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From quantum field theory, we derive the chiral kinetic theory involving nonlinear quantum corrections
coupled with spacetime-dependent electromagnetic fields and fluid velocity gradients. An equilibrium
Wigner function determined by the kinetic equation verifies the nondissipativeness of the charge induced
by the magneto-vortical coupling. We reveal that this nonlinear chiral kinetic theory is consistent with the
one-loop Euler—Heisenberg effective theory, indicating an indirect evidence of the trace anomaly in the
kinetic theory. We also argue a potential issue on the regularization, and demonstrate the availability of
the point-splitting regularization in the nonlinear chiral kinetic theory.

DOI: 10.1103/PhysRevD.108.016001

I. INTRODUCTION

The chiral kinetic theory (CKT) is one of the prominent
theoretical tools to describe transport phenomena of
massless degrees of freedom. In this framework, a lot of
transport phenomena are displayed with the Berry monop-
ole [1-3], as in the electron transport theory [4]. A
significant advantage of the CKT is the versatile appli-
cability not only to heavy-ion collisions [5,6], Weyl
semimetal [7,8] and neutrino physics [9-11], but also to
the photonic transport [12—15]. The CKT has also inspired
us to elucidate many aspects in relativistic quantum trans-
port, such as the Lorentz covariance [16—18], collisional
effects [18-21], the mass corrections [22-24], the strong
magnetic field limit [25-28], the different derivations
[29-34], and gravitational contributions [35-38] (see also
Ref. [39] and reference therein).

In spite of various developments, the usual CKT includes
only the linear quantum correction. One limitation of this
linear CKT is found in the transport phenomena induced by
the nonlinear coupling of background fields. A particular
example belonging to this category is the charge density of
chiral fermions under external magnetic field and vortical
field. Such an induced charge is originally discovered
from the diagrammatic computation based on the linear
response theory [40], and the agreement is found from the
Dirac theory of a rotating fermions (for instance, see
Ref. [41]). Importantly, this charge generation is believed
to be originated from quantum anomaly, and thus to be
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nondissipative [42]. Nevertheless, the nondissipativeness
cannot be verified within thermal field theory, including the
linear response theory. Indeed, the equilibration under
magnetic field and rotation is subtle, since the coexistence
of these external fields generates the drift force playing
a role of an effective electric field. The kinetic theory
based on the Wigner function [43] would provide a field-
theoretical manifestation of the nondissipativeness, and
thus the anomalous nature. In this direction, the off-
equilibrium formulation of the kinetic theory is required,
beyond the near-equilibrium studies [28,44].

Another limitation of the linear CKT is uncovered in
the trace anomaly of quantum electrodynamics (QED),
which is also the nonlinear quantum effect in the kinetic
theory. While the chiral anomaly is well known as a
consequence of the Berry curvature, it is unobvious how
the trace anomaly is interpreted in the kinetic description.
An important clue to answer this question is the consistency
of the kinetic theory and quantum field theory. Particularly,
the CKT and the Euler—Heisenberg effective theory [45,46]
should inherit the same QED properties, since both theories
describe fermionic dynamics under background electro-
magnetic fields. Such a consistency is also a guiding
principle in developing the CKT with nonlinear quantum
corrections.

In this paper, based on quantum field theory, we
formulate the nonlinear CKT, i.e., the CKT involving the
nonlinear quantum correction coupled with spacetime-
dependent electromagnetic and fluid velocity fields. For
this purpose, we derive the off-equilibrium Wigner function
[43] in the collisionless limit as a simple attempt. Although
the equilibrium state is not completely determined in the
collisionless case, the frame-independence of the Wigner
function provides a strong constraint for the equilibrium
[37]. From an equilibrium Wigner function found in this
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way, we show the nondissipativeness of the magneto-
vortical transport found in Ref. [40]. We also find that
the nonlinear CKT yields transport phenomena consistent
with the Euler—Heisenberg effective theory. This consis-
tency further elucidates the kinetic encoding of the charge
renormalization and the QED p-function, which is an
indirect evidence of the trace anomaly in the CKT.

