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We show that literature results claimed for the magnetic field dependence of the longitudinal
conductivity in anomalous first-order hydrodynamics are frame dependent at this derivative order. In
particular, we focus on (3þ 1)-dimensional hydrodynamics in the presence of a constant Oð∂Þ magnetic
field with a Uð1Þ chiral anomaly and demonstrate that, for constitutive relations up to and including order
one in derivatives, the anomaly drops out of the longitudinal conductivity. In particular, magnetic field
dependent terms that were previously found in the literature only enter the nonzero frequency thermo-
electric conductivities through explicitly frame dependent pieces indicating that they are not physical. This
issue can be avoided entirely by incorporating the magnetic field into the fluid’s equilibrium state.
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Hydrodynamics is an effective theory of thermalized
matter at length and timescales far larger than any dynami-
cal scale in the system. As any effective field theory,
hydrodynamics then takes the form of a derivative expan-
sion that truncates to the order most relevant to the situation
one wishes to analyze. This truncation, while making
hydrodynamics more tractable, also ushers in an ambiguity
in its precise definition; the choice of frame. In a nutshell,
the choice of frame allows us to choose how our system
deviates from its global equilibrium configuration to a local
one given by the solution of the equations of hydro-
dynamics. In principle the number of such choices is
infinite, but only a handful of those are ever used in the
literature; the Landau frame, the Eckart frame, the thermo-
dynamic frame and the Bemfica, Disconzi, Noronha,
Kovtun frame [1–3]. For example, the Landau frame is
defined in terms of the energy-momentum tensor Tμν and
current Jμ of a fluid via the conditions

Tμνuν ¼ −ϵuμ; Jμuμ ¼ −n; ð1Þ

with uμ the velocity profile of the fluid and ϵ, n its
equilibrium energy and charge density respectively. On
the other hand, the thermodynamic frames [4] are defined
in terms of a timelike Killing vector Vμ as

T ¼ T0ffiffiffiffiffiffiffiffiffi
−V2

p ; μ¼ AμVμ þΛVffiffiffiffiffiffiffiffiffi
−V2

p ; uμ ¼ Vμffiffiffiffiffiffiffiffiffi
−V2

p ; ð2Þ

where T is the fluid’s temperature with T0 a normalization
constant and μ the fluid’s chemical potential with ΛV a
gauge parameter that maintains the gauge invariance of μ.
The gauge field Aμ is the source of Jμ.
Which frame one decides to use is a matter of con-

vention, but the choice strongly affects the predicted
nonhydrodynamic behavior of physical observables and
even the causal properties of hydrodynamics itself. For
example, the Landau frame (1) fixes the energy and charge
density of the fluid to be the equilibrium ones, while the
thermodynamic frame (2) makes sure the temperature and
chemical potential are given by their canonical definitions
in equilibrium. That these frames may give seemingly
different physics is discussed in more detail in a recent
paper [5], where it was argued that in hydrostatic configu-
rations on curved backgrounds some potential definitions
of the temperature, which differ from the canonical
choice by derivatives of the metric, can have undesirable
properties. Namely, the temperature is not related to the
derivative of the entropy with respect to the energy, i.e.,
1=T ≠ dS=dE.
Note that while frame-dependence is ubiquitous in

theories of hydrodynamics, it should not be found in

*andrea.amoretti@ge.infn.it
†danny.brattan@gmail.com
‡luca.martinoia@ge.infn.it
§ioannis.matthaiakakis@edu.unige.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 016003 (2023)

