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The explicit compact expression for the susceptibility tensor of a single photon wave packet on the
photon mass-shell is derived. It is assumed that the probe photon is hard, the tested photon is soft, and their
total energy is below the electron-positron pair creation threshold. It turns out that a single photon wave
packet can be regarded as a birefringent gyrotropic dispersive medium in the process of light-by-light
scattering. The explicit expression for the inclusive probability to record the probe photon in the process of
light-by-light scattering is obtained in the first nontrivial order of perturbation theory where the interference
effect of the free passed and scattered parts of the photon wave function dominates. This effect is of order α2

in contrast to the standard contribution to the light-by-light scattering cross section which is of order α4.
The possible nontrivial shapes of the wave functions of probe and tested photons are taken into account.
The evolution of the Stokes parameters of a probe photon is described. The change of the Stokes parameters
is rather large for hard probe photons and sufficiently intense beams of soft tested photons.
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I. INTRODUCTION

The study of the properties inherent to elementary
particles such as mass, spin, charges, magnetic and dipole
moments, and others is one of the fundamental problems of
physics. It was shown in the paper [1] that another such
characteristic of particles is their susceptibility. Staying in
line with traditions of classical physics, it appears at first
sight that the susceptibility is a property of a group of
particles or of particles with nontrivial internal structure.
Nevertheless, as was shown in [1], the susceptibility tensor
can be defined, evaluated, and measured experimentally for
the wave packet of a single electron. In the present paper,
we continue the investigation of susceptibilities of elemen-
tary particles and find the susceptibility tensor for the wave
packet of a single photon on the photon mass-shell.
The simplest way to calculate the susceptibility tensor of

a single photon wave packet could be in the use of the
Heisenberg-Euler Lagrangian [2–14]. This is the most
common method to describe the light-by-light scattering
process that allows one to obtain the effective susceptibility
of a beam of photons or of a macroscopic electromagnetic
field. However, in applying this procedure to the derivation
of the susceptibility tensor of a single photon, it is not

immediately clear what should be taken as a background
field since the average values of the electromagnetic field
operator over Fock states vanish. Another drawback of this
approach is that it implies the total energy of the probe and
tested photons is much less than the electron-positron pair
creation threshold and it is not applicable near this thresh-
old. It is known (see, e.g., [15]) that the light-by-light cross
section strongly depends on the energies of scattered
particles and it rapidly increases near the electron-positron
pair creation threshold. The second nonperturbative method
to find the susceptibility tensor is to employ the exact
expression for the photon polarization tensor on a strong
plane wave electromagnetic background [16–20]. This
approach is restricted to plane electromagnetic tested waves
and, as in the case of the Heisenberg-Euler effective action,
is not immediately applicable to a wave packet of a single
tested photon. Therefore, in the present paper we stick to
the standard perturbative approach for description of light-
by-light scattering [21–25] fully taking into account the
shapes of the wave functions of probe and tested photons.
By now there are papers where the influence of profiles

of the wave packets of scattered photons on various aspects
of the light-by-light scattering was studied [6–12,14,18–
20,26]. Nevertheless, as far as we known, the expression for
the susceptibility tensor of a single photon wave packet and
of a beam of photons of a general profile has not been found
in a closed and concise form. In the present paper we fill
this gap. Furthermore, we derive the explicit expression for
the inclusive probability to record a probe photon in the
light-by-light scattering taking into account the interference
of the free passed part of the probe photon wave function
with its scattered part. This interference effect stems from a
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change of the probe photon wave function in scattering on
an effective medium with susceptibility tensor of the tested
photon or of a beam of such photons. The inclusive
probability depends on the nontrivial structure of the states
of probe and tested photons. Under certain approximations,
the expression for this probability implies a simple equation
for evolution of the Stokes parameters of the probe photon
that generalizes the relations obtained in [27–31]. It turns
out that the evolution of the Stokes parameters of the probe
photon depends severely on the shape of its wave packet, in
particular, on the presence of imaginary part of the density
matrix of its state in the momentum space. Unpolarized
states of probe photons possessing the density matrix with
nonzero imaginary part become polarized as a result of
scattering on tested photons. The magnitude of the inter-
ference effect and, respectively, a change of the Stokes
parameters can be rather large for scattering of the hard
probe photon by a lengthy intense laser beam. This effect
can be observed on the existing and planned experimental
facilities provided the profile of the wave packet of a probe
photon and its polarization can be controlled [32–36].
The paper is organized as follows. In Sec. II, the general

formula for the inclusive probability to record a probe
photon scattered by a tested photon is given. Section III is
devoted to derivation of the concise explicit expression for
the susceptibility tensor of a single photon wave packet.
Here we also provide the estimates for the order of
magnitude of this quantity in different regimes. In the next
Sec. IV, we simplify the general expression for the inclusive
probability and describe the evolution of the Stokes
parameters of the probe photon. In Conclusion, we sum-
marize the results. Some calculations arising in evaluating
the inclusive probability are removed to Appendix A. In
Appendix B, we generalize the expression for the suscep-
tibility tensor of a single electron wave packet obtained in
[1] to a nonstationary case.
We follow the notation adopted in [1]. The Greek indices

α; β; ᾱ; β̄;… denote the quantum numbers of particle states.
TheGreekμ is the space-time index taking thevalues0; 3 and
the Latin i, j are the spatial indices. The Greek λ ¼ �1
specifies the circular polarization, whereas l; l0 ¼ f1; 2g are
for the linear polarization. The summation (integration) over
repeated indices is always understood unless otherwise
stated. We also suppose that the quantum states of particles
are normalized to unity in some sufficiently large volume V.
The complex conjugation is denoted by the bar over the
symbol. Furthermore, wherever it does not lead to misunder-
standing, we use the matrix notation. For example,

āa≡ āαaα ≡
X
α

āαaα;

d̄Dd≡ d̄ᾱDᾱαdα ¼
X
ᾱ;α

d̄ᾱDᾱαdα; etc: ð1Þ

The operators acting in the Fock space are denoted by letters
with carets. We use the system of units such that ℏ ¼ c ¼ 1

and e2 ¼ 4πα, where α is the fine structure constant. The
Minkowski metric is taken with the mostly minus signature.

