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We propose a new framework for quantum field theory (QFT) studies that allows us to represent field
excitations as quantum channels. We demonstrate the inner workings of the proposed scheme for three
universal states: a regularized vacuum state, a thermal state of a one-dimensional QFT system, and the lattice-
regulated thermofield double state of two identical free QFTs. We investigate the actions of unitary and
nonunitary bosonic Gaussian channels (including Petz recovery maps). To evaluate and quantify the character
of the channel static action and channel-induced dynamics, we calculate quantum entropies and fidelities.
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I. INTRODUCTION

Gaussian states, although elements of infinite-
dimensional Hilbert spaces, can be expressed in terms of
finite-dimensional mathematical objects: a covariance matrix
and a vector of first moments that together contain all the
information about the system [1,2]. Such a description of
complex systems in terms of numerable quantities allows us
to study universal quantum information features of states that
possess direct relevance for holography. This valuable
connection between Gaussian quantum information (QI)
and holography was already explored in [3], in which the
authors simulated the growth of entanglement entropy and
complexity for the thermofield double state (TFD).
To analyze the dynamics in quantum field theories

(QFTs), as well as in holography, it is necessary to consider
excitations. These have been investigated in the context of
quantum quenches in conformal field theories (CFTs) [4,5]
and their holographic duals [6–9]. From the QI perspective,
we can treat excitations as quantum channels. Accordingly,
the main objective of this work is to take such an opera-
tional approach and examine situations where quantum
channels are applied to regularized free QFTs.
We implement our idea for three specific cases: a vacuum

state, a thermal state of QFT, and a TFD state of two identical
copies of QFT. We regularize these states on a lattice and
cast them into the framework of bosonic Gaussian QI [10].
We can then apply various bosonic Gaussian channels to
systems under consideration. We put special emphasis on
Petz recovery maps [11–13], which play a significant role in

the entanglement wedge reconstruction and in resolutions
of the black hole information paradox [14–16]. To determine
the effect of quantum channels, we calculate von Neumann
entropy, Rényi entropy, and fidelity. We observe how they
change after the application of a channel in both time-
independent and time-dependent settings. By interpreting
these results, we hope to understand excitations in QFTs
from the QI operational perspective.
The outline of the work is presented below.
The methods and methodology in Sec. II introduce all

the necessary notions, concepts, and tools that together
constitute a novel framework established in this work. The
introduction to bosonic Gaussian channels (Sec. II A),
description of used states and their evolution (Sec. II B),
channel application for field theories in the continuum limit
(Sec. II C), as well as simulations technical summary
(Sec. II D) are all included here.
The results in Sec. III provide details of conducted

numerical experiments that validate the presented frame-
work and explain the features of it both in the time
independent (Sec. III A) as well as in time-dependent
settings (Sec. III B).
The discussion in Sec. IV puts our work in the context of

previous findings and highlights new insights (Sec. IVA). It
offers further context about particular selections of boun-
dary conditions (see Sec. IV B) and the standardization
process (refer to Sec. IV C). Moreover, it also establishes
the first step towards an extension of the existing frame-
work to an even more generalized approach (Sec. IV D).
Finally, we conclude all the developments and findings

in Sec. V.

II. METHODS AND METHODOLOGY

To start, we explain the fundamentals of a bosonic
Gaussian QI framework and demonstrate what types of
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channels can be applied and how they can be applied (see
Sec. II A). As a next step, we introduce the three states: a
vacuum state and a thermal of QFT and a TFD state of
two identical copies of QFT that we study throughout the
paper—we start from the field theory level and go all the
way to the discretization of the states and describing them
in the bosonic Gaussian QI language (see Sec. II B).
Afterwards, we introduce a necessary standardization
procedure that allows us to investigate channel actions in
the continuum limit (see Sec. II C). For completeness, we
provide a technical summary (see Sec. II D) of all the steps
needed to achieve the results to follow in Sec. III.

A. Channels in a bosonic Gaussian quantum
information framework

To begin with, we explain fundamentals of a bosonic
Quassian QI framework with special emphasis on channels
formalism. We introduce the notation and notions of a
covariance matrix and a vector of first moments, then we
provide details how channel operation alters the state of a
quantum system represented in the studied framework
outlining a few examples of unitary and nonunitary
quantum channels. Last but not least, we explain how to
describe subsystems and operations acting locally.
Consider a n bosons quantum system, for which we

define a canonical operators vector:

r ¼ ðx̂1; p̂1; x̂2; p̂2;…:; x̂n; p̂nÞ; ð1Þ

where x̂i and p̂i are canonical operators associated with
boson i.
Then, in the unit system we employ (ℏ ¼ c ¼ kB ¼ 1),

and the commutation relations can be expressed as
½r; rT � ¼ iJ, where

J ¼ ⨁
n

j¼1

J1; with J1 ¼
�

0 1

−1 0

�
: ð2Þ

As a consequence of Wick’s theorem [17], if a quantum
state with a density matrix ρ is Gaussian, then it is fully
characterized by its vector of first moments sρ and its
covariance matrix Vρ defined as follows:

sρ ≡ hriρ ¼ Tr½rρ�;
Vρ ≡ hfr − sρ; rT − sTρgiρ ¼ Tr½fr − sρ; rT − sTρgρ�: ð3Þ

Consequently, we can express any Gaussian bosonic
quantum channel by two 2n × 2n matrices X and Y, which
act on the state in the following way [18]:

s ↦ Xs;