2470-0010=2023=108(1)=016003(7) 016003-1 Published by the American Physical Society

https://orcid.org/0000-0002-7182-7019
https://orcid.org/0000-0002-5290-3469
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.016003&domain=pdf&date_stamp=2023-07-10
https://doi.org/10.1103/PhysRevD.108.016003
https://doi.org/10.1103/PhysRevD.108.016003
https://doi.org/10.1103/PhysRevD.108.016003
https://doi.org/10.1103/PhysRevD.108.016003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


expressions of directly observable quantities, such as the
fluid’s thermoelectric conductivities. The reason behind
this is that frame-dependence is an artifact of our inability
to calculate directly observable quantities without truncat-
ing the hydrodynamic derivative expansion. The experi-
mentalist who measures these quantities, however, does not
have to make such a truncation; they measure the “fully
resummed” version of that quantity. Therefore all theoreti-
cal predictions for directly observable quantities must be
frame-independent, otherwise no comparison to experi-
ment can be made.
In this paper we consider hydrodynamics in (3þ 1)-

spacetime dimensions exhibiting a Uð1ÞA axial anomaly
coupled to an order one in derivatives, Oð∂Þ, magnetic
field. We calculate the nonzero frequency, magnetic field
dependent, thermoelectric conductivities of such a fluid and
find that—at order one in derivatives—the anomaly only
enters through frame dependent terms. This is because,
when care is taken with derivative counting, we find that
the anomaly-dependent terms lie beyond the Oð∂Þ hydro-
dynamic regime. If we wish to observe nontrivial effects
from the anomaly at Oð∂Þ in the constitutive relations (the
order where incoherent conductivities first appear) without
resorting to Oð∂2Þ hydrodynamics, we must work with
order zero magnetic fields. This implies, however, that we
can never reach the Landau frame.

I. THE STANDARD APPROACH TO
ANOMALOUS HYDRODYNAMICS

In general, mixed axial-gravitational anomalies can be
present in addition to the gauge anomaly. Moreover,
for physically relevant models one may wish to have an
anomalous and a nonanomalous current such as in
Uð1ÞA ×Uð1ÞV models. As our results readily generalize
to these more involved cases, here we focus on the simple
Uð1ÞA model in (3þ 1)-spacetime dimensions with just
one anomalous axial current Jμ [6–8]. In what follows, we
review the standard construction of these anomalous fluids,
discuss their frame transformation properties and derive the
corresponding thermoelectric conductivities.
The equations of motion for the (anomalous) covariant

current and the stress energy tensor we consider are

∂μTμν ¼ FνλJλ; ð3aÞ

∂μJμ ¼ cEμBμ: ð3bÞ

The covariant axial electric and magnetic field are defined
via the Maxwell field strength Fμν ¼ ∂μAν − ∂νAμ via Eμ ¼
Fμνuν and Bμ ¼ 1

2
εμνρσuνFρσ. Both Eμ and Bμ are consid-

ered Oð∂Þ. The constant c is the anomaly coefficient.
To consider the effective hydrodynamic theory associ-

ated with (3), we work at nonzero temperature T and axial
chemical potential μ. The axial chemical potential is

distinct from the usual one, because it is odd under spatial
parity reversal. Similarly for the axial charge current.

II. THE CONSTITUTIVE RELATIONS

The constitutive relations for an anomalous fluid to first
order in derivatives are well known (see e.g., [9–11]). We
record them here for ease of reference,

Tμν ¼ ϵuμuν þ pΔμν þ ξϵBðuμBν þ uνBμÞ
þ ξϵΩðuμΩν þ uνΩμÞ − ηΔμαΔνβσαβ

− ζΔμν
∂αuα þOð∂2Þ ð4aÞ

Jμ ¼ nuμ þ σ0Δμν

�
Eν − T∂ν

μ

T

�
þ ξΩΩμ þ ξBBμ þOð∂2Þ;

ð4bÞ

where Δμν ¼ ημν þ uμuν is the projector orthogonal to the
four-velocity, σμν the shear tensor, η and ζ are respectively
the shear and bulk viscosity, while σ0 is the conductivity
and Ωμ ¼ εμναβuν∂αuβ is the vorticity. The quantities ξ are
the dissipationless anomalous transport coefficients. Their
expression in terms of the hydrodynamic variables μ and T
is completely fixed by the anomaly and the choice of
hydrodynamic frame [12]. For example, the Landau frame
(1) can be reached when ξϵB ¼ ξϵΩ ¼ 0 since

