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We point out that there is a stable configuration of metal plates where the Casimir force is vanishing in
axion electrodynamics. We consider a concrete setup involving Weyl semimetals, which hosts an axionlike
effect on the electromagnetism, toward the measurement of the axionic effect on the Casimir force. Our
setup realizes zero Casimir force between metals and may be useful for the search for a new force mediated
by light particles at the micrometer scale.
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I. INTRODUCTION

The concept of “axion” has been first introduced to
solve the strong CP problem in quantum-chromo
dynamics [1–4]. The axion is one of the well-motivated
candidates of dark matter in the Universe [5–7] and there
are rich cosmological phenomena related to the axon
dynamics (see Refs. [8–10] for reviews). A key property
of the axion, denoted by aðxÞ, is its interaction with the
photon through the anomalous coupling:

L ¼ −
a
4M

FμνF̃μν; ð1:1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
strength tensor, F̃μν ¼ ϵμνρσFρσ=2 and M represents the
axion-photon coupling strength. This type of hypothetical
coupling is used for experimental searches of axionlike
particles. Despite tremendous experimental efforts to find
the axion, it is not discovered yet [11–13]. On the other

hand, there have been significant developments in the
theory of topological insulators [14–18]. The electro-
magnetic response of topological insulators may be
described by the following term in the Lagrangian:

L ¼ −
θ

4
FμνF̃μν; ð1:2Þ

where θ ¼ αe=ð4πÞ inside the topological insulator while it
is zero outside the insulator. This provides a manifestation
of the axion electrodynamics in condensed-matter systems.
Further investigations revealed that space-time dependent
θðx⃗; tÞ and hence the axionlike effects may appear in the
bulk of some materials. The Weyl semimetal is a class of
material whose electromagnetic response is represented by
θðt; x⃗Þ ¼ bμxμ ¼ ð−b0tþ b⃗ · x⃗Þ (see e.g., Refs. [19,20] for
reviews). In this case, b⃗ represents a vector connecting two
Weyl nodes in the electron dispersions in momentum space.
Even a dynamical axion field may exist in condensed-
matter systems [20–22] and its application to the detection
of particle dark matter has been considered [23–25],
although in this paper we consider a Weyl semimetal in
which θðt; x⃗Þ is not a dynamical field.
The axion electrodynamics may have significant impacts

on the Casimir force. The measurement of Casimir force
provides direct evidence for the quantum nature of the
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vacuum and the existence of the background axionlike term
necessarily modifies the vacuum fluctuation. Thus it is
interesting to search for possible effects of the axion
electrodynamics on the Casimir force.
The accurate measurement of Casimir forces in vacuum

was first carried out [26] in 1997, a half century after the
theoretical prediction [27]. Since then, significant computa-
tional and experimental efforts have been devoted to
exploring Casimir forces [28–45], finding possible appli-
cations in nanomechanical systems [46,47]. Although
Casimir forces can occur at zero temperature, it is of great
importance to evaluate the temperature dependence of the
Casimir forces [48,49], in particular, as realistic experi-
mental setups are often at room temperature. Recent
experiments include such thermal effect on Casimir
forces [50].
One of the important properties of the Casimir force is

that it is attractive for dielectric bodies or conductors with a
reflection symmetry [51]. This no-go theorem is violated if
one considers nonreciprocal media, such as a Weyl semi-
metal. Casimir force between Weyl semimetals has been
calculated in Refs. [52–56] and repulsive force has been
found in some parameter regions. Casimir force between
normal metals separated by a chiral medium has been
calculated in Refs. [57–59], and again the repulsive Casimir
force has been found.
In this paper, we first extend the setup of Refs. [58,52].

We include the finite-temperature effect and consider
a more realistic experimental apparatus to measure the
Casimir force, by taking account of the metal plates at the
outermost layers. We prove the existence of the stationary
point where the Casimir force vanishes with the use ofWeyl
semimetals. We further point out that such a zero-Casimir-
force setup is useful for the new force search mediated by
hypothetical new light particles [60,61]. The Casimir force
experiments give the most stringent constraint on the new
force with the new particle mass of ∼OðeVÞ or the distance
scale of 0.1–1 μm [62–65]. To probe the new force, the
Casimir force is an obstacle, which we want to remove.1 In
this sense, the zero-Casimir-force setup may provide an
ideal situation for the new force search.
This paper is organized as follows. In Sec. II we briefly

review the properties of electromagnetic waves under the
axionic effect. In particular, we derive the dispersion
relation and the reflection coefficients for the system
including Weyl semimetals. In Sec. III we derive the
Casimir force in several setups and show that the
Casimir force can be repulsive, or even can be zero.
Interestingly there is a stable point at which the Casimir
force is vanishing. In Sec. IV we point out that such a

Casimir-free setup may be useful for a new force search
mediated by hypothetical new light particles.

II. ELECTROMAGNETIC WAVES IN AXION
ELECTRODYNAMICS

A. Maxwell equations and dispersion relation

The action for the axion electrodynamics is

S ¼
Z

d4x

�
−
1

4
FμνFμν −

θ

4
FμνF̃μν

�
; ð2:1Þ

where

Fμν ¼ ∂μAν − ∂νAμ; F̃μν ¼ 1

2
ϵμνρσFρσ; ð2:2Þ

and θðt; x⃗Þ denotes the axion. The equation of motion is
given as

□Aμ − ∂
μð∂νAνÞ − 1

2
ϵμνρσ∂νðθFρσÞ ¼ 0; ð2:3Þ

where □ ¼ −∂2t þ ∇!2
. Hereafter we take the Lorentz

gauge ∂νAν ¼ 0. In this gauge, the equation of motion
becomes

□Aμ −
1

2
ϵμνρσ∂νðθFρσÞ ¼ 0: ð2:4Þ

Let us define

bμ ¼ ðb0; b⃗Þ≡ ∂μθ ¼ ð_θ; ∇!θÞ: ð2:5Þ

The Maxwell equation is

∇! · E⃗ ¼ −b⃗ · B⃗; ð2:6Þ

_E⃗ − ∇!× B⃗ ¼ −ðb0B⃗þ b⃗ × E⃗Þ; ð2:7Þ

∇!× E⃗þ _B⃗ ¼ 0; ð2:8Þ

∇! · B⃗ ¼ 0: ð2:9Þ

The equation of motion of the electric field is

̈E⃗ − ∇!2
E⃗þ ðb0B⃗Þ_ þ ðb⃗ × E⃗Þ_ − ∇!ðb⃗ · B⃗Þ ¼ 0: ð2:10Þ

In the following, we assume that bμ does not depend on x⃗
nor t. Let us derive the dispersion relation of the photon in
such a case by substituting the following ansatz:

