction perpendicular to B⃗, as
well as a rotation around the direction of B⃗, are equivalent
to gauge transformations. Explicit expressions have been
given for some gauges that are usually considered in the
literature, namely the symmetric gauge and the Landau
gauges 1 and 2.
As an application to particular physical quantities, we

have analyzed the effect of the SP in the one-loop
corrections to charged pion and rho meson self-energies.
To carry out this analysis we have firstly considered
standard meson-quark interactions, and then we have
studied the πþ and ρþ propagators within the Nambu-
Jona-Lasinio model, performing a numerical analysis of the
B dependence of meson lowest energy states. For both πþ
and ρþ mesons (for simplicity, πþ − ρþ mixing has not
been considered), we have compared the numerical results
arising from the full calculation—in which SPs are

included in the propagators, and meson wave functions
correspond to states of definite Landau quantum number—
and those obtained within a plane wave approximation—in
which SPs are neglected (or simply eliminated) and meson
states are described by plane waves of definite four-
momentum.
In the case of the pion, from our analysis it is seen that

the polarization function is diagonal in the basis of πþ
eigenfunctions Fþðx; q̄Þ, and can be written as a convo-
lution of a gauge invariant function J̄πþðvk; v⊥Þ—
calculated from the gauge invariant part of the polarization
function, after a transformation to momentum space—with
a function hπþðq̄; q̄0; vk; v⊥Þ given by a projection of these
eigenfunctions onto plane waves, modulated by the SP [see
Eqs. (5.13) and (5.14)]. Moreover, after some integration
we have found that the polarization function can be written
as an integral of the function J̄πþðqk; v⊥Þ over the
perpendicular momentum v⊥, weighted by a given function
ρkðv⃗2⊥Þ [see Eq. (5.19)]; i.e., the polarization function
depends on definite values of the energy q0 and the parallel
momentum q3 of the two-quark system as a whole, while
the perpendicular momentum has no definite value but
some distribution. This is what one would expect for a
charged particle, which must have some zero-point energy
when it is submerged in a magnetic field. In contrast, within
the PWA the polarization function can be transformed to
four-momentum space as J̄πþðqk; q⊥Þ, where q⊥ would be
the perpendicular momentum of the two-quark system (the
pion, in the case of the NJL model). Formally this would
correspond to take ρkðv⃗2⊥Þ ¼ δðjv⃗⊥j2 − jq⃗⊥j2Þ, although the
perpendicular momentum q⃗⊥ is not a well defined quantity
for a charged particle in a magnetic field. Alternatively, the
effect of the SP on the one-loop correction to the πþ
propagator can be seen from Eq. (5.36), where once again
our result shows the fluctuations of the perpendicular
momenta of the coupled two-quark system. These fluctua-
tions are due to the presence of a gauge invariant phase φ,
which arises from a combination of Schwinger phases along
a closed path [see Eq. (5.31)]; if this phase is eliminated, the
effect of the fluctuations gets lost, as shown in Eq. (5.37).
It is worth emphasizing that even though the function

hπþðq̄; q̄0; vk; v⊥Þ involves several gauge dependent quan-
tities, its explicit expression, given by Eqs. (5.15)–(5.17),
is itself gauge independent. This has been checked by
performing the corresponding calculations in the three
standard gauges mentioned above. In this way, it has been
shown that the inclusion of the SP allows us to carry out a
full calculation of the polarization function, using the
proper wave functions of charged particles and preserving
both the invariance under gauge transformations and the
symmetries under translations and rotations around the
direction of B⃗.
The above qualitative discussion applies also to the

case of the ρþ meson propagator, although the explicit
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expressions are more involved due to the more complex
Lorentz structure. It is worth mentioning that we have
introduced in this case a description of spin one charged
fields in the presence of the magnetic field. As proposed by
Ritus for the case of spin 1=2 fermion fields [57], in our
formalism we have separated the meson wave functions as
a product of a tensor that carries the spatial coordinates and
a polarization vector. Then the explicit expression for the
meson propagator and the corresponding one-loop correc-
tion have been obtained.
Finally, as mentioned above, we have carried out a