II. GENERAL FORMULAS

Consider the process of an elastic scattering of a photon
by a photon in the leading nontrivial order of perturbation
theory. As the initial state of photons at t ¼ t1 → −∞, we
take the coherent state defined by the density matrix

R̂ph ¼ jdihd̄je−d̄d; ð2Þ

where dα is the complex amplitude of the coherent state at
the instant of time t1. We suppose that the quantum
numbers α contain the particle energy and

dα ¼ sα þ hα; ð3Þ

where sα describes the state of the laser beam comprised of
low energy photons and hα determines the state of hard
probe photons. Furthermore, we assume that the total
energy of any two photons from the state R̂ph is not
enough to create an electron-positron pair, i.e., s < 4m2.
The initial state of the whole system takes the form

R̂ ¼ R̂ph ⊗ j0ie−h0je− ⊗ j0ieþh0jeþ ; ð4Þ

where j0ie− is the vacuum state of electrons and j0ieþ is the
vacuum state of positrons.
In order to define the quantum measurement in the final

state at t ¼ t2 → þ∞, we introduce the projectors

ˆ̃ΠD ≔ 1 − Π̂D; Π̂D ≔ ∶ expð−ĉ†DĉÞ∶; ð5Þ

where D ¼ D† is the projector in the one-particle Hilbert
space and ĉ†α and ĉα are the creation and annihilation

operators for photons. The projector ˆ̃ΠD singles out the
states in the Fock space that contain at least one photon
with quantum numbers specified by the projector D due to
the fact that

ðDĉÞαΠ̂D ¼ Π̂Dðĉ†DÞα ¼ 0: ð6Þ

Then the inclusive probability to record a photon by the
detector at the instant of time t2 reads

PD¼SpðR̂Ût1;t2
ˆ̃ΠDÛt2;t1Þ¼SpðR̂ðt1ÞŜt1;t2 ˆ̃ΠDðt2ÞŜt2;t1Þ; ð7Þ

where

Dᾱαðt2Þ ¼ Dᾱαeiðk0ᾱ−k0αÞt2 ; ð8Þ

and R̂ðt1Þ has the form (2) and (4), where one should
substitute
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dα → dαðtÞjt¼0 ¼ dαeit1k0α : ð9Þ

In expression (7), we have also introduced the standard
notation for the evolution operator Ût2;t1 and the S-operator.
Further we assume that Dᾱα is diagonal with respect to

the photon energy and, consequently, Dᾱαðt2Þ ¼ Dᾱα.
Moreover, it is convenient to specify the form of the
complex amplitude dα at t ¼ 0 and not at the initial instant
of time t1. Then dα taken at the initial instant of time is
found by reversing formula (9). Henceforth, for brevity, we
denote the complex amplitude of the coherent state at the
instant of time t ¼ 0 as dα. Bearing this in mind and taking
the limits t2 → þ∞, t1 → −∞, we obtain

PD ¼ SpðR̂Ŝ† ˆ̃ΠDŜÞ; ð10Þ

where Ŝ is the operator of the S-matrix.
When the aforementioned restrictions on the energies of

photons in the initial state are satisfied, only the process
of light-by-light scattering may happen in the leading order
of perturbation theory. Then the S-matrix becomes

Ŝ ¼ 1þ Ĉþ � � � ; ð11Þ

where the operator

Ĉ ¼ ĉ†ᾱĉ
†
β̄
Cᾱ β̄ αβĉαĉβ ð12Þ

describes the light-by-light scattering in the leading order
of perturbation theory. In virtue of unitarity of the S-matrix,

Ĉ† ¼ −Ĉ; ð13Þ

in the given order of perturbation theory and domain of
parameters. Therefore,

Cᾱ β̄ αβ ¼ Cβ̄ ᾱ αβ ¼ Cᾱ β̄ βα ¼ −C�
αβᾱ β̄

: ð14Þ

At the same order of perturbation theory,

PD ¼ SpðR̂ph
ˆ̃ΠDÞ þ ½SpðR̂ph

ˆ̃ΠDĈÞ þ c:c:� þ � � � : ð15Þ

The traces of operators appearing in this expression are
readily evaluated (see Appendix A)

SpðR̂ph
ˆ̃ΠDÞ ¼ 1 − e−d̄Dd;

SpðR̂ph
ˆ̃ΠDĈÞ ¼ ½d̄ᾱd̄β̄ − ðd̄ D̃Þα̃ðd̄ D̃Þβ̄e−d̄Dd�Cᾱ β̄ αβdαdβ;

ð16Þ

where D̃ᾱα ≔ δᾱα −Dᾱα.

We assume that

ðDsÞα ¼ 0; ð17Þ

i.e., the detector does not record soft photons sα. In this case,

ðd̄ D̃Þα ¼ s̄α þ ðh̄ D̃Þα; d̄Dd ¼ h̄Dh: ð18Þ

Furthermore, we suppose that the state of hard photons is
close to a one particle Fock state and sowe seek for a leading
nontrivial contribution to (15) in limit hα → 0. Then

PD ¼ h̄Dhþ f½ðh̄DhÞs̄ᾱs̄β̄sαsβ
þ ðh̄ᾱh̄β̄ − ðh̄ D̃Þᾱðh̄ D̃Þβ̄ þ 2s̄ᾱðh̄DÞβ̄Þsαsβ
þ 4s̄ᾱðh̄DÞβ̄sαhβ�Cᾱ β̄ αβ þ c:c:g þ � � � : ð19Þ

It follows from the property (14) that the first term in the
square brackets is purely imaginary. Hence its contribution is
equal to zero. The next terms embraced by the parentheses
vanish due to the energy conservation law and the
assumption that the energies of photons in the state sα are
small in comparison with the energies of photons in the state
hα. Thenwithin the order of perturbation theory we consider,
we can write