E⃗ ¼ ϵ⃗eið−ωtþk⃗·x⃗Þ; B⃗ ¼ η⃗eið−ωtþk⃗·x⃗Þ: ð2:11Þ
1The “Casimir-less” experiment has been reported in Ref. [62]

by taking a difference between Casimir forces with different
materials.
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Note that the Maxwell equation (Bianchi identity) implies
η⃗ ¼ k⃗ × ϵ⃗=ω. From (2.10), we have

ð−ω2 þ k⃗2Þϵ⃗ ¼ ib0ðk⃗ × ϵ⃗Þ þ iωðb⃗ × ϵ⃗Þ − ik⃗
ω
ðk⃗ · ðb⃗ × ϵ⃗ÞÞ:

ð2:12Þ

By multiplying k⃗ to both sides of this equation, we obtain

k⃗ · ϵ⃗ ¼ −
i
ω
k⃗ · ðb⃗ × ϵ⃗Þ: ð2:13Þ

This implies that the longitudinal polarization of E⃗ is not
zero in the presence of b⃗. Instead, we can define the
divergence-free field through

k⃗ · D⃗ ¼ 0; D⃗ ¼ E⃗þ b⃗ × E⃗
ω

: ð2:14Þ

Equation (2.12) is written as

ð−ω2 þ k⃗2Þϵ⃗ ¼ ib0ðk⃗ × ϵ⃗Þ þ iωðb⃗ × ϵ⃗Þ þ k⃗ðk⃗ · ϵ⃗Þ: ð2:15Þ

1. The case of b0 = 0

First, we assume b0 ¼ 0. In the remainder of this paper,
we focus on this case since our main focus is on Weyl
semimetals described by nonzero b⃗. Without loss of
generality, we can take b⃗ ¼ ð0; 0; bÞ. Equation (2.15) is
rewritten in the matrix form as

M

0
B@

ϵx

ϵy

ϵz

1
CA ¼ 0; M≡

0
B@

−ω2 þ k2 − k2x −kxky þ iωb −kxkz
−kxky − iωb −ω2 þ k2 − k2y −kykz

−kxkz −kykz −ω2 þ k2 − k2z

1
CA: ð2:16Þ

The dispersion relation is derived from the condition
detM ¼ 0. It is calculated as

detM ¼ ω2½ðω2 − k2 þ k2zÞb2 − ðω2 − k2Þ2� ¼ 0: ð2:17Þ
For ω ≠ 0, the solution is given by [52]

ω2 ¼ k⃗2 þ b2

2
� b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4k2z

q

¼ k2k þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z þ
b2

4

r
� b

2

�2

: ð2:18Þ

This is the dispersion relation of the photon under the axion

background with constant b⃗ ¼ ∇!θ. In the limit kk ¼ 0

and kz → 0,

ω2 ≃
�
b2

k4z=b2
: ð2:19Þ

Thus we have one gapped and one gapless mode.

2. The case of b⃗ = 0

Next, we consider the case of b⃗ ¼ 0 and b0 ¼ const.
Eq. (2.12) reads

ð−ω2 þ k⃗2Þϵ⃗ ¼ ib0ðk⃗ × ϵ⃗Þ: ð2:20Þ

By multiplying k⃗ on both sides, we immediately obtain
k⃗ · ϵ⃗ ¼ 0, i.e., there is no longitudinal polarization. Thus we

can take k⃗ ¼ ð0; 0; kÞ and ϵ⃗ ¼ ðϵx; ϵy; 0Þ without loss of
generality. Then, by defining ϵ� ≡ ϵx � iϵy, we have

ð−ω2 þ k2 � b0kÞϵ� ¼ 0: ð2:21Þ

Thus the dispersion relation is given by

ω2 ¼ kðk� b0Þ: ð2:22Þ

This implies that the ϵ− mode becomes tachyonic for
k → 0. The phenomenological consequences of this effect
are often discussed in the context of axion cosmology and
astrophysics [66,67]. In this paper, we do not discuss
this case.

B. Polarization vectors

1. Polarization of electromagnetic waves in the vacuum

The incoming and reflected momenta are q⃗ and q⃗0,
respectively (see Fig. 1). Without loss of generality, we take
the ŷ component of the momentum to be zero by using the
rotational symmetry on ðx; yÞ-plane. The incoming and
reflected momenta are related as

q⃗ ¼ ðqx; 0; qzÞ; q0
! ¼ ðqx; 0;−qzÞ: ð2:23Þ

We also define q≡ jq⃗j ¼ jq⃗0j. The dispersion relation
implies

ffiffiffi
ϵ

p
ω ¼ q.
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In the vacuum, the electric field satisfies q⃗ · E⃗ ¼ 0. Thus
we can define the polarization of electric fields as follows
(see Fig. 1):

ê2 ¼ ŷ; ê1 ¼ ŷ × q̂ ¼ qz
q
x̂ −

qz
q
ẑ; ð2:24Þ

ê02 ¼ ŷ; ê02 ¼ ŷ × bq0 ¼ −
qz
q
x̂ −

qz
q
ẑ: ð2:25Þ

The êi2 and êr2 polarizations correspond to the TE mode,
while êi1 and êr1 polarization correspond to the TM mode.
The right and left chiral modes are defined as

êR;L ¼ 1ffiffiffi
2

p ðê1 � iê2Þ ¼
1ffiffiffi
2

p
�
qz
q
x̂� iŷ −

qx
q
ẑ

�
; ð2:26Þ

ê0R;L ¼ 1ffiffiffi
2

p ðê01 � iê02Þ ¼
1ffiffiffi
2

p
�
−
qz
q
x̂� iŷ −

qx
q
ẑ

�
: ð2:27Þ

The magnetic field is given by B⃗ ¼ q⃗ × E⃗=ω. Thus the
polarization vector for the magnetic field is

êðBÞR;L ¼ q̂ × êR;L ¼ 1ffiffiffi
2

p
�
∓ iqz

q
x̂þ ŷ� iqx

q
ẑ

�
; ð2:28Þ

ê0ðBÞR;L ¼ bq0 × ê0R;L ¼ 1ffiffiffi
2

p
�
� iqz

q
x̂þ ŷ� iqx

q
ẑ

�
: ð2:29Þ

2. Polarization of electromagnetic waves
in the Weyl semimetal

The dispersion relation in the Weyl semimetal is given
by (2.18). For given ω, there are two solutions for kz:

ðk�z Þ2 ¼ κzðκz � bÞ: ð2:30Þ

where κz ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2x

p
.