V ↦ XVX⊤ þ Y: ð4Þ

For a channel to be a valid quantum operation (i.e.,
completely positive trace-preserving map) X, Y must satisfy

Y þ iJ ≥ iXJX⊤: ð5Þ

We examine following bosonic Gaussian channels (see
Table I): nonunitary [18]—classical mixing channels that
incoherently add some noise to the system, attenuator, and
amplification channels characterizing the state’s interaction
with the thermal environment; unitary [2]—beam splitter
channels representing the action of a transformation
exp ½θðâ†b̂ − âb̂†Þ� and squeezing channels describing
the transformation: exp ½rðâ b̂−â†b̂†Þ=2�.
We also study the class of Petz recovery maps which

reverse an action of a general bosonic [19] quantum
channel N acting on σ. Their form is given by [20]

XP≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IþðVσJÞ−2

q
VσXT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IþðJVN ðσÞÞ−2

q �−1
V−1
N ðσÞ;

YP≡Vσ −XPVN ðσÞXT
P; where

VN ðσÞ ¼XVσXT þY: ð6Þ

TABLE I. Overview of the considered bosonic Gaussian channels. For each of the channels we specify: defining matrices X and Y, the
range of used parameters and the number of lattice sites affected. For the classical mixing channel, for the remainder of our
considerations, the Y matrix is normalized to be of unit norm unless explicitly stated otherwise. Z ¼ diagð1;−1Þ.
Name X Y Parameters Number of sites affected

Classical mixing channel I ≥ 0 Y a random matrix Any ≥ 1
Attenuator channel cos θI2 ðsin θÞ2nthI2 θ ∈ ½0; 2πÞ; nth ≥ 1 1

Amplification channel cosh rI2 ðsinh rÞ2nthI2 r ∈ ½0;∞Þ; nth ≥ 1 1

Beam splitter channel
� ffiffiffi

τ
p

I2
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
I2

−
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
I2

ffiffiffi
τ

p
I2

�
0 τ ¼ cos2 θ ∈ ½0; 1�; θ ∈ ½0; 2πÞ 2

Squeezing channel
�
cosh rI2 sinh rZ
sinh rZ cosh rI2

�
0 r ∈ R 2
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Such a unique linear map Pσ;N exists for any σ and N
s.t. N ðσÞ is a faithful state, i.e., it satisfies the following
relation:

VN ðσÞ þ iJ > 0: ð7Þ

Presented channels are instantiations of completely
positive trace preserving maps. Their action is equivalent,
via a Gaussian Stinespring dilation [18], to an application
of a Gaussian unitary operator acting on an extended
system followed by a process of tracing out the appended
environment. For example, in the case of attenuator and
amplification channels the environment is a Gibbs thermal
state with an average number of excitations equal to
N ¼ ðnth − 1Þ=2. Since N can be calculated using Bose
statistics, the nth parameter is directly related to the
temperature and the frequency of the environmental state
as follows: ðnth − 1Þ=2 ¼ N ¼ 1=ðeβω − 1Þ [18].
Last but not least, we can express unitary time evolution

operators as bosonic Gaussian quantum channels. From the
technical perspective it is a crucial point since this enables
us to consider the Hamiltonian dynamics intercepted with
localized in time channel applications (see Table I) while
working solely in a Gaussian QI framework. In conse-
quence, we can explore dynamics of not only pure but also
mixed states of regularized QFTs.

1. Subsystems description

Presented framework, by construction, also encom-
passes a possibility to study the system not only on a
global scale but also on a subsystem level which becomes
instrumental when investigating the local disturbances
in QFTs.
Let us assume that we want to divide a whole system of

n ¼ aþ b bosons into two subsystems A and B consisting
of a and b bosons, respectively. Without loss of generality,
we further impose that indices from 1 to 2a correspond
to the subsystem A. Then, the covariance matrix of the
subsystem A is just the top-left part of the covariance matrix
of the whole system. Mathematically, we have

VA
ij ¼ TrAðρA½ci; cj�Þ i; j ¼ 1;…; 2a;

¼ TrAðTrBðρÞ½ci; cj�Þ ¼ TrAðTrBðρ½ci; cj�ÞÞ;
¼ Trðρ½ci; cj�Þ ¼ Vi;j; ð8Þ

where ci is the ith canonical operator. In this calculation, it
was possible to take ½ci; cj� under the trace over B because
these canonical operators act only on the subsystem A.

2. Local vs global channel action

Having obtained the information about the subsystem,
now, we would like to act with a bosonic operation
exclusively on the extracted state. Consider the system

consisting of two subsystems A and B described by their
vectors of first moments and covariance matrices:

sin ¼
�
sA
sB

�
; V in ¼

�
VA VAB

V⊤
AB VB

�
: ð9Þ

If we apply a channel locally on the subsystem A, then it
will affect not only the part of the matrix corresponding to
subsystem A. The result of applying a channel defined by X
and Y on the subsystem A is

sout¼
�
XsA
sB

�
; Vout¼

�
XVAX⊤þY XVAB

V⊤
ABX

⊤ VB

�
: ð10Þ

Hence, such a channel also influences the off-diagonal
cross terms that define correlations between subsystems A
and B.
More details of how to obtain numerical values of entropy

and fidelity for a Bosonic state written in the covariance
matrix formalism are presented in the Appendix.

