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A modular representation for the semileptonic decays of baryons originating from spin-polarized and
correlated baryon-antibaryon pairs is derived. The complete spin information of the decaying baryon
is propagated to the daughter baryon via a real-valued matrix. It allows us to obtain joint differential
distributions in sequential processes involving the semileptonic decay in a straightforward way. The
formalism is suitable for extraction of the semileptonic form factors in experiments where strange baryon-
antibaryon pairs are produced in electron-positron annihilation or in charmonia decays. We give examples
such as the complete angular distributions in the e*e™ — AA process, where A — pe™7, and A — pat.
The formalism can also be used to describe the distributions in semileptonic decays of charm and bottom
baryons. Using the same principles, the modules to describe electromagnetic and neutral current weak
baryon decay processes involving a charged lepton-antilepton pair can be obtained. As an example, we
provide the decay matrix for the Dalitz transition between two spin-1/2 baryons.
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I. INTRODUCTION

Baryon semileptonic (SL) decays are an important tool to
study transitions between ground state baryons. Comparing
to the nonleptonic baryon decays where at least three
hadronic currents are involved, the SL transition involves
only a two-point hadronic vertex and the external W-boson
field coupled to the leptonic current. The properties of
the hadronic vertices are described by a set of scalar
functions—form factors, that depend on the invariant mass
squared of the emitted virtual W boson. In particular, the
semileptonic processes allow us to probe the kinematic
regions of the form factors that are dominated by the static
properties of the baryons. The recent progress in the lattice
quantum chromodynamics gives a hope to determine
the properties of the form factors from the first principles
with the accuracy sufficient for a comparison with precise
experimental data [1]. Once the hadronic effects are well-
understood, the SL decays will provide a complementary
method to determine Cabbibo-Kobayashi-Maskawa matrix
elements [2] and to search for beyond the Standard
Model effects such as violation of lepton flavor and
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charge-conjugation-parity symmetries [3]. In this article,
we provide a modular description of the semileptonic
decays that can be used to extract properties of the form
factors in the experiments using spin-entangled baryon-
antibaryon pairs.

The helicity amplitude method [4-6] that is commonly
used in the analyses of semileptonic decays allows us
to express the angular distributions in an efficient and
compact way. The complete process is described as a
sequence of two-body decays, where each of them is
analyzed in the rest frame of the subsequent decaying
particle. For a semileptonic decay B, — B, + ¢, the
first decay step By — By W i o 1S analyzed in the B,
rest frame, whereas Wy ., — £ Uy is analyzed in the
W shen Test frame. The resulting expressions for the
differential distributions are compact and can be written in
a quasifactorized form. The formalism also describes joint
angular distributions in the semileptonic decays of a spin-
polarized baryons.

A novel approach to study strange baryon decays is to
use hyperon-antihyperon pairs from J/y resonances pro-
duced in electron-positron annihilations [7]. The complete
angular distribution in such processes can be conveniently
represented using a product of real-valued matrices that
describe the initial spin-entangled baryon-antibaryon state
and chains of two-body weak decays. These matrices can
be rearranged to describe many decay scenarios in the
ete” = AA, ete” — EZ and similar processes [7-10].
Several high-profile analyses using multidimensional
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maximume-likelihood fits to angular distributions were
performed by the electron-positron collider experiment
BESHI [11,12] using this modular formalism. These
multidimensional analyses have demonstrated increased
precision of the decay parameters measurements and
enabled to observe effects that were averaged out in
previous studies, such as a polarization of the hyperon-
antihyperon pair from charmonia decays.

The same spin-entangled hyperon-antihyperon system
can be used to study semileptonic decays such as A —
pe v, or E= — Ae~v,. The processes are relatively rare
with the branching fractions (BFs) 8.32(14) x 10~* and
5.63(31) x 107, respectively [13]. In the reactions
ete” > J/y - AN and ete” = J/y - EE" the
hyperon semileptonic decay is tagged via a common decay
of the antihyperon; A — pzt and 2% — Az, respectively.
The tagging processes involve only charged particles in the
final state, therefore their momenta can be precisely
determined. This allows one to reconstruct the momentum
of the antineutrino in the semileptonic process and to
determine the four-momentum squared of the lepton pair
that is needed to study the dynamics of the process. The
polarization of the hyperons is given by the angular
distributions in their decays, but usually the polarization
of the leptons is not measured. Such a double-tag (DT)
technique is often used to determine absolute branching
fractions in electron-positron collider experiments [14].
With a large number of collected events in experiments
such as BESIII [15] studies of decay distributions in the
semileptonic hyperon decays are possible. A formalism that
uses spin correlations and polarization of the produced
baryon-antibaryon system is needed to determine the decay
parameters with the best precision. The purpose of this
report is to extend the approach from Refs. [8,10] to include
decay matrices representing the three-body semileptonic
processes. Our starting point is the helicity formalism for
semileptonic decays from Ref. [6]. We construct a real-
valued decay matrix relating the initial and final baryons’
spin states, represented by the Pauli matrices. The obtained
decay matrix is used to construct the full joint decay

|

distributions of the spin-entangled baryon-antibaryon pair
in a modular way.

The paper is organized as follows: In Sec. II and Sec. IV
we review the formalism to describe baryon-antibaryon
production process and semileptonic decays, respectively.
In Sec. V the main result is derived—the spin-density
matrix of the daughter baryon in the semileptonic decay.
Section VI presents modular formulas to describe the
angular distributions of the semileptonic hyperon decays.
Finally, in Sec. VII we collect some numerical results.

II. PRODUCTION PROCESS

In general a state of two spin-1/2 particles e.g., a baryon-
antibaryon pair BB, can be written as [8]

Z Coon' ® (1)

PB,B, —

where a set of four Pauli matrices o).’ (6%') acting in the
rest frame of a baryon B;(B;) is used and C,; is a
4 x4 real matrix representing polarizations and spin
correlations of the baryons. Here we consider mainly
baryon-antibaryon systems created in the ete™ — BB,
process. However, the formalism can be applied for the
pairs from decays of (pseudo)scalar or tensor particles such
as w(2S),ne, xe0- X2 = BBy or in a fact to any pair of
spin-1/2 particles (for example baryon-baryon, muon-
antimuon, and others). The spin matrices a,lf ' and af !
are given in the coordinate systems with the axes denoted
X1,¥1,Z, and X3, ¥3, Z3 as shown in Fig. 1. The directions
of the two right-handed coordinate systems are related as
(X3,¥3,23) = (X1, —§1,—2;). The spin-correlation matrix
C,; for the reaction e*e™ — BlBl depends in the lowest
order on two parameters, @, € [—1,1] and A® € [-z, 7).
The elements of the C,; matrix are functlons of the baryon
B, production angle 91 in the electron-positron center-of-
momentum system. The matrix for the single-photon
annihilation of unpolarized electrons and positrons is [8]

1 + a,,cos%0, 0 B, sin 6, cos 6, 0
0 sin’6 0 , sin@; cos @
Coo | 1 | S )
—p, sin 6, cos 6, 0 a,,sin’6, 0
0 —7,, sin 6} cos 6, 0 —a,, — cos*6,

where the parameters /3, and y,, are expressed via a,, and A® as f, = /1 — a7, sin(A®) and y,, = /1 — a;, cos(AD).
We will also use a more general formula from Ref. [10] that describes the annihilation processes with polarized electron

beams.
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FIG. 1. Definition of the three coordinate systems used to
describe the spin-entangled B, B, state. The overall c.m. frame
with 2 axis (e.g., for e*e™ — B, B, itis defined along the positron
momentum). The axes in baryon B; and antibaryon B, rest
frames (helicity frames) are denoted (X, §,,%,) and (X3, ¥3, Z3),
respectively.