PD ¼ h̄tDht; ðhtÞβ̄ ¼ hβ̄ þΦβ̄βhβ; ð20Þ

where

Φβ̄β ≔ 4s̄ᾱCᾱ β̄ αβsα; ð21Þ

and for conciseness we have added the term to (20) of order
α4. This term does not coincide with the standard contribu-
tion proportional to α4 neglected in (15).
Formula (20) says that the detector records photons in

the state ðhtÞβ̄ that result from scattering of photons in the
state hβ by the photons in the laser beam described by the
state sα. In the case of a mixed initial state of probe photons
with the density matrix ρββ0 , the inclusive probability (20) is
written as

PD ¼ Dβ̄0β̄ðδβ̄β þΦβ̄βÞðδβ̄0β0 þ Φ̄β̄0β0 Þρββ0 : ð22Þ

Let us stress that formulas (15), (19), (20), and (22) do not
contain the standard contribution defining the differential
cross section of light-by-light scattering because it is of a
higher order with respect to the coupling constant. The
standard contribution becomes the leading one in the
domain of quantum numbers β̄ where ðDhÞβ̄ is negligible.
However, when the free passed probe photon wave function
overlaps with its scattered part the interference contribution
taken into account in (15), (19), (20), and (22) is stronger
by four orders of magnitude than the standard one.
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III. SUSCEPTIBILITY OF A PHOTON

The above general formulas allow one to deduce the susceptibility of a single photon wave packet on the mass-shell and
to find the inclusive probability to record a photon scattered by other photon or by the laser beam of photons. The amplitude
of light-by-light scattering is given in [15,21–25]. In our notation,

α ¼ ðλ1;k1Þ; β ¼ ðλ2;k2Þ; ᾱ ¼ ðλ3;k3Þ; β̄ ¼ ðλ4;k4Þ;
X
β

¼
X
λ2

Z
Vdk2

ð2πÞ3 ; hβ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r
hλ2ðk2Þ: ð23Þ

The normalization condition takes the form

X
α

h̄αhα ¼
X
λ

Z
dkjhλðkÞj2 ¼ 1;

X
λ

Z
dkjsλðkÞj2 ¼ Ns; ð24Þ

where Ns is the average number of photons in the beam sα. The circular polarization vectors are defined as [21–25]

eðλÞðkÞ ¼ 1ffiffiffi
2

p ðe1ðkÞ þ iλe2ðkÞÞ; ð25Þ

where λ ¼ �1, the linear polarization vector e1ðkÞ is perpendicular to the reaction plane, the linear polarization vector
e2ðkÞ lies in the reaction plane, and fe1ðkÞ; e2ðkÞ;kg constitute a right-handed triple.
In this case,

Φβ̄β ¼
πi
2V

X
λ1;λ3

Z
dk1dk3δðk3 þ k4 − k1 − k2Þs̄λ3ðk3Þsλ1ðk1Þ

Mλ3λ4λ1λ2ðs; t; uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ðk1Þk0ðk2Þk0ðk3Þk0ðk4Þ

p ; ð26Þ

where

s ¼ ðk1 þ k2Þ2 ¼ ðk3 þ k4Þ2 ¼ 2k1k2 ¼ 2k3k4; t ¼ ðk1 − k3Þ2 ¼ ðk2 − k4Þ2 ¼ −2k1k3 ¼ −2k2k4;

u ¼ ðk1 − k4Þ2 ¼ ðk2 − k3Þ2 ¼ −2k1k4 ¼ −2k2k3: ð27Þ

In particular,

s ¼ k03k
0
4ðn3 − n4Þ2; ð28Þ

where n3;4 ≔ k3;4=jk3;4j. It is clear that sþ tþ u ¼ 0. Integrating over the spatial momenta k1 in (26), we arrive at

Φβ̄β ¼
πi
2V

X
λ1;λ3

Z
dk3δðk03 þ k04 − k01 − k02Þs̄λ3ðk3Þsλ1ðk1Þ

Mλ3λ4λ1λ2ðs; t; uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk1jjk2jjk3jjk4j
p

�����
k1¼k3þk4−k2

: ð29Þ

Introduce the notation,

sλðk; x0Þ ≔ e−ik0ðkÞx0sλðkÞ; ð30Þ

and write the delta function expressing the energy conservation law as a Fourier transform. Then we have

Φβ̄β ¼ i
X
λ1;λ3

Z
dk3dx0

4V
eiðk04−k02Þx0 s̄λ3ðk3; x0Þsλ1ðk1; x0Þ

Mλ3λ4λ1λ2ðs; t; uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk1jjk2jjk3jjk4j
p

�����
k1¼k3þk4−k2

: ð31Þ

In order to find the susceptibility tensor of a single photon wave packet on the mass-shell, we compare the scattering
amplitude of the hard probe photon ðhtÞβ̄ with the amplitude of scattering by a medium with a certain susceptibility tensor
χij in the first Born approximation. Let the medium possess the susceptibility tensor
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χij

�
xþ y
2

; x − y

�
; ð32Þ

where x ¼ ðx0;xÞ. The dependence of χij on ðxþ yÞ=2 is supposed to be slow. The second argument of χij characterizes the
frequency and spatial dispersions, and χij is a rapidly varying function of this argument. Then, in the first Born
approximation, the amplitude of scattering of a photon by the medium with such a susceptibility tensor becomes (see, e.g.,
[37,38])

Sγ0γ ¼ δγ0γ þ i
k1=2
0γ0 k

1=2
0γ

2V

Z
d4xēðλ

0Þ
i ðk0Þχijðx;KÞeðλÞj ðkÞeiðk0γ0−k0γÞx0−iðk0−kÞx; ð33Þ

where Kμ ≔ ðk0μ þ kμÞ=2 and

χijðx;KÞ ≔
Z

d4zeiKμzμχijðx; zÞ: ð34Þ

It is useful to write (33) as

Sγ0γ ¼ δγ0γ þ i
k1=2
0γ0 k

1=2
0γ

2V

Z
dx0ēðλ

0Þ
i ðk0Þχ̃ijðx0;Δk;KÞeðλÞj ðkÞeiðk0γ0−k0γÞx0 ; ð35Þ

whereΔk ≔ k0 − k and we have introduce the notation for the Fourier transform of the susceptibility tensor with respect to
the slowly varying spatial argument. Comparing (31) with (35), we obtain