Tμνuν ¼ −ðϵuμ þ ξϵBB
μ þ ξϵΩΩμÞ; ð5aÞ

Jμuμ ¼ −n: ð5bÞ

Given one frame, we can move to a different one by
redefining the velocity [13]. We are particularly interested
in frame transformations of the kind

uμ → uμ þ fBðμ; TÞBμ þ fΩðμ; TÞΩμ ð6aÞ

which shift the anomalous transport coefficients as

ξϵB;Ω → ξϵB;Ω þ ðϵþ pÞfB;Ωðμ; TÞ; ð6bÞ

ξB;Ω → ξB;Ω þ nfB;Ωðμ; TÞ; ð6cÞ

Note that such transformations are permitted since Bμ and
Ωμ are Oð∂Þ. When we refer to “frame transformations” in
this paper we refer only to the subset (6) displayed above
unless explicitly stated otherwise. Said differently: The
constitutive relations in (4) are given in the Landau frame
when the anomaly coefficient or the magnetic field and
vorticity are set to zero.
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III. POSITIVITY OF ENTROPY PRODUCTION

As suggested by their name, the anomalous coefficients
are completely specified in terms of the anomaly. In this
subsection, we review the approach presented in [8] to
compute their explicit expressions. The derivation begins
with the entropy current Sμ, which we take to be of the form

Sμ ¼ 1

T
ðpuμ − Tμνuν − μJμÞ þ Sμeq ð7Þ

where Sμeq is the noncanonical entropy current, needed to
ensure positivity of entropy production in the presence of
an axial anomaly. In our case

Sμeq ¼ ξsBB
μ þ ξsΩΩμ þOð∂2Þ: ð8Þ

Taking the divergence of Sμ and employing the equations of
motion (3) we find

∂μSμ ¼
ζ

T
θ2 þ η

T
σμνσ

μν þ σ0

�
Eμ − T∂⊥μ

μ

T

��
Eμ − T∂μ⊥

μ

T

�
þ
�
∂ξsB
∂T

þ μ

T
∂ξsB
∂μ

−
ξϵB
T2

�
Bμð∂⊥μ T þ TaμÞ

þ
�
∂ξsΩ
∂T

þ μ

T
∂ξsΩ
∂μ

−
ξϵΩ
T2

�
Ωμð∂⊥μ T þ TaμÞ−

�
∂ξsB
∂μ

−
ξB
T

�
Bμ

�
Eμ − T∂⊥μ

�
μ

T

��
−
�
∂ξsΩ
∂μ

−
ξΩ
T

�
Ωμ

�
Eμ − T∂⊥μ

�
μ

T

��

þ
�
ξsB − T

∂ξsB
∂T

− μ
∂ξsB
∂μ

�
Bμaμ þ

�
2ξsΩ − T

∂ξsΩ
∂T

− μ
∂ξsΩ
∂μ

�
Ωμaμ þ

�
∂ξsB
∂μ

−
cμ
T

�
EμBμ þ

�
∂ξsΩ
∂μ

− ξsB

�
EμΩμ ≥ 0; ð9Þ

where we have used the Bianchi identity satisfied by Fμν

and defined ∂
⊥
μ ¼ Δμν∂

ν. There are two types of constraint
in (9)—inequality type which require that σ0; ζ; η ≥ 0 and
equality type (the remainder), which cannot be made
positive definite and thus must vanish identically on any
solution to the hydrodynamic equations.
We can further use the ideal fluid equations of motion to

find the relations

∂μΩμ ¼ −
2

ϵþ p
Ωμð∂μp − nEμÞ; ð10aÞ

∂μBμ ¼ −2ΩμEμ þ
1

ϵþ p
ðnEμBμ − Bμ

∂μpÞ: ð10bÞ

Together with the entropy constraint, we then find the
following set of equations for the ξ

∂μξ
s
Ω −

2∂μp

ϵþ p
ξsΩ − ξΩ∂μ

μ

T
þ
�
2∂μp

ϵþ p
− aμ − ∂μ

�
ξϵΩ ¼ 0;

ð11aÞ

∂μξ
s
B −

∂μp

ϵþ p
ξsB − ξB∂μ

μ

T
þ
�

∂μp

ϵþ p
− aμ − ∂μ

�
ξϵB ¼ 0;