B. Investigated states

In the following, we introduce states of interest and
describe how to rewrite them into the language of bosonic
Gaussian QI. These are a vacuum state and a thermal state
of free QFT1þ1 [21] (which we also refer to as 1D harmonic
chain) and TFD of two entangled copies of free QFT1þ1. In
holographic CFTs, these states correspond to empty space-
time, to a black hole, and to two wormhole-connected black
holes [6,22], respectively.
The first step is to regularize the Hamiltonian of the field

theory (Sec. II B 1) and then the second step is to induce
out-of-equilibrium dynamics to the system (Sec. II B 2).

1. Field theory regularization

In this article, we consider free field theories with the
following Hamiltonian:

H ¼
Z

L=2

−L=2
dx

�
1

2
πðxÞ2 þ 1

2
m2ϕðxÞ2 þ 1

2
ð∂xϕðxÞÞ2

�
;

ð11Þ

where ϕ is the field variable, π is the conjugate momentum
variable, andm denotes the free mass of the field [23]. It is a
QFT living in one temporal and one spatial dimension with
size L and with periodic boundary conditions (more details
regarding the choice of boundary conditions can be found
in Sec. IV B). To make the problem tractable numerically
we introduce a regularization (the regularization procedure
closely follows [3]) of the field by introducing a spatial
lattice [24]. Let us assume that the lattice consists of N
sites. Then the lattice spacing becomes δ ¼ L

N. For such a
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discretized version of the chosen QFT the Hamiltonian
becomes

H ¼
XN
i¼1

�
δ

2
P2
i þ

m2

2δ
Q2

i þ
1

2δ3
ðQi −Qiþ1Þ2

�
; ð12Þ

where Qi ¼ ϕðxiÞδ and Pi ¼ πðxiÞ.
We further implement real discrete Fourier transform that

allows us to rewrite the Hamiltonian in the momentum
basis as

H ¼
XN
n¼1

�
P̂2
n

2M
þ 1

2
Mω2

nQ̂
2
n

�
; ð13Þ

where

Q̂n¼
Q̃nþQ̃N−nffiffiffi

2
p ; P̂n¼

P̃nþ P̃N−nffiffiffi
2

p ;

Q̂N−n¼
Q̃n−Q̃N−nffiffiffi

2
p

i
; P̂N−n¼

P̃n− P̃N−nffiffiffi
2

p
i

;

Q̃n¼
1ffiffiffiffi
N

p
XN
a¼1

ei2πnaQa; P̃n¼
1ffiffiffiffi
N

p
XN
a¼1

ei2πnaPa ð14Þ

and M ¼ 1
δ becomes the effective mass of the system while

ωn ¼
�
m2 þ 4δ−2 sin2

πn
N

�
1=2

: ð15Þ

We see that in the Fourier-transformed basis the
Hamiltonian becomes a sum of decoupled Hamiltonians
of harmonic oscillators each with its own natural
frequency ωn. It is straightforward to calculate the time
evolution of any state in such a form since we simply just
let each of the modes to time evolve with its own frequency.

2. Dynamics—out of equilibrium time evolution

In this section, we explain in more detail how we treat
the case of a time-dependent setup. Since evolution of QI
measures in nonequilibrium dynamics settings is of much
importance to the field [25–31] we also consider such
dynamics in our work.
If t0 is the time of the quench application and the

Hamiltonian transitions from H0 to H1, then we can
characterize the evolution of the state as follows:

jψðtÞi ¼
�
e−iH1ðt−t0Þjψðt0Þi for t ≥ t0

e−iH0ðt−t0Þjψðt0Þi for t < t0
: ð16Þ

We implement a global quench for the 1D harmonic
chain system by rescaling all the frequencies of the normal
modes of the field:

ωn ¼ α ·

�
m2 þ 4δ−2 sin2

πn
N

�
1=2

ð17Þ

by some universal constant factor α. In this study, we
primarily focus on the application of local quantum
channels. As such, we anticipate the evolution of entropy
in our system to exhibit universal behavior, irrespective of
the specific quench protocol employed. This assertion
aligns with the findings of [31–34], who report similar
universal behavior after a global quantum quench in 1D
free lattice models and free scalar field theory. Nonetheless,
this is an emerging field of study, and concrete assertions
regarding the universality of entropy evolution require
substantiation from CFT calculations, which we earmark
as a potential avenue for subsequent research.
To impose global quench for the TFD state (written in the

form of energy eigenmodes jEni decomposition):

jTFDðtL; tRÞi

¼ 1ffiffiffiffiffiffi
Zβ

p X
n

e−βEn=2e−iEnðtLþtRÞjEniLjEniR; ð18Þ

we choose tL ¼ tR ¼ t (the equilibrium situation would be
represented by the choice tL ¼ −tR ¼ t [35,36]). Zβ is the
canonical partition function of the system.

C. Channels standardization procedure

The goal of the article is to combine the language of
quantum channels with the language of field theories. That
is why we would like to have the possibility to describe the
channel action in the continuum limit.
In the following, we explain the obstacles that are

encountered while evaluating actions of channels in the
limit of infinitely many lattice sites, i.e., N → ∞ and how
they can be circumvented with the standardization pro-
cedure we propose. We demonstrate the problem and its
resolution on the example of a vacuum state of the 1D
harmonic chain system.
We measure von Neumman entropy and Rényi entropy

for the whole system of the 1D harmonic chain after the
channel application. We also calculate the fidelity between
the excited state and the initial state of the full-length chain.
We perform this analysis for all channels introduced
in Sec. II A. We observe (see Fig. 1) that for nonunitary
channels von Neumann entropy [Fig. 1(a)] as well as the
Rényi entropy [Fig. 1(c)] diverge logarithmically with N
increasing as we apply the same channel on one particular
site in the chain. Whereas, fidelity with respect to the
original state for nonunitary channels approaches 0 as
N → ∞ [Fig. 1(e)].
On the other hand, for unitary bosonic Gaussian chan-

nels, we notice very different trends. The evaluated entro-
pies stay constant and equal to zero directly because of the
unitarity property. Unitary channels do not mix the state
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and the state is initially pure. For the fidelity, we observe
constant values with respect toN. This analysis allows us to
conclude that nonunitary channels as opposed to unitary
channels require modifications in order to obtain conver-
gent continuum limit results.
We present a standardization of nonunitary Gaussian

channels in the following form:

XN ¼ 1

logðNÞ · X þ
�
1 −

1

logðNÞ
�
I;

YN ¼ Y
N
: ð19Þ

For this particular proposal XN → I and YN → 0, as
N → ∞. This resolution is motivated by the fact that the
norm of the covariance matrix is invariant with respect
to N. Hence, YN should scale in such a way that its norm
should be proportional to the norm of the subsystem it acts
upon. For this choice of YN , the condition,

Y þ iJ ≥ iXJX⊤; ð20Þ

which each channel must satisfy, restricts the limit value of
XN . We choose X∞ ¼ I. The scaling factors for XN series,
for growing N, are changing slower as for the case of YN
series. This choice ensures that X part of the channel has a
nonzero effect in the continuum limit.

Such a choice of standardization procedure for
nonunitary bosonic Gaussian channels (justified further
in Sec. IV C) guarantees well-defined, nontrivial effect on a
state in the field theory limit as follows from the analysis of
plots Figs. 1(b), 1(d), and 1(f) for which we observe rapid
and stable convergence.

D. Simulations technical summary

The goal of this section is to describe all the technical
steps of simulations performed in order to obtain the
results presented in Sec. II D. The necessary points are in
direct correspondence with the previous subsections
of Sec. II.
In Sec. II A, we discussed various nonunitary and

unitary bosonic Gaussian quantum channels. In the
remainder of the paper, we focus solely on the classical
mixing channel. We chose this channel because nonuni-
tary channels have not been considered in the context of
QFTs before. Moreover, one of the parameters of this
channel is the number of lattice sites (modes) it can
affect. Hence, we can study both the pointwise channel
action as well as one with spatial extent for this particular
channel.
In Sec. II B, we presented states that we chose for further

investigations because of their universality and importance
for holography. In Sec. III, we always say with which state
we will be working and why.

FIG. 1. Figure presents how von Neumann entropy (a),(b), Rényi entropy (c),(d), and fidelity (e),(f) change after the channel
application—their values are plotted as functions of the number of lattice sites N. Plots (a), (c), (e) show the results before the
standardization of nonunitary Gaussian channels and (b), (d), (f) after the undertaken procedure. We observe that the standardization
process fixes the convergence issues and allows us to define an action of nonunitary Gaussian channel in the continuum limit. The
plots are obtained for m ¼ 0.001=L and Rényi entropy of order 5. We calculate the entropies and fidelities for the full length
harmonic 1D chain.
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In Sec. II C, we established a standardization procedure
that allows us to work in the continuum limit. We always
employ this procedure for each of the experiments.
We have already discussed what channel and which

states we take into consideration. Let us now explain how
we investigate the chosen systems.
For the static case, before the channel application,

we measure the QI measures using formulas from the
Appendix applied to the covariance matrix (for more
details see Sec. II A) of the state of interest. To calculate
the needed covariance matrix we employ the Fourier-
transformed basis (14) in which the Hamiltonian is
diagonal. Then we decide whether we want to apply
the channel globally or locally (this step is explained
in Sec. II A 2) and if locally then where in the system.
After the channel application [defined by Eq. (4)] we
once again calculate QI measures of interest and compare
them against each other.
For the dynamic case, the difference is that we also take

into account the nonequilibrium time evolution of the
system. Details of chosen dynamics are presented in the
Sec. II B 2. The updated Hamiltonian that governs
the chosen global quench dynamics is also diagonal in
the chosen Fourier-transformed basis (14), hence the time-
evolution boils down to matrix multiplication.
In the following simulations, the chain (lattice) is

composed of N sites (2N for a TFD state). Periodic
boundary conditions are imposed. Further adjustable
parameters of the setup are the mass of the field m, the
inverse temperature β, the circumference L of the region on
which the field is defined, and the parameters defining the
form of employed channels (see Table I).

III. RESULTS

In Sec. II, we chose the bosonic Gaussian quantum
information framework as a common ground between
quantum channels theory and complex many-body systems
theory. As a direct consequence, we are able to investigate
the properties of the excitation introduced to chain and
lattice coupled systems. Moreover, because of the

established well-defined behavior in the case of the number
of chain and lattice sites going to infinity, we can under-
stand what channel action means for the continuous
systems. We quantify the excitation characteristics utilizing
the notion of entanglement entropy which measures the
spread in the Hilbert space of a quantum system between
the two subsystems—one for which the excitation was
introduced and the other that remains in its initial state.
Recently, unitary Gaussian channels, which do not

require the standardization procedure, were studied in
the language of quantum field theories [37,38]. Hence,
in the remaining part of this paper, motivated to broaden
the scope of applicability of quantum channels, we focus
on nonunitary Gaussian channels. For concreteness and
because of the possibility of applying this channel to
arbitrary number of modes, we investigate an operational
meaning of a classical mixing channel.
We investigate the action of this channel using three

different states that we refer to as the 1D harmonic chain
system vacuum and the thermal and the TFD state, all of
which were introduced in Sec. II.
We additionally choose when to use either time-

dependent or time-independent settings.
In the following, we evaluate, using motivated quantum

information measures, first how quantum channel affects
the state itself studying the time-independent scenarios and,
second, what dynamics it induces on top of the standard
quantum mechanical time evolution of the system.

