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From quantum field theory, we derive the chiral kinetic theory involving nonlinear quantum corrections
coupled with spacetime-dependent electromagnetic fields and fluid velocity gradients. An equilibrium
Wigner function determined by the kinetic equation verifies the nondissipativeness of the charge induced
by the magneto-vortical coupling. We reveal that this nonlinear chiral kinetic theory is consistent with the
one-loop Euler–Heisenberg effective theory, indicating an indirect evidence of the trace anomaly in the
kinetic theory. We also argue a potential issue on the regularization, and demonstrate the availability of
the point-splitting regularization in the nonlinear chiral kinetic theory.
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I. INTRODUCTION

The chiral kinetic theory (CKT) is one of the prominent
theoretical tools to describe transport phenomena of
massless degrees of freedom. In this framework, a lot of
transport phenomena are displayed with the Berry monop-
ole [1–3], as in the electron transport theory [4]. A
significant advantage of the CKT is the versatile appli-
cability not only to heavy-ion collisions [5,6], Weyl
semimetal [7,8] and neutrino physics [9–11], but also to
the photonic transport [12–15]. The CKT has also inspired
us to elucidate many aspects in relativistic quantum trans-
port, such as the Lorentz covariance [16–18], collisional
effects [18–21], the mass corrections [22–24], the strong
magnetic field limit [25–28], the different derivations
[29–34], and gravitational contributions [35–38] (see also
Ref. [39] and reference therein).
In spite of various developments, the usual CKT includes

only the linear quantum correction. One limitation of this
linear CKT is found in the transport phenomena induced by
the nonlinear coupling of background fields. A particular
example belonging to this category is the charge density of
chiral fermions under external magnetic field and vortical
field. Such an induced charge is originally discovered
from the diagrammatic computation based on the linear
response theory [40], and the agreement is found from the
Dirac theory of a rotating fermions (for instance, see
Ref. [41]). Importantly, this charge generation is believed
to be originated from quantum anomaly, and thus to be

nondissipative [42]. Nevertheless, the nondissipativeness
cannot be verified within thermal field theory, including the
linear response theory. Indeed, the equilibration under
magnetic field and rotation is subtle, since the coexistence
of these external fields generates the drift force playing
a role of an effective electric field. The kinetic theory
based on the Wigner function [43] would provide a field-
theoretical manifestation of the nondissipativeness, and
thus the anomalous nature. In this direction, the off-
equilibrium formulation of the kinetic theory is required,
beyond the near-equilibrium studies [28,44].
Another limitation of the linear CKT is uncovered in

the trace anomaly of quantum electrodynamics (QED),
which is also the nonlinear quantum effect in the kinetic
theory. While the chiral anomaly is well known as a
consequence of the Berry curvature, it is unobvious how
the trace anomaly is interpreted in the kinetic description.
An important clue to answer this question is the consistency
of the kinetic theory and quantum field theory. Particularly,
the CKT and the Euler–Heisenberg effective theory [45,46]
should inherit the same QED properties, since both theories
describe fermionic dynamics under background electro-
magnetic fields. Such a consistency is also a guiding
principle in developing the CKT with nonlinear quantum
corrections.
In this paper, based on quantum field theory, we

formulate the nonlinear CKT, i.e., the CKT involving the
nonlinear quantum correction coupled with spacetime-
dependent electromagnetic and fluid velocity fields. For
this purpose, we derive the off-equilibriumWigner function
[43] in the collisionless limit as a simple attempt. Although
the equilibrium state is not completely determined in the
collisionless case, the frame-independence of the Wigner
function provides a strong constraint for the equilibrium
[37]. From an equilibrium Wigner function found in this
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way, we show the nondissipativeness of the magneto-
vortical transport found in Ref. [40]. We also find that
the nonlinear CKT yields transport phenomena consistent
with the Euler–Heisenberg effective theory. This consis-
tency further elucidates the kinetic encoding of the charge
renormalization and the QED β-function, which is an
indirect evidence of the trace anomaly in the CKT.
As a striking difference from the linear CKT, the non-

linear CKT bears an inevitable ultraviolet divergence to be
properly regularized. In this paper, we pose a potential issue
on this regularization; the competent techniques, such as
Pauli-Villars regularization and dimensional regularization,
are incompatible with the CKT. Instead, we implements the
point-splitting regularization [47] in the nonlinear CKT.
Despite the violation of the translational invariance, this
scheme is not only compatible with the Wigner function,
but also helpful in elucidating the consistency with the
Euler-Heisenberg theory.
This paper is organized as follows. In Sec. II, we derive

the off-equilibrium Wigner function at Oðℏ2Þ, except
for the distribution function. In Sec. III, analyzing the
frame-dependence of the nonlinear CKT, we identify an
equilibrium Wigner function. In Sec. IV, we demonstrate
the computational manner of the momentum integral
in the CKT, including the implementation of the point-
splitting regularization. In Sec. V, we evaluate the Oðℏ2Þ
contributions to the equilibrium charge current and energy-
momentum tensor. In Sec. VI, we show the consistency
of the nonlinear CKT and the Euler-Heisenberg theory.
Section VII is devoted to the summary of this paper. We set
e ¼ 1 in this paper unless otherwise stated, and use the
mostly negative Minkowski metric.

II. NONLINEAR CHIRAL KINETIC THEORY

A. Transport equations

Based on quantum field theory, the transport theory is
constructed from the Dyson-Schwinger equation for the
Green’s function. When we consider virtual gauge fields,
the corresponding equation for Dirac propagators yields the
collisional kinetic theory. This is important for pursuing the
dynamical evolution in practical systems. Nevertheless,
since our present interest is to formulate the kinetic theory
with nonlinear quantum corrections, through this paper, we
only focus on the collisionless limit.
We consider the Dirac theory of fermion fields ψ and ψ̄

coupled with an external electromagnetic field Aμ. The two-
point correlation functions S<αβðx; yÞ ≔ hψ̄βðyÞψαðxÞi and
S>αβðx; yÞ ≔ hψαðxÞψ̄βðyÞi obey

Dx;μS<ðx; yÞ ¼ S>ðx; yÞD⃖x;μ ¼ 0 ð1Þ

with DμψðxÞ ≔ ð∂μ þ iAμ=ℏÞψðxÞ and ψ̄ðxÞD⃖μ ≔
ψðxÞð∂⃖μ − iAμ=ℏÞ. Note that here we implicitly enclosed

the Wilson line, which ensures the gauge covariance
of S≷. This is equivalent to define the gauge covariant
translation operator as ψðxþ yÞ ≔ ey·DψðxÞ. Fourier-
transforming Eq. (1), we get the transport equation of
the Wigner function

W≷ðx; pÞ ≔
Z
y
e−ip·y=ℏS≷ðx − y=2; xþ y=2Þ ð2Þ

with
R
y ≔

R
d4y. The original transport equation of

W≷ðx; pÞ contains the full quantum effect, and can be
expanded in terms of ℏ [43]. This expansion is the same as
that in terms of the spacetime gradient since ℏ always
accompanies a spacetime derivative. The first nonlinear
terms ofOðℏ2Þ thus emerge together with the second power
of background electromagnetic fields and vortical fields,
and their derivatives. In the following analysis, we discuss
only the lesser part Wðx; pÞ ≔ W<ðx; pÞ, which describes
the kinetic theory of fermions.
In four-dimensional spacetime, the Wigner function can

be decomposed with the basis of the Clifford algebra as

W ¼ F þ iγ5P þ γμVμ þ γ5γμAμ þ
1

2
σμνSμν; ð3Þ

where F , P, Vμ Aμ and Sμν are some coefficient fields
dependent on xμ and pμ. For the transport equation of
chiral fermions, the right-handed projection of Wðx; pÞ is
decoupled (and so is the left-handed one) from other
channels. We denote this by

Rðx; pÞ ≔ 1

2
tr½γμPRWðx; pÞ� ð4Þ

with PR ≔ 1
2
ð1þ γ5Þ and the trace is for the spinor indices.

The equations of motion for Rμ are derived as follows:

ðΔμ þ ℏ2PμÞRμ ¼ 0; ð5Þ

ðpμ þ ℏ2QμÞRμ ¼ 0; ð6Þ

ℏεμνρσΔρRσ þ 4½p½μ þ ℏ2Q½μ�Rν� ¼ 0: ð7Þ

Here we defined X½μYν� ≔ 1
2
ðXμYν − XνYμÞ, the Levi-

Civita tensor with ε0123 ¼ 1 and the following differential
operators:

Δμ ¼ ∂μ − Fμλ∂
λ
p;

Pμ ¼
1

24
ð∂p · ∂Þ2Fμν∂

ν
p;

Qμ ¼ −
1

12
∂p · ∂Fμν∂

ν
p: ð8Þ

Contracting Eq. (7) with pν and using Eq. (6), we get the
useful equation
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p2Rμ ¼
ℏ
2
εμνρσpνΔρRσþ 2ℏ2pνQ½μRν� −ℏ2pμQ ·R: ð9Þ

Once Rμ is determined from the above equations of
motion, we can compute physical quantities. By imple-
menting the inverse Wigner transformation of two point
functions, the charge current, energy-momentum tensor
and spin tensor are expressed with Rμ, as follows:

Jμðx; yÞ ¼ 2

Z
p
eip·y=ℏRμðx; pÞ; ð10Þ

Tμνðx; yÞ ¼ 2

Z
p
eip·y=ℏ½pðμRνÞðx; pÞ þ ℏ2QðμRνÞðx; pÞ�;

ð11Þ

Sμνρðx; yÞ ¼ −2ℏεμνρσ
Z
p
eip·y=ℏRσðx; pÞ ð12Þ

with
R
p ≔

R d4p
ð2πÞ4 and XðμYνÞ ≔ 1

2
ðXμYν þ XνYμÞ. In

Appendix A, we derive Eqs. (10)–(12) from the two-point
functions. In the usual analysis with the Wigner function
approach, the above quantities are defined in the y → 0
limit. However, this parameter y plays a role of the
ultraviolet regulator when we implement the point-splitting
regularization. For this reason, hereafter we keep y finite.
From these expressions (10)–(12), it is manifested that

Eqs. (5)–(7) correspond to the Ward identities which
massless fermions should respect. The first equation (5)
is related to charge conservation, and thus interpreted as the
kinetic equation, which determines the distribution function
in Rμ. The latter two (6) and (7) imply the conformal
invariance and the Lorentz invariance (i.e., angular momen-
tum conservation), respectively. These two determine the
off-equilibriumWigner function, except for the distribution
function.