ð11bÞ

2nξsΩ
ϵþ p

− 2ξsB þ ξΩ
T

þ 2ξϵB − 2ξϵΩ
n

ϵþ p
¼ 0; ð11cÞ

nξsB
ϵþ p

þ ξB
T

− c
μ

T
− ξϵB

n
ϵþ p

¼ 0: ð11dÞ

The set of equations (11) is not closed as there are six
unknown transport coefficients ξ for only four equations.
To explicitly solve for the anomalous transport coefficients
some other constraint is required and this choice defines a
specific frame. In particular the Landau frame condition
ξϵB ¼ ξϵΩ ¼ 0 gives—up to integration constants related
to the mixed-gravitational anomaly and CPT violating
terms [14–16]—the following transport coefficients,

ξϵB ¼ 0 ξB ¼ c

�
μ −

1

2

nμ2

ϵþ p

�
; ð12aÞ

ξϵΩ ¼ 0 ξΩ ¼ c

�
μ2 −

2

3

nμ3

ϵþ p

�
: ð12bÞ

If however one wants to work in the thermodynamic frames
(2), the frame transformations (6) can be used with

fB ¼ cμ2

2ðϵþ pÞ ; fΩ ¼ cμ3

3ðϵþ pÞ : ð13Þ

This leads to the anomalous transport coefficients in the
thermodynamic frame

ξϵB ¼ 1

2
cμ2; ξB ¼ cμ; ð14aÞ

ξϵΩ ¼ 1

3
cμ3; ξΩ ¼ 1

2
cμ2: ð14bÞ

IV. DETERMINING THE CONDUCTIVITIES

Given our equations of motion (3) and the constitutive
relations (4) we can obtain the two-current Green’s
functions that describe the response of our system to
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hydrodynamic perturbations about equilibrium. In particu-
lar, we are interested in the two-current Green’s function in
the presence of a constant magnetic field so that we can
extract the longitudinal magnetoconductivity of our fluid.
To evaluate it, we linearize the hydrodynamic equations (3)
around an equilibrium configuration with constant temper-
ature, chemical potential and magnetic field along ẑ via
T ¼ T0 þ δT, μ ¼ μ0 þ δμ, uμ ¼ ð1; δv⃗Þ, F12 ¼ B and
F0i ¼ δEi. The equilibrium stress energy tensor and current
are then given by

Tμν ¼

0
BBB@

ϵ 0 0 ξϵBB

0 p 0 0

0 0 p 0

ξϵBB 0 0 p

1
CCCAþOð∂2Þ; ð15aÞ

Jμ ¼ ðn; 0; 0; ξBBÞ þOð∂2Þ: ð15bÞ

Before solving for the perturbations, ðδT; δμ; δviÞ, we note
that we must be especially careful in our computation
to keep track of the derivative order to which we are
working [17] to ensure that any result is not an artefact of
accidentally including spurious higher derivative terms. In
particular, the hydrodynamic equations can schematically
be written as

DX ¼ SþOð∂3Þ; ð16Þ

where we are working with constitutive relations up to and
including order one in derivatives. Here X is the vector of

our fluctuating fields ðδμ; δT; δvi), D is an operator of at
least order one in derivatives and S is a source term
constructed from the hydrodynamic sources, the metric
and gauge field and their derivatives. For constitutive
relations given to first order in derivatives, the operator
D and the source term S will contain terms up to and
including second order.
As an example of the above point, imagine introducing a

formal “derivative counting parameter” ε with ω; B ∼ ε.
With only the longitudinal electric field turned on we find,
after inverting D, the fluid velocity perturbation along the
direction of the electric field reads