A. Static channel action

To start, we study how an application of a channel
changes the state of a system in a time-independent setting.

1. Strength of the channel analysis

First, we examine how an action of a single-mode
classical mixing channel depends on the norm of its Y1

matrix (Fig. 2) in the case of a vacuum state of 1D harmonic
chain system. It means that we consider a channel that
affects only one spatial site of the discretized system before
we take the continuum limit. Hence, in the limit of

FIG. 2. Figure presents how von Neumann entropy (a), fidelity (b), and energy (c) of the whole 1D harmonic chain system in a vacuum
state changes after the application of classical mixing channel with varying norm. The dependencies are demonstrated for five random
instantiations of a Y matrix. m ¼ 0.001=L and N ¼ 501.
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infinitely many sites this becomes a pointlike excitation
without any spatial extent. As an additional explanation,
the norm of the classical mixing channel Y1 directly
corresponds to the amount of random uncorrelated
information introduced into the system. This information
can be viewed as created quasiparticles that distribute
across the system. From this perspective, the norm of the
channel defining the strength of the excitation corre-
sponds directly to the number of quasiparticles created.
Last but not least, the action of the classical mixing
channel is fully determined by its Y1 matrix, hence it is
the parameter that has to be tweaked in order to under-
stand the spectrum of possible excitations caused by this
type of channel.
We see (Fig. 2) that von Neumann entropy of the full

length 1D harmonic chain exhibits a nonlinear growth
relation with respect to log10ðnormÞ with the increase rate
advancing around norm ¼ 1. A similar breaking point for
the derivative is obtained for the fidelity plot. The amount
of disorder measured by the entanglement entropy and the
amount of similarity to the initial state measured by
fidelity are two independent indicators reflecting the level
of deviation of the disturbed state from the initial state.
The threshold above which these two show a significant
change happens at norm ¼ 1. This is the point at which
the entries of the YN matrix are of the same order of
magnitude as the entries to the covariance matrix of the
system. Remember that both the matrix elements of the
YN matrix as well as the matrix elements of the covariance
matrix are reduced in magnitude with growing number
of sites N. Hence, the channel matrix has to be compa-
rable to the quadrature elements of a single site of the
lattice it acts upon to produce an effect visible globally
in the system.
Last, for the energy-norm graph, we obtain a linear

trend on the log-log scale. Since the slope of these lines is
exactly 1, we establish a captivating relation that the energy
added by the classical mixing channel scales linearly with
the norm. This is related to the fact that each single site in
the lattice is treated as a simple harmonic oscillator that is
coupled to the rest of the system. Its energy is directly
proportional to the quadrature position and momentum
elements expressed by the covariance matrix, hence boost-
ing up these quadrature terms, causes the energy to grow
with the same scaling.

2. Massless field limit

Second, we analyze the action of a classical mixing
channel on a thermal state of a 1D harmonic chain system
in the limit of vanishing mass of the field, m → 0. We
cannot by brute force set the mass to vanish since the terms
in the covariance matrix capturing the whole information
about the system are inversely proportional in magnitude to
that parameter. That causes the norm of the covariance
matrix to diverge as m approaches 0.

As a result, for achieving clear-cut outcomes, it is
essential that we evaluate our selected quantum information
measures based on their relative changes rather than
focusing on their absolute values.
Furthermore, we have to introduce additional regulari-

zation of the Y matrix describing the strength of the
excitation caused by the classical mixing channel. We
impose that YN;m ¼ Y1

m2·N as a one possible regularization
choice. For such a regularization, we obtain convergence of
the relative change in the entropy of a thermal state of a 1D
harmonic chain system (see Fig. 3).
We have already established the way of defining the

action of classical mixing channel in the continuum limit.
Combined with this result, we demonstrate a procedure that
allows us to obtain parameter invariant results that reflect
the exact characteristics of CFTs. This establishes a
framework that allows for direct verification of hypotheses
and arguments using theoretical approaches that have to
resort to approximations. Not only does it allow us to
challenge results obtained theoretically, but it provides a
systematic method of quantifying which approximations
have the most impact on the final result.

B. Dynamics of quantum information

In the previous subsection, we focused on the static
action of the channel. We analyzed the properties of the
excitation formed by carefully inspecting the state before
and after channel application. What remains to be under-
stood is how the time dynamics of the state are influenced
by such an excitation. How does the excitation propagate,
what long-term effect we get when we try to undo a
disturbance—these are research questions we address in
this section.