B. Solution up to Oðℏ2Þ
In the following, we look for the solution of Eqs. (6)–(7)

and (9), with the parametrization:

Rμ ¼ Rμ
ð0Þ þ ℏRμ

ð1Þ þ ℏ2Rμ
ð2Þ: ð13Þ

For the latter computation of the nonlinear solutionRμ
ð2Þ, let

us first briefly review the Oðℏ0Þ and OðℏÞ parts [18]. The
Oðℏ0Þ solution is readily found from Eqs. (6) and (9) as

Rμ
ð0Þ ¼ 2πδðp2Þpμfð0Þ; ð14Þ

where fð0Þ is a function that satisfies δðp2Þp2fð0Þ ¼ 0.
The delta function δðp2Þ represents the on-shell condition
of the chiral fermion: p2 ¼ ðp0Þ2 − jpj2 ¼ 0. This fð0Þ has
both particle and antiparticle contributions. At equilibrium,
fð0Þ is the Fermi distribution function, with which the
Wigner function Rμ

ð0Þ reproduces the usual lesser propa-

gator [48].
Let us solve the first-order part. Inserting the zeroth-

order solution (14) into Eq. (9), we get the first-order
correction as

Rμ
ð1Þ ¼ 2πδðp2Þ

�
R̃μ
ð1Þ −

1

p2
F̃μνpνfð0Þ

�
ð15Þ

with F̃μν ¼ 1
2
εμνρσFρσ. The second term is apparently

singular, but it accounts for the chiral anomaly in the
CKT. Also, we emphasize the existence of the first term,
which is admitted as long as it satisfies δðp2Þp2R̃μ

ð1Þ ¼ 0

and δðp2Þp · R̃ð1Þ ¼ 0. This extra term is determined from
Eq. (7) at OðℏÞ, as follows:

R̃ð1Þμ δðp2Þ ¼ δðp2Þ
�
pμ

n · R̃ð1Þ
p ·n

þ εμνρσpρnσ

2p ·n
Δνfð0Þ

�
; ð16Þ

where we introduce an arbitrary vector field nμðxÞ. Thus,
the first correction part is given by

Rμ
ð1Þ ¼ 2πδðp2Þ

�
pμfð1Þ þ

�
Σμν
n Δν −

1

p2
F̃μνpν

�
fð0Þ

�
;

ð17Þ

where we define

fð1Þ ≔
n · R̃ð1Þ

p · n
; Σμν

n ≔
εμνρσpρnσ
2p · n

: ð18Þ

This tensor Σμν
n corresponds to the spin of chiral fermions

and nμ is the degrees of freedom for the frame choice of the
spin [16,17]. It is worth mentioning that δðp2Þp2R̃μ

ð1Þ ¼ 0

implies δðp2Þp2fð1Þ ¼ 0. Such a nonsingular condition for
fð1Þ is important, in particular, when we determine the
equilibrium form of fð1Þ. Also, δðp2Þp2fð1Þ ¼ 0 ensures
that the above solution (17) fulfills Eqs. (6) and (9).
In a totally parallel manner, we can solve the second-

order partRμ
ð2Þ. The derivation is shown in Appendix B (see

also Ref. [37]). The result is
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Rð2Þμ ¼ 2πδðp2Þ
�
pμfð2Þ þ

�
Σu
μνΔν −

1

p2
F̃μνpν

�
fð1Þ − Σu

μνε
νρσλΔρ

nσ
2p · n

Δλfð0Þ

�
þ 2π

p2
½−pμQ · pþ 2pνQ½μpν��fð0Þδðp2Þ

þ 2π
δðp2Þ
p2

�
1

2
εμνρσpνΔρ þ pμpν

p2
F̃νσ − F̃μσ

��
Σσλ
n Δλ −

1

p2
F̃σλpλ

�
fð0Þ

þ 2π
δðp2Þ
p2

Σu
μν

�
ΔαΣαν

n þ
nα
p · n

F̃αν þ 1

p2
F̃νλpλ

�
p · Δfð0Þ; ð19Þ

where Δμ and Qμ operate all on the right. Here, another
vector field uμ and spin tensor Σμν

u are introduced, similarly
to nμ and Σμν

n in Rμ
ð1Þ. The new factor fð2Þ is the second-

order counterpart of fð1Þ, and is required to satisfy the
nonsingular condition δðp2Þp2fð2Þ ¼ 0. For uμ ¼ nμ, the
above solution Rμ ¼ Rμ

ð0Þ þ ℏRμ
ð1Þ þ ℏ2Rμ

ð2Þ can be recast

in a simpler form. Then, fð0Þ, fð1Þ and fð2Þ inRμ are totally
combined as the single function f ≔ fð0Þ þ ℏfð1Þ þ ℏ2fð2Þ,
as are so in the gravitational case [37]. Inserting this
Rμ into Eq. (5), we get the nμ-dependent nonlinear
chiral kinetic equation to determine the single distribu-
tion function f. Such a structure is the same as the linear
chiral kinetic equation. For this reason, uμ could be
regarded as the degrees of freedom for the Lorentz
transformation. On the other hand, the above interpreta-
tion of uμ is inapplicable for uμ ≠ nμ, and thus the
physical meaning of uμ is not completely identified. To
address this problem, we should study the Lorentz
transformation up to Oðℏ2Þ in quantum field theory
[18]. Although this is an important task to manifest the
nonlinear-order side-jump effect [16,17], we will analyze
it in a future publication. Hereafter, we call both nμ and uμ

the frame vectors.

III. EQUILIBRIUM

A. Frame dependence

As is well known, the CKT depends on the frame vectors
nμ and uμ. Since the frames are auxiliary fields to obtain the
solutions (17) and (19), however, physical quantities
should be independent of the frames, and so is Rμ. On
the other hand, the distribution function depends on the
frame [17]. In the linear CKT, the frame transformation law
of fð1Þ is determined by imposing Rμ

ð1Þ keeps frame-

independent [18]. Similarly, in the nonlinear CKT, we
can compute the transformation law of fð2Þ from the frame-
independence of Rμ

ð2Þ [37]. Let us first focus on the

variation in terms of nμ. Suppose that we take the trans-
formation of the frame vector as nμ → n0μ. Then the
corresponding transformation of the distribution function
is written as fð1Þ → fð1Þ þ δnfð1Þ, fð2Þ → fð2Þ þ δnfð2Þ. It is
worthwhile to mention that the variations δnfð1Þ;ð2Þ should

be nonsingular because so are fð1Þ;ð2Þ. That is, we
impose δðp2Þp2δnfð1Þ ¼ δðp2Þp2δnfð2Þ ¼ 0.
The frame-independence of Rμ

ð1Þ is represented as

Rμ
ð1Þjn0 −Rμ

ð1Þjn ¼ 0, where Rμ
ð1Þjn is the Wigner function

in Eq. (17) with a frame nμ. From this equation, we
determine the transformation law of fð1Þ, as follows: [17,18]

δnfð1Þ ¼ −
nμ

p · n
Σn0
μνΔνfð0Þ þ p2δngð1Þ; ð20Þ

where δngð1Þ is a nonsingular scalar fulfills
δðp2Þp2δngð1Þ ¼ 0. In the linear CKT, this δngð1Þ can be
ignored; such a term does not affectRμ

ð1Þ. This is, however,
not the case in the nonlinear CKT. Indeed, from a similar but
more complicated evaluation for Rμ

ð2Þ, we obtain the

variation of fð2Þ as

δnfð2Þ

¼ Σu
μν

�
Δμ

ενραβnαn0β
2p · np · n0

Δρfð0Þ − Fμνδngð1Þ

�

þ 1

p2

�
Σu
μνΔμ − F̃μν

�
pμ

p2
−

uμ

p · u

��
Σνλ
n0

nλ
p · n

p · Δfð0Þ:

ð21Þ
which involves δngð1Þ. The same analysis can be performed
for the variation in terms of uμ. Then, we find δufð1Þ ¼ 0 and