δuzjk⃗¼0⃗
¼

�
−inþ ε2αB2 þOðε3Þ
ðϵþ pÞωεþOðε3Þ

�
δEz: ð17Þ

A generic Green’s function will then have the form

GR ∼
aðω; kÞ þOðε2Þ
bðω; kÞ þOðε3Þ ð18Þ

where a and b are functions dependent on the precise
correlator. The derivative counting in the numerator is a
consequence of the fact that we know the currents only to
OðεÞ. Consequently, the precise form of α in (17) is
irrelevant and in principle the B2 contribution to GR must
be dropped when considering an Oð∂Þ theory of
hydrodynamics.
With these points made, taking the wave vector to zero,

we find the following longitudinal electric conductivity,

σðωÞ ¼ σ0 þ
in2

ωw
þ iB2

ωw2ð∂ϵ
∂T

∂n
∂μ −

∂ϵ
∂μ

∂n
∂TÞ

��
w
∂ξB
∂μ

− n
∂ξϵB
∂μ

��
w

�
c
∂ϵ

∂T
−
∂n
∂T

ξB

�
−
∂ϵ

∂T
nξB þ 2

∂n
∂T

nξϵB

�

−
�
w
∂ξB
∂T

− n
∂ξϵB
∂T

��
w

�
c
∂ϵ

∂μ
−
∂n
∂μ

ξB

�
−
∂ϵ

∂μ
nξB þ 2

∂n
∂μ

nξϵB

��
ð19Þ

where we have expanded to OðB2Þ in the magnetic field
and we defined the enthalpy density w ¼ ϵþ p. Note that
theOðB2Þ term is explicitly frame dependent because of its
dependence on the ξ. For example in the Landau frame
ξϵB ≡ 0, while in generic frames this is not true. Similar,
frame dependent, results hold for the thermoelectric and
thermal conductivities. As a consistency check, note that
we reproduce the results of [6] in the Landau frame. The
frame dependence of the conductivity is a sign that we are
doing something wrong by keeping terms higher order than
our constitutive relations allow us to do, as discussed above
in (17) and (18). In particular, we emphasize that the
magnetic field dependent term should not be considered
physical since the B2 (and higher) terms must be ignored, as
they are higher order in derivatives than then one we, and

most of the hydrodynamic literature, are working in.
Subsequently, the anomaly plays no role in the conductivity
at this order in the derivative expansion.
Moreover, if we naively take the longitudinal correlator

without keeping track of the derivative order, we can
readily find that the expressions in generic frames are
not Onsager reciprocal; meaning αzz ≠ ᾱzz. Furthermore
the electric field and the chemical potential gradient do not
appear as equivalent sources for the current via the Einstein
combination Eν − T∂νμ=T in such cases. It should also be
noted that the frame dependence of (19) is not a conse-
quence of spurious UV poles [18]—rather it is a conse-
quence of spurious residues. Indeed, we have confirmed
that the modes are frame independent [up to Oð∂2Þ].
Similarly, the transverse correlators are independent of
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the anomalous transport terms and nonambiguous when
kept to the appropriate order.
As a final note, an unusual feature of the anomalous

hydrodynamics discussed above is the frame dependence of
the equilibrium configuration (15). Typically, the equilib-
rium is frame independent and the result only depends on
the transport coefficients, not on their derivatives [19].
Also, because the transport coefficients are not fixed by
hydrodynamics, it is always possible to find a map that
relates the results in two different frames. In the case of
anomalous hydrodynamics however the equilibrium is
frame dependent. Furthermore, the expressions of the
transport coefficients in terms of μ and T are entirely fixed
in each frame, as in, e.g., Eqs. (12) and (14). Therefore,
there are no free parameters we can employ in order to
relate results in different frames.

V. AN UNAMBIGUOUS CONDUCTIVITY

To resolve the frame ambiguity one could work at order
two in derivatives [7], however this would only shift the
problem toOð∂3Þ [20]. To avoid the issue altogether, in order
to study chiral fluidsmore easily and at larger values ofB, we
suggest to keep the magnetic field order zero in derivatives.
By working with order zero in derivative magnetic fields we
can bring anomalous effects to the ideal level of hydro-
dynamics where there are no frame redefinitions. If one then
continues and determines constitutive relations at order one
in derivatives then frame transformations of the form (6)
involving the magnetic field are not available because Bμ is
no longer derivative order. The resultant expressionswill not
be in the Landau frame and in fact such a frame cannot be
reached. Moreover, in this background we have an unam-
biguous global equilibrium because we cannot perform
frame transformations containing Bμ.
A theory with Oð∂0Þ magnetic field has already been

studied in [16] and using their constitutive relations we can
find expressions for the conductivities. The computation is
exactly the same as performed in the standard approach:
following the same notation as in [16] we decompose the
stress energy tensor and current as

Tμν ¼ Euμuν þ PΔμν þQμuν þQνuμ þ T μν ð20aÞ

Jμ ¼ N uμ þ J μ ð20bÞ

and we focus on the ideal fluid, because with Bμ order zero
in derivatives it already contains all the information related
to the anomaly.
We geometrize the thermodynamic sources as in (2).