FIG. 3. Figure shows the relative change in the entropy of a
thermal state of a 1D harmonic chain system after the application
of a classical mixing channel (introduced on one site of the
lattice) as a function of scalar mass of the field. In the CFT limit
we obtain a well-defined nonzero value of the measured change.
N ¼ 501, L ¼ 1, β ¼ 75, and jjY1jj ¼ 50.
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1. Quasiparticle picture

To begin with, we evaluate the dynamics of quantum
information in the context of a 1D harmonic chain system
in a vacuum state with the evolution disturbed by a classical
mixing channel. We examine how von Neumann entropy of
an interval of length l ¼ 0.1L varies in time (see Fig. 4).
This evolution is perturbed, at t ¼ 0, by classical mixing
noise in a distance d from the interval of interest. At first,
the entanglement entropy increases linearly and then
saturates at a level proportional to the size of the subsystem
l [31]. In addition, we notice that for all the values of d the
calculated relative change in von Neumann entropy satu-
rates at the same value, thereby respecting the translation
symmetry of the system. Later on, the entanglement
entropy offsets when the lattice excitation induced by
the channel arrives at the considered interval. We observe
that for equally spaced values of d the entropy elevates at
equally spaced moments in time. This phenomenon is
consistent with the quasiparticle picture, which was intro-
duced to understand the entanglement spreading in TFD
states [3–5]. In such a framework, we treat quasiparticles as
excitations of the Hamiltonian normal modes spreading
across the system at constant velocities vn that, in the
continuum limit N → ∞, are given by

vn ¼
L
2π

∂

∂n
ð lim
N→∞

ωnÞ: ð21Þ

To obtain the velocity of the forefront of the disturbance
we maximize vn with respect to n, and get vmax ¼ α.
Therefore, in our case, vmax ¼ α ¼ 2, which is in agree-

ment with results in Fig. 4. Hence, we conclude that the

aforementioned analysis provides a strong indication that
excitations caused by a classical mixing channel (as well as
possibly by other nonunitary and unitary Gaussian chan-
nels) can be described in the quasiparticle framework.

2. Long-term effect of Petz recovery map

To invoke more complicated time evolution dynamics,
we refer to the TFD state. It consists of two QFTs entangled
with each other, hence the state is defined not only by the
state of each of the QFTs but also by the entanglement
interconnections between them which cause the correla-
tions to appear in such a setup. For the sake of simplicity let
us call the marginal QFTs states left and right.
Let us consider the following scenario. We measure,

during the time evolution, the entanglement entropy of a
subsystem consisting of an interval of length l on the left
side of TFD and of the corresponding interval of length l on
the right side. The characteristics of such a subsystem are
defined by the entanglement interaction between the two
sides of the TFD. Specifically, we study the entanglement
entropy growth in the setting of free evolution [3] and the
evolution disturbed at t ¼ 0.06 by the classical mixing
channel applied on the whole left side of TFD and
immediately followed by Petz recovery map perturbation
also applied to whole left side (see Fig. 5). Such a
combination of channels leaves both sides of the TFD
state unchanged, however, it modifies the cross terms
of covariance matrix defining the entanglement between
the interconnected regularized QFTs. Namely, the

FIG. 5. Figure presents the entanglement entropy growth for
the free evolution (circles) and the evolution abruptly perturbed
(diamonds) at t ¼ 0.06 by a classical mixing channel affecting all
the sites on the left of the TFD state promptly succeeded by Petz
recovery map corresponding to the introduced noise. We calcu-
late the difference in von Neumann entropy with respect to the
initial state for the subsystem consisting of two identical intervals
one on each side of TFD, both of length l (different l values are
represented by different colors in the plot). We normalize this
quantity by the entropy Sth of a corresponding thermal state of
size N. m ¼ 0.001=L, β ¼ 0.01L, 2N ¼ 1002, and jjY1jj ¼ 50.

FIG. 4. Figure presents the evolution in time of von Neumann
entropy of an interval of length l ¼ 0.1L of a vacuum state of a
1D harmonic chain system. This evolution is disturbed by
introducing classical mixing noise at t ¼ 0 in a distance d from
the chosen interval. A classical mixing channel acts on a single
lattice site. Dashed vertical lines indicate when the excitations
of the system caused by the perturbation reach the interval of
interest. m ¼ 0.001=L, N ¼ 201, quench factor α ¼ 2.0 and
jjY1jj ¼ 50.
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restrictions of this state either to the left or to the right side,
obtained via a trace operation, are not altered; however, the
correlations between canonical operators from different
sides are modified.
As one of the main findings of this work, we discover

that, after such a procedure, the entanglement entropy still
saturates at the same level; however, immediately after the
operation, it takes a value in proximity to the plateau, which
indicates that the system has thermalized. Hence, in the
long run no sign of introduced channel action prevails. The
long-term effect of the Petz recovery map is to perfectly
recover the system, although the entanglement terms were
altered. This alteration manifests itself only just after the
channel application via faster thermalization, but the final
effect is the same.

IV. DISCUSSION

A. Related work and results importance

1. Context and background for this work

Quantum information theory has become an extensive
toolkit for modern mathematical and theoretical physics.
One of its inherent features is its operational character that
allows gaining new perspectives on scenarios previously
only discussed using nonoperational theories. A recent
summary of progress of applying QIT methods to QFT
domain (see [39]) discusses how entanglement entropy,
information spreading and the role of information are
indispensable in ongoing investigations. An article [32]
takes it one step further and analyzes how and why Rényi
entropies, modular minimal entropy and entanglement
wedge are essential concepts for AdS=CFT and holo-
graphic duality studies.
Behavior of quantum information measures has

already been studied in nonequilibrium quantum dynamics
settings [25–31] as well as in the context of holography [3].
These advances directly fall into the category of utilizing
QIT ideas to gain new understanding of previously estab-
lished concepts.
Moreover, not only have quantum information measures

been used but also operations and transformations native
to QIT have been introduced with great success to
holography studies, particularly in the entanglement wedge
reconstruction and in resolutions of the black hole infor-
mation paradox [14–16].
There was, however, still an unexplored territory

regarding understanding what role quantum channels
can play in QFT, CFT, and holography. Both the methods
and means of evaluating information dynamics have been
previously established but eventually only this work
created a suitable framework to determine what it would
mean to apply a channel to a field theory: whether it might
be treated as an excitation, if yes of what kind and
characteristics and what information dynamics it causes
in the system. Hence, the key player of this work is a

quantum channel, especially a bosonic Gaussian channel;
this action has not been previously discussed in QFT,
CFT, neither in holography context.