III. INVARIANT FORM FACTORS

Let us consider a semileptonic decay of a 1/2" hyperon
B, into a 1/27 baryon B, and an off-shell W~ boson
decaying to the lepton pair /~7; with the momenta and
masses denoted as By (p,M,) = B,(p>,M5) +1"(p;,m;) +
7/(p,,0). The matrix elements due to the vector J) and
axial-vector J;‘ currents in notation from Ref. [6] are

(BalJ} -+ JA1BY) = #(pa) |1, (FY (¢2) + P (6)rs)
iaﬂyq”

M,
Z—’Z (F{(@) + F3()rs)|u(p).
(3)

where g, := (p1 — p2), = (pi + p,), is the four-momentum

(FY(q®) + F3(q%)rs)

_|_

transfer. The four-momentum squared g ranges from ml2
to (M, — M,)?. The form factors F35(q?) are complex
functions of ¢? that describe hadronic effects in the
transition. Neglecting possible CP-odd weak phases, the
corresponding form factors are the same for the (/~, 7;) and
(I, v;) transitions. To fully determine the hadronic part of a
semileptonic decay, the six involved form factors should be
extracted as a function of ¢>. The form factors are usually
parametrized by the axial-vector to vector g,, coupling, the
weak-magnetism g,, coupling, and the pseudoscalar g,,3
coupling. They are obtained by normalizing to F} (0),

Gav =

For experiments with a limited number of events, the
g*>-dependence of the form factors is assumed using a
model. The standard approach is to include one or more
poles of the mesons that have the correct quantum numbers

to mix with the W boson and have the masses close to the
g* range in the decay. Traditionally, one pole is explicitly
included together with an effective contribution from other
poles [16] such as in the Becirevic-Kaidalov (BK) [17]
parametrization,

Fi(0) 1

Fi(qz) = 2 (5)

- 2
q q
I—3pl—askyp

where the dominant pole mass M is outside the kinematic
region and the parameter api represent an effective con-
tribution from the meson poles with higher messes. Here
the case agg = 0 represents the dominant pole contribu-
tion. This parametrization gives real-valued form factors. If
more data is available, one or more extra parameters can be
added to describe the ¢ distribution. In the hyperon decays
the range of ¢> < (M, — M,)? is limited and in the first
order can completely neglect the ¢g> dependence using the
values of the couplings at the ¢> =0 point. A better
approximation is to include an effective-range parameter
r; that represent linear dependence on ¢,

Fi(¢*) = Fi(O)[1 + rig* +--]. (6)

For example, using (5) the effective-range parameter is
ri = (1 4+ agg)/M?. The main takeaway message from the
above discussion is that, for practical purposes, the ¢>
dependence of an SL form factor can be represented by one
or two parameters. In experiments, these parameters can be
determined from the observed distributions. The optimal
method for such parametric estimation is the maximum
likelihood method using multidimensional unbinned data.
We will first construct modular formulas for the angular
distributions and then in Sec. VII discuss the attainable
statistical uncertainties for the SL form factors parameters
as the function of the number of observed events.

IV. HELICITY AMPLITUDES

We will describe the By — B, + W .. Process using
three-coordinate systems attached to the three involved
particles. In the baryon B; rest frame R;, with the
(X1,¥1,7,) Cartesian coordinate system shown in Fig. 1,
the B;-spin projection on the quantization axis Z; is
k = +1/2. The daughter baryon B, is emitted in the
direction given by the spherical coordinates 6,, ¢, in R,
and the B,-helicity is 4, = £1/2. The off-shell W~ boson
is emitted in the direction Oy, = 7 — 6,, ¢y = 7+ ¢, in
the R, frame. It has helicity Ay = {#,—1,0, 41} where the
time component, Ay, = ¢, corresponds to Jy = 0 and the
remaining three components to Jy = 1. Therefore, Ay
uniquely defines both spin Jy, and helicity Ay as Jy (4y) =
{0,1,1,1} and Awy(dy)={0,-1,0,1}, respectively.
The four-momentum vector of the off-shell W~ is g, =
(qo, p sin By, cos gy, p sin Oy, sin gy, p cosBy) in the R,
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system. The energy ¢, of the off-shell W~ boson and the
magnitude of the three-momentum p are the following
functions of the ¢? invariant

le) = 53 (M3 = M3 ) )

and
P(a) = ool = 533 V/2 0~ (3)

where
0. = (M, + M) = ¢ )

The spin direction and subsequent decays of the baryon B,
and boson W . are described in two helicity systems
denoted R, and Ry, respectively. The helicity frame R, is
obtained by performing three active rotations: (a) around
the Z,—axis by —¢,; (b) a rotation around the new y—axis
by —6,; (c) a rotation around the Z,-axis by +y,, see
Fig. 2 [18]. The first two rotations are sufficient to align p,
with the z-axis and such two-rotations prescription is used
e.g., in Ref. [8]. Here we allow for an additional rotation
that can be e.g., used to bring the momenta p,, p;, and
p, to one plane. Initially, we consider the angle y, of this
rotation as an arbitrary parameter. The combined (a)—(c)
three-dimensional rotation is given by the product of three
axial rotations R(){z, —92, —d)z) = RZ()(Z)Ry(_QZ)RZ(_¢2)‘
Subsequently, one then boosts to the B, rest frame. The Ry,
frame is defined using the same procedure with the rotation
matrix R(yw, —0w, —¢w) and the subsequent boost to the

Yw

FIG. 2. Definition of the three coordinate systems used to
describe the semileptonic decay B; — B, + Wi .- The axes in
the By, B, and W .., rest frames (helicity frames: R, R, and
Ry) are denoted (X,,¥,,Z), (X2,¥2,2,) and Ry, ¥w>Zw),
respectively.

W Sit-shen T€St frame. Since the W ., direction is opposite
to B, in Ry, one has ¢y =7+ ¢, and Oy = 7 — 6,.
In order to assure that the coordinate systems in R,
and Ry, are related as (X,,¥5,2,) = Ry, —Yw, —Zy) we
set yw = —X2-

The matching transition amplitude between B; and the
two daughter particles expressed using the defined above
helicity frames is [8,18]

(Qa, A, Aw|S|J = 1/2, k)

27+ 1 )
= /== = = IS = 1/2.)D ()

= Ho s (D, (@) (10)
where D;, () =D, . (¢2.60,,—x2) is the Wigner
rotation matrix, where the convention D;, ,, (¢.0.x) =
emimd=imxpl . (0,0,0) = emimd=imxg)  (6) is used
(see Appendix A). The order and the signs of the angles
Q, = {¢,, 05, —y, } in the Wigner functions are opposite to
the used in the rotations to define the helicity reference
frames. In addition, the normalization factor is different
since we allow for three independent rotation angles.
The helicity amplitudes H,, , (¢°) are functions of ¢
and depend on the helicities of the daughter particles.
The vector and axial-vector helicity amplitudes H,, ; =
HY , +Hj , are related to the invariant form factors in
the following way:

0.

HY =
2

Q

M, —-M FV —FV
( 2) +M1 ]

M, + M,
HY = +/20- [—FY T FX]

HY =Y Q [(M] +M2)FV+q—F ]
2 1/q2 Ml
/ 2
H, = Qé [—(Ml + M) F} +q—FA],
2! q2 Ml -

j

M, —-M
A _ A 1 2 A
H%1 = 2Q+ [Fl — ) Fz}’

2
HY = \/\/% [—(M1 — M,)F! +A"4—1FA}, (11)

where the remaining helicity amplitudes are obtained by
applying the parity operator,
Hyzz,—,iw = HXZ,gw’ H—zz Ay Hf, (12)
The decay W~ — [77; is described in Ry, where the
emission angles of the /[~ lepton are 8, and ¢,;. The value of
the lepton momentum in this frame is
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2 2

q — ml
= . 1
=15 (13)

The decay amplitude reads

<Qz, Ars ’1u|S1|JWv 612’ /1W>

2w+ 1

DR @)D (), (14)

nonflip(Ay = F 1): |A

flip(Aw = 0.1): |A!

where here and in the following the upper and lower signs
refer to the configurations (I=,7;) and (I, v;), respectively.