As a striking difference from the linear CKT, the non-
linear CKT bears an inevitable ultraviolet divergence to be
properly regularized. In this paper, we pose a potential issue
on this regularization; the competent techniques, such as
Pauli-Villars regularization and dimensional regularization,
are incompatible with the CKT. Instead, we implements the
point-splitting regularization [47] in the nonlinear CKT.
Despite the violation of the translational invariance, this
scheme is not only compatible with the Wigner function,
but also helpful in elucidating the consistency with the
Euler-Heisenberg theory.

This paper is organized as follows. In Sec. II, we derive
the off-equilibrium Wigner function at O(A?), except
for the distribution function. In Sec. III, analyzing the
frame-dependence of the nonlinear CKT, we identify an
equilibrium Wigner function. In Sec. IV, we demonstrate
the computational manner of the momentum integral
in the CKT, including the implementation of the point-
splitting regularization. In Sec. V, we evaluate the O(h?)
contributions to the equilibrium charge current and energy-
momentum tensor. In Sec. VI, we show the consistency
of the nonlinear CKT and the Euler-Heisenberg theory.
Section VII is devoted to the summary of this paper. We set
e =1 in this paper unless otherwise stated, and use the
mostly negative Minkowski metric.

II. NONLINEAR CHIRAL KINETIC THEORY

A. Transport equations

Based on quantum field theory, the transport theory is
constructed from the Dyson-Schwinger equation for the
Green’s function. When we consider virtual gauge fields,
the corresponding equation for Dirac propagators yields the
collisional kinetic theory. This is important for pursuing the
dynamical evolution in practical systems. Nevertheless,
since our present interest is to formulate the kinetic theory
with nonlinear quantum corrections, through this paper, we
only focus on the collisionless limit.

We consider the Dirac theory of fermion fields y and
coupled with an external electromagnetic field A,. The two-
point correlation functions Sg;(x,y) := (g(y)wa(x)) and

So5(x,y) = (wa(x)s(y)) obey

-

D,,S<(x,y) = §7(x,y)Dy, =0 (1)

with Dy (x) = (9, +iA,/h)y(x) and @(x)D, =
z//(x)((;” —iA,/nh). Note that here we implicitly enclosed

the Wilson line, which ensures the gauge covariance
of S=. This is equivalent to define the gauge covariant
translation operator as y(x + ) := e Pw(x). Fourier-
transforming Eq. (1), we get the transport equation of
the Wigner function

W2(x, p) = / irSZ (x —y/2x +y/2) ()
y

with [ := [d'y. The original transport equation of
W=(x, p) contains the full quantum effect, and can be
expanded in terms of 7 [43]. This expansion is the same as
that in terms of the spacetime gradient since # always
accompanies a spacetime derivative. The first nonlinear
terms of O(#?) thus emerge together with the second power
of background electromagnetic fields and vortical fields,
and their derivatives. In the following analysis, we discuss
only the lesser part W(x, p) := W=(x, p), which describes
the kinetic theory of fermions.

In four-dimensional spacetime, the Wigner function can
be decomposed with the basis of the Clifford algebra as

1
W=F+iy’P+rV,+rrA, + oS, (3)

where F, P, V, Aﬂ and §,, are some coefficient fields
dependent on x* and p,. For the transport equation of
chiral fermions, the right-handed projection of W(x, p) is
decoupled (and so is the left-handed one) from other
channels. We denote this by

R(x.p) s= 5 P W, p)] @

with Py =1 (1 4 y°) and the trace is for the spinor indices.
The equations of motion for R* are derived as follows:

(A, + n*P,)RF =0, (5)
(pu+ Q)R =0, (6)
e, AR 4 4[py, + W2 QI R, = 0. (7)

Here we defined XY, :=3(X,Y,
0123

-X,Y,), the Levi-

Civita tensor with €”'~> =1 and the following differential

operators:
A, =0,—F,0,
1
P, = (0, 0)*F 0,

1

Qﬂ: lzaﬂ aF au (8)