numerical analysis of the B dependence of πþ and ρþ
meson masses (and lowest state energies) within the NJL
model. Using a three-momentum cutoff and a so-called
magnetic field independent regularization [30,37,53], we
have found that our full calculation leads to a B dependence
of the charged pion mass that clearly improves the agree-
ment with LQCD results, in comparison with the one
obtained using the PWA. Moreover, there is still room for
further improvement, e.g., by considering ρþ − πþ mixing
as done in Ref. [37]. Concerning the charged rho meson,
we have found a qualitative difference between our results
and those obtained within the PWA. Indeed, our calcu-
lations show that if the presence of the SP is properly taken
into account, the ρþ mass does not vanish for any
considered value of the magnetic field, a fact that can be
relevant in connection with the occurrence of ρ meson
condensation for strong magnetic fields. Our results are in
the same line as those obtained by LQCD analyses
[45,50,67], which indicate that the value of the energy
of the lowest ρþ state tends to stabilize at Eρþ=mρ;0 ∼ 0.7
for eB > 0.8 GeV2. Let us recall that this state corresponds
to the Landau level k ¼ −1, which does not mix with the
pion. We have also checked that our numerical results do
not suffer significant changes if one uses other standard
model parameters, like, e.g., those considered in
Refs. [30,53].
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APPENDIX A: THE FUNCTIONS FQðx;q̄Þ
IN THE STANDARD GAUGES

We give here the expressions for the functions FQðx; q̄Þ,
eigenfunctions of the operator DμDμ [see Eq. (3.1)], in the
standard gauges SG, LG1, and LG2. As in the main text, we
choose the axis 3 in the direction of the magnetic field, and
use the notation BQ ¼ jQBj and s ¼ signðQBÞ.
It is worth pointing out that the functions FQðx; q̄Þ can

be determined up to a global phase, which in general can
depend on k. In the following expressions for SG, LG1, and
LG2 the corresponding phases have been fixed by requiring
FQðx; q̄Þ to satisfy Eqs. (5.14)–(5.16), with fkk0 ðv⊥Þ given
by Eq. (5.17).

1. Symmetric gauge

In the SG we take χ ¼ {, where { is a nonnegative integer.
Thus, the set of quantum numbers used to characterize a
given particle state is q̄ ¼ ðq0; k; {; q3Þ. In addition, we
introduce polar coordinates r;ϕ to denote the vector x⃗⊥ ¼
ðx1; x2Þ that lies in the plane perpendicular to the magnetic
field. The functions FQðx; q̄Þ in this gauge are given by

FQðx; q̄ÞðSGÞ ¼
ffiffiffiffiffiffi
2π

p
e−iðq0x0−q3x3Þe−isðk−{ÞϕRk;{ðrÞ; ðA1Þ

where

Rk;{ðrÞ ¼ Nk;{ξ
ðk−{Þ=2e−ξ=2Lk−{

{ ðξÞ; ðA2Þ

with ξ ¼ BQr2=2. Here we have used the definition
Nk;{ ¼ ðBQ{!=k!Þ1=2, while Lm

j ðxÞ are generalized
Laguerre polynomials.

2. Landau gauges LG1 and LG2

For the gauges LG1 and LG2 we take χ ¼ qj with j ¼ 1

and j ¼ 2, respectively. Thus, we have q̄ ¼ ðq0; k; qj; q3Þ.
The corresponding functions FQðx; q̄Þ are given by

FQðx;q̄ÞðLG1Þ ¼ ð−isÞkNke−iðq
0x0−q1x1−q3x3ÞDkðρð1Þs Þ; ðA3Þ

FQðx; q̄ÞðLG2Þ ¼ Nke−iðq
0x0−q2x2−q3x3ÞDkðρð2Þs Þ; ðA4Þ

where ρð1Þs ¼ ffiffiffiffiffiffiffiffiffi
2BQ

p ðx2 þ sq1=BQÞ, ρð2Þs ¼ ffiffiffiffiffiffiffiffiffi
2BQ

p ðx1 −
sq2=BQÞ and Nk ¼ ð4πBQÞ1=4=

ffiffiffiffi
k!