The representations in Eqgs. (10) and (14) imply that

the complete amplitude for the B;(x) — B,(4,) transition
reads,

D (20, 418116 Aw) (R, A A ISI1/2,K), (17)
AW

where the Ay sum runs over the four W-boson helicity
components {?,
the amplitude with the angular part separated is

Jw* 1/2%
Y (=D, D L (Q)H,, ,, D, ()
lW

1/2
= /12( I)thfm dlw -y (gl)H/lz Awdk/gz_gw (62)

x explikepy + idojr — idw (2 — #1)], (18)

where the final expression combines all azimuthal-angle
rotations in one term. One can consider two options for
selecting y, to define the transversal orientation of the R,
and Ry, helicity frames. The first option is to set y, = 0 as
in Ref. [8] where the corresponding azimuthal angle of the
charged lepton in the Ry system is ¢?. An alternative is to
select y3® so that %, is in the decay plane of the semi-
leptonic decay. In this case the momenta of the leptons
|

2
h=FhA=%

2
=44, =41

—1,0,+1}. An explicit representation of

where Q; = {¢,6,,0}. The helicity amplitudes 4} , for
the elementary transition to the final lepton pair can be
calculated directly by evaluating the Feynman diagrams.
The neutrino helicities are 4, = 1/2 and 4, = —1/2 for
(I",p)) and (I*,v;), respectively. The moduli squared of
hf% are [6]:

— 85(y +4,) (% — m3), (15)
— 85(2, —mz”;l (q* —m2), (16)

|

are in this plane which corresponds to ¢3° =0 and the
23 = ¢? relation holds.

The amplitude can be rearranged by inserting a complete

spin basis for the baryon B, to represent transition between
Bl (K') and Bz(/lz),

1/2

DD QA ASIlGE dw) (has A |X) (0, X[S]1/2, )
N==1/2 Ay

(19)
Y
1/2%
=2, DK/A/ () {Z Q. 1 4181147 Aw)
L Tyt ™
. Byl Hy 5, )} (20)
Y
1/2%
:2_ Dk/y (Qz)Hz/,xz(thaﬂh%)‘ (21)
e

Therefore the angular dependence on €, can be separated
in the amplitude of the complete process. Since usually
experiments do not measure polarization of the leptons, it is
useful to consider a tensor that describes the W*-boson
decay with the lepton helicities summed over,

1/2
Liy iy (@ Q1) 5= D (@0 du AISI 4% 2y) (@ . | S1147 ) (22)
h==1/2
3 1/2 ) .
= Y W @PEDDR L @)D, (@) (23)

h=—1/2

3 1/2 g
= T S (PP

L)y, (0).  (24)

h=—1/2
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The interference contribution from Ay = ¢ and Ay = 0 gives an extra minus sign. We write the tensor as

6 X
2 n f
Ly, (6 2) =~ (¢ = m)[2f (@) + et ()] (25)
where € = m% /(2¢%). The Hermitian matrix for the nonflip transition reads
0 0 0 0
(1=£cos 0,)* e~ sin 0;(1+cos ;) 1 ,-2id; «in2
=T — s 1€ sin~ 0,
f . .
Oty Q) = | g L esingy(1zeose)) lgin2g e sin6)(1c0s0) | - (26)
22 2 ! 2V2
iy 1 sin 0, (1 0 1 0,)*
1 ,2ig, 2 e'?1 sin6;(1Fcos ;) (1Fcos 6;)
0 je-'?sin” 0, NG 7
while for the flip transition
el sin g, e~ sin @,
1 73 cos 6, 7
—ig] Gn2 —ify o . _: .
_e \/%ma, smz 9, e 51%, cos b, _ % e 2igy sm2 91
£ (Q) = - " (27)
Ay —cosf ¢ sin ), cos 0, cos2 0 __ e ising, cos 6,
1 - 1 5
iy & . . idy & S .
e \;%n 0, _ % 21 gin? 91 _e 51I1/9§1c05 0, %sz 9[

V. DECAY MATRIX

Here, we derive a matrix that relates the spin of the
baryon B, to the spin of the baryon B, in B; — B,fv,
where the state of the lepton pair with the summed spin
projections is givenby the L; (¢%, Q) tensor in Eq. (23).
The transition can be represented by a tensor 7% %% that
describes how the initial spin-density matrix p%* of the
baryon B; transforms to the density matrix pézllz of the
baryon B,,

Py

Py = T8 Ak phe (28)
Using Eq. (10) the transition tensor is given as
/ ! 1 2%
TRk = a2 ZHM i, x/,lz—zw(gz)
1/2
xD ///1' ,W(Q2)L,1W%V(q2,£2,) (29)
T (2 )L, 4 (420 30
4]_[2 j, j,’ ’ 2) iW‘lw (q ’ Z)' ( )

The explicit expression for the phases of the hadronic
tensor due to the azimuthal rotations is

k' Jods' 1 2
Tty (@) =

1/2 1/2
Hy H ,dkgz_lw(@)d ﬂ/jz,_lw (6,)
— idyyo)

i ys + i),

X explikg, + idoys

x exp|—ik'¢h, — (31)

where we use the generic case with Q, = {¢,, 0>, >} and
Q; = {¢;,0,,0}. The overall phases of the contraction of
the above hadronic tensor and the leptonic tensor in
Eq. (24) for the two choices of the orientations of the
coordinate systems R, and Ry, are

(x2 = 0) — expli(k = &')¢p + i(Aw — 2y)¢y].  (32)
(#7°=0) = expi(k = &)y + il = 1)r3°]  (33)
=expli(k =)y +i(a = 3)]].  (34)

The two representations are not equivalent but can be
written in terms of the tensors evaluated for QY :=
{¢,,0,,0} and Q9 = {0,6,,0} as

T o2 (3, = 0) =12 Z expli(Aw — Ay Y]
W_W
KK/ Az
XT,{ Ky (QO)L/I /1’ (Q(l)> (35)
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1 K
0) = expli(l = )¢ Y75 "

Ay Ay

’ ! B
TxK Aoy (¢? b _

x (Q9)Ly, x, (). (36)

Instead of the helicities, the transition can be written as in

Ref. [8] using spin base vectors of‘ and 62* in the mother
and daughter reference systems R; and R,, respectively.
The 4 x 4 matrix B, describes how the decay process
transforms the base Pauli matrices,

3(q> — m?) 3
B 7 B
R ML

The real coefficients B,, can be obtained by inserting Pauli
matrices for the mother and the daughter baryons in the

(37)

Ou

. J !
expression for the tensor T %%,

1/2 1/2

__ = i Jadl o KK Zyha
W 3( 2_ .2 E , T 7
q-—m

(38)
)zz,z;:—uz;c,x’:—uz

1/2

by = Z Z Hj,u,H

6(¢* = mj) Ay A By /2

1/2

Z Z le /11 ,1/ /1 A ,ﬂz.ﬂ’z
Sy I =172
12
-3 {|H124W|2T,%”J’4W’ﬂz’%+2 > % [% Hyu H
Ay A=-1/2 My <dy Ao <hs

The last form involves only real valued tensors T,—w iy A2 , T, ,,LV

the real-valued functions of ¢*: |H, Ay %, R(H,,, Hj, i

However, as we show in Appendix B the coefficients can be
represented as

where R},‘Q(Qz) is the 4 x4 spacelike rotation matrix
obtained as the direct sum of identity and 3D rotation
R(Q,); RW(Q,) = diag(1, R(€,)). The argument Q, =
{2,605, —x>} assures that the rotation is the inverse of
the rotation R({y,, —6,, —¢, }) that was used to define the
helicity frame R,. The coefficients b,, correspond to the
B, — B, transition where the orientations of the axes of
the reference systems are aligned ©, = {0, 0,0}. They can
be obtained by inserting Pauli 5, matrices for the mother
and the daughter baryons in the expression for the tensor
%% with Q, set to {0,0,0} which implies replace-
ment D,L/fmz({o, 0,0}) = 8(m; —m,),

A=Ay 2y =2,

l’ A
2‘ 2 2
a1, O Ly, 2,(q7 ),

! A
iy

2%

) . gy da
o TSR LS (Hyy Hy ST }} (41)

~ A . . .
> and YT ,;,, 4w%2% The hadronic part is encoded in

) and S(Hj,, WH W ), where Lﬁ,‘, < Aw and 2, < 4,. Moreover, the
- 2=W

form factors H_y; = H;_; = 0 reducing number of the functions.