Note that E⃗ in the Weyl semimetal is not transverse:
k⃗ · E⃗ ≠ 0 [see Eq. (2.14)]. From (2.16), by taking ky ¼ 0,
the electric field in the Weyl semimetal satisfies

M

0
B@

ϵx

ϵy

ϵz

1
CA ¼ 0; M≡

0
B@

−ω2 þ k2 − k2x iωb −kxkz
−iωb −ω2 þ k2 0

−kxkz 0 −ω2 þ k2 − k2z

1
CA: ð2:31Þ

By solving this, we obtain the polarization vector for the �
mode as

ê� ¼ 1ffiffiffi
2

p
N
ðκ2z x̂� iωκzŷ − kxk�z ẑÞ; ð2:32Þ

where N is the normalization constant to make ê� the unit
vector. Similarly, polarization vector for the left-moving
mode k⃗0 ¼ ðkx; 0;−k�z Þ is

ê0� ¼ 1ffiffiffi
2

p
N
ð−κ2z x̂ ∓ iωκzŷ − kxk�z ẑÞ: ð2:33Þ

Note that êþ and ê0− are right-handed waves and ê− and ê0þ
are left-handed waves, as can be seen by comparing them in
the b → 0 limit with (2.26) and (2.27).
For the magnetic field, the polarization vector is

given by

FIG. 1. Left: polarization basis of the electric field. Middle: injection of electromagnetic waves from vacuum to Weyl semimetal.
Right: injection of electromagnetic waves from Weyl semimetal to vacuum.
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êðBÞ� ¼ k̂� × ê� ¼ ωffiffiffi
2

p
Nk�

ð∓iκzk�z x̂þ ωk�z ŷ� ikxκzẑÞ:

ð2:34Þ

For reference, polarization vector for the left-moving mode
k⃗0 ¼ ðkx; 0;−k�z Þ is

ê0ðBÞ� ¼ k̂� × ê� ¼ ωffiffiffi
2

p
Nk�

ð∓iκzk�z x̂þ ωk�z ŷ ∓ ikxκzẑÞ:

ð2:35Þ

C. Reflection coefficients

1. Injection from vacuum to Weyl semimetal

The arguments below follow Refs. [52,53,57]. We
consider the case of incoming photon from the vacuum,
which is reflected by the Weyl semimetal as schematically
shown in the middle panel of Fig. 1. The incoming,
reflected, and transmitted waves are assumed to be of
the form2

E⃗iðx⃗Þ ¼ eiðq⃗i·x⃗−ωtÞðERêR þ ELêLÞ; ð2:36Þ

E⃗rðx⃗Þ ¼ eiðq⃗r·x⃗−ωtÞðE0
Rê

0
R þ E0

Lê
0
LÞ; ð2:37Þ

E⃗�ðx⃗Þ ¼ eiðk⃗þ·x⃗−ωtÞEþêþ þ eiðk⃗−·x⃗−ωtÞE−ê−: ð2:38Þ

The corresponding magnetic fields are given by B⃗i ¼ qi×E⃗i
ω

and so on. As we have explained, the electric field in the
Weyl semimetal is not divergence-free: k⃗� · E⃗� ≠ 0 and
hence the TM, TE decomposition is not very useful.
Instead, working on the ðL;RÞ basis will turn out to be
convenient.
Let us first consider the case of incoming right-handed

electromagnetic waves, i.e., EL ¼ 0. We impose continuous
E⃗k and B⃗k at the boundary z ¼ 0. From E⃗k, we obtain

E0
R ¼ −

ω

N
qzE−; ER − E0

L ¼ ω

N
qzEþ: ð2:39Þ

From B⃗k, we obtain

E0
R ¼ ω

N
k−z E−; ER þ E0

L ¼ ω

N
kþz Eþ: ð2:40Þ

From these equations we obtain

E0
R ¼ E− ¼ 0; ð2:41Þ

Rþ ≡ E0
L

ER
¼ kþz − qz

kþz þ qz
¼ bþ 2ðqz − kþz Þ

b
: ð2:42Þ

Therefore, the reflection of the right-handed wave on the
Weyl semimetal leads to the left-handed wave. Thus it is
convenient to work on the ðL;RÞ basis in the presence of
the Weyl semimetal.
Similarly, for the case of incoming left-handed waves,

i.e., ER ¼ 0, we obtain from E⃗k

E0
L ¼ −

ω

N
qzEþ; EL − E0

R ¼ ω

N
qzE−: ð2:43Þ

and from B⃗k, we obtain

E0
L ¼ ω

N
k−z Eþ; EL þ E0

R ¼ ω

N
k−z E−: ð2:44Þ

Thus

E0
L ¼ Eþ ¼ 0; ð2:45Þ

R− ≡ E0
R

EL
¼ k−z − qz

k−z þ qz
¼ bþ 2ðk−z − qzÞ

b
: ð2:46Þ

Combining them, the reflection matrix is expressed as

RðqzÞ ¼
1

b

�
0 bþ 2ðk−z − qzÞ

bþ 2ðqz − kþz Þ 0

�
: ð2:47Þ

2. Injection from Weyl semimetal to vacuum

We consider the case of incoming photon from the Weyl
semimetal, which is reflected by the vacuum as schemati-
cally shown in the right panel of Fig. 1.

E⃗iðx⃗Þ ¼ eiðk⃗þ·x⃗−ωtÞEþêþ þ eiðk⃗−·x⃗−ωtÞE−ê−; ð2:48Þ

E⃗rðx⃗Þ ¼ eiðk⃗
0
þ·x⃗−ωtÞE0þê0þ þ eiðk⃗

0
−·x⃗−ωtÞE0

−ê0−; ð2:49Þ

E⃗tðx⃗Þ ¼ eiðq⃗·x⃗−ωtÞðERêR þ ELêLÞ: ð2:50Þ

First let us consider the incomingþmode, i.e., E− ¼ 0. In a
similar way as the previous subsection, from the boundary
condition, we find

EL ¼ E0
− ¼ 0; ð2:51Þ

E0þ
Eþ

¼ qz − kþz
qz þ kþz

¼ −Rþ: ð2:52Þ

Therefore, for the incoming plus mode, the reflected mode
is also plus. As noted earlier, the incoming plus mode is