Subsequently, we can write down the equilibrium generat-
ing functional order by order in derivatives. Our derivative
counting is such that hydrostatic constraints, given by
acting with Vμ on the metric, gauge field and thermo-
dynamic quantities (2), are always order one or higher in
derivatives. For example,

LVðTÞ ¼ 0 ⇒
Δμν∇νT

T
þ aμ ¼ 0þOð∂Þ; ð21Þ

aμ ¼ uν∇νuμ: ð22Þ

The hydrostatic constraints give relations between thermo-
dynamic quantities, but the derivative order of the quan-
tities themselves is a priori undetermined. For example, it
is easy to imagine situations where the vorticity and the
magnetic field are order one or order zero in derivatives. We
shall consider the magnetic field at order zero here; all other
quantities built from the metric and gauge field and their
derivatives with the exception of T, μ, uμ and Bμ we choose
to be order one in derivatives.
The definitions given in (2) specify completely the

thermodynamic frame at the hydrostatic level. However,
when considering dissipative corrections to the fluid, the
frame will be ambiguous up to redefinitions of the chemical
potential, temperature and fluid velocity in terms of the
hydrostatic constraints. Nevertheless this will not matter for
our discussion, as we will be only dealing with the ideal
fluid. Despite this, any frame build upon the ideal fluid will
not lead to frame-dependent anomalous conductivities.
At zero order in derivatives the hydrostatic generating

functional for the constitutive relations takes the form

W½g; A; F� ¼
Z

d3þ1x
ffiffiffiffiffiffi
−g

p
pðT; μ; B2Þ ð23Þ

where again p is the pressure. Varying with respect to the
background metric and gauge field allows us to identify the
one-point functions:

δW ¼
Z

d3þ1x
ffiffiffiffiffiffi
−g

p �
1

2
Tμνδgμν þ JμδAμ þ

1

2
MμνδFμν

�
:

ð24Þ

Subsequently, employing the decompositions defined in
(20) we find

E ¼ −pþ sT þ μn ð25aÞ

P ¼ p −
2

3
χBB2 ð25bÞ

Qμ ¼ −χBεμνρσuνEρBσ þ ξϵBB
μ ð25cÞ

T μν ¼ χB

�
BμBν −

1

3
ΔμνB2

�
ð25dÞ

N ¼ n ð25eÞ

J μ ¼ εμνρσuν∇ρmσ þ εμνρσuνaρmσ þ ξBBμ ð25fÞ

where the magnetization is
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mμ ¼ χBBμ ð25gÞ

and each of the terms now depends on T, μ, and B2, while
the magnetic susceptibility is defined as χB ¼ 2 ∂p

∂B2.
To obtain the contribution of the anomaly to the con-

stitutive relations we fluctuate the generating functional

Wanom ¼
Z

d3þ1x
ffiffiffiffiffiffi
−g

p c
3
μBμAμ

−
C
24

Z
d4þ1x

ffiffiffiffiffiffiffi
−G

p
εmnopqAmFnoFpq: ð26Þ

The first term gives the consistent current anomalous
transport coefficients, while the second term is a Chern-
Simons functional whose fluctuation on the boundary gives
the Bardeen-Zumino current that makes the total current
covariant. We then find the same transport coefficients that
appear in the thermodynamic frame (14) [21]

ξϵB ¼ 1

2
cμ2; ξB ¼ cμ: ð27Þ

Given the constitutive relations, we once again, linearize
around an equilibrium with zero velocity, constant temper-
ature, chemical potential and magnetic field. Subsequently,
we find the following expressions for the nonzero fre-
quency longitudinal conductivities