χ̃ijðx0;Δk;KÞ ¼
X
λ1;λ3

Z
dk3s̄λ3ðk3; x0Þsλ1ðk3 þ Δk; x0Þ
2jk4jjk2jjk3j1=2jk3 þ Δkj1=2 Mλ3λ4λ1λ2e

ðλ4Þ
i ðk4Þēðλ2Þj ðk2Þ; ð36Þ

where

k2 ¼ K −
Δk
2

; k4 ¼ Kþ Δk
2

: ð37Þ

Formula (36) gives the general expression for the on-shell susceptibility tensor of photons in the state sα.
Let us simplify expression (36). Recall that [15,21–25]

Mλ1λ2λ3λ4 ¼ M−λ1;−λ2;−λ3;−λ4 ; Mλ1λ2λ3λ4 ¼ Mλ3λ4λ1λ2 ; Mλ1λ2λ3λ4 ¼ Mλ2λ1λ4λ3 : ð38Þ

In the limit of a small momentum transfer, jtj ≪ 4m2, jtj ≪ s, the nonvanishing independent amplitudes are written as

MþþþþðsÞ ¼ Mþ−þ−ð−sÞ ¼ 8α2fðsÞ; Mþþ−−ðsÞ ¼ −8α2gðsÞ; ð39Þ

where

fðsÞ ¼ −
�
1þ

�
2 −

4

s0

�
Bðs0Þ þ

�
−4þ 4

s0

�
Bð−s0Þ þ

�
4

s0
−

8

s02

�
Tðs0Þ þ

�
2 −

4

s0
−

8

s02

�
Tð−s0Þ

�
s0→s=m2

;

gðsÞ ¼ −
�
1þ 4

s0
Bðs0Þ − 4

s0
Bð−s0Þ þ 8

s02
Tðs0Þ þ 8

s02
Tð−s0Þ

�
s0→s=m2

; ð40Þ

and

BðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 −

4

s

r
arcsinh

ffiffiffiffiffiffi
−s

p
2

− 1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
4

s
− 1

r
arcsin

ffiffiffi
s

p
2

− 1; TðsÞ ¼ arcsinh2
ffiffiffiffiffiffi
−s

p
2

¼ −arcsin2
ffiffiffi
s

p
2

; ð41Þ
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where the principal branches of multivalued functions are taken and s → sþ i0. For s, jtj, juj much less than 4m2, the
independent amplitudes become

Mþþþþ ¼ 11α2

45m4
s2; Mþ−þ− ¼ 11α2

45m4
u2;

Mþ−−þ ¼ 11α2

45m4
t2; Mþþ−− ¼ −

α2

15m4
ðs2 þ t2 þ u2Þ; Mþþþ− ¼ 0: ð42Þ

In the general case, the explicit expressions for Mλ1λ2λ3λ4 are presented in [15,21–25].

In order to proceed, we assume that the states sα and hβ
are such that

jΔkj ≪ jk3j; jΔkj ≪ jk4j; ð43Þ

whereΔk ≔ k4 − k2. In fact, condition (43) means that the
dispersion of momenta in the wave packet of a hard probe
photon is much less than the average energy of modes in the
state sα. The second condition in (43) follows from the first
one inasmuch as, by assumption, the energy of the photon
hβ is much higher than the energies of the modes in the state
sα. In this case, s ≈ juj ≪ 4m2 and jtj ≪ s and so one can

use formulas (39) for the invariant scattering amplitudes. In
the leading order inΔk, we can discardΔk in the integrand
of (36) while keeping the argument of the function
sλ1ðk3 þ ΔkÞ. In the general case, this function can vary
rapidly even for a small deviation, Δk, of its argument.
Then

s ¼ jk3jjKjðn3 − nÞ2; n ≔ K=jKj: ð44Þ

Denoting concisely

sλ3λ1 ≔ s̄λ3ðk3; x0Þsλ1ðk3 þ Δk; x0Þ; ð45Þ

we obtain

X
λ1;λ3

sλ3λ1Mλ3λ4λ1λ2e
ðλ4Þ
i ðKÞēðλ2Þj ðKÞ

¼ 8α2
�
fsðsÞðsþþ þ s−−Þ þ faðsÞðsþþ − s−−Þσ2 − gðsÞ sþ− þ s−þ

2
σ3 þ gðsÞ sþ− − s−þ

2i
σ1

�
ll0
ðelÞiðKÞðel0 ÞjðKÞ

¼ 8α2
�
fsðsÞðs11 þ s22Þ þ ifaðsÞðs21 − s12Þσ2 − gðsÞ s11 − s22

2
σ3 þ gðsÞ s12 þ s21

2
σ1

�
ll0
ðelÞiðKÞðel0 ÞjðKÞ

¼ 8α2
�
fsðsÞðs†s̃Þ þ faðsÞðs†σ2s̃Þσ2 −

gðsÞ
2

ððs†σ3s̃Þσ3 − ðs†σ1s̃Þσ1Þ
�
ll0
ðelÞiðKÞðel0 ÞjðKÞ; ð46Þ

where the basis of linear polarization vectors has been used, in the last equality we have rewritten the foregoing expression
with the aid of sigma matrices, s̃l ≔ slðk3 þ Δk; x0Þ, and

fsðsÞ ≔ ½fðsÞ þ fð−sÞ�=2; faðsÞ ≔ ½fðsÞ − fð−sÞ�=2: ð47Þ

Notice that fsðsÞ, faðsÞ, and gðsÞ are monotonically increasing functions for s ∈ ½0; 4m2� and are non-negative on this
interval. Moreover,

fsðsÞ ¼
11s2

360m4
þ 13s4

21600m8
þ � � � ; faðsÞ ¼

s3

630m6
þ s5

17325m10
þ � � � ; gðsÞ ¼ s2

60m4
þ s4

1890m8
þ � � � ; ð48Þ

and

P. O. KAZINSKI and T. V. SOLOVYEV PHYS. REV. D 108, 016004 (2023)

016004-6



fsð4m2Þ ¼ 1

2
arcsinh21þ 3π2

8
− 3 ≈ 1.0895; fað4m2Þ ¼ 3

ffiffiffi
2

p
arcsinh1 − arcsinh21 −

π2

4
≈ 0.495;