2To satisfy the boundary condition at the surface of the Weyl
semimetal at any time,ωmust be common on both sides. Also the
boundary condition at any spatial points on the surface x⃗k ¼
ðx; yÞ implies ðq⃗Þx ¼ ðq⃗0Þx ¼ ðk⃗þÞx ¼ ðk⃗−Þx. Then the dispersion
relation implies jðq⃗Þzj ¼ jðq⃗0Þzj. Note also the relation q≡ jq⃗j ¼
jq⃗0j ¼ ω and κz ¼ qz.
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(roughly) right-polarized while the reflected plus mode is
left-polarized, as naturally expected. For the case of
incoming − mode, i.e., Eþ ¼ 0, we obtain

ER ¼ E0þ ¼ 0; ð2:53Þ

E0
−

E−
¼ qz − k−z

qz þ k−z
¼ −R−: ð2:54Þ

III. CASIMIR FORCE IN AXION
ELECTRODYNAMIC SYSTEMS

In this section, we calculate the Casimir force in axion
electrodynamic systems including chiral medium or Weyl
semimetals. We give two examples that exhibit the repul-
sive Casimir force. A formalism for calculating the Casimir
force is summarized in the Appendix. Given a setup, we can
derive the function fλðωÞ in (A2) such that solutions to the
equation fλðωÞ ¼ 0 give possible values of ω. Once we
find fλðωÞ, the finite-temperature Casimir force is evalu-
ated by the Lifshitz formula (A4). Below we consider
several setups.

A. Setup 1: Force between metal plates
in chiral medium

First let us consider the setup shown in Fig. 2: a Weyl
semimetal sandwiched by perfect metals. Although the real
Weyl semimetal is a solid and one cannot adjust its width a
in a given experimental setup, we can regard this system as
a representative of more general setups including a chiral
medium. For example, if we live at the center of a
huge axionic domain wall, all the space is effectively filled
by a chiral medium with constant b⃗. Note that the
following calculations are independent of the width of
the metal.3

One solution (which we call “þ” mode) is of the form

(here and hereafter we drop the overall eiðk⃗k·x⃗k−ωtÞ factor for
notational simplicity):

E⃗ ¼ Eþeik
þ
z zêþ þ E0þe−ik

þ
z zê0þ; ð3:1Þ

B⃗ ¼ kþ
ω

ðEþeik
þ
z zêðBÞþ þ E0þe−ik

þ
z zê0ðBÞþ Þ: ð3:2Þ

We impose the boundary condition Ex ¼ Ey ¼ Bz ¼ 0 at
z ¼ 0 and z ¼ −a. Then we simply find Eþ ¼ E0þ and

1 − e2ik
þ
z a ¼ 0: ð3:3Þ

The other solution (which we call “−” mode) is of the form

E⃗ ¼ E−eik
−
z zê− þ E0

−e−ik
−
z zê0−; ð3:4Þ

B⃗ ¼ k−
ω

ðE−eik
−
z zêðBÞ− þ E0

−e−ik
−
z zê0ðBÞ− Þ: ð3:5Þ

From the same boundary condition, we also obtain
E− ¼ E0

− and

1 − e2ik
−
z a ¼ 0: ð3:6Þ

We define the function fλðωÞ for λ ¼ þ;− as

fλðωÞ ¼ 1 − e2ik
λ
za; ð3:7Þ

so that the solution to fλðωÞ ¼ 0 gives the allowed modes.
Therefore it is easily found that the solution is

kþz ¼ nπ
a
; k−z ¼ nπ

a
n ¼ 0;�1;…: ð3:8Þ

If b ¼ 0, we find kþz ¼ k−z ¼ nπ=a as usually found in the
case of a vacuum separated by metal plates.
The Casimir free energy per unit area is given by

FCas ¼ T
X
λ¼þ;−

X
l≥0

0
Z

d2kk
ð2πÞ2 ln fλðiξlÞ

¼ T
X
λ¼þ;−

X
l≥0

0
Z

d2kk
ð2πÞ2 ln ½1 − e−2k̃

λ
z;la�; ð3:9Þ

where ξl ¼ 2πTl and

k̃�z;l ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2l þ k2k
q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2l þ k2k
q

∓ ib
�i

1=2
: ð3:10Þ

The Casimir force is given by

FIG. 2. A schematic picture of the setup 1. The chiral medium
with the width a is sandwiched by the perfect metal. The region
outside the metal plate is also assumed to be filled with the
same chiral medium. Also schematically shown are electromag-
netic wave modes. The upper two and lower two modes are
independent.

3To be precise, a real metal has a finite skin depth and we are
assuming that the width is thicker than the skin depth.

EMA, HAZUMI, IIZUKA, MUKAIDA, and NAKAYAMA PHYS. REV. D 108, 016009 (2023)

016009-6



FCas ¼ −
∂FCas

∂a

¼ −2T
X
λ¼þ;−

X
l≥0

0
Z

d2kk
ð2πÞ2

k̃λz;le
−2k̃λz;la

1 − e−2k̃
λ
z;la

: ð3:11Þ

Note that we are assuming that the space outside the metal
is also filled by the same chiral medium with constant b⃗ as
shown in Fig. 2, although it is rather implicit and hidden in
a regularization procedure in (3.9). Otherwise, we would
have an extra contribution to the Casimir force. The
numerical results for the Casimir force, normalized by
the case of b ¼ 0, i.e., F0 ≡ Fðb ¼ 0Þ ¼ −π2=ð240a4Þ, are
shown in Fig. 3. In the left (right) panel we take b ¼ 1 eV
(0.1 eV). For reference, 1=b ¼ 0.197 μm in the left panel
and 1=b ¼ 1.97 μm in the right panel.4 It reproduces the
result of Ref. [58] in the low-temperature limit. It is seen
that for b ¼ 0.1 eV the result for the room temperature
deviates from the result of the zero-temperature limit.
An important feature is that F=F0 becomes negative for
a large distance, meaning that the Casimir force becomes
repulsive.
One may understand the origin of this repulsive

force as follows. Let us consider a one-dimensional
analog of Eq. (2.18) whose dispersion relation is ω� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ b2=4

p
� b=2 with kz ¼ nπ=L. Its energy at zero

temperature is obtained by taking a summation ofP
λ¼þ;−

P
n≥0 ωλ with an appropriate regularization. For

simplicity, we take a regularization scheme where the high
energy modes exceeding a cutoff scale Λð≫ bÞ are damped
immediately. If one takes the summation of λ ¼ þ;− first,

the resultant dispersion is just two massive modes of
ω̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ b2=4

p
, which is known to give the attractive

force. However, these massive modes only cannot take into
account all the contributions because there always exist
more minus modes than plus modes fulfilling ωλ < Λ. As a
result, the total energy must involve an opposite contribu-
tion to that of massive modes only.5 Since the contribution
from the “massive” modes is suppressed for bL≳ 1, this
leads to the repulsive Casimir force at a large distance.
Essentially the same argument also applies to the three
dimensional case.