We will represent the b, matrix as the sum of the nonflip and flip contributions b,

is written as boy = bl + ebf),, where
bOO - 4

bgo - |H’t|2 + |H lt|2

1 1
(1 F cos6))*|Hy[* + 1(1 +c0s6))*|H 1| +

1
fs1n291(|H11|2+ [H_i1[*) + cos?0,(|Hyo* + [H_y|*)

= b}ji + eb,f“,. The cross section term

1.
ESIH291(|H_%O|2 + |H%o|2), (42)

—2cos O R (HiyHy, + H" (H_y),  (43)

define the angular distributions for the decay of unpolarized baryon B; when the spins of all final particles are summed over.
The differential decay rate is obtained by multiplying by the kinematic and spinor normalization factors that depend on g2,

dr = Gr

P[P
B |2 (7 — m?)byydqdQ,dQ,

(2 )5| us

= G|V s [*Ver(a?)(q* — m})boodgdQ,dQ;,

16M?

(44)

(45)
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where Vp,(¢?) = (27)73(4M)72|p,||p.| is the three-body
phase-space density factor [13]. The momenta |p,| and |p,|
of the baryon B, and the lepton are given in Egs. (8) and
(13), respectively.

The first row of the by; matrix, where i = 1,2,3(x, y, z),
gives the polarization vector P = (P,, P, P,) of the baryon
B, in the reference frame R, corresponding to the decay of
unpolarized baryon B|. These elements are
|

by = —N(Zo1) cos ¢, + I(Zoy) sin gy = P by,
by = R(Zo1) singp; + I(Zo1) cos ¢y = Pybyy,
bos = by + ebpy = P b (46)

where 7, are complex. We use notation Z,, :I,‘}ﬁ +
e7}, and

1
0 = +—sing, [(1 + cos))H*,_ Hy + (1 F cos (9,)HZOH%1],
2 2

V2

Tt = V2sin6, [(H’i%_lH%t — H'\ Hyy) + cos 0,(H" , Hy - Hi%_lH%O)} ,

b =12

1 1 1.
(1 F cos0)21Hy [ =4 (1 & cos 0, [y = 3 sin0y(|H_y? = Higl?)

' 1. N (LT *
by = [Hyl = [H_y[* + 3 sin®0(|Hy|* = [H__?) = cos0,(|H _o|* — [Hyo[?) = 2 cos O, (H}gHy — H g H ). (47)

The first column b, of the matrix corresponds to the decay of the spin-polarized baryon B;. The element

b30 = bg{) —+ 8bg0 iS

1 1 1.
by, = (1 £cos))?|H__[* - i (1 F cos6,)*|Hy|* - Esm26,(|H_%0|2 = [Hyl),

4

1. A (s *
Dho = [Hyl = [H_y[* = 5sin?0,(|Hy, " = [H_y_1[*) = cos’0(|H_yo|* = [Hy|*) = 2cos O, R (H} Hy — HI\ H_y). (48)

The elements b, and b, are

by = —cospN(Z o) + sind;I(Z ),
byy = sinp;R(Z o) + cos §;I(Z 1), (49)

where

1
T = £ —sing, [(1 + cos0))H", | H_jy+ (1 F cos 9,)H10H%1],
2 2

V2

Tt = V2sin®, [(Hi%_lH_%t — HiHy) + cos 0,(Hi,Hy, — Hj%_lH_%O)} : (50)

The decay-plane representation which requires three rotation angles for baryon B, gives simple formulas for the remaining
terms of the decay matrix. The terms of the nonflip contributions for the aligned (with ¢; = 0) decay matrix b}}f, are

bio —-R(Z5) (1) bg
o | TREN) NER+EN) —S(E+EN) N(TE) (51)
! (TN S(Ep-EN) R(EH—EY)  =S(T)
b —N(Z%) S(Z5) b3
where
A 1. 1 1
D = -+ S0, H_yg P + |Hig?) = 5 (1 F c0s 0,2y, 2 = (1% cos )| H_y_ (52)
and
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1
e = ijisin 9,{(1 + cos ez)Hi%_l

1
70 = +—sin 9,{(1 cos 0))H,_ Hy— (1 F cos HZ)Hj%OH%I},

V2

nf _ in2 *
Ejo = sin HIH_%OH%O,

H_iy — (1 F cos QI)HTOHLI},
2 5072

1
&t — —sin20,H*, H,,. (53)
2 -2

The terms of the flip contributions for the aligned decay matrix bfw are

by M@ ST

= | N NE =) e - N | 8
AT A +EL) NE ) —T)
bl —R(Z%) 3(T5) b

where

1.
Dis = [H_y[* + [Hy* + cos0)(|H_yo|* + [Hyp|*) = 5 sin6,(|Hy |* + [H_-1[?) = 2 cos 6,0 (H}gHy, + HZ H ) (55)
and

7', = \/2sin GZ{Hi%_lH_%, o+ Hj Hy, = cos 0 (HipHy, + H',_ H_y) }
70, = v/2sin 9,{H*_%_] Hy, + H\ Hy = cos 0, Hyy + H',_ Hy) }
&, = Z{Hj%tH%, + OS2, H" iy = €08 0, (H" ,Hy + H, Hy) }

5{1 = Sinzngi%_lH%l. (56)

|
If the form factors have no complex phases, meaning the = not measured the fully differential angular distribution

7,, terms are real functions, the decay matrix reads as dl o« W = Vp,(¢*)(q* = m3)Trpp,, where
boo —Zor 0 I 5
BB
bﬂy _ _IIO bll 0 1-13 ‘ (57) Trsz o8 ZO C'uoBMO 2
0 0 by O =

3 3
-7 z 0 » 4 ,
oo ¥ =" Cu > R (@)bR% (7. Q). (58)
The terms of the b, matrix in general form for an arbitrary =0 <=0

¢, value are given in Appendix C. They should be used ) . o .
if two rotation angle representation as in Ref. [8] was  With the baryon B, spin state in its rest frame described by

applied. the polarization vector C,g = (1, P,, Py, P,). The elements
of the decay matrix bf(‘)Bz (%, Q) = b,o(q*. Q; 0p, p,) are
VL. JOINT ANGULAR DISTRIBUTIONS given in Eq. (49). For example, if the initial polarization has

Here we provide examples how to construct modular only P, component the joinF angular distribution for the
expressions for the angular distributions of semileptonic ~ decay process By — B,I70; is
decays of baryons. First, using our formalism, we rewrite
tl_w results from'Ref. [6] for the single b'aryon B? decay. The W& @) = Vp,(g?)(¢* — m2)[boo (4 Qp; 0, 5,)
simplest case is the decay of a spin-polarized baryon )
B, = B, ;. If the polarization of the final particles is + P:b3o(q7, Q; 0p,5,) c0s 0], (59)
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where the vector & := (65, ¢, ¢*, Q;) represents a complete
set of the kinematic variables describing an event configu-
ration and the parameter vector @wpg p, represents the
polarization P,, the semileptonic couplings in Eq. (4)
and the range parameters in Eq. (6). If the baryon B,
decays weakly as B, — By the complete angular distri-
bution is W = V,,(¢%)(¢* — m})Trpp, with

B, B, 3234
Trpp, E CuoBu
uv=0

= Zcuo Z Rk ()%™ (7. Q) a,0 (0. pyzap,).

k,v=0

(60)

The decay matrix a,(04, ¢a;ap,) [8] describes the non-
leptonic decay B, — B,z and using the representation from
Appendix D is given as

aoo 1 1

ap 0 ap, sinf, cos ¢,
(4)({07 643¢4}) = T .

as 0 ag, sin 6, sin ¢,

asg ag, ap, cos by

(61)

where 6, and ¢, are the helicity angles of B, in the R,
frame and ap, is the decay asymmetry parameter. The
corresponding angular distribution for charge-conjugated
decay mode is obtained by the replacements Hfz lﬂw -