gð4m2Þ ¼
ffiffiffi
2

p
arcsinh1 −

1

2
arcsinh21þ π2

8
− 1 ≈ 1.0917: ð49Þ

The plots of the functions fsðsÞ, faðsÞ, and gðsÞ are presented in Fig. 1.
Introduce the relativistic coordinate representation of the complex amplitudes sα as

sλðxÞ ≔
Z

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jkj

p eikxsλðk; x0Þ; ð50Þ

and

ψ s;λðxÞ ≔ f1=2s ðsÞsλðxÞ ¼
Z

dk3f
1=2
s ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32jk3j
p eik3xsλðk3; x0Þ;

ψa;λðxÞ ≔ f1=2a ðsÞsλðxÞ ¼
Z

dk3f
1=2
a ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32jk3j
p eik3xsλðk3; x0Þ;

ψg;λðxÞ ≔ g1=2ðsÞsλðxÞ ¼
Z

dk3g1=2ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jk3j

p eik3xsλðk3; x0Þ; ð51Þ

where f1=2s ðsÞ, f1=2a ðsÞ, and g1=2s ðsÞ acting on sλðxÞ are understood as pseudodifferential operators with ki3 ¼ −i∂=∂xi. In
that case, the susceptibility tensor can be cast into the form

χijðx;KÞ ¼
8α2

K2

�
ðψ†

sψ sÞδ⊥ij − iðψ†
aσ2ψaÞεijknk −

1

2
ððψ†

gσ3ψgÞσ3 − ðψ†
gσ1ψgÞσ1Þll0 ðelÞiðKÞðel0 ÞjðKÞ

�
: ð52Þ

The last term in the square brackets can be simplified so that

χijðx;KÞ ¼ 8α2

K2

��
ðψ†

sψ sÞ þ
1

2
jψg;þψg;−j

�
δ⊥ij − iðψ†

aσ2ψaÞεijknk − jψg;þψg;−jeφi ðKÞeφj ðKÞ
	
; ð53Þ

where δ⊥ij ≔ δij − ninj and eφi is the polarization vector e1i
rotated by an angle of φ ¼ − argðψgþψg−Þ=2 in the plane
spanned by the vectors fe1; e2g. The susceptibility of a
single photon wave packet is obtained when one retains the
leading term in formulas (2) and (20) for sα → 0. It is clear
from these formulas that expression (53) also holds for the
wave packet of a single photon, where sλðkÞ should be
interpreted as a single photon wave function.
The susceptibility tensor (53) corresponds to a birefrin-

gent gyrotropic dispersive medium. As is seen from
asymptotics (48), the term related to gyrotropy is sup-
pressed for s ≪ 4m2, in particular, it is absent in the
approach based on the Heisenberg-Euler Lagrangian. For
infinitely small jKj, gyrotropy vanishes and the whole
expression (53) tends to a finite nonzero limit. Furthermore,
gyrotropy disappears in the case when s1 ¼ 0 or s2 ¼ 0.
The last term in (53) vanishes for sþ ¼ 0 or s− ¼ 0. In that

FIG. 1. The dependence of fsðsÞ, faðsÞ, and gðsÞ on s0 ¼ s=m2.
The solid line is fsðsÞ, the dashed line is faðsÞ, and the dashed
dotted line is gðsÞ.
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case, the wave packet of a single photon is purely
gyrotropic. Notice that for s ≈ 4m2 the contribution of
the term responsible for gyrotropy of the wave packet is of
the same order as the main contribution to the susceptibility
tensor standing at δ⊥ij.
Let us estimate the magnitude of the susceptibility (53).

By the order of magnitude,

χij ∼
8α2

K2
fsðsÞA2 ¼ 2α

π
fsðsÞ

m2

K2
K2

u; ð54Þ

whereAðxÞ is the electromagnetic potential in the Coulomb
gauge and

K2
u ≔ e2A2=m2 ð55Þ

is the undulator strength parameter characterizing the appli-
cability of the standard perturbation theory [39,40]. If
Ku ≪ 1, then the perturbation theory is applicable, while
forKu ≳ 1 the background field has to be taken into account
nonperturbatively. Taking approximately, s ∼ 4jk3jjKj, we
have

χij ∼
32α2

π
fsðsÞ

m2k2
3

s2
K2

u: ð56Þ

If the energy of the hard probe photon is close to the electron-
positron pair creation threshold, s ∼ 4m2, then fsðsÞ ∼ 1 and

χij ∼
2α

π

k2
3

m2
K2

u: ð57Þ

For s ≪ 4m2, we have fsðsÞ ∼ 11s2=360m4 and

χij ∼
α

π

k2
3

m2
K2

u: ð58Þ

Hence, we can use the same estimate for the susceptibility in
the whole range of s up to s ¼ 4m2.

In order to find the magnitude of the susceptibility of a
single photon wave packet, we can employ the estimate

A2 ∼ ns=jk3j; ð59Þ

where ns is the photon number density at a given point.
Therefore,

χij ∼ 8α2fsðsÞ
ns

K2jk3j
¼ 8α2fsðsÞ

ws

K2k2
3

; ð60Þ

where ws is the energy density of photons in the state sα. By
the order of magnitude, ns ∼ σ3s , where σs is the standard
deviation of momenta in the wave packet of a soft photon
sα. Then

χij ∼ 128α2
fsðsÞ
s2

jk3jσ3s : ð61Þ

As for the probe photon near the electron-positron pair
creation threshold, s ∼ 4m2, we obtain

χij ∼ 8α2
jk3jσ3s
m4

≲ 8α2
k4
3

m4
; ð62Þ

where we have taken σs ≈ jk3j for the upper estimate. If
s ≪ 4m2, then

χij ∼ 4α2
jk3jσ3s
m4

≲ 4α2
k4
3

m4
: ð63Þ

For example, the quantity on the right-hand side of (63) is
equal to 3.13 × 10−27 for the photon in the state sα with the
energy 1 eV.