B. Setup 2: Force between Weyl semimetals in vacuum

Next let us consider the setup shown in Fig. 4. This setup
will be further discussed in the next section in connection to
new force searches. Again we note that the following
calculations are independent of the width of metal plates.
Possible eigenmodes are schematically shown in the figure.
The upper one, which we call “−”mode, and the lower one,
“þ” mode, are independent solutions as far as the outer-
most bodies are the perfect metal. Otherwise, they are
mixed. In this paper, we just focus on the case of thick
perfect metals as the layer 0 and 4. One solution (which we
call “þ” mode) is of the form:

E⃗¼

8>><
>>:

E1þeik
þ
z zêþ þ E0

1þe
−ikþz zê0þ for − δ− a0 < z < −δ

E2ReiqzzêR þ E0
2Le

−iqzzê0L for − δ< z < 0

E3þeik
þ
z zêþ þ E0

3þe
−ikþz zê0þ for 0< z < a

;

ð3:12Þ
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FIG. 3. The Casimir force normalized by the case of b ¼ 0 in the setup 1 (Fig. 2). In the left (right) panel we take b ¼ 1 eV (0.1 eV).
For reference, 1=b ¼ 0.197 μm in the left panel and 1=b ¼ 1.97 μm in the right panel. The negative F=F0, below the horizontal black
line, means the repulsive Casimir force.

4Note that our definition of b is the same as b in Ref. [58] and
e2=ð2π2Þ times b in Ref. [52]. See e.g., Ref. [68] for reference
values of b. In our definition, it is typically b ∼ 1 eV.

5In this one-dimensional analog system, it can be estimated as
∼ − b2L for bL≲ π.
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B⃗¼

8>><
>>:

kþ
ω ðE1þeik

þ
z zêðBÞþ þE0

1þe
−ikþz zê0ðBÞþ Þ for−δ−a0<z<−δ

q
ωðE2Reiqzzê

ðBÞ
R þE0

2Le
−iqzzê0ðBÞL Þ for −δ<z<0

kþ
ω ðE3þeik

þ
z zêðBÞþ þE0

3þe
−ikþz zê0ðBÞþ Þ for 0<z<a

;

ð3:13Þ

The boundary conditions at the perfect metal plate z ¼ a
and z ¼ −δ − a0 give

E0
3þ

E3þ
¼ e2ik

þ
z a;

E0
1þ

E1þ
¼ e−2ik

þ
z ðδþa0Þ: ð3:14Þ

The boundary conditions at the surface of the Weyl
semimetal z ¼ 0 and z ¼ −δ give

E2R − E0
2L

E2R þ E0
2L

¼ qz
kþz

1 − e2ik
þ
z a

1þ e2ik
þ
z a

;

E2R − E0
2Le

2iqzδ

E2R þ E0
2Le

2iqzδ
¼ qz

kþz

1 − e−2ik
þ
z a0

1þ e−2ik
þ
z a0

: ð3:15Þ

After some calculations, we eventually find an equation
that gives allowed modes in the system:

0 ¼ 1 − e2iqzδ
Rþ þ e2ik

þ
z a

1þ Rþe2ik
þ
z a

Rþ þ e2ik
þ
z a0

1þ Rþe2ik
þ
z a0

; ð3:16Þ

where Rþ is a reflection coefficient that has been
defined in Eq. (2.42). We obtain a similar solution for
the “−” mode solution. Thus the function fλ is given as
follows:

fλðωÞ ¼ ½1 − rð24Þλ ðωÞrð20Þλ ðωÞe2iqzδ�
× ð1þ Rλe2ik

λ
zaÞð1þ Rλe2ik

λ
za0 Þ; ð3:17Þ

where λ ¼ þ or − and rðijÞλ denotes the effective reflection
coefficient between body i and j6:

rð24Þλ ðωÞ ¼ Rλ þ e2ik
λ
za

1þ Rλe2ik
λ
za
; rð20Þλ ðωÞ ¼ Rλ þ e2ik

λ
za0

1þ Rλe2ik
λ
za0

:

ð3:18Þ

Thus the Casimir free energy per unit area is given by

FCas ¼ T
X
λ¼þ;−

X
l≥0

0
Z

d2kk
ð2πÞ2 ln ½1 − rð24Þλ ðiξlÞrð20Þλ ðiξlÞe−2q̃z;lδ� þ ðδ-independentÞ; ð3:19Þ

where q̃z;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2l þ k2k

q
. The Casimir force is given by

FCas ¼ −
∂FCas

∂δ

¼ −2T
X
λ¼þ;−

X
l≥0

0
Z

d2kk
ð2πÞ2

q̃z;lr
ð24Þ
λ rð20Þλ e−2q̃z;lδ

1 − rð24Þλ rð20Þλ e−2q̃z;lδ
:

ð3:20Þ

Figure 5 shows the numerical result for the Casimir
force with a ¼ a0, normalized by the standard Casimir
force F0 ¼ −π2=ð240δ4Þ. In the left (right) panel we take
b ¼ 1 eV (0.1 eV). For reference, 1=b ¼ 0.197 μm in the
left panel and 1=b ¼ 1.97 μm in the right panel. It is seen
that the Casimir force is repulsive for small δ and the force
becomes zero around bδ ¼ 4 for ab ≫ 1 in the low-
temperature limit in both panels. The case without the
metals in the zero-temperature limit has been considered in
Ref. [52], which is consistent with ours in the limit
ab → ∞. On the other hand, in the limit a → 0, we obtain
F=F0 ¼ 1 as expected. Remarkably, the point at which the
Casimir force vanishes is stationary, meaning that such a
configuration is stable against perturbation. This configu-
ration may serve as an ideal setup for the new force search,
as explained in the next section.

FIG. 4. A schematic picture of the setup 2. Layers 0 and 4 are
perfect metals, 1 and 3 are Weyl semimetals with the width a0 and
a respectively, and layer 2 is the vacuum. Possible eigenmodes
are shown. The upper one, which we call the “−” mode, and the
lower one, the “þ” mode, are independent solutions.