Contracting Eq. (7) with p¥ and using Eq. (6), we get the
useful equation
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nh
PRy =2 gl MRS+ 202 0 Ry~ 2P, 0 R, (9)

Once R* is determined from the above equations of
motion, we can compute physical quantities. By imple-
menting the inverse Wigner transformation of two point
functions, the charge current, energy-momentum tensor
and spin tensor are expressed with R¥, as follows:

Flry) =2 / PRIz, p), (10)
)4

T,"”/(x’ y) = 2/ eip')’/h[p(ﬂRl/)(x’ p) + th(”Ry)<x,p)]’

p
(11)
4 (x,y) = —2hetr / IR, (x,p) - (12)
P

with [, = [$F and XY, =1(X,¥,+X,Y,). In
Appendix A, we derive Egs. (10)—(12) from the two-point
functions. In the usual analysis with the Wigner function
approach, the above quantities are defined in the y — 0
limit. However, this parameter y plays a role of the
ultraviolet regulator when we implement the point-splitting
regularization. For this reason, hereafter we keep y finite.

From these expressions (10)—(12), it is manifested that
Eqs. (5)—(7) correspond to the Ward identities which
massless fermions should respect. The first equation (5)
is related to charge conservation, and thus interpreted as the
kinetic equation, which determines the distribution function
in R*. The latter two (6) and (7) imply the conformal
invariance and the Lorentz invariance (i.e., angular momen-
tum conservation), respectively. These two determine the
off-equilibrium Wigner function, except for the distribution
function.

B. Solution up to O(#?)

In the following, we look for the solution of Egs. (6)—(7)
and (9), with the parametrization:

RF = Rly + hRY, + W*RY, . (13)

For the latter computation of the nonlinear solution R’(’z) , let

us first briefly review the O(#°) and O(h) parts [18]. The
O(n°) solution is readily found from Egs. (6) and (9) as

Rig) = 275(p*)P" £ (0)- (14)

where f() is a function that satisfies 5(p*)p*f o) = O.
The delta function §(p?) represents the on-shell condition
of the chiral fermion: p* = (py)? — |p|* = 0. This f(o) has
both particle and antiparticle contributions. At equilibrium,
f(0) 1s the Fermi distribution function, with which the
Wigner function R’(‘U) reproduces the usual lesser propa-
gator [48].

Let us solve the first-order part. Inserting the zeroth-
order solution (14) into Eq. (9), we get the first-order
correction as

u
R

- 1 .
= 2158(p*) | Rfy) = ?F’”nym) (15)
with F w = %EWPGFP". The second term is apparently
singular, but it accounts for the chiral anomaly in the
CKT. Also, we emphasize the existence of the first term,
which is admitted as long as it satisfies 5(p?) p27~€’(‘]) =0

and 8(p?)p - R(1) = 0. This extra term is determined from
Eq. (7) at O(h), as follows:

n-Ry Euwpe P’ N°
’R,(ll)ts(]?z)zts(pz) {Pﬂ p"i)_~_ Hp

2 n A”f<0)]’ (16)

where we introduce an arbitrary vector field n#(x). Thus,
the first correction part is given by

o1
Ry = 278(p?) [P”f(l) + (Zﬁ A, - ?F””Py>f(0)}
(17)
where we define
n-RM W Epn,
f(l) = 5 Zn = 2— (18)
p-n p-n

This tensor X5, corresponds to the spin of chiral fermions
and n* is the degrees of freedom for the frame choice of the
spin [16,17]. It is worth mentioning that 5(p2)p27~€’(‘1) =0
implies (p*) p*f(1) = 0. Such a nonsingular condition for
fqy is important, in particular, when we determine the
equilibrium form of f;). Also, §(p?)p*f(;) =0 ensures
that the above solution (17) fulfills Egs. (6) and (9).

In a totally parallel manner, we can solve the second-
order part R’(’z). The derivation is shown in Appendix B (see

also Ref. [37]). The result is
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2 u AV 12 v
Rl(l ) = 27[5(p2) |:pﬂf(2) + <Z/MJA _?F;wp )f(]) -

VAP

2r
o [=puQ - P+ 2P"Qupylf(0)6(p?)