Hi‘ﬂ .9 Jw = gf,‘j ) and swapping between (I~,7;) and

(I, v;). Neglecting hadronic CP- violating effects, one has

V(Bl) V(By) A(By) _ A(B,
H,', :Hiz,_w and HM Hz

2 W
that gw = gw' and gm, = —gm [19, 20]

Now we consider a decay of a spin-entangled baryon-
antibaryon system BB, where the initial state is given

Eq (12) meaning

by the spin-correlation matrix Cf,-jB‘ defined in Eq. (1) with
By — B,I"v;. The semileptonic decay is tagged by a
common decay of the antibaryon B,. For hyperon decay
studies, a nonleptonic decay B, — B;7 is used. One
obvious advantage of the studies using baryon-antibaryon
pairs is that the charge-conjugated decays, corresponding to
the B, — B,I"v; and B, — Bsr scenario, can be studied
simultaneously. A common practice is to implicitly com-
bine events corresponding to the charge-conjugated chan-
nels in the analyses to determine the decay properties in the
CP-symmetry limit. In such analyses, the quantities that are
even (odd) with respect to the parity operation have the
same (opposite sign) values when combining the two cases.
At the same time, the CP-symmetry can be tested by
comparing values of the separately determined parameters

for the baryon and antibaryon decays. Using as a building
block the semileptonic decay matrix one constructs the
angular distribution for the case when polarization of
baryons B, and B; is not measured,

3
T, Y CHMEA @)

The matrix BB 1 = Bo(0:, 2. 4% Q05 ,) describes

the semileptonic decay and a IB* = az0 (65, p3iap,) [8]
describes the nonleptonic decay B, — Bsm, where 0,
and ¢ are the helicity angles of B; in the B, rest frame
and ap, is the decay asymmetry parameter. The joint
angular distribution for the process is W(&w) =
Ven(q*)(q* — m})Tipy,p,, where

+ZC”‘ (&)

TrszBg = Coo "(01)byo (&

< (O piin) + > P
i=1

<s'>Zcﬁ;R(el)ajo(eg,qbg;aBl) (63)
j=1

10 (g/)

with Cfl-ﬂB‘ given in Eq. (2) for the annihilation of the
unpolarized electron-positron beams. The vectors of the
kinematic variables are &= (6,,0,,$,,q* Q;, 05, p3)
while & = (0,, ¢, ¢*,Q;). The full vector of parameters
is denoted as w := (a,,, Atb,gg;,gﬁ',&Bl).

VII. SENSITIVITIES FOR SL FORM FACTORS
PARAMETERS

Here we present estimates for the statistical uncertainties
of the parameters describing form factors of selected
semileptonic hyperon decays. The derived angular distri-
butions are used to construct the normalized multi-
dimensional probability density function for an event
configuration. They are functions of ¢*> and the helicity
angles, and depend on the form factor parameters such as
Jay and g,, (4). The parameters can be determined in an
experiment using maximum likelihood (ML) method,
which guarantees consistency and efficiency properties.
We provide uncertainties of the parameters in the large
number of events limit and assuming the detection effi-
ciency does not depend on the kinematic variables as
described in Refs. [9,10]. Since the ML estimators are
asymptotically normal, the product of their standard devia-
tions, o, and v/N, where N is the number of the observed
events, does not depend on N. The uncertainties are
obtained by calculating elements of the Fisher information
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TABLEI Properties of selected semileptonic decays of the ground-state-octet hyperons. The column labeled M| — M, gives the upper
range of the /g? variable.

Decay Transition B(x1074) Gy M, — M, [MeV] Comment
A - pep, Vs 8.32(14) 0.718(15) 1.066 177 [2,13]
>t - Aety,t Vd 0.20(05) 0.01(10) 2.4(17) 74 [13]
™ - Ae7r, Vs 5.63(31) 0.25(5) 0.085 206 [2,22]
B - X0, Vs 0.87(17) 1.25(15) 2.609 129 [2,22]
20 5 TFep, Vs 2.52(8) 1.22(5) 2.009) 125 [13]

“Since for & F; = 0, the coupling constants g,, and g,, are defined as F}/F} and FY/F{, respectively.

matrix that is inverted to obtain the covariance matrix for
the parameters.

We consider the semileptonic decays of hyperons listed
in Table I. We neglect form factors FY and F4 which vainsh
in the limit of of the SU(3) flavor symmetry [21].
Equation (11) allows one to estimate the relative contri-
bution of different form factors to the angular distributions.
Based on the g,, and g, values from Table I the ¢°
dependence of the six helicity amplitudes for the A semi-
leptonic decays is shown in Fig. 3(a). To allow a better

comparison the amplitudes are multiplied by /. Close to
the lower boundary, ¢g> = m2, the longitudinal and scalar
helicity amplitudes dominate, with HX)(A) zHZW. Close

2 2

to the upper boundary at the zero recoil point, g*> =

(M| — M,)?, the contributions H) and H{, = —v2H{,

2 2 2

are dominant with H\ = —H?/g,,. We do not consider
2 2

the decay X~ — ne~ v, since the final state includes two
neutral particles, neutron and neutrino, making it impos-
sible to fully reconstruct the events. In addition, no
measurements exist for the production parameters in the
ete™ — TET process.

The first case is the decay A — pe~r, studied in the
exclusive process eTe™ — J/y — AA, where A — pr™ is
used for tagging. The angular distribution is given by
Eq. (62) where the parameters of the production process
ete™ — J/y — AA needed to define the spin-correlation—
polarization matrix C,, are given in Table II. The properties
of A —» pat decay and the charge conjugated process that
is used to tag the SL decay are given in Table III. We
assume the production parameters and the decay parame-
ters of the nonleptonic decays used for the tagging to be
well known and fixed. Since the coupling g,,; is multiplied
by m, in the transition amplitude [23], we set it to zero
because it cannot be determined from experiment with a
reasonable uncertainty. In addition the parameters r,,,, and
r4, defined in Eq. (6) are fixed to the values deduced from
the ansatz for the s — u transition of Refs. [2,24] and listed
in Table IV. The statistical uncertainties ¢(g,,) and ¢(g,,)
for the coupling constants g,, and g, respectively, are
given in the first row of Table IV. The main feature is that
the uncertainty for the g,, coupling is nearly one order of

magnitude less than for g, since the latter is suppressed
by the ¢*>/M?3 < (M| — M,)?/M? =~ 0.025 factor (11). The
second row corresponds to an independent method to study
A = pe~, using the ete™ — J/y — E-EF process with

mZ m; (mp —mp)?
(a) [ [ T T T
/‘/‘/
//‘/‘

= 0.41 e
L) //
S
[ N SRR Spsppp—— —— R——y R Rk
g =z
S 0.34 S~
= ~—
o i
£ o
© e
2 0.2 7
S A
2 7

/
X /
< /
%01y

/
i
mﬂ — HYp1 —— —Hin:
0.01 —= Hipo —= —Hfp1 —— Hin:
1

0.000 0.005 0.010 0.015 0.020 0.025 0.030

7 [GeV?]
mg
x1073 (mn — my)?
b
( ) Hik.o —HYp,1 Hip,e PR
-
44 == —Hipo == Hip1 —— —Hip: =

w

N

/@ xhelicity amplitudes [GeV]
-

04

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
qQ [Gevz] x107°

FIG. 3. The ¢ dependence of the six helicity amplitudes for
(a) A - pl"p; and (b) n - pe~ D, decays. For the A decay the
kinematic range for the y mode is to the right of the vertical line

2 _ 0
q- = my.
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TABLE II. Properties of the e*e™ — J/yw — BB, decays to
the pairs of ground-state octet hyperons.

B(x107%) a, A® [rad]  Comment
AA 19.43(33) 0.475(4) 0.752(8) [11,25]
>tE- 15.0024) —0.508(7) —0.270(15) [26,27]
EEF 9.7(8) 0.586(16) 1.213(49) [12,13]
2020 11.65(4) 0.514(16) 1.168(26) [28,29]

TABLE III.  Properties of the main decays of the ground-state
octet hyperons that can be used to tag the SL decays. The decay
asymmetry &, for the charge conjugated decay modes in the CP-

symmetry conservation limit is ap = —ap.