IV. INCLUSIVE PROBABILITY

Let us find the explicit expression for the inclusive
probability (22). From (29) we have

Φβ̄βhβ ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r X
λ1;λ2;λ3

Z
dk3dk2

4ð2πÞ2 δðk03 þ k04 − k01 − k02Þs̄λ3ðk3Þsλ1ðk1Þ
Mλ3λ4λ1λ2ðs; t; uÞhλ2ðk2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk1jjk2jjk3jjk4j

p
����
k1¼k3þΔk

: ð64Þ

To reveal the main features of expression (22), we assume
that jΔkj not only satisfies the conditions (43) but is much
less than the typical scale of variation of the complex
amplitude sλðkÞ. In the coordinate space, this condition
means that the typical scale of variation of thewave function
or of the average electromagnetic field of soft photons in the
state sα is much less than the diameter of the region of
localization of thewave function of the hard probe photonhβ.
Notice that, in the plane-wave limit for the state hβ, where
jΔkj → 0, all the above conditions are satisfied.

Then one can neglect the dependence on Δk and put
k1 ≈ k3 and k2 ≈ k4 in all the functions appearing in the
integrand of (64) apart from the delta function and
hλ2ðk2Þ ¼ hλ2ðk4 − ΔkÞ. As regards the argument of the
delta function, we have

k03 þ k04 − k01 − k02 ≈ ðn4 − n3ÞΔk: ð65Þ

Introduce the splitting
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k2 ¼ k2k þ k2⊥; ð66Þ

where

k2k ≔ ðn4 − n3Þ
ðk2ðn4 − n3ÞÞ
ðn4 − n3Þ2

; ð67Þ

and analogously for other vectors. Integrating the delta
function in (64), we come to

Φβ̄βhβ ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r X
λ1;λ2;λ3

Z
dk3

ð2πÞ2

×
s̄λ3ðk3Þsλ1ðk3ÞMλ3λ4λ1λ2 h̃λ2ðk4kÞ

4jn4 − n3jjk3jjk4j
; ð68Þ

where

h̃λ2ðk4kÞ ≔
Z

dk4⊥hλ2ðk4k;k4⊥Þ: ð69Þ

To simplify further the expression (68), we suppose that
the complex amplitude sα is such that the dispersion of the
vector n3 in this state is small, i.e., this state of photons is
paraxial. Setting n3 ¼ n30, where n30 is the average value
of n3 in the state sα, and using the approximate expressions
for the invariant scattering amplitudes (39), the wave
function of the hard probe photon after scattering (20) is
given by

ðhtÞβ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3
V

r �
hλ4ðk4Þ þ iϰ

X
λ2

ðξ0 þ ξσÞλ4λ2 h̃λ2ðk4kÞ
�
;

ð70Þ

where

ϰ ¼ α2

2π2jk4jjn4 − n30j
;

ξ0 ¼
Z

dk3

jk3j
fsðsÞs†ðk3Þsðk3Þ;

ξ1 ¼ −
Z

dk3

2jk3j
gðsÞs†ðk3Þσ1sðk3Þ;

ξ2 ¼
Z

dk3

2jk3j
gðsÞs†ðk3Þσ2sðk3Þ;

ξ3 ¼ −
Z

dk3

jk3j
faðsÞs†ðk3Þσ3sðk3Þ; ð71Þ

and s ¼ jk3jjk4jðn4 − n30Þ2. Let us stress that expressions
(71) are written in the chiral basis. As for the basis of linear
polarization vectors e1;2, the corresponding expressions
take the form

ξl0 ¼
Z

dk3

jk3j
fsðsÞs†ðk3Þsðk3Þ;

ξl1 ¼
Z

dk3

2jk3j
gðsÞs†ðk3Þσ1sðk3Þ;

ξl2 ¼
Z

dk3

jk3j
faðsÞs†ðk3Þσ2sðk3Þ;

ξl3 ¼ −
Z

dk3

2jk3j
gðsÞs†ðk3Þσ3sðk3Þ; ð72Þ

where slðk3Þ are also given in the basis of linear polari-
zation vectors. In particular, if s1 ¼ 0 or s2 ¼ 0, then
ξl2 ¼ 0. If sþ ¼ 0 or s− ¼ 0, then ξl1 ¼ ξl3 ¼ 0.
The formulas above are easily generalized to the case

where the initial state of the probe photon is a mixed one
with the density matrix

ρββ0 ¼
ð2πÞ3
V

ð1þ ζðk2;k0
2ÞσÞλ2λ02

2
ρðk2;k0

2Þ: ð73Þ

Supposing that ρðk2;k0
2Þ is different from zero only in a

small vicinity of the diagonal, we can write

ρββ0 ≈
ð2πÞ3
V

ð1þ ζσÞλ2λ02
2

ρðk2;k0
2Þ; ð74Þ

where ζ ≔ ζðk2;k2Þ. We also assume that the detector
records plane-wave photons with the momentum k4. In this
case, the expression standing at the projector Dβ̄0β̄ in
formula (22) for the inclusive probability becomes

ð2πÞ3
V

1

2
fρð1þ ζσÞ þ iϰ½ðξ0 þ ξσÞð1þ ζσÞρ̃ − c:c:�gλ4λ04 ;

ð75Þ

where ρ ≔ ρðk4;k4Þ and

ρ̃ ¼ ρ̃ðk4k;k4Þ ¼
Z

dk4⊥ρðk4k;k4⊥;k0
4Þjk0

4
¼k4

: ð76Þ

Let the detector record the hard probe photons in some spin

state specified by the projector DðsÞ
λ0
4
λ4
. Then the inclusive

probability (22) to record a hard photon in this state is
written as

dPD ¼ 1

2

X
λ4;λ04

DðsÞ
λ0
4
λ4
fρ− 2ϰðξ0 þ ξζÞImρ̃

þ ½ρζ− 2ϰðξþ ξ0ζÞImρ̃− 2ϰðξ× ζÞReρ̃�σgλ4λ04dk4:

ð77Þ

Recall that this expression is obtained in the leading order
of perturbation theory and describes the interference of a
free passed wave with its scattered part. This expression is
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valid only in the parameter domain where the overlap of the
interfering waves is substantial. The correction to the trivial
(free) contribution to the inclusive probability turns out to
be of the order α2 rather than α4 as for the standard
expression for the light-by-light scattering cross section
[27]. Moreover, in deriving expression (77), it has been
assumed that the wave packet of the probe photon is
sufficiently narrow in the momentum space, i.e., jΔkj
obeys conditions (43) and is much less than the typical
scale of variation of the wave function of soft photons sα.
The complex amplitude sα describing the state of soft
photons has been supposed to be paraxial.
Consider some particular cases of general formula (77).