2. New findings and created insights

Summarizing our efforts: as our model systems, we
investigated a vacuum and a thermal state of a 1D QFT and
a thermofield double state that are universal and play a
significant role in many-body physics and holography
studies. We analyzed and quantified actions of bosonic
Gaussian channels and their Petz recovery maps for the
proposed states both in a time-dependent and a time-
independent setting. We considered unitary and nonunitary
bosonic Gaussian channels with emphasis put on a classical
mixing channel.
All of the above leads to the creation of a new QI

framework that allows studying quantum channels as
excitations in QFT and CFT. Although, as outlined in
Sec. IVA 1, efforts to combine QI and QFT studies are
ubiquitous; quantum channels operations were never inves-
tigated in the context present in this work. The novelty of
the framework was to find the common ground in the form
of bosonic Gaussian QI that combines the operational
character of QI and continuous character of field theories.
Proposing such a framework is already a significant
addition to the field since it enables research at an
intersection not yet explored.
The framework allows for the following: first, one can

apply any bosonic Gaussian channel in the form of a
pointlike excitation, as well as an excitation with spatial
extent, to any field theory of their choice, including
conformal field theories; second, it is possible to quantify
and evaluate the action of the introduced channel excitation
using quantum information measures such as Von Neumann
entanglement entropy, Rényi entanglement entropy, and
fidelity; last, one might determine the dynamics of induced
quantum information in the setup of their choice where such
dynamic has already been verified to be in agreement with
previously established models and understanding.

B. Impact of boundary conditions

Throughout this paper, our primary focus has been on
systems with periodic boundary conditions, also referred
to as von Neumann boundary conditions. This choice, as
opposed to the alternative of employing Dirichlet boundary
conditions, was driven by the profound implications that
these boundary conditions have on the topology, symmetry,
and quantum field theory (QFT) properties of the system.
Periodic boundary conditions, which render the system

topologically equivalent to a circle (in 1D) or a torus
(in 2D), simplify the analysis due to inherent symmetries.
This leads to more manageable mathematical formulations
and unveils intriguing topological phenomena.
Unlike Dirichlet boundary conditions, periodic ones

do not introduce artificial boundaries, which can influence
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the system’s behavior. This is particularly relevant in
quantum information studies, where boundary effects can
significantly alter the system’s entanglement properties [40].
Moreover, especially for lattice QFTs, periodic boundary

conditions help minimize finite size effects, thereby provid-
ing a more accurate representation of infinite systems [41].
On the other hand, transitioning to Dirichlet boundary

conditions in a 1D harmonic chain would imply that the
field vanishes at the boundaries, effectively confining the
system [42]. This confinement leads to a more localized
response of a locally applied quantum channel, contrasting
with the unrestricted propagation of effects in the case of
periodic boundary conditions [43].
The imposition of Dirichlet boundary conditions can also

alter the spectral properties of the system [44]. For instance,
the presence of zero modes, which can lead to infrared
divergences in the case of periodic boundary conditions, is
avoided under Dirichlet boundary conditions. Consequently,
the further standardization procedure relative to the free mass
of the field, as detailed in Sec. III A 2, becomes unnecessary
with this choice of boundary conditions.
While the choice of boundary conditions can influence

the behavior of a system, our results remain largely
consistent across both Dirichlet and periodic boundary
conditions. The core findings of our study, as presented in
this paper, are not significantly affected by these changes.
This is in line with the findings of [45,46], who also
reported minimal influence of the boundary conditions on
the entanglement properties of 1D free lattice models and
2D CFTs, respectively.

C. Channel standardization procedure

The standardization procedure for nonunitary Gaussian
channels, as described in Sec. II C, is further justified when
we look at the wider context of quantum information theory
related to quantum channels.
In [47], the idea of partially degradable quantum

channels is introduced. Here, the output state of the channel
can simulate the degraded environment state. The quantum
capacity of a partially degradable channel is shown to be
additive. This suggests that our standardization procedure
could be seen as a kind of partial degradability.
Also, a survey [48] on quantum channel capacities gives

a full overview of the properties of quantum communica-
tion channels and the different capacity measures. Our
standardization procedure can be seen as a way to optimize
channel capacity. This is done by adjusting the scaling of
the operators XN and YN based on the number of lattice
sites N. This ensures that the action of the channel in the
continuum limit is well defined and nontrivial.

D. Characterization of classical mixing channel
in the density operator formalism

In this section, we indicate a possibility how one could
understand actions of quantum channels in QFTs from the

analytical perspective. This is the first step towards opening
a broad research avenue that we would like to only get a
grasp of here. That is because the focus of this paper was to
introduce the presented framework and demonstrate its
inner working by tangible numerical simulations.
Accordingly, let us consider here a simplistic setup and at

the end of this analysis we indicate how calculations and
reasoning have potential to be extended further to a much
broader class of systems.
Let us start with a single quantum harmonic oscillator

being in its ground state, i.e., σ ¼ j0ih0j. For this state,
we can easily calculate the covariance matrix before
and after the application of the classical mixing channel
(sσ ¼ 0 for j0i):

N ∶ Vσ0 ¼
�
1 0

0 1

�
↦ Vσ ¼

�
1 0

0 1

�
þ Y: ð22Þ

Operations on covariance matrices, although mathemati-
cally compact and convenient, leave us within the quantum
information finite systems framework. However, it is
possible to go back from this formalism to the operator
representation of the state via the following integral [18]:

σ ¼ 1

ð2πÞn
Z
R2n

dr e−
1
4
r⊤J⊤VσJrD̂r; ð23Þ

where D̂r ¼ eir
⊤Jr̂.