D B(%) ap Comment
A - pr~ 064 0.755(3) [12,30]
>t - pa° 052 —0.994(4) [27]
B> An~ 100 —0.379(4) [12,13]
20 = Az 96 —-0.375(3) [13,29]
the 2~ — [A — pe~7,|n~ sequence and =+ — [A — prt|z~

for the tagging. The modular expression for the angular
distribution of such process reads

3
A ZA p
Tiopp & Y Za“%é’ . (64
u,v=0 =0

W'=0

The polarization of the A originating from the nonleptonic
weak decay E- — Ax~, is ~40%, to be compared to the
root-mean-squared value of the A polarization in eTe™ —
J/y — AA of 11% [10]. However, the uncertainties of the
weak couplings are the same for both methods. To further
investigate dependence on the initial polarization of A we
set A® = 0 to have the zero polarization, while to obtain
maximally polarized A we include the longitudinal polari-
zation of the electron beam and use the production matrix
C,p from Ref. [10]. The impact of the spin correlations
for the uncertainties can be studied by comparing the
results using the angular distributions (62) or (64) with full
production matrices C,; to the ones where all elements

except C, are set to zero. This arrangement assures that
the spin-correlation terms are excluded. In all these tests
the uncertainties of o(g,,) and o(g,,) remain unchanged,
meaning that the polarization and the spin correlations of
the mother hyperon in the decay play almost no role for the
measurements of properties of the semileptonic decays to
baryons whose polarization is not measured.

The entries from the third row and below in Table IV
correspond to the decays where the polarization of the
daughter baryon is measured and the angular distributions
include the complete B,, matrices. For example the
angular distribution for E~ — Ae™D, measurement in
ete” = J/y - EET is

A EA AP
Wﬁ‘ M" aztay.  (65)

3
Trp,p Z Cm Z
u.o=0

Since the uncertainties depend on the values of the weak
couplings it is difficult to compare the results for different
decays in Table IV. By repeating the studies with variation
of A® and the electron-beam polarization some impact is
seen for the uncertainties, specially for the g,, parameter in
>t — Aetr,. In addition we study the uncertainties for
single spin-polarized baryon decays with the angular
distributions given by Eq. (58). The baryon B; polarization
vector is set to C9 = (1,0, Py, 0). The results for o(g,,)
and o(g,,) are shown in Fig. 4. The uncertainty for large P,
decreases typically by 20% comparing to the unpolar-
ized case.

Our formalism applies also to the n — pe~ 7, decay and
it should be equivalent to the approach from Ref. [31] for
the single neutron decay. However, we can also describe
decay correlations for a spin entangled neutron—neutron
pair. As an example we take nn spin singlet state given by
the spin-correlation matrix C,, = diag(1,—1,1,1). The
coupling constants g,, and g, are 1.2754(13) and 1.853,
respectively [13,31]. The ¢ dependence of the form factors
is neglected due to the tiny range, m, < \/? <M,-M,,
of the variable. The corresponding helicity amplitudes for
the neutron beta decay are shown in Fig. 3(b). The resulting
uncertainty of the g,, measurement in the double beta

TABLEIV. Statistical uncertainties for the g,, and g,, couplings for some semileptonic decays reconstructed using

the double-tag method [Eq. (62)].

Decay o(9as) VN o(g.)VN P [GeV7] rq [Gev=’]
A — pe D, 1.8 12 1.94 1.28

E™ > [A— pep,|n 1.8 12

E- > [A-> prler, 0.6 9

B > [ZO — [A - prlyleTD, 5.0 29

20 - [ZF = paYep, 4.0 28

Xt > [A - prlety, 0.5 19 2.83 1.71
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FIG. 4. Statistical uncertainties (a) 6(g,,)VN and (b) 6(g,,)vVN
for semileptonic decays decays as a function of the initial baryon
polarization. Note that there is no estimate of o(g,) for n —
pe~v, in panel (b) as explained in the text.

decay of the singlet pair is ¢(g,,)v/N = 4.3. It should be
compared to the uncertainties in the measurements with
single neutrons that are shown in Fig. 4(a) as a function
of the neutron polarization. For unpolarized neutron
6(gay)V'N = 7.4 and it decreases to 4.1 when the polari-
zation is equal one. The flip contribution to the helicity
amplitudes (54) of about 8% was neglected in the estimates.
The g,, coupling cannot be determined since its contribu-
tion to the helicity amplitude H%‘Z) is suppressed by a factor

g%/ M?2. Moreover, the second amplitude that includes g,,,
HY, is suppressed by y/¢” and as seen in Fig. 3(b) it is

11
5l

consistent with zero.

VIII. CONCLUSIONS

We have constructed a modular description of the differ-
ential distributions for baryon semileptonic decays where the
baryons are originating from entangled baryon-antibaryon

pairs produced in the electron-positron annihilations or in
charmonia decays. The formalism allows to extract the
weak form factors using complete information available
in such experiments. The lepton mass effects as well as
polarization effects of the decaying parent hyperon are
included in the formalism. The presented modular expres-
sions are applicable to various sequential processes like
B, = B,(— B; + x) + [ + v, that involve a semileptonic
decay. Two conventions for defining transversal directions
of the helicity frames were considered. The daughter
baryon spin-density matrix in a semileptonic decay takes
the simplest form when expressed using the angles in the
decay plane. The two representations are equivalent,
provided that one uses the matching set of rotations to
define the helicity angles.

We have not included radiative corrections in our
estimates but they have to be considered in the experi-
mental analyses. Over the years, the radiative corrections
to hadronic #-decays have been extensively studied [32]
and the specific applications to the hyperon semileptonic
decays are discussed in Ref. [33]. The state-of-the-art in
experimental analyses is to use PHOTOS program [34] that is
based on leading-logarithmic (collinear) approximation.
The procedure is applied to all final particles but the
electron(positron) tracks are most affected.

The BESIII experiment has collected 10'° J/y [15]
meaning that for semileptonic decays data samples of less
than 10* events are available. Therefore, a rough estimate
of the achievable uncertainties with this data set is given by
dividing the values in Table IV by 100. The J/y decays
into a hyperon-antihyperon pair can provide a clean
setting with low systematic uncertainties for the CP-
symmetry conservation tests in semileptonic decays since
the decays of the charge conjugated modes can be done
simultaneously.

A similar modular approach with decay matrices might
be useful for studies of radiative and Dalitz decays. As a
cross-check and illustration in Appendix D we provide
formulas for the Dalitz transition B, — B,I"[~ between
baryons with spin-1/2 as well as decay matrix for a weak
radiative decay with real photon B; — B,y.

For the studies of semileptonic decays of heavy baryons
induced by the quark transitions ¢ — s + [T +v; or b —
¢ + I + p, the previously available formalism [6] is likely
sufficient if only beams of polarized baryons are used. This
might change in near future with BESIII and Belle II
experiments where entangled charmed baryon-antibaryon
pairs will be available. One difference would be a meas-
urement of the polarization for the tagging reactions which
probably has to use three-body hadronic weak decays.
However, even for the case of single baryon decays our
approach provides an easy and flexible way to implement
different decay sequences in the event generators that
propagate spin information of the decaying baryons.
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APPENDIX A: CONVENTIONS FOR WIGNER
FUNCTIONS AND PAULI MATRICES

Conventions for Pauli matrices: rows m; = 1/2,—-1/2
are numbered from top to bottom and columns m, =

research and innovation programme under Grant 1/2,—1/2 are numbered from left to right,

mymy, 10 my,m, 0 1 my,my 0 —i my,m, 1 0 (A])
o "ot) "oy 2 To0o) 2 T \o o)
The corresponding Wigner functions D, ,,.(0,6,0) = dy, ,,(6) are for J = 1/2
cosf@/2 —sinf/2
Dy,(0,0,0) = ( >0/ / > (A2)
sinf/2  cosf/2
with the columns and rows expressed using the same convention. For J = 1 the functions are
3(1+cosd)  ssin  5(1—coso)
D), ,(0,6,0) = —%sine cos @ \/%sinﬁ , (A3)
1(1=cos0) —%siné 2(1+ cos0)

where the rows (m,) and columns (m,) are labeled in the order (—1, 0, 1) from left to right and top to bottom respectively.
This convention matches the complete Wigner D functions given as Dml oy (#.0. %) = exp(—=im1) Dy, ,,,(0,0,0) x
exp(—imyy). The Pauli matrices are related to the 3D rotation matrices R (€2) for Q = {¢, 6, v} in the following way:

é«/ gDI/Z* (Q)Dli//é/(g)

=32 Y@

e

cosfcosycosg —sinysingg —cosfsinycos¢ —cosysing sinécos¢
= | cosOcosysing +sinycos¢ cosycos¢g —cosfsinysing sinfsing |, (A4)
—sinfcosy sin @ sin y cos d

where the columns (k) and rows () are labeled k, j = 1,2, 3 (x, y, z) from left to right and from top to bottom, respectively.