δufð2Þ ¼ −
uμ

p · u
Σu0
μν

�
Δνfð1Þ − ενρσλΔρ

nσ
2p · n

Δλfð0Þ

þ 1

p2

�
ΔαΣαν

n þ
nα
p · n

F̃αν þ 1

p2
F̃νλpλ

�
p · Δfð0Þ

�
:

ð22Þ

B. Equilibrium Wigner function

Let us apply the above argument to the equilibrium
solution of the nonlinear CKT. In the collisionless case, the
kinetic theory itself cannot generally determine equilib-
rium. The frame transformation laws (20)–(22) however
provide strong constraints to fix the equilibrium
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distribution functions. To illustrate this fact, let us here
employ the equilibrium distribution function so that the
classical Wigner function (14) is reproduced as the well-
known form of the lesser Green’s function of free fermions,
that is,

fð0Þ ¼ ϵðp0ÞnFð−μþp ·ξÞ;
∂μα−Fμνβ

ν¼ 0; ∂μβνþ∂νβμ¼ 0; ð23Þ

where we define ϵðxÞ ≔ θðxÞ − θð−xÞ with the step
function θðxÞ, and the Fermi distribution function
nFðxÞ ≔ ðeβx þ 1Þ−1. The parameters α and βμ are defined
as α ¼ −βμ, βμ ¼ βξμ and ξ · ξ ¼ 1with chemical potential
μ, inverse temperature β and fluid velocity ξμ. The Wigner
function Rμ

ð0Þ with this fð0Þ in fact solves the classical

kinetic equation (5): Δ · Rð0Þ ¼ 2πδðp2Þf0ð0Þpμð∂μα þ
pν
∂μβν − Fμνβ

νÞ ¼ 0 with f0ð0Þ ¼ dfð0ÞðxÞ=dx and x ¼
αþ β · p.
Then, using the above fð0Þ, we compute the trans-

formation law of fð1Þ and fð2Þ. From Eq. (20), we obtain

δnfð1Þ ¼ f0ð0Þ
1

2
ðΣνρ

n0 − Σνρ
n Þ∂νβρ

þ p2

�
δngð1Þ − f0ð0Þ

εμναβnαn0β
4p · np · n0

∂νβρ

�
: ð24Þ

The above equation holds when we choose

fð1Þ ¼ f0ð0Þ
1

2
Σμν
n ∂μβν; δngð1Þ ¼ f0ð0Þ

εμναβnαn0β
4p ·np ·n0

∂νβρ: ð25Þ

Similarly, the variations of fð2Þ are calculated as follows:

δnfð2Þ ¼
1

4
Σu
μνΔμενβρλ

�
n0β

p · n0
−

nβ
p · n

�
∂ρβλf0ð0Þ;

δufð2Þ ¼
1

4
ðΣu0

μν − Σu
μνÞΔμενβρλ

nβ
p · n

∂ρβλf0ð0Þ: ð26Þ

We note that all singular terms with ðp2Þ−1 or ðp2Þ−2 in
Eqs. (21) and (22) disappear, thanks to p · Δfð0Þ ¼ 0. The
above equations indicate that the second-order quantum
correction fð2Þ may be deduced as

fð2Þ ¼ Σu
μνΔμ

�
f0ð0Þ

ενρσλ

4p · n
nρ∂σβλ

�
þ ϕð2Þ: ð27Þ

Here ϕð2Þ is a frame-independent term in the equilibrium
distribution function. Such an ambiguity in fð2Þ cannot be
determined in the present framework, which ignore the
collisional effect.
At the equilibrium we found above, the Wigner function

(19) is reduced. First, we assume ϕð2Þ ¼ 0 for simplicity.
Plugging Eqs. (25) and (27) into Eq. (19), one can show
that the frame-dependence of Rμ

ð2Þ is totally compensated,

as it should. Eventually, Eq. (19) is recast into the four

different pieces as Rð2Þμ ¼Rð∂FÞμ þRðFFÞμ þRðFωÞμ þRðωωÞμ

with

Rð∂FÞμ ¼ 2π
δðp2Þ
p2

·
1

12

�
pμfð0Þ

�
−

8

p2

�
pρ

∂
λFρλ þ pμf0ð0Þ

�
∂
ρFρλβ

λ −
4

p2
pρp · ∂Fρλβ

λ

�

þ pμf00ð0Þð2pρβ · ∂Fρλβ
λÞ þ fð0Þ

�
8∂λFμλ −

8

p2
p · ∂Fμλpλ

�
þ f0ð0Þðp · ∂Fμλβ

λ þ pν
∂μFνλβ

λÞ þ f00ð0Þð−p2β · ∂Fμλβ
λÞ
�

ð28Þ

RðFFÞμ ¼ 2π
δðp2Þ
ðp2Þ2 · 2

�
−
pμpν

p2
Fνσ þ Fμσ

�
Fσλpλfð0Þ; ð29Þ

RðFωÞμ ¼ 2π
δðp2Þ
p2

�
−pμ

pνpρ

p2
ωνσF̃σρ þ 3

4
ωμσF̃σνpν þ

1

4
F̃μσω

σνpν

�
fð0Þ; ð30Þ

RðωωÞμ ¼ 2πδðp2Þ · 1
4

�
pμ

pνpρ

p2
ωνσωρ

σ − ωμσων
σpν

�
f00ð0Þ; ð31Þ

where we introduce ωμν ≔ β−1

2
εμνρσ∂ρβσ. We also note that the derivative of vorticity disappears, i.e., Rμ

ð∂ωÞ ¼ 0, owing to

the identity ∂μ∂νβρ ¼ 0 for the Killing vector βρ.
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At this point, it is not guaranteed that the above Rμ is
really an equilibriumWigner function, because we have not
yet analyzed the Oðℏ2Þ part of the kinetic equation (5).1

Plugging Eqs. (14) and (28)–(31) to the kinetic equation (5)
and carrying out a tedious computation, we arrive at

δðp2Þ
��f00ð0Þ

6p2
∂
μβρpνpρ −

f00ð0Þ
8

∂
μβν −

f000ð0Þ
12

∂
μβρβνpρ

�
β · ∂

þ
f000ð0Þ
24

pμβνβρβσ∂ρ∂σ

�
Fμν ¼ 0: ð32Þ

Using βρβσ∂ρ∂σFμν ¼ β · ∂ðβ · ∂FμνÞ − ðβ · ∂βσÞ∂σFμν, we
find that all the terms in the above kinetic equation contain
β · ∂Fμν or β · ∂βμ. As long as we consider a finite Fμν,
hence, the above reduced kinetic equation implies that
either of the following conditions should be fulfilled2:

1Þ β · ∂Fμν ¼ 0; β · ∂βμ ¼ 0; ð33aÞ

2Þ ∂λFμν ¼ 0: ð33bÞ

These are the additional equilibrium conditions on top of
those in Eq. (23). The meaning of the condition (33a)
is understandable when we take ξμ ¼ ð1; 0Þ. The first
equation in Eq. (33a) implies the time-independence of
background electromagnetic fields. The second means that
the background fluid has no acceleration, or equivalently,
there is no temperature gradient: 0 ¼ β · ∂βμ ¼ −β∂μβ with
β ≔

ffiffiffiffiffiffiffiffiffi
β · β
p

. On the other hand, the acceleration term is
admitted under the condition (33b), where electromagnetic
fields are constant. This is the case employed in Ref. [44].
We here discuss the case with ϕð2Þ ≠ 0 in Eq. (27). One

can readily check that in this case the extra term δðp2Þp ·
Δϕð2Þ emerges in the kinetic equation (32). However, the
singular term with p−2 cannot be eliminated by the ϕð2Þ
term, since δðp2Þϕð2Þ ¼ 0 is required from the nonsingular
condition δðp2Þfð2Þ ¼ 0. Moreover, the other terms in
Eq. (32) are not canceled by the ϕð2Þ term. Hence, δðp2Þp ·
Δϕð2Þ ¼ 0 is demanded. As the simplest choice, we may
take ϕð2Þ ¼ 0 hereafter. This is a difference from the CKT
in curved spacetime; under a weak static gravitational field,
a finite ϕð2Þ is required for the realization of an equilib-
rium [37].