Following such a procedure, we can obtain the position
representation of the density operator for a vacuum state j0i
perturbed with the classical mixing channel (see Fig. 6). We
find that the coherences, i.e., the off-diagonal terms ρðx0; xÞ
such that x0 ≠ x are squeezed by the channel. The norm
of the state gets concentrated near the x ¼ x0 line for which
the density operator represents the classical probability of
finding the particle at the position x ¼ x0. In addition to the
compression effect, we note that after the channel appli-
cation, a nonzero phase appears across the whole state. The
action of other nonunitary channels also results in pressing
the state towards the x ¼ x0 line but does not introduce any

FIG. 6. Position representation of the density operator for a
vacuum state of a single simple harmonic oscillator before (a)
and after (b) the application of a classical mixing channel. The
brightness indicates the absolute value and color the phase of a
complex number at a given point.
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phase dependency across it. Analogous reasoning also
applies and was carried out for the TFD of two quantum
harmonic oscillators. Observed effects possess the same
qualitative characteristics as for a vacuum state but it is not
possible to visualize them in two dimensions.
It is crucial to note that the conducted analytical analysis

can be extended to an arbitrary number of quantum modes
in the system because the emerging integrals are of
Gaussian type and hence can be evaluated analytically
for arbitrarily high N. We believe that this analysis might
be a starting point for the analytical calculations in the
continuum limit which eventually we would like to reach
following the initiated research direction.

V. CONCLUSIONS

We have established a novel quantum information
framework that allows for systematic studies of excitations
in QFTs as quantum channels.
Moreover, we proposed a standardization of nonunitary

channels, hence providing a way to obtain well-defined
results in the field theory continuum limit.
We characterized the spectrum of possible excitations

induced by a channel by studying how the quantum
information measures change with the channel defining
parameters.
In addition to that, we presented an approach for quantify-

ing the action of a channel in the CFT limit ofm → 0. Hence,
we paved the way towards predicting the intrinsic CFT
quantities working in the proposed QI framework.
We studied, furthermore, the dynamics of excitations

caused by quantum channels proving their compatibility
with the quasiparticles picture.
Finally, we found that noise application followed by

immediate Petz recovery map does not pose any long-term
effects, it only causes the system to thermalize in a more
abrupt manner. Hence, the action of a channel can be
reversed also in the dynamical setting.
Our future goal is to understand physical meaning of

nonunitary bosonic Gaussian channels in the language of
CFT and also in the context of holography. We aim to
realize the introduced notions from a rigorous analytical
point of view, by taking a similar line of reasoning as
in [49]. We already indicate the key lines of reasoning to be
taken into account into that process in Sec. IV D.
We hope that the proposed operational framework will

become a tool in the systematic studies of excitations in
QFTs and CFTs.
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APPENDIX: BOSONIC GAUSSIAN QUANTUM
INFORMATION

Throughout the paper we refer to calculations of various
quantum information measures in the covariance matrix
formalism. We provide, here, the technical details of these
computations.

1. Von Neumann entropy

Consider the following function:

sðλÞ ¼
�
λþ 1

2

�
log

�
λþ 1

2

�
−
�
λ − 1

2

�
log

�
λ − 1

2

�
;

ðA1Þ

which is defined on ½1;∞Þ and takes values in the range
½0;∞Þ. Then von Neumann entropy of a n mode Gaussian
state ρðtÞ with a vector of first moments equal to 0 and a
covariance matrix VðtÞ is [3]

SðρðtÞÞ ¼ 1

2

X
i

sðjλijÞ; ðA2Þ

where

λis are eigenvalues of V1=2ðtÞðiJnÞV1=2ðtÞ: ðA3Þ

2. Rényi entropy

We define λis as in the case of Von Neumann entropy.
Then Rényi entropy of a n mode Gaussian state ρðtÞ with a
vector of first moments equal to 0 and a covariance
matrix VðtÞ is [3]

SqðρðtÞÞ ¼
1

2

X
i

sqðjλijÞ; ðA4Þ

where sq function is parametrized by a parameter q > 0 and
takes the following form:

sqðλÞ ¼
1

q − 1
log

�ðλþ 1Þq − ðλ − 1Þq
2q

	
: ðA5Þ

3. Fidelity

Fidelity is a measure of distance between two quantum
states and in the case of two Gaussian states ρ1 and ρ2 (each
of n bosons) with vectors of first moments equal to 0 and
covariance matrices V1 and V2 it can be expressed as [50]
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F ðρ1; ρ2Þ ¼ F 0ðV1; V2Þ; ðA6Þ

where

F 0ðV1; V2Þ ¼
Ftotffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det
h
V1þV2

2

i
4

r ;

F4
tot ¼ det

"
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ ðVauxJnÞ−2

4

r
þ I

!
Vaux

#
;

¼ det
h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I −W−2
aux

q
þ I
�
WauxiJn

i
; ðA7Þ

and

Vaux ¼ JTn

�
V1 þ V2

2

�
−1
�
Jn
4
þ V2

2
Jn

V1

2

�
;

Waux ≔ −2VauxiJn: ðA8Þ
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