6These results depend on the relative direction of b⃗ in the
two Weyl semimetals. For example, if the direction of b⃗ in the
body 1 were reversed, Eq. (3.17) should be modified as
f� ¼ ½1 − rð24Þ� rð20Þ∓ e2iqzδ�ð1þ R2ik�z a

� Þð1þ R∓e2ik
∓
z a0 Þ.
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IV. IMPLICATION FOR NEW FORCE SEARCH

If there exists a light new particle, it generally mediates
new force between bodies [60,69–74]. In new physics
models beyond the Standard Model there often appear light
new particles. Examples of such new particles are CP-even
scalars, such as dilaton or moduli, axion, or axionlike
particles or gauge bosons in association with new gauge
symmetry. They are also well-motivated dark matter
candidates. Light CP-even scalar particles may appear in
extra dimension theories such as string theory, and they
couple to the mass of the material. The B − L vector boson
may appear in a gauged Uð1ÞB−L extension of the Standard
Model, which may be motivated by the explanation of
neutrino masses or the grand unified theory. The B − L
vector boson couples to the B − L number of the material,
which is equivalent to the number of neutrons in an
electrically neutral body. In both cases, a potential between
small bodies with masses m1 and m2 is given by

V ¼ −
Gm1m2

r
ð1þ αe−r=λÞ; ð4:1Þ

where G is the Newton constant and λ is the Compton
wavelength of the new particle. The first term describes the
standard Newtonian gravity force and the second term is the
new force mediated by the new particle, where α para-
metrizes the coupling between the new particle and the
Standard Model particles. Even for the CP-odd particles
like the axion, a similar form of new force may appear at the
loop level [74,75]. Various experiments give constraints on
the new force on various length scales, corresponding to
various mass ranges of the new particle. The Casimir force
measurement gives the most stringent constraint on the new
force mediated by a new particle with a mass of OðeVÞ at
the separation scale of Oð0.1–1Þ μm [62–65].

From theviewpoint of new force search, the Casimir force
is an obstacle that hides the new force effect (see, e.g.,
Ref. [76] for an idea of shielding the Casimir-Polder force
for new force search). Our setup described in Sec. III B
opens up a possibility of the Casimir-free stationary point at
the separation of Oð0.1–1Þ μm scales, and hence the
sensitivity to the new force may be significantly improved.
Actually, uncertainties of the theoretical calculation of the
Casimir force give a large amount of systematic error, which
limits the sensitivity to the new force [63]. In our setup
discussed below, we can set the metal/Weyl-semimetals to
the stationary point in which the Casimir force vanishes and
hence the theoretical uncertainties for the Casimir force
calculation are irrelevant whatever the origin of the uncer-
tainty is. Therefore, in principle, the sensitivity will be
improved just by reducing the statistical/random error.
Let us derive a new force acting on two bodies. For that

purpose, we first calculate the potential induced by an
exchange of a new particle between a small piece of body 1
with mass m1 and the entire body 2 (see the left panel of
Fig. 6 for the choice of coordinate):

dV ¼ −Gαm1ρ2

Z
e−r=λ

r
d3x2

¼ −Gαm1ρ2

Z
Dþa2

D
dz

Z
L

0

2πl
e−

ffiffiffiffiffiffiffiffiffi
z2þl2

p
=λffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ l2
p dl

¼ −2πGαm1ρ2λ
2e−D=λð1 − e−a2=λÞ; ð4:2Þ

where we have made an approximation λ ≪ L and ρ1 and
ρ2 are the mass density of the body 1 and 2, respectively.7
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FIG. 5. The Casimir force in the setup 2 (Fig. 4). In the left (right) panel we take b ¼ 1 eV (0.1 eV) and varied the temperature as
T ¼ 300 K and 100 K with ab ¼ 1 and 10. For reference, 1=b ¼ 0.197 μm in the left panel and 1=b ¼ 1.97 μm in the right panel. The
negative F=F0, below the black horizontal line, means the repulsive Casimir force.

7In the case of the B − L vector boson, ρ1 and ρ2 should be
regarded as the mass density times the neutron number fraction in
each atom, which is typically ∼0.5.
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The total potential between body 1 and 2 is obtained by
integrating dV over body 1. Below we consider two cases
as the shape of the body 1: a parallel plate or a sphere.
If body 1 is a parallel plate, as shown in the middle

panel of Fig. 6, the total potential is given by the
integration of dV with d3x1. By noting m1 ¼ ρ1d3x1
and the integration range is expressed as

R
d3x1e−D=λ ¼R a1

0 dz1
R
dS1e−ðδþz1Þ=λ, we obtain

VðδÞ ¼ −S1 × 2πGαρ1ρ2λ3e−δ=λð1 − e−a1=λÞð1 − e−a2=λÞ;
ð4:3Þ

where Si is the cross sectional area of the body i ð¼ 1; 2Þ,
assuming S1 < S2. The new force per unit area between
bodies 1 and 2 is given by

Fnew ¼ −
1

S1

∂V
∂δ

¼ −2πGαρ1ρ2λ2e−δ=λð1 − e−a1=λÞð1 − e−a2=λÞ: ð4:4Þ

If body 1 is a sphere, as shown in the right panel of
Fig. 6, the total potential between the two bodies is given by

VðδÞ ¼
Z

d3x1dV

¼ −2πGαρ1ρ2λ2e−ðRþδÞ=λð1 − e−a2=λÞ

×

�
2π

Z
R

0

dr
Z

π

0

dθr2 sin θer cos θ=λ
�

¼ −4π2Gαρ1ρ2λ4Re−δ=λð1 − e−a2=λÞ; ð4:5Þ

where we used D ¼ Rþ δ − r cos θ and assumed λ ≪ R in
the last line. The total new force between bodies 1 and 2 is
given by (note that it is the total force, not the force per unit
area)

Fnew ¼ −
∂V
∂δ

¼ −4π2Gαρ1ρ2λ3Re−δ=λð1 − e−a2=λÞ: ð4:6Þ

Now let us compare the Casimir force and the new force.
We assume the setup of Fig. 4 with a ¼ a0. The Casimir
force has already been calculated in (3.20). The new force
is given by generalization of Eq. (4.4) to include the layers
of Weyl semimetals and metals. Assuming the gold layer as
the outermost bodies, we obtain