IV. MOMENTUM INTEGRAL

A. Regularization

The equilibrium physical quantities are computed as
the momentum integral with the Winger function in
Eqs. (28)–(31) with the distribution function (23) under
the condition (33). Before the computation, we demonstrate
how to evaluate the momentum integrals. The integrals
that we encounter in the following section are generally
written as

Z
p
2π

dlδðp2Þ
ðdp2Þl p

μ1 � � �pμj
dkfð0Þðp0Þ

dpk
0

eip·y=ℏ ð34Þ

with fð0Þ given by Eq. (23). Here we replaced the singular
factor ðp2Þ−l in the Wigner functions with the derivative of
δðp2Þ, through the identity l!δðxÞ ¼ ð−xÞldlδðxÞ=dxl.
For the latter convenience, we here decompose

Eq. (23) into the vacuum and matter parts as fð0Þðp0Þ ¼
fð0Þvacðp0Þ þ fð0Þmatðp0Þ with fð0Þvacðp0Þ ≔ −θð−p0Þ and
fð0Þmatðp0Þ ≔ θðp0ÞnFðp0 − μÞ þ θð−p0ÞnFð−p0 þ μÞ. In
Eq. (34) the former may result in the divergence at the
ultraviolet regime p0 ∼ −∞ unless k ≥ 1. For this diver-
gence, the parameter yμ plays a role of the cutoff scale. This
is nothing but the point-splitting regularization. On the
other hand, the latter does not require such a regulation.
Therefore, in the following, we evaluate these two con-
tributions in different ways; for the vacuum contributions,
we keep y finite so that the point-splitting regularization is
implemented, but for the matter part we take y → 0 before
integration.3 It should also be emphasized that we face no
infrared divergence in Eq. (34), thanks to the cancellation
of those from the vacuum and matter parts.
We comment on the regularization in the CKT. In usual

quantum field theory, when we regularize a divergent
integral, it is preferred to choose a regularization scheme
to respect the gauge, Lorentz, and translational invariances.
It is, however, not so easy to find out such an appropriate
scheme for Eq. (34). For instance, the Pauli-Villars scheme
is obviously unsuitable, since the CKT possesses no mass
parameter; a Pauli-Villars regulator would be useful for the
kinetic theory of massive fermions [22–24]. Dimensional
regularization is also incompatible with the CKT, since
εμνρσ and γ5 cannot be extended straightforwardly in a
general d-dimensional spacetime [49]. Indeed, the Wigner
functions derived in Secs. II–III are no longer correct in
d ≠ 4 dimensions, for the following two reasons. First,
the Clifford basis decomposition (3) is unjustified in
d ≠ 4 dimensions. This implies that our starting point at

1One can readily check that the OðℏÞ part of Eq. (5) holds for
the linear-order solution (17).

2Note that ∂μβν ¼ 0 is an equilibrium condition. In this case,
β · ∂Fμν ¼ 0 automatically holds because of 0 ¼ ∂½μ∂ν�α ¼
∂½μðFν�λβλÞ. This condition is however a special case of the
condition (33a).

3The point-splitting regularization with nFðp0 ∓ μÞ would in
principle be possible, but is not so easy as that of the vacuum; due
to the pole at p0 ¼ �μþ ið2nþ 1ÞπT for n ¼ 0;�1;…, it is
nontrivial to perform the Wick rotation, which is required in
implementing the point-splitting regularization.
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Eqs. (5)–(7) is modified. Second, the uselessness of the
Schouten identity in d ≠ 4 dimensions brings a lot of extra
singular terms with p−2 in intermediate steps of calculation.
Then we would not derive the solution that satisfies
appropriate conditions, such as δðp2Þp2fð2Þ ¼ 0.
The above circumstance compels us to choose a regu-

larization scheme that sacrifices at least one symmetry.
Among such schemes, the point-splitting regularization is
compatible with the Wigner function because the point-
splitting parameter is naturally introduced as yμ, as shown
in the charge current (10) and the energy-momentum
tensor (11). This is the reason why we employ the
point-splitting regularization in this paper. Although this
scheme in general violates the translational invariance
(namely, ∂μTμν þ FμνJμ ≠ 0), it can reveal the consistency
with the Euler-Heisenberg theory, as we discuss later. The
analysis with a more appropriate regularization will be
shown in feature publication.

B. Matter part

We demonstrate how to compute the matter part in
Eq. (34). We perform first the integral in terms of p0 and
then pi. In this way, by decomposing each pμ into the
transverse component to ξμ ≔ ð1; 0Þ and the longitudinal
one, we can replace integrands with nonvanishing tensor

form; for instance, pα → p0ξα and pαpβ → ðp0Þ2ξαξβ þ
p2

3
Δαβ with the transverse projector Δμν ≔ ξμξν − gμν.

Performing the tensor decomposition of the integrands,
we express Eq. (34) as the linear combination of

I l
n;m;k ≔

Z
p
2π

dlδðp2Þ
ðdp2Þl ðp0Þnjpjm−n d

kfð0Þmat

dpk
0

: ð35Þ

In order to handle the derivative on δðp2Þ, we use the chain
rule; e.g. d

dp2 δðp2Þ ¼ 1
2p0

d
dp0

δðp2Þ. Then, the integration by

parts in terms of p0 removes the derivative on δðp2Þ. It is
worthwhile to notice that this step generates no surface term
because of fð0Þmatðp0 → �∞Þ ¼ 0. In Appendix C, we
show the detailed evaluation. After this step, the integral
I l
n;m;k is written as the linear combination of another

integral sequence

J m;k≔
Z

∞

0

dppm dm

dpm ½nFðp−μÞ− ð−1ÞaþbnFðpþμÞ�:

ð36Þ
There is an important remark about the above compu-

tation manner. In Eq. (35), we have only the matter part
fð0Þmat since the vacuum part is evaluated with the point-
splitting regularization. In some regularization scheme, it
is in principle possible to evaluate Eq. (35) including the
vacuum contribution. In this case, we replace fð0Þmat with
fð0Þ ¼ fð0Þvac þ fð0Þmat in the integrand and evaluate the

integral in the almost same manner. Only one difference
is that we carefully take into account the surface
term contributions from thep0-integral. Such contributions
always appear for k ¼ 0 due to the vacuum contribution at
ultraviolet regime: fð0Þðp0 → þ∞Þ ¼ 0 but fð0Þðp0 →
−∞Þ ¼ −1. Although Ref. [44] performs a similar inte-
gration by parts, the above surface terms are missing.

C. Vacuum part

Now we compute the vacuum contribution of Eq. (34)
with the point-splitting regularization. What we need to
evaluate is

Kμ1���μm
n ðyÞ ≔

Z
p
2π

dnδðp2Þ
ðdp2Þn pμ1 � � �pμm ½−θð−p0Þ�eip·y=ℏ:

ð37Þ
It is efficient to first evaluate K1, K

μν
2 , and Kμνρσ

3 , which
would lead to the logarithmic ultraviolet divergence with-
out the point-splitting. After the contour deformation to
obtain an integral on the Euclidean momentum phase
space, we can evaluate these three integrals. As shown
in Appendix D, the result is as follows:

K1ðyÞ ¼ −
J ðyÞ
8π2

; Kμν
2 ðyÞ ¼

J ðyÞ
16π2

gμν;

Kμνρσ
3 ðyÞ ¼ −

J ðyÞ
32π2

ðgμνgρσ þ gμρgνσ þ gμσgνρÞ; ð38Þ

with the regularized integral:

J ðyÞ ≔
Z

y−1

0

dp
p

: ð39Þ

We again emphasize that the infrared divergence at p ∼ 0
are completely canceled by those of the matter part.
All other types of integrals in Eq. (37) are generated by

the derivative of Eq. (38) with respect to yμ. It is important
to remind then that in the point-splitting regularization, we
take the limit of y → 0 symmetrically at the end of
evaluation, as follows [50]:

symm lim
y→0

yμ

y2
¼ 0; symm lim

y→0

yμyν

y2
¼ gμν

4
: ð40Þ

Thanks to the first equation, for example, we readily find
Kμ

1 ¼ −iℏ∂μyK1 ∝ yμ=y2 → 0 in this limit. Eventually, the
integrals (37) other than the three in Eq. (38) vanish in the
following section.

V. EQUILIBRIUM TRANSPORT

We can now evaluate the charge current (10) and the
energy-momentum tensor (11), from the momentum inte-
gral (34). It is then convenient to introduce the following
four-vector fields:
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Bμ ≔ F̃μνξν; Eμ ≔ Fμνξν;

ωμ ≔ ωμνξν ¼
1

2
β−1εμνρσξν∂ρβσ;

aμ ≔ β−1ξν∂
μβν ¼ β−1∂μβ: ð41Þ

Hereafter, we focus on the equilibrium cases described by
either the condition (33a) or (33b), on top of those in
Eq. (23). Therefore, in the following analysis, either aμ or
∂μFμν should vanish depending on the choice of Eq. (33a)
or (33b).
The classical and the first-order contributions can be

evaluated with the integral formulas in Appendix C. As
derived in many literatures, we get [17]:

Jμð1Þ ¼
μ

4π2
Bμ þ

�
μ2

4π2
þ T2

12

�
ωμ;

Tμν
ð1Þ ¼

�
μ2

4π2
þ T2

12

�
BðμξνÞ þ

�
μ3

3π2
þ μT2

3

�
ωðμξνÞ; ð42Þ

which represent the chiral magnetic effect [51–53] and the
chiral vortical effect [54–56].
For the nonlinear-order contributions to Eqs. (10)

and (11), we differently evaluate the matter and vacuum
part, with the help of the integral formulas in Appendices. C
and D, respectively. SinceRμ

ð2Þ is decomposed into the four

different pieces (28)–(31), so are the corresponding charge
current Jμð2Þ and energy-momentum tensor Tμν

ð2Þ. The result-
ing expressions are as follows:

Jμð∂FÞ ¼ −
J −1;0 − J

12π2
∂λFμλ;

JμðFFÞ ¼
J −1;1

12π2

�
1

2
ξμðE2 þ B2Þ þ εμνρσξνEρBσ

�
;

JμðFωÞ ¼
1

8π2

h
−ξμðB · ωþ E · aÞ þ εμνρσξνBρaσ

i
;

JμðωωÞ ¼ −
μ

4π2
ξμðω2 þ a2Þ; ð43Þ

Tμν
ð∂FÞ ¼

μ

24π2
½−ξðμ∂λFνÞλ þ 2ξμξνξλ∂ρFρλ − gμνξλ∂ρFρλ þ ξλ∂

ðμFνÞλ�;