p
. The cylindrical para-

bolic functions DkðxÞ in the above equations are defined as

DkðxÞ ¼ 2−k=2e−x
2=4Hkðx=

ffiffiffi
2

p
Þ; ðA5Þ

where HkðxÞ are Hermite polynomials, with the standard
convention H−1ðxÞ ¼ 0.
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APPENDIX B: WAVE FUNCTION PROPERTIES
AND ANTICOMMUTATION RELATIONS

FOR SPIN 1=2 CHARGED PARTICLES IN A
UNIFORM MAGNETIC FIELD

As stated in Eqs. (3.26), the fermion wave functions can
be written as

Ufðx; q̄; aÞ ¼ EQfðx; q̄ÞuQf
ðk; q3; aÞ;

Vfðx; q̄; aÞ ¼ Ẽ−Qfðx; q̄Þv−Qf
ðk; q3; aÞ; ðB1Þ

where the functions EQfðx; q̄Þ and Ẽ−Qfðx; q̄Þ are defined
by Eqs. (3.27). It is easy to see that the matrices Γ�
appearing in these definitions satisfy

ΓλΓλ ¼ Γλ; ΓλΓ−λ ¼ 0;

Γλγμk ¼ γμkΓ
λ; Γλγμ⊥ ¼ γμ⊥Γ−λ: ðB2Þ

It can be shown that the functions Ep̄ðxÞ satisfy orthogon-
ality and completeness relations, namely

Z
d4xĒQfðx; q̄ÞEQfðx; q̄0Þ ¼ δ̂q̄q̄0 ½I þ δk0ðΓs − IÞ� ðB3Þ

and

XZ
q̄

EQfðx; q̄ÞĒQfðx0; q̄Þ ¼ δð4Þðx − x0ÞI ; ðB4Þ

where I stands for the identity in Dirac space, and, as in
the main text, we have used the definitions Qf ¼ Qf=e,
s ¼ signðQfBÞ, and ĒQfðx; q̄Þ ¼ γ0EQfðx; q̄Þ†γ0. In addi-
tion, they satisfy the useful relation

i=DEQfðx; q̄Þ ¼ EQfðx; q̄ÞΠ̂sðq0; k; q3Þ; ðB5Þ

where Π̂μ
sðq0; k; q3Þ ¼ ðq0; 0;−s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kjQfBj
p

; q3Þ.
On the other hand, the spinors uQf

ðk; q3; aÞ and

v−Qf
ðk; q3; aÞ, a ¼ 1, 2, in Eqs. (B1) are given by

uQf
ðk; q3; aÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðEf þmfÞ
p ½Π̂sðEf; k; q3Þ þmfI �

�
ϕðaÞ

ϕðaÞ

�
; ðB6Þ

v−Qf
ðk; q3; aÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðEf þmfÞ
p ½−Π̂−sðEf; k; q3Þ þmfI �

�
ϕ̃ðaÞ

−ϕ̃ðaÞ

�
; ðB7Þ

where ϕð1Þ† ¼ −ϕ̃ð2Þ† ¼ ð1; 0Þ and ϕð2Þ† ¼ ϕ̃ð1Þ† ¼ ð0; 1Þ.
We use here the Weyl representation for Dirac matrices,
namely

γ0 ¼
�
0 I

I 0

�
; γ⃗ ¼

�
0 σ⃗

−σ⃗ 0

�
; ðB8Þ

where σi, with i ¼ 1, 2, 3, are the Pauli matrices. It can be
shown that the spinors satisfy the relations

X
a¼1;2

uQf
ðk; q3; aÞūQf

ðk; q3; aÞ ¼ Π̂sðEf; k; q3Þ þmfI ;

X
a¼1;2

v−Qf
ðk; q3; aÞv̄−Qf

ðk; q3; aÞ ¼ Π̂−sðEf; k; q3Þ −mfI :

ðB9Þ

We finally quote the anticommutation relations bet-
ween creation and annihilation operators in Eq. (3.25).
They read as

fbfðq̆; aÞ; bfðq̆0; a0Þg ¼ fdfðq̆; aÞ; dfðq̆0; a0Þg ¼ 0;

fbfðq̆; aÞ; dfðq̆0; a0Þg ¼ fbfðq̆; aÞ; dfðq̆0; a0Þ†g ¼ 0;

fbfðq̆; aÞ; bfðq̆0; a0Þ†g ¼ fdfðq̆; aÞ; dfðq̆0; a0Þ†g
¼ 2Efδaa0 ð2πÞ3δkk0δχχ0δðq3 − q03Þ:

ðB10Þ

APPENDIX C: WAVE FUNCTION PROPERTIES
AND COMMUTATION RELATIONS FOR
MASSIVE SPIN 1 CHARGED PARTICLES

IN A UNIFORM MAGNETIC FIELD

According to Eq. (3.35), the wave functions Wμ
Qðx; q̄; cÞ

are given by

Wμ
Qðx; q̄; cÞ ¼ RQ;μνðx; q̄ÞϵQ;νðk; q3; cÞ; ðC1Þ

where RQ;μνðx; q̄Þ is given by Eqs. (3.36) and (3.37),
while ϵQ;νðk; q3; cÞ are the charged rho meson
polarization vectors. As in the main text, we define
Q ¼ signðQρÞ.
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The tensorsRQ;μν involve the functionsFQðx; q̄Þ and the
tensors ϒμν

λ , defined by Eq. (3.37). The latter obey some
useful relations, namely

ϒμν
λ ¼ ðϒνμ

λ Þ� ¼ ϒνμ
−λ; ϒμα

λ ϒλ0;αν ¼ δλλ0ϒλ
μ
ν;X

λ¼−1;0;1
ϒμν

λ ¼ gμν: ðC2Þ

It is also useful to introduce the projector ðPk;sÞμν,
defined by

ðPk;sÞμν ¼ gμν − δk;−1ϒ
μν
0 − ðδk;−1 þ δk;0Þϒμν

s

¼ ϒμν
−s þ ð1 − δk;−1Þϒμν

0 þ ð1 − δk;−1 − δk;0Þϒμν
s ;

ðC3Þ

which satisfies ðPk;sÞμαðPk;sÞαν ¼ ðPk;sÞμν. Here s ¼
signðQρBÞ ¼ �1.
The functions RQ;μν are shown to satisfy orthogonality

and completeness relations, viz.

Z
d4xRQ;μαðx; q̄ÞRQ

ναðx; q̄0Þ� ¼ δ̂q̄q̄0 ðPk;sÞμν ðC4Þ

and

XZ
q̄

RQ;μαðx; q̄ÞRQ
ναðx0; q̄Þ� ¼ δð4Þðx − x0Þδμν: ðC5Þ

It can also be seen that

ðPk;sÞμαRQ;ανðx; q̄Þ ¼ RQ;μνðx; q̄Þ: ðC6Þ

For k ≥ 0, one can find some other useful relations that
involve the four-vector Πμðk; qkÞ defined in Eq. (4.14).
These are

DμRQ;μνðx; q̄Þ ¼ −iFQðx; q̄ÞΠνðk; qkÞ�; ðC7Þ

DμFQðx; q̄Þ ¼ −iRQ
μνðx; q̄ÞΠνðk; qkÞ; ðC8Þ

ðPk;sÞμαΠαðk; qkÞ ¼ Πμðk; qkÞ: ðC9Þ

Let us consider now the polarization vectors ϵνðk; q3; cÞ.
Their form is dictated by the transversality condition
DμρQμ ðxÞ ¼ 0 in Eq. (3.32), which implies that for
q0 ¼ Eρ one must have

DμW
μ
Qðx; q̄; cÞ ¼ DμRQ;μνðx; q̄ÞϵQ;νðk; q3; cÞ ¼ 0: ðC10Þ

Taking into account Eq. (C7), it is seen that the trans-
versality is trivially satisfied for k ¼ −1, since in that case
FQðx; q̄Þ is zero. For k ≥ 0, according to Eq. (C7) the
condition (C10) can be expressed as

Πμðk; qkÞ�jq0¼Eρ
ϵQ;μðk; q3; cÞ ¼ 0: ðC11Þ

For k ≥ 1 there are three linearly independent vectors
that satisfy Eq. (C11). A convenient choice is