Fnew ¼ −2πGαλ2e−δ=λ½ρWSð1 − e−a=λÞ
þ ρAue−a=λð1 − e−dAu=λÞ�2; ð4:7Þ

where ρWS and ρAu are the mass density of the Weyl
semimetal and gold, respectively, and dAu is the width of
the gold. Figure 7 shows the ratio between the Casimir
force jFCasj and new force jFnewj. We have taken b ¼ 1 eV
and λ ¼ 0.5 μm in the left panel and b ¼ 5 eV and
λ ¼ 0.1 μm in the right panel. The other parameters are
taken as a ¼ 2=b, T ¼ 300 K (although the tempera-
ture dependence is not significant), ρAu ¼ 19.3 g=cm3,
dAu ¼ 0.2 μm and ρWS ¼ 10 g=cm3. The new force
strength, α, is varied as indicated in each panel. For
reference, we also plotted the case of b ¼ 0. It is clearly
seen that the Casimir force is suppressed by orders of
magnitude compared with the case of b ¼ 0. Note that
the current upper bound on α is about α ∼ 5 × 1010 for
λ ¼ 0.5 μm and α ∼ 1013 for λ ¼ 0.1 μm [62,64]. Even for
α much below this upper bound, the Casimir force can be
negligible and the new force can be the dominant force
acting on the body at some certain distance, which opens up
a possibility to improve the new force search. We also note
that the distance at which the Casimir force vanishes
depends on b, a and temperature, as seen from Fig. 5
and hence it may be possible to adjust it to the desired
point. However, our discussion here is just a short dem-
onstration of our idea and its theoretical background, and
careful studies are required for real experiments.

FIG. 6. Left: coordinate to calculate the potential between x1 in the body 1 and x2 in the body 2. Middle: the case where body 1 is a
plate. Right: the case where body 1 is a sphere.
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As a final remark, the sensitivity may be further
improved by taking a difference of force between different
experimental setups along the line of Ref. [62], as sche-
matically shown in Fig. 8. Suppose that we found a
stationary point in an experiment at which the Casimir
force vanishes and it can be compared with the theoretical
prediction. However, taking uncertainties in the calculation
into account, it may be rather difficult to extract a
contribution from the new force if it is sufficiently weak.
Still one can take a difference of the stationary point
between two cases, e.g., the case of gold and germanium as
the outermost body as shown in Fig. 8. If the common gold
layer of the body is thick enough, i.e., thicker than the
plasma wavelength ∼0.135 μm, the Casimir force acting
on the body is the same between the case of gold and
germanium since the Casimir force becomes independent

of what lies beyond the thick gold layer, while the new
force “feels” the materials beyond the coating layer since
the mass density is different. Thus the difference should be
zero if there were no new force, and finding a nonzero
difference would be a signal of a new force.

V. CONCLUSIONS AND DISCUSSION

Since the theoretical proposal long ago, the Casimir
force had been measured in various setups. It is typically an
attractive force, but a repulsive force is also possible in
some setups. The measurement of the Casimir force itself is
interesting since it gives direct evidence of the quantum
nature of the vacuum. On the other hand, the Casimir force
is a major obstacle to find a new force mediated by new
hypothetical particles at the micrometer scale. We point
out that it is possible to achieve zero Casimir force in
experimental setups involving Weyl semimetals. Since
we can set the metals/Weyl-semimetals at the stationary
position where the Casimir force vanishes, we do not need
to worry about uncertainties for the theoretical calculation
of the Casimir force, and hence this setup may potentially
enhance the sensitivity of the new force search by just
reducing experimental errors.
Although we have considered Weyl semimetals at room

temperature as an example, other nonreciprocal materials
can be used, such as indium antimonide (InSb), where
an external magnetic field needs to be applied [77]. In
Refs. [78,79], Casimir force on topological or Chern
insulators has been calculated and a repulsive force is
found. Without nonreciprocal materials, nonequilibrium
systems consisting of reciprocal materials allow zero
Casimir force [80–83]. In Ref. [84], the nonequilibrium
Casimir force in a system consisting of SiO2 and silicon
plates was made stable around the zero-force point through
a feedback control process involving temperature meas-
urement and modulation. There are several possibilities for
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FIG. 7. The ratio between the Casimir force jFCasj and new force jFnewj for various choice of new force strength α. We have taken
b ¼ 1 eV and λ ¼ 0.5 μm in the left panel and b ¼ 5 eV and λ ¼ 0.1 μm in the right panel.

FIG. 8. Schematic picture of the setup to measure the difference
of the stationary point between two materials, gold (Au) and
germanium (Ge). WS denotes the Weyl semimetal with the arrow
indicating the direction of b⃗. A thin dotted arrow indicates that the
upper body is moved in a parallel direction to take a difference.
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obtaining Casimir force-free setups. We will study which
setups are the most appropriate in actual experiments in
future works.8
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APPENDIX: LIFSHITZ FORMULA FOR CASIMIR
FORCE AT FINITE TEMPERATURE

1. Lifshitz formula

For given setups including metals or dielectrics, the
frequency of electromagnetic waves are generally discre-
tized. To derive the Casimir energy, we should evaluate the
discrete summation over the frequency ωn;λX

λ

X
n≥0

0ωn;λ; ðA1Þ

where λ represents different types of modes for a
given setup and the prime in the summation implies that
the n ¼ 0 term should be multiplied by a factor 1=2. For
systems consisting of normal metals or dielectrics, a
common choice is that we classify the modes into the
transverse-magnetic (TM) and transverse-electric (TE)
modes. In this case, λ ¼ TM or TE. Another choice is to
classify it into right- and left-handed polarized waves, as
done in the main text of this paper, since it is more
convenient in the case of chiral media such as Weyl
semimetals. In this case, λ ¼ R or L.9 It is conveniently
evaluated by using the argument principle:

X
λ

X
n≥0

0ωn;λ ¼
X
λ

1

2πi

I
ωd ln fλðωÞ: ðA2Þ

Here the function fλðωÞ is chosen such that the solution
to fλðωÞ ¼ 0 gives possible allowed frequencies ω satisfy-
ing the boundary condition in the system under consid-
eration and also that 1=fλðωÞ contains first-order poles at
ω ¼ ωn;λ.
In the finite temperature system with temperature T, the

Casimir free energy density per unit area is given by

FCas¼
X
λ

X
n≥0

0
Z

d2kk
ð2πÞ2

�
ωn;λ

2
þT lnð1−e−ωn;λ=TÞ

	
−F vac;

ðA3Þ

where F vac denotes the vacuum contribution to regularize
the divergence coming from the quantum zero-point
energy. By the generalized argument principle, it is further
conveniently evaluated as