Tμν
ðFFÞ ¼

J −1;0 − J
12π2

�
Fμ

σFνσ −
1

4
gμνF2

αβ

�
;

Tμν
ðFωÞ ¼

μ

8π2
½−ξμξνðω · Bþ a · EÞ þ ωðμBνÞ þ aðμEνÞ þ 2ξðμενÞρσλaρBσξλ�;

Tμν
ðωωÞ ¼

�
μ2

2π2
þ T2

6

���
1

4
gμν − ξμξν

�
ðω2 þ a2Þ þ ξðμενÞρσλaρωσξλ

�
: ð44Þ

Here, the longitudinal component of the derivative dis-
appears, i.e., ξ · ∂Fμν ¼ 0, due to the equilibrium con-
dition (33). For the energy-momentum tensor, the term
with Qμ in Eq. (11) yields no contribution, as is readily
checked. We again emphasize that either ∂λFμν or aμ is
admitted to survive due to the conditions (33a) and (33b),
respectively.
We should make a comparison with Ref. [44]. The

authors derived almost the same transport as above, except
for Jμð∂FÞ, T

μν
ð∂FÞ and Tμν

ðFFÞ. The first two were not computed
since the authors focused only on constant background
fields. The stark difference from Ref. [44] is found in Tμν

ðFFÞ.
The two underlying reasons of this difference are eluci-
dated by recalling the arguments in Sec. IV. First, the
authors did not take into account finite surface terms
because of the vacuum contribution in Eq. (34). Second,
they implemented dimensional regularization, without
caring about the modification on the Clifford algebra
in d ≠ 4 dimensions. As a result, while our energy-
momentum tensor agrees with that from the Euler–
Heisenberg effective theory, that derived in Ref. [44] does
not (see Sec. VI).

An important observation in Eqs. (43) and (44) is the
finite contributions from the magneto-vortical terms JμðFωÞ
and Tμν

ðFωÞ. In particular, the charge density J0ðFωÞ ∼ B · ω

agree with that derived in Refs. [28,40,41,44]. There is,
however, a crucial contrast with them in terms of the
derivations. On the one hand, the above early studies
implicitly assume an equilibrium under magnetic field
and vorticity, despite the subtlety of this assumption; the
interplay of magnetic field and rotation classically gen-
erates an effective electric field, which in general prohibits
the equilibration. On the other hand, our J0ðFωÞ ∼ B · ω is

derived from the equilibrium Wigner function, which is
determined by the kinetic equation. We hence verifies the
nondissipativeness of the above magneto-vortical effect,
based on quantum field theory. This is one of the main
findings in this paper.
However, the above result does not reproduce the

induced current ∼B · ωBμ=jBj, which is discovered in
Ref. [40]. This is because our classical Wigner function
Rμ
ð0Þ is independent of B

μ. Contrary, ifRμ
ð0Þ depends on B

μ,

there emerges Bμ=jBj as a possible tensorial basis of Rμ
ð2Þ,
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similarly to the fluid velocity ξμ. This is in fact the case of
the CKT in the strong magnetic field [28]. Hence, although
the magneto-vortical coupling generates both the charge
∼B · ω and the current ∼B · ωBμ=jBj, they are qualitatively
different. Such a difference would be related to their
anomalous nature [57].
Let us argue the conservation laws for the transport in

Eqs. (43) and (44). One can compute the divergences ∂μJ
μ
ð2Þ

with the help of Eq. (C14) and the formulas in Appendix E.
We then observe ∂μJ

μ
ðFωÞ ¼ ∂μJ

μ
ðωωÞ ¼ ∂μðJμðFFÞ þJμð∂FÞÞ ¼ 0.

Therefore, the nonlinear contribution of the charge current
is conserved:

∂μJ
μ
ð2Þ ¼ 0; ð45Þ

where we impose aμ∂νFρσ ¼ 0 because of the equilibrium
condition (33). This relation holds under both the con-
ditions (33a) and (33b). The divergence ∂μT

μν
ð2Þ is computed

in a similar manner. We find ∂μT
μν
ðFωÞ þ FμνJðFωÞμ ¼

∂μT
μν
ðωωÞ þ FμνJðωωÞμ ¼ 0, but

∂μT
μν
ðFFÞ þFμνðJðFFÞμ þJð∂FÞμ Þ

¼ 1

48π2
½aνFαβFαβ−4aμFμσFνσ�; ð46Þ

∂μT
μν
ð∂FÞ

¼ 1

48π2

h
−ξνEμ∂λFλμ þ 2ξμEν

∂λFλμ − 2ξλEμ∂
ðμFνÞλ

i
;

ð47Þ

where we again drop the product terms ∼aμ∂λFνρ. Thus, we
arrive at

∂μT
μν
ð2Þ þ FμνJð2Þμ ≠ 0: ð48Þ

This violation of the translational invariance is a compen-
sation of the point-splitting regularization.
Lastly, we look at the trace of the energy-momentum

tensors in Eq. (44). We first notice that Tμν
ð∂FÞ, T

μν
ðFωÞ and

Tμν
ðωωÞ are traceless irrelevantly to the regularization scheme.

The same is true for Tμν
ðFFÞ, as long as we utilize the point-

splitting regularization. Eventually, no trace anomaly is
reproduced:

Tμ
μð2Þ ¼ 0: ð49Þ

This is another compensation of the point-splitting regu-
larization; the energy-momentum conservation and the
tracelessness do not simultaneously hold. We emphasize
that the QED trace anomaly stems from the fermion loop
corrections, regardless of whether electromagnetic fields
are background or not [58–60]; it is generally inevitable to

introduce some regularization scale. Hence, Eq. (49) is just
a consequence of our regularization.

VI. CONSISTENCY WITH EULER-HEISENBERG
EFFECTIVE THEORY

For consistency check, let us make a comparison with
the Euler-Heisenberg effective theory, which is described
by the following effective Lagrangian:

LEH¼−F −
e2

8π2

Z
∞

s0

ds
s
e−sm

2 Recosh½ℏes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðF þ iGÞp �

Imcosh½ℏes ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðF þ iGÞp �G

ð50Þ

with F ≔ F2
αβ=4, G ≔ FαβF̃αβ=4 and m being the fermion

mass. Here ℏ and e are explicitly written. In the above
Lagrangian, we do not put the conventional counterterms
∼1=s3 and ∼e2F=s, which accounts for the vacuum
energy renormalization and the charge renormalization.
Instead of this minimal subtraction, we introduced the
ultraviolet cutoff parameter s0, which plays the similar
role to y−1 in the point-splitting regularization. The charge
current and the energy-momentum tensor are obtained
from the derivative of the corresponding action with
respect to gauge field Aμ and metric tensor gμν, respec-
tively. We define them as

JμEH ≔ −
δ

δAμ

Z
d4xðℏ2LEHÞ;

Tμν
EH ≔

2ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g
p ðℏ2LEHÞ: ð51Þ

For the energy-momentum tensor Tμν
EH, we utilized the

effective action in a general curved spacetime with
g ≔ detðgμνÞ. We note that the factor ℏ2 is from our
convention for the comparison with the CKT analysis; on
top of ℏ−1 by definition of action, the extra ℏ3 is multiplied
because we abbreviate the ℏ−3 in the momentum phase
space, following the usual convention in the CKT.
The above Lagrangian can be expanded in terms of

power of ℏ. This is generally written as follows:

ℏ2LEH¼−ℏ2F þLEHð0Þ þℏ2LEHð2Þ þℏ4LEHð4Þ þ �� � :
ð52Þ

For the latter convenience, here we multiplied ℏ2 by both
sides. In Eq. (52), what we are now interested in is

LEHð2Þ ¼ −
e2

48π2
F2
μν

Z
∞

s0

ds
s
e−sm

2

¼ −
e2

24π2
F2
μν

Z
s−1=2
0

0

dp
p

e−m
2=p2

: ð53Þ
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The mass parameter m is the convergence factor of the
infrared regime at s → ∞ or p → 0. In our CKT analysis at
equilibrium, we do not care about the infrared divergence,
thanks to the cancellation by the matter part of fð0Þ. For
comparison with the CKT, we consider the limit ofm → 0.4

By replacing s−1=20 with y−1, we reduce Eq. (53) to

LEHð2Þjm→0 ¼ −
e2J
24π2

F2
μν; ð54Þ

where J is given by Eq. (39). Inserting Eq. (54) into
Eq. (51) and setting e ¼ 1 as we do in the CKT, we arrive at
the following relations:

JμEHð2Þjm→0 ¼
J
6π2

∂λFμλ ¼ 2Jμð∂FÞvac;

Tμν
EHð2Þjm→0 ¼ −

J
6π2

�
Fμ

σFνσ −
1

4
gμνF2

αβ

�
¼ 2Tμν

ðFFÞvac;

ð55Þ

where “vac” denotes the vacuum contribution. The factor 2
on the right-hand sides is understood as the degrees of
freedom of chirality. These relations guarantee the correct-
ness of Jμð∂FÞ and Tμν