If the probe photons are naturally polarized, viz., ζ ¼ 0,
then under the above assumptions formula (77) implies

dPD ¼ 1

2

X
λ4;λ04

DðsÞ
λ0
4
λ4
½ρ − 2ϰðξ0 þ ξσÞImρ̃�λ4λ04dk4: ð78Þ

In this case, the nontrivial contributions to the inclusive
probability stem from the imaginary part of the density
matrix of the hard probe photon in the momentum space.
The hard photons being initially in the state (74) with ζ ¼ 0
become polarized with the Stokes vector proportional to the
vector ξ. In general, the presence of the imaginary con-
tribution to the density matrix of a probe photon gives rise
to the following transform of the Stokes parameters:

ζ0 → ζ00 ¼ ζ0 − 2ϰðξ0 þ ξζÞ Im ρ̃

ρ
;

ζ → ζ0 ¼ ζ − 2ϰðξ þ ξ0ζÞ
Im ρ̃

ρ
: ð79Þ

The imaginary contributions to the density matrix are
absent for a usual narrow (in the momentum space)
Gaussian wave packet. However, the imaginary part of ρ̃
may appear due to the nontrivial structure of the wave
packet. For example, such imaginary contributions exist for
twisted and Airy states, coherent superposition of several
Gaussians, and others (see, e.g., [41–43]). If Im ρ̃ ¼ 0, then

dPD¼1

2

X
λ4;λ04

DðsÞ
λ0
4
λ4
½ρþðρζ−2ϰðξ×ζÞReρ̃Þσ�λ4λ04dk4: ð80Þ

As a result of interaction with photons in the state sα, the
Stokes vector of the probe photon is changed in accordance
with the rule (cf. [27–31])

ζ → ζ0 ¼ ζ − 2ϰðξ × ζÞReρ̃
ρ

: ð81Þ

As we see, in this case the Stokes vector ζ precesses around
the vector ξ. The polarization degree of a hard probe
photon, jζj, is conserved [27–31] up to the terms of higher
order in the coupling constant. The precession frequency

depends substantially on the form of the density matrix of
the probe photon. In the general case described by
formula (77), the Stokes vector undergoes simultaneous
transforms given by (79) and (81).
Let us estimate a relative magnitude of the quantum

corrections in (77), (79), and (81). By the order of
magnitude, the relative value of this correction equals
η ≔ 2ϰξ0ðσh⊥Þ2, where σh⊥ is the standard deviation of
the transverse momentum component in the wave packet of
the probe photon hβ and ϰ ∼ α2=2π2jk4j. Thus,

η ∼
α2

π2
fsðsÞ

Esðσh⊥Þ2
k2
3jk4j

; ð82Þ

where Es is the average energy of photons in the state sα.
For the photons from the state sα to participate in the
reaction, their wave functions must overlap with the wave
function of the probe photon. Therefore, Es ∼ wsL=ðσh⊥Þ2,
where L is the length of the path traveled by the probe
photon wave packet in the tested one. As a result,

η ∼
α2

π2
fsðsÞ

wsL
k2
3jk4j

: ð83Þ

We see from (60) that by the order of magnitude,

η ∼ χijjk4jL; ð84Þ

what is anticipated on physical grounds. Taking the
estimate (58) for the susceptibility, we have

η ∼
α

π

k2
3

m2
K2

ujk4jL ¼ 2.31 × 10−8K2
u
jk4j
m

L
μm

k2
3

eV2
: ð85Þ

If the energy of a soft photon jk3j, the length L, and the
undulator strength parameter Ku are such that this quantity
is of order of unity or larger, then we need to take into
account multiple scattering of the hard probe photon on the
photons in the state sα. For large Ku, we have to use the
Furry picture. As is seen from this estimate, the contribu-
tion of the quantum correction can be rather large. For
example, putting L ¼ 10 μm, jk4j ¼ 2m, and jk3j ¼ 1 eV
(see, e.g., [13]), we come to

η ∼ 4.61 × 10−7K2
u: ð86Þ

The change of the probe photon Stokes vector can be
measured by the gamma-ray polarimetry [44].
As for the wave packet of a single photon in the state sα,

we have ws ∼ jk3jns ∼ jk3jσ3s and L ∼ 1=σs, where σs is the
standard deviation of momenta in the wave packet sα.
Hence, for s ∼ 4m2, we deduce

η ∼ 5.30 × 10−6
σ2s
m2

: ð87Þ
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For s ≪ 4m2, we come to

η ∼ 6.60 × 10−7
sσ2s
m4

: ð88Þ

As expected, the interference effect caused by scattering of
a photon by a photon is very small in this case.