ϵμQðk; q3; 1Þ ¼
1ffiffiffi
2

p 1

m⊥m2⊥
½ΠþðEρ; 0; 0; q3Þ þm2⊥ð0; 1; is; 0Þ�;

ϵμQðk; q3; 2Þ ¼
1

m⊥
ðq3; 0; 0; EρÞ;

ϵμQðk; q3; 3Þ ¼
1ffiffiffi
2

p 1

mρm2⊥

�
Π−

�
Eρ;

Π�þ
2

; is
Π�þ
2

; q3
�
þm2

2⊥ð0; 1;−is; 0Þ
�
; ðC12Þ

where we have used the definitions

m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ ð2kþ 1ÞBρ

q
;

m2⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ρ þ kBρ

q
;

Πþ ¼ −Π1ðk; qkÞ þ isΠ2ðk; qkÞ ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðkþ 1ÞBρ

q
;

Π− ¼ −Π1ðk; qkÞ − isΠ2ðk; qkÞ ¼ i
ffiffiffiffiffiffiffiffiffiffi
2kBρ

q
; ðC13Þ

with Bρ ¼ jQρBj. Using these polarization vectors one
recovers the known expressions for a vector boson in a
constant magnetic field; see, e.g., Ref. [68].

For k ¼ 0 two independent nontrivial transverse polari-
zation vectors can be constructed. A suitable choice is

ϵμQð0; q3; 1Þ ¼
1ffiffiffi
2

p 1

m⊥m2⊥
ðEρΠþ; m2⊥; ism2⊥; q3ΠþÞ;

ϵμQð0; q3; 2Þ ¼
1

m⊥
ðq3; 0; 0; EρÞ; ðC14Þ

wherem⊥,m2⊥, Πþ, and Eρ are understood to be evaluated
at k ¼ 0. It can be seen that ϵμQð0; q3; 2Þ satisfies

Sμν3 ϵQ;νð0; q3; 2Þ ¼ 0; ðC15Þ
while ϵμð0; q3; 1Þ is not an eigenvector of S3.
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For k ¼ −1, one hasRQ;μνðx; q̄Þ ∝ ϒμν
−s. This leaves only

one nontrivial polarization vector, which can be conven-
iently written as

ϵμQð−1; q3; 1Þ ¼
1ffiffiffi
2

p ð0; 1; is; 0Þ: ðC16Þ

As in the case of ϵQ;νð0; q3; 2Þ, it is easy to see that this
vector has a definite spin projection in the direction of the
magnetic field. Indeed, one has

Sμν3 ϵQ;νð−1; q3; 1Þ ¼ sϵμQð−1; q3; 1Þ: ðC17Þ

Finally, for k ≥ 0 one can also define an additional,
“longitudinal,” polarization vector. We keep for this vector
the notation ϵμQðk; q3; cÞ, taking for the polarization index
the value c ¼ 0. It is given by

ϵμQðk; q3; 0Þ ¼
1

mρ
Πμðk; qkÞjq0¼Eρ

; ðC18Þ

where, as stated, k ≥ 0. For k ¼ −1 no longitudinal vector
is introduced.
It is worth noticing that the full set of four polarization

vectors satisfies orthogonality and completeness relations,
namely

ϵμQðk; q3; cÞ�ϵQ;μðk; q3; c0Þ ¼ −ζcδcc0 ðC19Þ

and

Xcmax

c¼cmin

ζcϵ
μ
Qðk; q3; cÞϵνQðk; q3; cÞ� ¼ −ðPk;sÞμν; ðC20Þ

where ζ0 ¼ −1 and ζ1 ¼ ζ2 ¼ ζ3 ¼ 1, while cmin and cmax
are given by

cmin¼
�
1 if k¼−1
0 if k≥0

; cmax¼

8>><
>>:
1 if k¼−1
2 if k¼0

3 if k≥1

: ðC21Þ

For k ≥ 1, from Eqs. (C20), (C18), and (C2) it is seen that
the sum over the physical polarizations c ¼ 1, 2, 3 satisfies