ðFFÞ in Eqs. (43) and (44). We note that

the matter part and the vortical terms in Eqs. (43) and (44)
are not included here, as they are not enclosed in Eq. (50).
There is an important remark about the spacetime-

dependence of electromagnetic fields. Since the original
Euler-Heisenberg effective theory is for a constant Fμν, one
might be skeptical that the above comparison is meaningful
for JμEHð2Þ ∼ ∂λFμλ. If we take into account the coordinate-

dependence of Fμν, the effective Lagrangian acquires the
derivative corrections. However, the leading derivative
correction is of Oðð∂FÞ2Þ or of OðF∂2FÞ [61,62]. In the
power counting of ℏ, such a term is the fourth-order term,
as it contains four derivatives of gauge field. For this
reason, even when Fμν is spacetime-dependent, the
Lagrangian LEHð2Þ is unmodified and thus so is Eq. (55).
Therefore, we conclude that the nonlinear CKT is con-
sistent with the Euler-Heisenberg effective theory.
The Euler–Heisenberg effective theory also reveals

underlying physics of the logarithmic behavior of J in
Eqs. (43) and (44). To illustrate it, we write the Lagrangian
(50) in the following form:

ℏ2LEH ¼ −
ℏ2

4
F2
μν

�
1þ e2

12π2
log

s−10
m2

�
þ constþOðℏ4Þ;

ð56Þ

where the constant is the term without Fμν. The logarithmic
behavior is the same as that found in the vacuum polari-
zation of QED. From the above Lagrangian, hence, we read
off the effective charge e2effðMÞ ≔ e2ð1þ e2

12π2
logM2

m2Þ, and
the β-function βðeeffÞ≔MdeeffðMÞ=dM¼ e3effðMÞ=ð12π2Þ
[63]. Equation (55) shows that this characteristic of the
charge renormalization is inherited not only in the Euler-
Heisenberg theory, but also in the nonlinear CKT through
the same logarithm J ∼ log y−1. At the same time, in spite
of Eq. (49), we find that the logarithm J in Eq. (44) is an
indirect evidence of the trace anomaly, which is determined
by the QED β-function.

VII. SUMMARY

In this paper, we formulated the nonlinear CKT under
arbitrary background electromagnetic fields. We derived
the off-equilibrium Wigner function for arbitrary frame
vectors. Imposing the frame-independence of this Wigner
function, we identified an equilibrium Wigner function,
which solves the kinetic equation. As an application, we
compute the transport phenomena at the equilibrium. We
then found that the charge induced by the interplay of
magnetic field and vorticity [40] are permitted at the
equilibrium of the nonlinear CKT. This analysis based
on the Wigner function is, to the best of our knowledge, the
first field-theoretical verification of the nondissipativeness
of the above charge generation. Besides, as an important
finding, we also showed that the nonlinear CKT and the
Euler-Heisenberg effective theory share equivalent trans-
port phenomena. The ultraviolet logarithmic behavior in
the nonlinear CKT is not only a kinetic encoding of the
charge renormalization but also an indirect signature of the
trace anomaly in the kinetic description.
Also, we posed the potential issue that the prominent

schemes, i.e., Pauli-Villars regularization and dimensional
regularization, are incompatible with the CKT. The incom-
patibility of the latter scheme is one reason of the fact that
the energy-momentum tensor in Ref. [44] disagree with that
derived from the Euler-Heisenberg effective theory. For this
reason, we employed the point-splitting regularization,
which is much more compatible with the Wigner function
but cannot directly reproduce the trace anomaly. For the
complete reproduction of the trace anomaly in the kinetic
description, we should find out an appropriate regulariza-
tion in CKT, or rely on frameworks other than the CKT. For
the latter option, the kinetic theory of massive fermions
involving the Oðℏ2Þ correction is one of the candidates,
since Pauli-Villars regularization could be applicable.
Several potential developments are invoked from the

nonlinear CKT. First, the nonlinear transport phenomena is
one of the pivotal research fields in condensed matter
physics [64]. Also, the merit of the nonlinear CKT could be
found in, for instance, the so-called nonlinear Hall effect
[65,66], which originates from the Berry curvature dipole.
In the nonlinear CKT, such contribution would be hidden

4Even if we take the massless limit after performing the
integration in LEHð2Þ, the logarithmically divergent behavior in
terms of s0 is unchanged. Thus, the order of taking the limit is
irrelevant to the present discussion.
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(see also Refs. [67–69], which argue nonlinear corrections
of the Berry curvature). Besides, it is straightforward but
complicated to extend the present nonlinear CKT to the
collisional case by starting from the Kadanoff–Baym
equation with fermionic self-energy [70,71]. In the non-
linear CKT, it is also interesting to take into account
dynamical gauge fields, which bring the chiral plasma
instabilities [72]. These applications will be discussed
elsewhere.
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APPENDIX A: CHARGE CURRENT,
ENERGY-MOMENTUM TENSOR,
AND SPIN TENSOR AT Oðℏ2Þ

In this Appendix, we derive the charge current and
energy-momentum tensor with the Wigner function. The
former for the right-handed massless fermions is defined as

Jμðx; yÞ ≔ trhψ̄þγμPRψ−i; ðA1Þ

where we define PR ≔ 1
2
ð1þ γ5Þ, O− ≔ e−y·D=2OðxÞ

and Oþ≔OðxÞey·D
 

=2 with Dμ≔∂μþiAμ=ℏ, D
 

μ ≔

∂
 

μ − iAμ=ℏ. Here, the operators e−y·D=2 and ey·D
 

=2

represent the covariant translation, and thus their insertion
is equivalent to enclosing the Wilson line [43]. In the y → 0
limit, the above current is reduced to the usual definition in
quantum field theory. Let us here recall that the Wigner
function is defined as

Rμðx; pÞ ≔ 1

2
tr
h
γμPRWðx; pÞ

i
;

Wabðx; pÞ ≔
Z
y
e−ip·y=ℏtr

D
ðψ̄þÞbðψ−Þa

E
: ðA2Þ

Then, performing the inverse Wigner transformation, we
write the above current as Eq. (10):

Jμðx; yÞ ¼ 2

Z
p
eip·y=ℏRμðx; pÞ: ðA3Þ

For the spin tensor, the inverse Wigner transformation of
the standard field-theoretical definition yields Eq. (12):

Sμνρðx; yÞ ≔ ℏ
4
tr
D
ψ̄þfγμ; σνρgPRψ−

E

¼ −2ℏεμνρσ
Z
p
eip·y=ℏRσðx; pÞ ðA4Þ

with σμν ¼ i
2
½γμ; γν�.

Let us derive the kinetic expression of the energy-
momentum tensor. Unlike the charge current and spin

tensor, the definition of the energy-momentum tensor is
ambiguous due to the derivative operator. We here employ
the canonical energy-momentum tensor defined as follows:

Tμν
canðx;yÞ≔ iℏ

2
ðtμν−gμνtλλÞ;

tμν¼ tr
D
ψ̄þγμPRðDνψÞ− − ðψ̄D⃖νÞþγμPRψ−

E
: ðA5Þ

Note that ðDνψÞ− ¼ e−y·D=2Dμψ is inequivalent toDμψ− ¼
Dμe−y·D=2ψ when electromagnetic fields are spacetime-
dependence [see Eq. (A7)]. In the limit of y → 0, this
definition is consistent with the classical canonical momen-
tum tensor

ΘμνðxÞ ¼ ∂
μψ

∂L
∂∂νψ

þ ∂
μψ̄

∂L
∂∂νψ̄

− gμνL ðA6Þ

with L ¼ iℏ
2
½ψ̄ðxÞγλPRDλψðxÞ − ψ̄ðxÞD⃖λγ

λPRψðxÞ�. In
Eq. (A5), the last term with gμν vanishes due to the
Dirac equation. To reduce the first two terms, we prepare
the following identities:

Dμey·DψðxÞ ¼
�
ey·DDμ þ

iyλ

ℏ
F μλðx; yÞey·D

�
ψðxÞ;

∂
y
μey·DψðxÞ ¼

�
Dμey·D −

iyλ

ℏ
Gμλðx; yÞey·D

�
ψðxÞ ðA7Þ

with

F μλðx; yÞ ¼
X∞
n¼0

ðy · ∂Þn
ðnþ 1Þ!FμλðxÞ;

Gμλðx; yÞ ¼
X∞
n¼0

ðy · ∂Þn
ðnþ 2Þ!FμλðxÞ: ðA8Þ

These are derived from eYXe−Y ¼ eCðYÞX with CðYÞX ≔
½Y; X�. Performing the inverse Wigner transformation, we
rewrite Eq. (A5) as

Tμν
canðx; yÞ ¼

�
−iℏ∂νy þ

1

12
y · ∂Fνλyλ

�
tr
D
ψ̄þγμPRψ−

E

¼ 2

Z
p
eip·y=ℏpνRμðx; pÞ

þ 1

12
y · ∂Fνλyλ · 2

Z
p
eip·y=ℏRμðx; pÞ ðA9Þ

up to Oðℏ2Þ. In the second line, we need carefully to
perform the integral by parts because the surface terms in
general are generated. At least at the equilibrium described
by Eq. (23), however, we can show that no surface term
appears, as follows. The second term can be decomposed
into the contributions from the vacuum and the matter
parts, namely, fð0Þvacðp0Þ ¼ −θð−p0Þ and fð0Þmatðp0Þ ¼
θðp0ÞnFðp0 − μÞ þ θð−p0ÞnFð−p0 þ μÞ. The former
should be proportional to yλyρy−3 for the dimensional
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reason, and thus vanishes in the symmetric limit of
y → 0. The latter yields no surface term because of
fð0Þmatðp0Þδðp2Þ→ 0 for pμ → 0. Therefore, at the equi-
librium, performing the integral by parts leads to

Tμν
canðx; yÞ ¼ 2

Z
p
eip·y=ℏðpν þ ℏ2QνÞRμðx; pÞ: ðA10Þ

Its symmetric part is given by Eq. (11).