5(p?) P tp " 1
2r pr A’ s -F SN, — — Fo
+ p2 2 Eupe P + p L/{i uo n S p2 P f(O)

+ 27

5(p?)
2

where A, and Q, operate all on the right. Here, another
vector field u* and spin tensor X" are introduced, similarly
to n* and X" in R’(’l). The new factor f, is the second-
order counterpart of f
nonsingular condition &(p

), and is required to satisfy the

2)p*f(2) = 0. For u# = n*, the
Rig) + ARy + PR},
in a simpler form. Then, f Sy and o) 1n R” are totally
combined as the single function f = fo) + hfa) + nf @)
as are so in the gravitational case [37]. Inserting this
R into Eq. (5), we get the n*-dependent nonlinear
chiral kinetic equation to determine the single distribu-
tion function f. Such a structure is the same as the linear
chiral kinetic equation. For this reason, #* could be
regarded as the degrees of freedom for the Lorentz
transformation. On the other hand, the above interpreta-
tion of u* is inapplicable for u* # n”, and thus the
physical meaning of u* is not completely identified. To
address this problem, we should study the Lorentz
transformation up to O(A?) in quantum field theory
[18]. Although this is an important task to manifest the
nonlinear-order side-jump effect [16,17], we will analyze
itin a future publication. Hereafter, we call both n# and u#
the frame vectors.

above solution R¥ = ) can be recast

III. EQUILIBRIUM

A. Frame dependence

As is well known, the CKT depends on the frame vectors
n* and u#. Since the frames are auxiliary fields to obtain the
solutions (17) and (19), however, physical quantities
should be independent of the frames, and so is R¥. On
the other hand, the distribution function depends on the
frame [17]. In the linear CKT, the frame transformation law
of f() is determined by imposing R’(‘l) keeps frame-
independent [18]. Similarly, in the nonlinear CKT, we
can compute the transformation law of f ) from the frame-
independence of R’<’2) [37]. Let us first focus on the

variation in terms of n*. Suppose that we take the trans-
formation of the frame vector as n* — n*. Then the
corresponding transformation of the distribution function
iswrittenas f() = f) + 6./ ), fo) = fo + 5nf Jtis

worthwhile to mentlon that the Varlatlons 5,, foy should

1
ZIL: |:Aazay+ Fay+ Fvlp/{|p Af

(19)

[
be nonsingular because so are f(j) ). That is, we
impose &(p*) p*6,f (1) = 8(p*)p*6,f 2) =

The frame-independence of R’(’l) is represented as
Ryl = R{jyln = 0, where R}
in Eq. (17) with a frame »*. From this equation, we
determine the transformation law of f (1)»as follows: [17,18]

1yln is the Wigner function

n* ,
Ouf1) = —nzﬁyA”f(O) + P*6,901) (20)

where 6,9y is a nonsingular scalar  fulfills
8(p?)p*8,9(1) = 0. In the linear CKT, this &,g(;) can be
ignored; such a term does not affect R’(’ 0 This is, however,
not the case in the nonlinear CKT. Indeed, from a similar but
more complicated evaluation for R’<‘2), we obtain the

variation of f(») as

Ouf (2)
o [ ebp“ﬂnan’ﬁ "
=Z,|A WApf(O)_F 5n9(1)
1 = (pt u n,
+— Z”UA”—FD<———>}Z%—P'Af :
pz[u wW\p2 pu pon (0)
(21)

which involves 6, g(;). The same analysis can be performed
for the variation in terms of #*. Then, we find 6, f ;) = 0 and

Mﬂ ’
5uf(2) == ﬂzzu {A”f( —€ /lf

1 ng = 1 .
+F <A(122y + P 'an i +FFD/1pﬂ)p : Af(0):| :

(22)