FCas ¼ T
X
λ

Z
d2kk
ð2πÞ2

X
n≥0

0 ln
�
2 sinh

ωn;λ

2T

�
;

¼ T
X
λ

Z
d2kk
ð2πÞ2

1

2πi

I
ln

�
2 sinh

ωλ

2T

�
d ln fλðωÞ;

¼ T
X
λ

X
l≥0

0
Z

d2kk
ð2πÞ2 ln fλðiξlÞ; ðA4Þ

with the function fλ where ξl ¼ 2πTl denotes the
Matsubara frequency. After all, we have replaced the
summation over n with the summation over l. The latter
formulation is much more convenient for practical purposes
for general materials with finite dielectric constants, since
we do not need to explicitly solve the complicated equation
fλðωÞ ¼ 0 in the latter formulation. Note that we have
regularized the divergence with the counter term F vac. This
is a general formula and the information of the concrete
setup is contained in the form of the function fλðωÞ. The
expression for the zero temperature limit is obtained by
formally replacing

T
X
l≥0

0 →
Z

∞

0

dξ
2π

: ðA5Þ

Below we evaluate the Casimir force for the three-layer and
five-layer cases, by using the concrete function fλðωÞ
obtained in the previous section.

2. An example of normal metal

As a simple example, we consider the three-layer setup
as shown in Fig. 9. The dielectric constants in each layer
1, 2, and 3 are taken to be ϵi (i ¼ 1, 2, 3). As for the
magnetic permeability, we take μ1 ¼ μ2 ¼ μ3 ¼ 1 for
simplicity. We want to know the allowed modes and the
dispersion relation of the photon in this setup. We assume
the solution of the form

8Note that we have found a stabilizing point for the force, not
merely a zero force. This “Casimir spring”may have the potential
for various applications beyond fundamental physics.

9In the main text, we assumed a perfect mirror at the boundary
of the system. If we take into account the effect of the
finite dielectric constant of the metal, left and right modes are
mixed and the classification by the index λ may no longer be
convenient.
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E⃗ðx⃗; tÞ ¼ E⃗ðzÞeiðk⃗k·x⃗k−ωtÞ; B⃗ðx⃗; tÞ ¼ B⃗ðzÞeiðk⃗k·x⃗k−ωtÞ.
ðA6Þ

First consider the TM mode, i.e., Bz ¼ 0. We seek a
solution of the form

Ez ¼
8<
:

Ae−q3z z > a=2

Beq2z þ Ce−q2z −a=2 < z < a=2

Deq1z z < −a=2
; ðA7Þ

with A, B, C, D denoting constants (one of which is
redundant because the overall normalization is free) and
k2k − q2i ¼ ϵiω

2. Note that we assume q3 and q1 are real and

positive so that the electromagnetic field damps at large jzj,
while q2 can be either real or pure imaginary. The boundary
condition implies continuous ϵEz across the boundary.

Also, by noting that ∇! · E⃗ ¼ 0 for all the regions (since
we are considering the dielectric material), we have
ik⃗k · E⃗k ¼ −∂zEz. Since E⃗k must be continuous across
the boundary, this implies that ∂zEz is continuous. To
summarize, the boundary condition at z ¼ a=2 is

ϵ2Ezðz → a=2 − 0Þ ¼ ϵ3Ezðz → a=2þ 0Þ;
∂zEzðz → a=2 − 0Þ ¼ ∂zEzðz → a=2þ 0Þ: ðA8Þ

From this we obtain

B
C
¼ ϵ3q2 − ϵ2q3

ϵ3q2 þ ϵ2q3
e−q2a ¼ rð23ÞTM e−q2a: ðA9Þ

Here we have defined the reflection coefficients for the TM
and TE mode as [86]

rðijÞTMðωÞ ¼
ϵjqi − ϵiqj
ϵjqi þ ϵiqj

; rðijÞTE ðωÞ ¼
qi − qj
qi þ qj

; ðA10Þ

where q2jðωÞ ¼ k2k − ϵjðωÞω2. Similarly, from the boun-

dary condition at z ¼ −a=2, we obtain

C
B
¼ rð21ÞTM e−q2a: ðA11Þ

Combining these boundary conditions, we have

1 ¼ e−2q2arð21ÞTM rð23ÞTM : ðA12Þ

This determines the allowed value of ω. Since ϵ are
generally complicated functions of ω, this is a highly
nonlinear equation in general. In the limit of perfect
metal for the body 1 and 3, ϵ1 ¼ ϵ3 → −∞ (note
that q1;3 ≃

ffiffiffiffiffiffiffiffiffiffi−ϵ1;3
p

ω), the solution is given by q2 ¼
inπ=a ðn ¼ 0;�1;…Þ.
Next consider the TE mode, i.e., Ez ¼ 0. Similarly, we

obtain

1 ¼ e−2q2arð21ÞTE rð23ÞTE : ðA13Þ

In the limit of perfect metal, the solution is given by
q2 ¼ inπ=a ðn ¼ 0;�1;…Þ.
Conditions (A12) and (A13) are expressed in a combined

form as,

0 ¼ fλðωÞ≡ 1 − rð21Þλ ðωÞrð23Þλ ðωÞe−2q2a;
q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k − ϵ2ω

2
q

: ðA14Þ

with λ ¼ TM;TE. This function fλðωÞ will be used for the
evaluation of Casimir force in this system.
Now the function fλðωÞ is determined, and the Casimir

free energy density is given by

FCas ¼ T
X

λ¼TE;TM

X
l≥0

0
Z

d2kk
ð2πÞ2

× ln½1 − rð21Þλ ðiξlÞrð23Þλ ðiξlÞe−2aql �; ðA15Þ

where ql ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ ϵ2ðiξlÞξ2l

q
. The Casimir force is

given by

FCas ¼ −
∂FCas

∂a

¼ −2T
X

λ¼TE;TM

X
l≥0

0
Z

d2kk
ð2πÞ2

×

�
rð21Þλ ðiξlÞrð23Þλ ðiξlÞe−2aqlql
1 − rð21Þλ ðiξlÞrð23Þλ ðiξlÞe−2aql

	
: ðA16Þ

This is the Lifshitz formula [48,49] for the Casimir force
at finite temperature with general dielectric constants.
We can also obtain the formula for the case of multiple
layers [87–89].

FIG. 9. The layers 1, 2, and 3 are assumed to have dielectric
constants of ϵ1, ϵ2, and ϵ3, respectively. The leftmost and
rightmost regions are assumed to be the vacuum.
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