APPENDIX B: SOLUTION AT Oðℏ2Þ
In this Appendix, we derive the second-order solution

Rμ
ð2Þ. The basic step of the following calculation is parallel

to Ref. [37]. Inserting Rμ
ð0Þ and Rμ

ð1Þ into Eq. (9), we find

Rð2Þμ ¼ 2πδðp2ÞR̃ð2Þμ

þ 2π

p2
½−pμQ · pfð0Þ þ pνDμν − pνF̃μνfð1Þ�δðp2Þ;

ðB1Þ
with R̃ð2Þμ satisfying p2δðp2ÞR̃μ

ð2Þ ¼ δðp2Þp · R̃ð2Þ ¼ 0.
Here, we have introduced

Dμνδðp2Þ≔ 1

2
εμνρσΔρ

�
Σσλ
n ðΔλfð0ÞÞ−

1

p2
F̃σλpλfð0Þ

�
δðp2Þ

þ2Q½μpν�fð0Þδðp2Þ; ðB2Þ
where ðΔλfð0ÞÞ represents the derivative operation acting
only on fð0Þ, but others operate on all on the right. For this
Rμ
ð2Þ, Eq. (7) yields

R̃ð2Þμ δðp2Þ ¼ δðp2Þ½pμfð2Þ þ Σu
μνΔνfð1Þ�

þ 1

p2
εαβγνΣu

μνpαDβγδðp2Þ; ðB3Þ

where we introduce a vector uν, and define fð2Þ ≔ u · R̃ð2Þ=
ðp · uÞ and Σμν

u ≔ εμνρσpρuσ=ð2p ·uÞ, similarly to Eq. (18).
The last term with complicated structure due to the Levi-
Civita symbols can be reduced with the Schouten identity:
εμνρσpλþ ενρσλpμþ ερσλμpνþ εσλμνpρþ ελμνρpσ ¼ 0 and

Σλ½μ
n pν� ¼ −

1

2
Σμν
n pλ −

1

4
εμνλρpρ þ

1

4
εμνλρ

nρp2

p · n
: ðB4Þ

In the CKT at Oðℏ2Þ, Eq. (B4) is quite helpful in the sense
that the frame-independent part and the p2 term can be
extracted. After straightforward computation with these
relations, we arrive at

1

p2
εαβγνΣu

μνpαDβγδðp2Þ

¼ −δðp2ÞΣu
μνε

νρσλΔρ
nσ

2p · n
Δλfð0Þ

þ δðp2Þ
p2

Σu
μν

�
ΔαΣαν

n þ
nα
p · n

F̃αν þ 1

p2
F̃νλpλ

�
p ·Δfð0Þ:

ðB5Þ

It should be mentioned that the singular factors ðp2Þ−1 and
ðp2Þ−2 in Eq. (B5) does not conflict with the nonsingular
condition δðp2Þp2R̃μ

ð2Þ ¼ 0. One can show this by noting

ðp2Þ−nδðp2Þp ·Δfð0Þ ≠ 0 for n ≥ 1 but δðp2Þp · Δfð0Þ ¼ 0,
which follows from the classical kinetic equation (5).
Plugging Eqs. (B3) and (B5) into Eq. (B1), and proceeding
computation, we obtain the second-order solution Rμ

ð2Þ
in Eq. (19).

APPENDIX C: INTEGRAL FORMULAS
FOR MATTER CONTRIBUTION

In this Appendix, we derive the integral formulas for the
matter contribution. At equilibrium, the matter contribution
in Eq. (34) is the following form:

Z
p
2π

δðp2Þ
ðp2Þl p

μ1 � � �pμj
dkfð0Þmat

dpk
0

ðC1Þ

with fð0Þmat ¼ θðp0ÞnFðp0 − μÞ þ θð−p0ÞnFð−p0 þ μÞ
and nFðxÞ ¼ ðeβx þ 1Þ−1. In the integrands, we can imple-
ment the following replacement:

pα → p0ξα;

pαpβ → ðp0Þ2ξαξβ þ
p2

3
Δαβ;

pαpβpγ → ðp0Þ3ξαξβξγ þ
p0p2

3
ðξαΔβγ þ ξβΔγα þ ξγΔαβÞ;

pαpβpγpδ → ðp0Þ4ξαξβξγξδ
þ ðp0Þ2p2

3
ðξαξβΔγδ þ ξαξγΔβδ þ ξαξδΔβγ þ ξβξγΔαδ þ ξβξδΔαγ þ ξγξδΔαβÞ

þ jpj
4

15
ðΔαβΔγδ þ ΔαγΔβδ þ ΔαδΔβγÞ; ðC2Þ
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with ξμ ≔ ð1; 0Þ and the transverse projector Δμν ≔
ξμξν − gμν. Then, the above integral is represented as a
linear combination of

I l
n;m;k¼

Z
p
2π

dlδðp2Þ
ðdp2Þl Fn;m;k;

Fn;m;k≔ ðp0Þnjpjn−m
dkfð0Þmat

dpk
0

; ðC3Þ

with
R
p ¼

R d4p
ð2πÞ4. We start from

δðp2Þ ¼ 1

2jpj ðδþ þ δ−Þ; δ� ≔ δðp0 ∓ jpjÞ: ðC4Þ

Then the first, second, and third derivatives are computed as

δ0ðp2Þ ¼ 1

4p0jpj
ðδ0þ þ δ0−Þ;

δ00ðp2Þ ¼ −
1

8p3
0jpj
ðδ0þ þ δ0−Þ þ

1

8p2
0jpj
ðδ00þ þ δ00−Þ;

δ000ðp2Þ ¼ 3

16p5
0jpj
ðδ0þ þ δ0−Þ −

3

16p4
0jpj
ðδ00þ þ δ00−Þ

þ 1

16p3
0jpj
ðδ000þ þ δ000− Þ: ðC5Þ

where the primes on δ� denote the derivative with respect
to p0. For l ¼ 0, we readily compute Eq. (C3) by using
Eq. (C4).
For l ≥ 1, performing the integration by parts, we can

replace d=dp0 in Eq. (C5) with that on Fn;m;k. For instance,
the integral for l ¼ 1 reads

I1
n;m;k ¼ −

Z
p

1

4jpj
Z

dp0ðδþ þ δ−Þ
d

dp0

Fn;m;k

p0

ðC6Þ

with
R
p ¼

R d3p
ð2πÞ3. In a similar manner, we obtain

I2
n;m;k¼

Z
p

1

8jpj
Z

dp0ðδþþδ−Þ
�

d
dp0

Fn;m;k

p3
0

þ d2

dp2
0

Fn;m;k

p2
0

�
;

ðC7Þ

I3
n;m;k¼−

Z
p

1

16jpj
Z

dp0ðδþþ δ−Þ

×

�
d

dp0

3Fn;m;k

p5
0

þ d2

dp2
0

3Fn;m;k

p4
0

þ d3

dp3
0

Fn;m;k

p3
0

�
: ðC8Þ

Carrying out the momentum integration in Eqs. (C6), (C7),
and (C8), we finally derive

I0
n;m;k ¼

1

4π2
J mþ1;k; ðC9Þ

I1
n;m;k ¼

−1
8π2
½ðn − 1ÞJ m−1;k þ J m;kþ1�; ðC10Þ

I2
n;m;k ¼

1

16π2
½ðn − 1Þðn − 3ÞJ m−3;k

þ ð2n − 3ÞJ m−2;kþ1 þ J m−1;kþ2�; ðC11Þ

I3
n;m;k ¼

−1
32π2

½ðn − 1Þðn − 3Þðn − 5ÞJ m−5;k

þ 3ðn2 − 5nþ 5ÞJ m−4;kþ1
þ 3ðn − 2ÞJ m−3;kþ2 þ J m−2;kþ3�; ðC12Þ

where the integral sequence J m;k is given by

J m;k≔
Z

∞

0

dppm dk

dpk ½nFðp−μÞ− ð−1ÞmþknFðpþμÞ�:

ðC13Þ

One can show the following recursion equations for m ≥ 0
and k ≥ 0:

J mþ1;kþ1 ¼ −ðmþ 1ÞJ m;k;

∂μJ m;k ¼ EμJ m;kþ1 þ aμðJ mþ1;kþ1 þ kJ m;kÞ: ðC14Þ

The former is useful to reduce Eqs. (C10)–(C12), and
the latter is helpful to compute the divergence of Jμ

and Tμν.