X3
c¼1

ϵμQðk; q3; cÞϵνQðk; q3; cÞ�

¼ −
�
gμν −

Πμðk; qkÞΠνðk; qkÞ�
m2

ρ

�
; ðC22Þ

where the vectors Πμðk; qkÞ are assumed to be “on shell,”
i.e., one has to take q0 ¼ Eρ.
As stated in the main text, one can also extend the

set of charged rho meson wave functions Wμ
Qðx; q̄; cÞ

including a “longitudinal” wave function Wμ
Qðx; q̄; 0Þ≡

RQ;μνðx; q̄ÞϵQ;νðk; q3; 0Þ. In this way one gets for these
functions the orthogonality and completeness relations in
Eqs. (3.38) and (3.39).
We conclude this Appendix by quoting the commutation

relations for the creation and annihilation operators in
Eq. (3.34). One has

½aQρ ðq̆; cÞ; a�Q
ρ ðq̆0; c0Þ� ¼ ½aQρ ðq̆; cÞ†; a�Q

ρ ðq̆0; c0Þ†�
¼ ½aQρ ðq̆; cÞ; a−Qρ ðq̆0; c0Þ†� ¼ 0;

½aQρ ðq̆; cÞ; aQρ ðq̆0; c0Þ†� ¼ ½a−Qρ ðq̆; cÞ; a−Qρ ðq̆0; c0Þ†�
¼ 2Eρð2πÞ3δcc0δkk0δχχ0δðq3 − q03Þ:

ðC23Þ

APPENDIX D: EXPLICIT FORM OF THE
COEFFICIENTS OF THE OPERATORS

FOR THE ONE-LOOP ρ+ MESON
POLARIZATION FUNCTION

As stated in Sec. V B, the one-loop correction to the ρþ
propagator in q̄ space can be written in terms of a set of
tensors Oαα0

i ðΠÞ, with i ¼ 1;…7. We give here the explicit
expressions for the corresponding coefficients diðk; qkÞ,
introduced in Eq. (5.55). The latter have been obtained
taking into account the Schwinger form of quark propa-
gators in Eq. (4.10). In general they can be written in the
form

diðk;qkÞ¼−i
Nc

4π2

Z
1

−1
dx

Z
∞

0

dz
e−zϕðx;q

2
kÞ

αþ

�
α−
αþ

�
k
fðiÞk;qkðx;zÞ;

ðD1Þ

where ϕðx; q2kÞ and α� are defined in Eqs. (5.25) and
(5.28), respectively. After some calculation, the functions

fðiÞk;qk ðx; zÞ are found to be given by
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fð1Þk;qk
ðx; zÞ ¼ −ð1 − tutdÞ

�
mumd þ ð1 − x2Þ

q2k
4

�
−
α− þ kðα− − αþÞ

αþα−
ð1 − t2uÞð1 − t2dÞ; k ≥ 0

fð2Þk;qk
ðx; zÞ ¼ fð2aÞk;qk

ðx; zÞ þ fð2bÞk;qk
ðx; zÞ þ ð2kþ 1Þfð2cÞk;qk

ðx; zÞ

fð3Þk;qk ðx; zÞ ¼
1

2
ð1 − x2Þð1 − tutdÞ; k ≥ 0

fð4Þk;qk
ðx; zÞ ¼ 1

Bρ

αþ − α−
αþα−

ð1 − t2uÞð1 − t2dÞ; k ≥ 1

fð5Þk;qk ðx; zÞ ¼ fð5aÞk;qk ðx; zÞ þ fð5bÞk;qk ðx; zÞ;
fð6Þk;qk

ðx; zÞ ¼ fð2aÞk;qk
ðx; zÞ − fð2bÞk;qk

ðx; zÞ þ fð2cÞk;qk
ðx; zÞ;

fð7Þk;qk ðx; zÞ ¼ −fð5aÞk;qk ðx; zÞ þ fð5bÞk;qk ðx; zÞ; ðD2Þ

where

fð2aÞk;qk ðx; zÞ ¼ −
1

2

α−
αþ

ð1þ tuÞð1þ tdÞ
�
mumd þ

1

z
þ ð1 − x2Þ

q2k
4

�
; k ≥ −1;