APPENDIX B: DERIVATION OF THE DECAY MATRIX DECOMPOSITION

Starting from the amplitude representation in Eq. (21) we derive expression Eq. (39). Multiplying the amplitude in
Eq. (21) by its conjugate to obtain spin-density matrix and by inserting basis Pauli matrices for the mother and the daughter
baryon,
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”” 872 Z Z Z Hé“ ng’ 7 \O /(Jv)ﬂ/'ﬂpi{gz*(g)pi@(ﬂ)

M ki L
! ! * k. 1/ 2% 1/2
_ @Z [Z(ay)l .ZHUHH} {Z(aﬂ) ~ DY (Q)DK,{C,(Q)
oo L e
a 7 (@)
§ g/ §~§/
s

where the running indices in all sums «,x’, ', and {,{" are —1/2 and +1/2. Despite B%, being a real-value matrix, the

matrices 75 and Ri’g/ (Q) are not real valued. We would like to rewrite Eq. (B1) as a product of a 4D rotation matrix and a
4 x 4 matrix b, in the form given in Eq. (39),

In order to derive form of R,(,?(Q) we set the matrix b, to the identity 4 x 4 matrix. This can be achieved by setting
He ) = o since

ZZ a,)* 5“5;“' 7\0, )M = 20y, (B2)
¢ ax
Such replacement in Eq. (B1) gives,

Zzzﬁuama ) (0,)" 4D/ QDY (Q)

/1/1’ P

= —Z > (6,0 (0,)7 DY (DY (9. (B3)

kK L

By evaluating the above expression one gets the explicit form for R,(f,‘) (Q),

0 0 0

cosf@cosycos¢p —sinysing —cosfsinycos¢g —cosysing sinédcos ¢ (B4)
cosf@cosysing +sinycos¢ cosycos¢ —cosfsinysing  sinfsin ¢

S O O =

—sinfcosy sin@sin y cos 6

which is the 4D rotation where the spatial part R () corresponds to the product of the following three axial rotations,

Rj(Q) = R.(#)Ry(0)R.(x)
cos¢p —singg O cos@ 0O siné cosy —siny O
= | sing cos¢p O 0 1 0 siny cosy O[. (B5)
0 0 1 —sinf 0 cosé 0 0 1

The expression for b, can be deduced by setting R,(;,‘))(Q) to the 4 x 4 identity matrix i.e., by setting Q = {0,0,0},
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b;w = B/?u(g = O) = Z [Z(G‘/)IJHQAHZ’,X’]

¢ Rax

KK

=22

¢ Ax

0,) " He 4 (0,)5.

(B6)

The elements of the real-valued matrix b,
terms of amplitudes H are

expressed in

[H__?+ R+ Ho P+ TR P
OR(H, HE, +Ho_HL)

b= , (B7
7 2X(H  HE, —H__HE) (B7)
—[HP Ry P [P = (R P
QR(H  HA_+H__HE)
2R(H H:E +H_ HY
by = m( ++ ) + : ) ’ (BS)
23(H HE —H_ HL)
Zm (H++Hi_ - H__Hi+)
—23(Hy H_+H_ HY
by = S(Hor ] + *+ ) . (BY)
25}{(H++H__ - H_+H+_)
—23(H  HA_+H__H,)
—H__P = [H P+ [Ho P+ Ry
2RN(H,  HE —H__H
by = H(H, HE ) (B10)

2(H o ey +Ho_H)
(H_ P+ [H o P =R P = [H P

The matrix elements b,, are interrelated since they are
expressed by the four complex amplitudes H, ;. Therefore,
neglecting the unobservable overall phase there are up to six
independent real-valued functions in addition to the unpo-
larized cross section term bg. The b-matrix can be consid-
ered as a generalization of Lee-Yang baryon polarization
formula [35] which has maximum two independent param-
eters (see example in Appendix D 2). The terms b;y/ b are
discussed in [36] in the context of hadronic decays and are
called aligned polarimeter fields a, .. In Appendix D we
give the b matrices for few example processes.

APPENDIX C: COMPLETE DECAY MATRIX
FOR SL DECAYS

The terms of the nonflip contributions for the unaligned
(with arbitrary ¢,) decay matrix bl}, are (the term b3} does
not depend on the angle and it is not repeated),

b = N(EG) + {N(EY]) cos 2, — I(E]) sin 241},

b = —J(Ep) — {N(E])) sin2¢, + I(E7}) cos 249, },

by = R(TTE) cos ¢ — J(TV5) sin by,

b} = (&) — {R(EYY) sin2¢y, + J(EF)) cos 241},

b = N(EG) — {N(EN}) cos 24, — J(E]}) sin2¢,}.

by = —(N(Z13) sin ¢y + S(Z15) cos ),

by = —(N(T5]) cos ¢, — J(T3)) sinpy),

b3 = R(Z5) sin gy + I(Z5) cos ;. (C1)

The remaining terms of the flip contributions for the decay
matrix b, are

b, = R(EL) — {R(EL)) cos2¢p; — I(EL,) sin 24},
b, = =3(EL) + {R(E,) sin2¢; + I(EL,) cos 24},
by = N(T';) cos ¢y — I(Z15) sin gy,
bhy = I(Ehy) + {R(E) sin 2, + I(EY) cos 24},
bhy = R(Ey) + {R(E) cos 26 — I(EF,) sin 2},
b£3 = —(N(Z'5) sing; + I(Z15) cos ).
b, = —(N(Z%,) cos ¢ — I(ZL,) singby),
b, = N(ZY,) sin gy + I(Z5,) cos . (€2)

APPENDIX D: EXAMPLES OF ALIGNED DECAY
MATRICES

1. Bl = Bz}'
The amplitude Eq. (10) for the weak decay B — B,y
simplifies by replacing Ay — 4, where 4, = {—1, 1}. For
the hadronic tensor only terms H; and H_;_; are nonzero.

The transition tensor for decay with real photon in helicity
representation reads,

. H, DU/ 172
Pty _ —ZHM o DAL (@)D, ().

(D1)
The decay matrix b}, is the following:
2 PRy R
RS S IR
B dydy'—1/2
_ |H_1/2’_1|26}14/2.1/26;1/2,—1/2
|Hyppi1 oy 27 2612 (D2)
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1 0 0 a,
b 0 0 O 0 (D3)
WXl 000 o
—a, 0 0 -1
where
a, = |Hyp 1> = [H o1 %
\Hyjppa|* + [Hoyp P = 1. (D4)

2. Bl d Bzﬂ'

For weak nonleptonic decay D(B; — B,r) we present
the results from Ref. [8] as a product of rotation matrix and
the aligned decay matrix,

DL (@)D ().

1
LI AL *
T = Hy o H oDV L (Ds)

The decay matrix bj, is rewritten as

1/2
* Johy) o' A
H}LZ’OHIZ/,OO-” Oy

Jada'=—1/2

D ._
by, =

“1/2-1/2_—~1/2,-1/2
_ |H_1/2,0|20ﬂ /2,-1/ o) /2.-1/
1/2,1/2_1/2.1/2
+|H1/2,0|25/4/ P2V
% 1/2,-1/2 —-1/2,1/2
+H1/2.0H_1/2,05u/ P, 121

. —1/2172_1/2-172
+H_y20H] )5 00u 2Py (D6)

or

121
Ly y(q* Q) =
p R Y Ry

1/2 1/2

J=—1/22_=—1/2

— i =2)y

1 0 0 ap

0 - 0
b,’fy ~ YD Pp ’
0 pp YD 0

ap 0 0 1

(D7)

where
ap = [Hyppol* = [H_i o0l |H, 201>+ 1H_1 00> = 1.