APPENDIX D: POINT-SPLITTING
REGULARIZATION

In this Appendix, we demonstrate the evaluation of K1,
Kμν

2 , and Kμνρσ
3 , where

Kμ1���μm
n ðyÞ ≔

Z
p
2π

dnδðp2Þ
ðdp2Þn pμ1 � � �pμm ½−θð−p0Þ�eip·y=ℏ:

ðD1Þ

As usual, the point-splitting regularization is implemented
with the Euclidean momentum integral. For the above
integral, the simple Wick rotation with p0 → −ip4 cannot
be admitted due to the delta function and step function,
which are defined on real space. For this reason, we first
write them as

δðxÞ ¼ 1

π
Im

1

x − iϵ
; θðxÞ ¼ 1

2πi

Z
∞

−∞
dτ

eixτ

τ − iη
ðD2Þ

with positive infinitesimals ϵ and η.
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Let us first compute K1ðyÞ, which can be expressed as

K1ðyÞ ¼
1

2i
ðKþ −K−Þ; K� ≔

−2
2πi

Z
∞

−∞

dτ
τ þ iη

Z
p

eip0ðτþy0=ℏÞ−ip·y=ℏ

ðp2 ∓ iϵÞ2 : ðD3Þ

We can now deform the contours of p0-integral, together with that of τ-integral, along the imaginary axis. Introducing
another positive infinitesimal δ, we compute

K� ¼
−2
2πi

Z
−i∞þδ

i∞þδ

dτ
τ þ iη

Z
p

Z
−i∞

i∞
ð�1Þ dp0

2π

eip0ðτþy0=ℏÞ−ip·y=ℏ

ðp2 ∓ iϵÞ2

¼ ð�1Þ · −2
2πi

·
1

i

Z
∞

−∞

dτE
−iτE þ δþ iη

Z
p

Z
∞

−∞

dp4

2πi
ep4ð−iτEþδþy0=ℏÞ−ip·y=ℏ

ð−p2
EÞ2

¼ ð�1Þ · −2
2πi

·
1

i

Z
∞

−∞

dτE
τE þ iδ

Z
pE

e−ip4ðτEþiδÞ−ipE·yE=ℏ

ðp2
EÞ2

¼ ð�1Þ · ð−2iÞ
Z
pE

θðp4Þ
e−ipE·yE=ℏ

ðp2
EÞ2

; ðD4Þ

where we denote the Euclidean splitting parameter
as yE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y24 þ y2

p
with y4 ≔ iy0 and inner product as

pE · yE ¼ p · yþ p4y4. In the following, we suppress the
subscript E. Due to this contour deformation, the integral
(D3) is represented as the momentum integral in the
Euclidean four-dimensional half hypersphere:

K1ðyÞ ¼ −2
Z
p
θðp4Þ

e−ip·y=ℏ

p4

¼ −
1

4π2

Z
∞

0

dp
p

Z
p4>0

dΩ
2π2

e−ipy cosω=ℏ; ðD5Þ

where ω is the angular valuable defined by p ·y¼pycosω.
To proceed, it is useful to introduce two integral

sequences. The first one is

ZnðxÞ ≔
Z

1

0

dζ
π=2

ζn
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
e−ixζ: ðD6Þ

This ZnðxÞ can be written with the Bessel function of the
first kind JnðxÞ and the Struve function HnðxÞ, as follows:

Z1ðxÞ ¼
2

3π
− i

J2ðxÞ
x

−
H2ðxÞ
x

;

Z2ðxÞ ¼
−2ix
15π
þ J2ðxÞ − xJ3ðxÞ

x2
þ i

−H2ðxÞ þ xH3ðxÞ
x2

;

Z3ðxÞ ¼
4

15π
þ i

−3J3ðxÞ þ xJ4ðxÞ
x2

þ 3H3ðxÞ − xH2ðxÞ
x2

;

Z4ðxÞ ¼ −
2ix
21π
þ 2xJ4ðxÞ − ðx2 − 3ÞJ3ðxÞ

x3
þ i

−2xH4ðxÞ þ ðx2 − 3ÞH3ðxÞ
x3

;

Z5ðxÞ ¼ −
2ðx2 − 8Þ
105π

þ i
ðx2 − 15ÞJ4ðxÞ

x3
þ −ðx2 − 15ÞH4ðxÞ

x3
: ðD7Þ

One important property of ZnðxÞ is that the integral from 0 to ∞ are analytically evaluated as:

Z
∞

0

dzZ1ðzÞ ¼ −
i
2
;

Z
∞

0

dzZ2ðzÞ ¼ −
2i
3π

;
Z

∞

0

dzZ3ðzÞ ¼ −
i
8
;

Z
∞

0

dzZ4ðzÞ ¼ −
4i
15π

;
Z

∞

0

dzZ5ðzÞ ¼ −
i
16

: ðD8Þ
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Another property is the recurrence relation

Z0nðxÞ ¼ −iZnþ1ðxÞ; ZnðxÞ ¼ −i
Z

x

∞
dzZnþ1ðzÞ; ðD9Þ

where the latter follow from ZnðxÞ⟶x→∞ 0.
The second useful integral is

Aμ1���μnðxÞ ≔
Z
p4>0

dΩ
2π2

p̂μ1 � � � p̂μne−ix cosω: ðD10Þ

This tensor is decomposed into the longitudinal component to ŷμ ≔ yμ=y and transverse one with the projector
Δ̃μν ≔ δμν − ŷμŷν. The coefficients of them is determined by Zn, as follows:

A ¼ Z0; Aμ ¼ ŷμZ1; Aμν ¼ ŷμŷνZ2 þ Δ̃μν 1

3
½Z0 − Z2�;

Aμνρ ¼ ŷμŷνŷρZ3 þ ðŷμΔ̃νρ þ ŷνΔ̃ρμ þ ŷρΔ̃μνÞ 1
3
½Z1 − Z3�;

Aμνρσ ¼ ŷμŷνŷρŷσZ4

þ ðΔ̃μνŷρŷσ þ Δ̃νρŷσ ŷμ þ Δ̃ρσ ŷμŷν þ Δ̃μσ ŷνŷρ þ Δ̃μρŷνŷσ þ Δ̃νσ ŷμŷρÞ 1
3
½Z2 − Z4�;

þ ðΔ̃μνΔ̃ρσ þ Δ̃μρΔ̃νσ þ Δ̃μσΔ̃νρÞ 1
15
½Z0 − 2Z2 þ Z4�; ðD11Þ

where we abbreviate the argument x on Aμ1���μn and Zn.
Let us come back to the evaluation of K1 With the help of A and Z0, we get

K1ðyÞ ¼ −
1

4π2

Z
∞

0

dp
p

Aðpy=ℏÞ ¼ −
1

4π2

Z
∞

0

dp
p

Z0ðpy=ℏÞ

¼ −
ð−i=ℏÞ
4π2

Z
∞

0

dp
Z

y

∞
dzZ1ðpz=ℏÞ

¼ −
ð−iÞ
4π2

Z
y

∞

dz
z
·
−i
2
¼ −

J
8π2

ðD12Þ

with

J ≔
Z

y−1

0

dp
p

: ðD13Þ

Here we interchanged the order of integration, as do
in the point-splitting regularization for axial anomaly in
two dimensions [50]. The ultraviolet logarithmic diver-
gence is now regularized by the splitting parameter y.
The infrared divergence (z ¼ 0) is to be canceled by the
matter part.
In the same manner, we can calculateKμν

2 andKμνρσ
3 . The

only extra relation to be utilized is

dnδðp2Þ
ðdp2Þn ¼

ð−1Þnn!
π

Im
1

ðp2 − iϵÞnþ1 : ðD14Þ

Finally, we get the following expressions:

Kμν
2 ðyÞ ¼

J
16π2

gμν;

Kμνρσ
3 ðyÞ ¼ −

J
32π2

ðgμνgρσ þ gμρgνσ þ gμσgνρÞ; ðD15Þ

where we perform the analytic continuation to Minkowski
spacetime after integration.

APPENDIX E: FORMULAS OF
BACKGROUND FIELDS

In this Appendix, we show several formulas of
electromagnetic field and fluid vorticity fields, which
are defined in Eq. (41). The two rank tensors Fμν,
β−1∂μβν and their duals are expanded with Eμ, Bμ, aμ,
and ωμ as follows:
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Fμν ¼ Eμξν − Eνξμ − εμνρσBρξσ; F̃μν ¼ Bμξν − Bνξμ þ εμνρσEρξσ;

β−1∂μβν ¼ aμξν − aνξμ − εμνρσω
ρξσ; ωμν ¼ ωμξν − ωνξμ þ εμνρσaρξσ: ðE1Þ

Thanks to them, one can show εμνρσω
ρEσ ¼ −εμνρσaρBσ or equivalently,

ω½μEν� ¼ −a½μBν�: ðE2Þ

Using the equilibrium conditions ∂μα ¼ Fμνβ
ν in Eq. (23) and β · ∂Fμν ¼ 0 in Eq. (33), we find

0 ¼ ∂½μ∂ν�α ¼ Fλ½μ∂ν�βλ: ðE3Þ

Combined with Eqs. (E1) and (E2), this leads to

a½μEν� ¼ ω½μBν� ¼ 0: ðE4Þ

Besides, by using the expanded form (E1), we express the derivatives of the background fields as

∂μEν ¼ ξμξνðE · aþ B · ωÞ − gμνB · ωþ Bμων þ 2ξðμενÞρσλaρBσξσ þ ξρ∂μFνρ;

∂μBν ¼ ξμξνða · B − ω · EÞ þ gμνω · E − Eμων − 2ξðμενÞρσλaρEσξλ þ ξλ∂μF̃νλ;

∂μaν ¼ ξμξνða2 þ ω2Þ − gμνω2 þ ωμων − aμaν þ 2ξðμενÞρσλaρωσξλ;

∂μων ¼ gμνa · ω − 2aμων: ðE5Þ
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