fð2bÞk;qk ðx; zÞ ¼ −
1

2

αþ
α−

ð1 − tuÞð1 − tdÞ
�
mumd þ

1

z
þ ð1 − x2Þ

q2k
4

�
; k ≥ 1;

fð2cÞk;qk
ðx; zÞ ¼ αþ − α−

2αþα−
ð1 − t2uÞð1 − t2dÞ; k ≥ 1;

fð5aÞk;qk
ðx; zÞ ¼ 1

4αþ

�
ð1þ xÞ tuð1þ tuÞð1 − t2dÞ

Bu
þ ð1 − xÞ tdð1þ tdÞð1 − t2uÞ

Bd

�
; k ≥ 0;

fð5bÞk;qk
ðx; zÞ ¼ 1

4α−

�
ð1þ xÞ tuð1 − tuÞð1 − t2dÞ

Bu
þ ð1 − xÞ tdð1 − tdÞð1 − t2uÞ

Bd

�
; k ≥ 1:

Here, as in the main text, we have used the definitions tu ¼ tanh½ð1 − xÞzBu=2�, td ¼ tanh½ð1þ xÞzBd=2�, with Bf ¼ jQfBj
for f ¼ u, d. For k ¼ 0 and k ¼ −1 some of the above functions vanish; therefore, for each expression we have explicitly
indicated the range of values of k to be taken into account.
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Phys. Rev. D 104, 094040 (2021).
[36] J. P. Carlomagno, D. Gomez Dumm, S. Noguera, and N. N.

Scoccola, Phys. Rev. D 106, 074002 (2022).
[37] J. P. Carlomagno, D. Gomez Dumm, M. F. Izzo Villafañe, S.

Noguera, and N. N. Scoccola, Phys. Rev. D 106, 094035
(2022).

[38] A. Ayala, R. L. S. Farias, S. Hernández-Ortiz, L. A.
Hernández, D. M. Paret, and R. Zamora, Phys. Rev. D
98, 114008 (2018).

[39] K. Kamikado and T. Kanazawa, J. High Energy Phys. 03
(2014) 009.

[40] N. O. Agasian and I. A. Shushpanov, J. High Energy Phys.
10 (2001) 006.

[41] J. O. Andersen, J. High Energy Phys. 10 (2012) 005.
[42] G. Colucci, E. S. Fraga, and A. Sedrakian, Phys. Lett. B

728, 19 (2014).

[43] M. Kawaguchi and S. Matsuzaki, Phys. Rev. D 93, 125027
(2016).

[44] V. D. Orlovsky and Y. A. Simonov, J. High Energy Phys. 09
(2013) 136.

[45] M. A. Andreichikov, B. O. Kerbikov, E. V. Luschevskaya,
Y. A. Simonov, and O. E. Solovjeva, J. High Energy Phys.
05 (2017) 007.

[46] C. A. Dominguez, M. Loewe, and C. Villavicencio, Phys.
Rev. D 98, 034015 (2018).

[47] E. V. Luschevskaya, O. A. Kochetkov, O. V. Teryaev, and
O. E. Solovjeva, JETP Lett. 101, 674 (2015).

[48] B. B. Brandt, G. Bali, G. Endrödi, and B. Glässle, Proc. Sci.
LATTICE2015 (2016) 265.

[49] E. V. Luschevskaya, O. E. Solovjeva, and O. V. Teryaev,
J. High Energy Phys. 09 (2017) 142.

[50] G. S. Bali, B. B. Brandt, G. Endrődi, and B. Gläßle, Phys.
Rev. D 97, 034505 (2018).

[51] H. T. Ding, S. T. Li, A. Tomiya, X. D. Wang, and Y. Zhang,
Phys. Rev. D 104, 014505 (2021).

[52] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[53] J. Li, G. Cao, and L. He, Phys. Rev. D 104, 074026

(2021).
[54] M. Coppola, D. Gomez Dumm, and N. N. Scoccola, Phys.

Rev. D 102, 094020 (2020).
[55] M. Wakamatsu and A. Hayashi, Eur. Phys. J. A 58, 121

(2022).
[56] M. Coppola, D. Gomez Dumm, S. Noguera, and N. N.