B. Equilibrium Wigner function

Let us apply the above argument to the equilibrium
solution of the nonlinear CKT. In the collisionless case, the
kinetic theory itself cannot generally determine equilib-
rium. The frame transformation laws (20)-(22) however
provide strong constraints to fix the equilibrium
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distribution functions. To illustrate this fact, let us here  Similarly, the variations of f,) are calculated as follows:
employ the equilibrium distribution function so that the
classical Wigner function (14) is reproduced as the well-

known form of the lesser Green’s function of free fermions, : n}), ng
that is, nf = _Zu Avgbr (P - - I’y > p/}/lf/
1
foy=e(po)np(—p+p-&). Suf ) (zu VN ”ﬁn 9Bt - (26)
oa—-F,p =0, 9,p,+09,p,=0, (23)

where we define e(x) := 0(x) —6(-x) with the step e ;o6 that all singular terms with (p?)~! or (p?)~2 in

function 9/}(x) anld the Fermi distribution function g gs. (21) and (22) disappear, thanks to p - Af () = 0. The
= (oPx - 7

np(x) = (¢ + 1) . The parameters o and p* are defined above equations indicate that the second-order quantum

asa = —pu, pt = p& and & - £ = 1 with chemical potential .
u, inverse temperature 4 and fluid velocity . The Wigner correction fig) may be deduced as

function R’(‘O) with this f ) in fact solves the classical
kinetic equation (5): A - R = 275(p?) f/(o) pH(0,a + ) e
P'9,B, = Fub*) = 0 with flo = df(g)(x)/dx and x = Ty = Zud" <f 0 2p-n

a+p-p.

Then, using the above f ), we compute the trans-
formation law of f ;) and f(5). From Eq. (20), we obtain  Here ¢ ,) is a frame-independent term in the equilibrium
distribution function. Such an ambiguity in f ) cannot be
5. =1 l(z"/ﬂ - 30,5 determined in the present framework, which ignore the

©) g collisional effect.

At the equilibrium we found above, the Wigner function
(19) is reduced. First, we assume ¢ ;) = 0 for simplicity.
Plugging Eqgs. (25) and (27) into Eq. (19), one can show

n/lao'ﬁxl) + ¢(2) (27)

vay
etvap Ny

n
+ P [8,90) —f/( )mauﬁp (24)

The above equation holds when we choose that the frame-dependence of R’(‘z) is totally compensated,

p as it should. Eventually, Eq. (19) is recast into the four

1, el n/, . . (2) 5 (0F) (FF) (Fo) (ww)
foy=Flo73Zn 9ubos Sn901) =07 ponp-n 0By (25) gtfﬁrem pieces as Ry =Ry +Ru "+ Ry "+ Ry

s(p?) 1 8 4
R,(f)F) =2 (pz ) D {Puf(O) <_ F> P”a’lF/u + Pﬂfl(o) (a/)Fpﬂﬁ'l - ?Ppp ) aFﬂﬂﬂ/{>

8
=+ Pﬂfl(lo) (2prp- 5Fp1/3'1) +f (o) (SaiF;ul - ?P : 0F,4,1P'1> + f’(o) (p- aFﬂzﬁi + P”ayFM/ﬂ) + f’(’o) (-p*p- aFﬂAﬂl)

(28)
R =2n ?;l;;) -2 <— p;f” Fo+F ;m'> F7p,f 0)- (29)

RUFO) _ 5 (ppj) (_Pﬂ p”]za o _i_inFaypy +% ~/wwaupy> fo (30)

R = 210(2) 3 (1,28 07 = w71 ) 1y (1)

where we introduce @ := ﬂ e"’?9,p,. We also note that the derivative of vorticity disappears, i.e., R = 0, owing to

the identity d,0,5, = 0 for the Killing vector f3,,.
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At this point, it is not guaranteed that the above R* is
really an equilibrium Wigner function, because we have not
yet analyzed the O(h?) part of the kinetic equation 5).!
Plugging Egs. (14) and (28)—(31) to the kinetic equation (5)
and carrying out a tedious computation, we arrive at

f// f// f///
0 0 0
5(p%) [(6‘—p; PP D, =g O - %W”ﬁ%)ﬁ 0

1

O wpppea o |F. =0 32
+Hpﬂﬂﬂ pYo | Ly — Y- ()