(D8)

Bp = 23(H,20H, )5 0); Yo = 20(H,)00H", )5 )

(D9)

3. Bl nd Bz]/* - le+l_

The decay matrices for the B, — B,y* = B,l"I~
electromagnetic decay can be obtained by simplifying
the hadronic tensor by setting to zero all form factors
except for H), = H",  and H} = H",/ that are nonzero in

2 2 2 2
this parity-conserving process. The decay y* — [7[" is
described in the R, frame where the emission angles of the
[~ lepton are 6, and ¢;. The value of the lepton momentum

in this frame is
\ @ —4mi

5 (D10)

Ip| =

The leptonic tensor for the y* decay 4, = {—1,0, 1} with
the lepton helicities summed over is

Z (Q_ AL, 24 |SI, @2 2) Qo Ao, AL |SI 6P, 4, ) (D11)

= Z Z |hﬂ+,1,(q2)|2D/11f,/1,—z+(QI)D};,L_L(QJ) (D12)
12

Z Wu_(612)|2di,.1,—,1+(gz)dzl;,z,—z+(91)- (D13)

d=—1/24_=—1/2

The moduli squared of hf ;. corresponding to the vertex u(p,. A_)y*v(=p,. A, )€, calculated using the charged-lepton

spinor representation from Appendix in Ref. [37] are

nonflip(4, = F 1): |k}

flip(2, = 0): |A!

_=+li,

e -l =24 (D14)

:i%|2 =4dm?. (D15)
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The resulting leptonic tensor reads
cos?6),
—V2¢% sin 0, cos 0,
e?1sin’@,

+ (g% + 4m?)diag(1,1,1).

Lzy.z;(qz791) = (¢* —4mj)

The differential decay rate of the unpolarized baryon B,
in the electromagnetic conversion process where the spins
of all final particles are summed is

—v/2e71 sin 0, cos 6, e~ %1sin’g,
—cos 26, V2e % sin 0, cos 0,
V21 sin 0, cos 0, cos?6,
(D16)
|
! 12

e /1 VA

em .
b'm/ — ilﬂ./

Z Z Hﬂz

S A==1,0 1 2y=—1/2

q _4ml )

(D18)
agm 2 4m12 em Its elements ar
dl' ?Vph(q ) 1 —7 bOOdquZdQl’ (D17) § elements are
cm cm cm 0
00 01 02
where V p;(g?) is the three-body phase space density factor pem — bgi By DY BT (D19)
given by the product of the momenta |p,| and |p;| of the " R o
baryon B, and the lepton, given in Egs. (8) and (D10), 0 —pm _pem  pem
respectively. The unrotated decay matrix can be obtained 1 BT
adapting (40), where
q°+4m 4m?
bm = [cos 0, + qil} |H > +2 [smzﬁl + m |H%‘6|2,
4 4
§3 = |:C0520[ + u] |H |2 + 2 |:Sln26[ + #] |H N

bgN = —v/2sin 20, sin ¢IJ(H;’1H%‘6*),

bgy = —v/2sin 26, cos ¢,S(H;’1H§)*),

pem 2 29 H 2 2 29 4ml HY 2

T = cos 2¢;sin i | + 2 |sin 1+244m12 \ %0|’

bSE = — cos 2¢lsin2¢91|H 1> +2 [smzﬁl + 7 ] |HY 1%,

b = —sin 2¢,sin29,|H¥1 2,

bS§y = —V25sin 26, sin ¢1§H(H%VIH%‘6*),

b = \/25in 26, cos GIR(HY HY). (D20)

Decay plane-aligned parameters reduce to the following
form:

by 0 by O
0 bf} 0 ¥
bl‘i[’}1 = pem 0 pem 0 ’ <D21)
02 22
0 -KT 0 by

where in the real form factors limit additionally the term
b3y vanishes. Thus, no polarization is induced, but the

initial polarization and spin correlations of the baryon B,
are transferred to the daughter baryon.

4. Bl g Bz[V* g PIPZ]

Here we consider a decay of spin-1/2 baryon to a
spin-1/2 baryon and a pair of pseudoscalar mesons P; and
P, via an intermediate vector meson V e.g., B; — B,p" —
nt ™. The decay matrices are obtained as in Appendix D 3
by replacing the dilepton with the pseudoscalars, and the
virtual photon with a massive vector meson decaying
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strongly. Since the initial baryon decays weakly into the  Py(m;,p,)P,(m,, —p,) is described in the Ry, frame where
intermediate state B; — B, V", all vector and axial vector  the emission angles of the P pseudoscalar are 8, and ¢,,.

form factors should be used. The decay V*(q) —  The value of the momentum p, is
|

B q* +m5 + m —2¢°m? — 2¢*m3 — me%
|p7r|_ 4q2

The tensor for the V* — PP, decay for the helicities Ay, 4}, = {-1,0,1} is
D1, (Qg) = e"<’1v—4’v>¢n|hv‘2d}1v.o(9ﬂ)d}yv,o (0,),

where the h" is a constant and it can be absorbed as a normalization factor. The resulting tensor reads

sin’6, e~ sin @), cos 6, e2ibr . 9
- sin“f,
2 V2 2
i1 (Q,) = e“m% cos20, it 0 cox
) __ e sing, cos, sin6,
5>—sin“0, A e

The unrotated decay matrix can be obtained by replacing the leptonic tensor with the tensor $,  in (40),

F[ * V 25
‘!’ZAV l/il
/‘{V /1/

Its elements are
by = (|H4)| + |H_y|* )cos?, + 5 (|H1 P+ [H | )sinze,,,
by = R(A) cos ¢, + I(A) sin ¢y,
by, = I(A)cos g, — R(A)sin,,
bys = ([Hyl* = [H_y )00829 += (|H1 2 - |H_%_1|2> sin0,,
b}y = R(B) cos ¢, + I(B) sin ¢,
bY, = 3(B) cos ¢, — N (B) sin b,
bY; = N(C) — R(D) cos 2¢,, — I(D) sin 2¢,,
bY, = 3(C) = (D) cos 2¢,, + R(D) sin 2,
by, = =3(C) = (D) cos 2¢,, + R(D) sin 2,
bY, = N(C) + N(D) cos 2¢, + (D) sin2¢,,
by = =R(E) cos g, — (&) sin b,
bY; = =3(E) cos g + N(E) sin gy,

VR

vV _
b30_

/N

[Hy|* = |H _y| )00526’ ——(|H11| —|H 1] )sm

bY, = N(F) cos ¢, + I(F) sin¢p,,.
bY, = J(F) cos ¢, — R(F) sin ¢,

1
by, = (|H%0|2 + |H_%0|2)cos29,, -5 (|H%1 2+ IH, |2) sin20,,

with

= V/2cos 0,sin0, (H;‘OH_%_I - H;‘IH_%()),
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B =+2cos0,sind, <H’:%OH_%_1 - H;H%O) , (D28)
C= ZH;OH 19 cos” b, (D29)
D= Hj,H__ sin’0,. (D30)
£ = V2cos 0, sind, <H*_%OH_%_1 + H, H%()) . (D31)
F =V2cos0,sinb, (H;‘OH_%_I + H;H_%O) . (D32)

Decay plane aligned parameters reduce to the following
form

by N(A) S(A) bis
s | B %e-p) sc-p) -9n(E)
" 3(B) =3(C+D) RC+D) -I(E)

bl R(F) S(F) b3

(D33)

The differential decay rate of the process with unpolarized
baryon B; and the spins of B, summed over is

AT & Vpy(q?)bY,dgdQ,dQ, . (D34)

where Vpj,(g?) is the three-body phase space density factor
given by the product of the momenta |p,| and |p,/|.
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