Scoccola, Phys. Rev. D 99, 054031 (2019).
[57] V. I. Ritus, Sov. Phys. JETP 48, 788 (1978).
[58] P. Watson and H. Reinhardt, Phys. Rev. D 89, 045008

(2014).
[59] A. Erdas and G. Feldman, Nucl. Phys. B343, 597 (1990).
[60] C. Itzykson and J. B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980), ISBN 978-0-486-
44568-7.

[61] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[62] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246

(1961).
[63] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195

(1991).
[64] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[65] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
[66] J. Bijnens, Phys. Rep. 265, 370 (1996).
[67] Y. Hidaka and A. Yamamoto, Phys. Rev. D 87, 094502

(2013).
[68] A. I. Nikishov, J. Exp. Theor. Phys. 93, 197 (2001).

CHARGED MESON MASSES UNDER STRONG MAGNETIC … PHYS. REV. D 108, 016012 (2023)

016012-29

https://doi.org/10.1103/PhysRevD.91.014017
https://doi.org/10.1103/PhysRevD.91.014017
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1103/PhysRevD.93.014010
https://doi.org/10.1016/j.physletb.2017.02.002
https://doi.org/10.1103/PhysRevD.96.034004
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1140/epjc/s10052-016-4123-8
https://doi.org/10.1103/PhysRevD.94.113006
https://doi.org/10.1103/PhysRevD.94.113006
https://doi.org/10.1103/PhysRevD.97.034025
https://doi.org/10.1103/PhysRevD.97.034026
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1103/PhysRevD.97.076008
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1016/j.physletb.2018.04.043
https://doi.org/10.1103/PhysRevD.99.056005
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.99.056009
https://doi.org/10.1103/PhysRevD.100.074024
https://doi.org/10.1103/PhysRevD.100.054014
https://doi.org/10.1007/JHEP09(2020)058
https://doi.org/10.1103/PhysRevD.101.056023
https://doi.org/10.1140/epja/s10050-021-00570-0
https://doi.org/10.1103/PhysRevD.104.094040
https://doi.org/10.1103/PhysRevD.106.074002
https://doi.org/10.1103/PhysRevD.106.094035
https://doi.org/10.1103/PhysRevD.106.094035
https://doi.org/10.1103/PhysRevD.98.114008
https://doi.org/10.1103/PhysRevD.98.114008
https://doi.org/10.1007/JHEP03(2014)009
https://doi.org/10.1007/JHEP03(2014)009
https://doi.org/10.1088/1126-6708/2001/10/006
https://doi.org/10.1088/1126-6708/2001/10/006
https://doi.org/10.1007/JHEP10(2012)005
https://doi.org/10.1016/j.physletb.2013.11.028
https://doi.org/10.1016/j.physletb.2013.11.028
https://doi.org/10.1103/PhysRevD.93.125027
https://doi.org/10.1103/PhysRevD.93.125027
https://doi.org/10.1007/JHEP09(2013)136
https://doi.org/10.1007/JHEP09(2013)136
https://doi.org/10.1007/JHEP05(2017)007
https://doi.org/10.1007/JHEP05(2017)007
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1103/PhysRevD.98.034015
https://doi.org/10.1134/S0021364015100094
https://doi.org/10.1007/JHEP09(2017)142
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/PhysRevD.97.034505
https://doi.org/10.1103/PhysRevD.104.014505
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevD.104.074026
https://doi.org/10.1103/PhysRevD.104.074026
https://doi.org/10.1103/PhysRevD.102.094020
https://doi.org/10.1103/PhysRevD.102.094020
https://doi.org/10.1140/epja/s10050-022-00770-2
https://doi.org/10.1140/epja/s10050-022-00770-2
https://doi.org/10.1103/PhysRevD.99.054031
https://doi.org/10.1103/PhysRevD.89.045008
https://doi.org/10.1103/PhysRevD.89.045008
https://doi.org/10.1016/0550-3213(90)90582-X
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1103/PhysRev.124.246
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1016/0146-6410(91)90005-9
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/0370-1573(95)00051-8
https://doi.org/10.1103/PhysRevD.87.094502
https://doi.org/10.1103/PhysRevD.87.094502
https://doi.org/10.1134/1.1402723