V. CONCLUSION

Let us sum up the results. We have considered the
interference effect in photon-photon scattering where the
free passed part of the wave function interferes with its
scattered part. The forms of the wave packets of the probe
photon and of the tested photon have been fully taken into
account. We have restricted our considerations to the case
where the probe photon is hard and its state is described by
some density matrix, whereas the tested photons are soft and
are prepared in some one particle or coherent states. Only the
leading contributions of the perturbation theory to the
inclusive probability to record the probe photon have been
retained. In the case we have considered, these contributions
stand at zeroth and second powers of the fine structure
constant α [27] and, in fact, describe the evolution of the
probe photon wave function traversing an effective disper-
sive medium represented by the soft tested photons. Notice
that the standard leading contribution to the cross section of
light-by-light scattering is of order α4, and we have not taken
into account this contribution. Moreover, we have supposed
that the total energy of the probe and tested photons is below
the electron-positron pair creation threshold, i.e., the above-
mentioned medium is transparent.
If the wave function of hard probe photon is sufficiently

narrow in the momentum space then it is reasonable to
employ the small recoil approximation in considering the
interference effect. Using this approximation, we have
obtained the general and rather compact expression (53)
for the on-shell susceptibility tensor of a beamof photons and
of a single photon wave packet. This tensor describes a
birefringent gyrotropic dispersive medium. At the small
probe photon momenta, it takes a finite nonzero value and
gyrotropy disappears. In increasing the probe photon
momenta, the components of the susceptibility tensor rapidly
increase and at the electron-positron pair creation threshold
gyrotropy becomes of the same order of magnitude as the
other contributions to the susceptibility tensor. We have
found the estimates for the order of magnitude of the
susceptibility tensor in different regimes. Furthermore, using

the formalism developed in Sec. III, in Appendix B we have
generalized the expression for the susceptibility tensor of a
single electron wave packet derived in [1] to a nonsta-
tionary case.
Assuming that the recoil momentum is much less than the

typical scale of variation of the tested photon wave functions
in themomentum space and that the state of tested photons is
paraxial, we have simplified the general expression for the
inclusiveprobability to recordaprobephoton to formula (77).
This formula shows that, in passing through the effective
medium, the Stokes parameters of the probe photon change
and this effect is rather large for a strong beam of tested
photons that is sufficiently wide in space. We have found
formulas (79) and (81) for the evolution of the Stokes
parameters that generalize the analogous expressionobtained
in [27–31] for plane waves. It appears the evolution of the
Stokes vector strongly depends on the form of the probe
photon wave packet. We have provided the estimates for the
order of magnitude of this effect in various regimes. The
estimates (85) and (86) show that this effect can be observed
at present and planned facilities provided the control of
polarization of hard probe photon and of its wave packet
profile is possible [32–36].
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APPENDIX A: TRACES

In deriving the general expression for the inclusive
probability to record a photon, it is necessary to evaluate
the traces of operators (16). Let us present here some details
of these calculations. As regards the first trace, we obtain

SpðR̂ph
ˆ̃ΠDÞ¼ hd̄jð1−∶expð−ĉ†DĉÞ∶Þjdie−d̄d¼ 1−e−d̄Dd;

ðA1Þ

where we have used the fact that the coherent state,

jdi ¼ edĉ
† j0i; ðA2Þ

is an eigenvector for the annihilation operator ĉβ with the
eigenvalue dβ. As far as the second trace is concerned, we
have

SpðR̂ph
ˆ̃ΠDĈÞ ¼ e−d̄dhd̄jð1 − ∶ expð−ĉ†DĉÞ∶Þĉ†ᾱĉ†β̄Cᾱ β̄ αβĉαĉβjdi

¼ e−d̄ddαdβCᾱ β̄ αβ
δ

δdᾱ

δ

δdβ̄
hd̄jð1 − ∶ expð−ĉ†DĉÞ∶Þjdi

¼ ½d̄ᾱd̄β̄ − ðd̄ D̃Þᾱðd̄ D̃Þβ̄e−d̄Dd�Cᾱ β̄ αβdαdβ: ðA3Þ
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APPENDIX B: SUSCEPTIBILITY OF A SINGLE
ELECTRON WAVE PACKET

In the paper [1], the explicit expression for the on-shell
susceptibility tensor of a single electron wave packet was
obtained. In deriving this expression, certain approxima-
tions were made that, in particular, allowed one to consider
the electron wave packet as some stationary medium. The
last condition can be relaxed by conducting the calculations
along lines of Sec. III. In this appendix, we provide a brief
derivation of the expression for the susceptibility tensor of
an electron wave packet in a nonstationary case.
In the paper [1], formula (106) was derived for the matrix

Φβ̄β in the limit of a small recoil Δk. It reads

Φðλ0;k0; λ;kÞ ¼ −2πie2
ēðλ

0Þ
i ðk0ÞeðλÞi ðkÞ
2V

ffiffiffiffiffiffiffiffiffi
k00k0

p

×
X
s

Z
dp
EðpÞ δðp0 þ k0 − p0

0 − k00Þ

×
X∞
N¼1

ρðN;1Þ
ss ðp;p − ΔkÞ: ðB1Þ

Representing the delta function as

δðp0 þ k0 − p0
0 − k00Þ ¼

Z
dx0

2π
e−iðp0þk0−p0

0
−k0

0
Þx0 ; ðB2Þ

introducing the density matrix at the instant of time x0,

ρðp;p − Δk; x0Þ ≔ e−ik0x
0

ρðp;p − ΔkÞeik00x0 ; ðB3Þ

and the relativistic density matrix in the coordinate repre-
sentation,

ρðx; y; x0Þ ≔
Z

dpdp0m
ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðpÞEðp0Þp eipx−ip
0yρðp;p0; x0Þ;

ðB4Þ

it is not difficult to cast expression (B1) into the form

Φðλ0;k0; λ;kÞ ¼ −ie2
ēðλ

0Þ
i ðk0ÞeðλÞi ðkÞ
2mV

ffiffiffiffiffiffiffiffiffi
k00k0

p
×
Z

d4xeiðk
0−kÞμxμρðx;x; x0Þ; ðB5Þ

where

ρðx;x; x0Þ ≔
X
s

X∞
N¼1

NρðN;1Þ
ss ðx;x; x0Þ: ðB6Þ

Comparing the expression for Φβ̄β with the amplitude of
scattering by a dielectric medium (33), we conclude that, in
the small recoil limit, the susceptibility tensor turns out to be

χijðx;KÞ ¼ −
4παρðx;x; x0Þ

mK2
0

δij: ðB7Þ

This expression coincides with the susceptibility tensor of an
electron plasma. Notice that formula (B7) is also valid for a
single electron wave packet [1].
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