σðωÞ ¼ i
ω

�
n2

ðpþ ϵÞ þ ΞB2

�
þOðω0Þ; ð28aÞ

αðωÞ ¼ i
ω

�
ns

ðpþ ϵÞ − μΞB2

�
þOðω0Þ; ð28bÞ

κðωÞ ¼ i
ω

�
s2T

ðpþ ϵÞ þ
μ2ΞB2

T

�
þOðω0Þ; ð28cÞ

where

Ξ ¼ c2s2T2ð∂n
∂T μ −

∂ϵ
∂TÞ

ðpþ ϵÞð∂ϵ
∂μ

∂n
∂T −

∂ϵ
∂T

∂n
∂μÞ þ B2c2μ2ð∂ϵ

∂T −
∂n
∂T μÞ

; ð28dÞ

and all the thermodynamic functions above depend
on ðT; μ; B2Þ.
These expressions suffer from none of the problems we

found previously: they are frame-independent, Onsager
reciprocal and furthermore the electric field and chemical
potential gradient are equivalent sources (at least for the
longitudinal transport, for which the magnetization does
not matter). Notice that because B is now order zero, even if
the anomalous transport coefficients have the same form
they take in the thermodynamic frame, the conductivities
looks different, since there is no need to expand Ξ to

leading order in B, i.e., because we can now consider large
values of B.
Results fromkinetic theory [22–25], thermalQFT [26–28],

EFT [29–31] and even Ward identities [32] also suggest
that the thermodynamic frame transport coefficients are
preferred (see Ref. [11] for a review). Here we see
that to obtain nontrivial results involving the anomaly
from order one constitutive relations we must work Bμ order
zero.
Even if the anomalous transport coefficients are the

same as in the thermodynamic frame, the result in (28)
are—to the best of our knowledge—new. Additionally we
learn from these expressions (28) that: (i) the dependence
of the conductivities on B is not simply quadratic as
reported in the literature, specifically at larger values of B,
and this statement does not rely on the fact that the
thermodynamics can depend on B, as pointed out already
in [6], furthermore, at order one in derivatives, there are
more transport coefficients than just σ0 [16] and (ii) using
purely hydrodynamical arguments (i.e. the requirement
that conductivities are frame-independent) we have shown
that the magnetic field should be taken to order zero to
avoid inconsistencies at all orders in the derivative
expansion.
There is however a small caveat to the above discussion.

As alluded to previously the hydrostatic configuration of
the system is defined by a Killing vector Vμ. Typically, one
identifies Vμ=

ffiffiffiffiffiffiffiffiffi
−V2

p
¼ uμ in the hydrostatic limit and this

defines the thermodynamic frame. When the vector field
Bμ ∼Oð∂0Þ however, there is the option to modify this
canonical definition, e.g., uμ ¼ 1=c0ðVμ=

ffiffiffiffiffiffiffiffiffi
−V2

p
þ c1μBμÞ

where c0 is a normalization constant so that uμuμ ¼ −1 and
c1 a parameter that can be tuned to set Qμ ¼ 0—which is
part of the definition of the Landau frame [33]. However,
the resultant expressions look like the Landau frame only if
we include the magnetic field up toOðBÞ in amplitude, i.e.,
Tμνuν ¼ −ϵuμ þOðB2Þ and Jμuμ ¼ −nþOðB2Þ. One can
of course work with these expressions, although again the
Landau frame is out of reach.

VI. DISCUSSION

It becomes clear from our work that to find anomalous
effects in transport with order one magnetic fields one must
work to at least order two in derivatives. However, this
derivative counting for B would just shift the issue of
frame-ambiguities in the conductivities at order Oð∂3Þ. To
avoid this issue altogether, and indirectly to permit a
characterization of transport at larger values of B, we
suggest one should always work with a magnetic field that
is order zero in derivatives, i.e. an integral part of the
thermodynamics. Any hydrodynamic frame build upon
such an ideal fluid will then give conductivities which
are well defined and not frame-dependent.
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