USiIlg ﬁ/)ﬁ{;aﬂaO’FﬂIJ = :B : a(ﬁ ’ aFﬂl/) - (ﬁ : aﬂo‘)aﬁwa we
find that all the terms in the above kinetic equation contain
p-oF,, or f-9p, As long as we consider a finite F,,,
hence, the above reduced kinetic equation implies that

either of the following conditions should be fulfilled*:

1) f-0F,, =0, -9, =0, (33a)

2) 0,F,, = 0. (33b)

These are the additional equilibrium conditions on top of
those in Eq. (23). The meaning of the condition (33a)
is understandable when we take & = (1,0). The first
equation in Eq. (33a) implies the time-independence of
background electromagnetic fields. The second means that
the background fluid has no acceleration, or equivalently,
there is no temperature gradient: 0 = - 9, = —fd,f with
p:=+/f-p. On the other hand, the acceleration term is
admitted under the condition (33b), where electromagnetic
fields are constant. This is the case employed in Ref. [44].

We here discuss the case with ¢ ;) # 0 in Eq. (27). One
can readily check that in this case the extra term §(p?)p -
A ;) emerges in the kinetic equation (32). However, the
singular term with p~2 cannot be eliminated by the b
term, since &( pz)qﬁ(z) = 0 is required from the nonsingular
condition &(p?)f(») = 0. Moreover, the other terms in
Eq. (32) are not canceled by the ¢, term. Hence, 5(p*)p -
A¢ ;) = 0 is demanded. As the simplest choice, we may
take ¢p(o) = 0 hereafter. This is a difference from the CKT
in curved spacetime; under a weak static gravitational field,
a finite ¢(y) is required for the realization of an equilib-
rium [37].

'One can readily check that the O(#) part of Eq. (5) holds for
the linear-order solution (17).

*Note that 9,f, = 0 is an equilibrium condition. In this case,
p-0F,, =0 automatically holds because of 0 =90, a=
OLM(F i ,#*). This condition is however a special case of the
condition (33a).

IV. MOMENTUM INTEGRAL

A. Regularization

The equilibrium physical quantities are computed as
the momentum integral with the Winger function in
Egs. (28)—(31) with the distribution function (23) under
the condition (33). Before the computation, we demonstrate
how to evaluate the momentum integrals. The integrals
that we encounter in the following section are generally
written as

Is( 2 k
/2”(1 5(12’ 1) ph ...pﬂ_fMeip'ym (34)
» (dp ) dpy

with f() given by Eq. (23). Here we replaced the singular

factor (p?)~! in the Wigner functions with the derivative of
8(p?), through the identity {!5(x) = (—x)'d'8(x)/dx".

For the latter convenience, we here decompose
Eq. (23) into the vacuum and matter parts as f(g)(po) =
f(O)VaC (pO) + f(O)mat(pO) with f(O)Vac (pO) = _0(_p0) and
foymac(Po) = 0(po)np(po — ) + 0(=po)np(—po + p). In
Eq. (34) the former may result in the divergence at the
ultraviolet regime p, ~ —oo unless k > 1. For this diver-
gence, the parameter y* plays a role of the cutoff scale. This
is nothing but the point-splitting regularization. On the
other hand, the latter does not require such a regulation.
Therefore, in the following, we evaluate these two con-
tributions in different ways; for the vacuum contributions,
we keep y finite so that the point-splitting regularization is
implemented, but for the matter part we take y — 0 before
integration.” It should also be emphasized that we face no
infrared divergence in Eq. (34), thanks to the cancellation
of those from the vacuum and matter parts.

We comment on the regularization in the CKT. In usual
quantum field theory, when we regularize a divergent
integral, it is preferred to choose a regularization scheme
to respect the gauge, Lorentz, and translational invariances.
It is, however, not so easy to find out such an appropriate
scheme for Eq. (34). For instance, the Pauli-Villars scheme
is obviously unsuitable, since the CKT possesses no mass
parameter; a Pauli-Villars regulator would be useful for the
kinetic theory of massive fermions [22-24]. Dimensional
regularization is also incompatible with the CKT, since
&P’ and y> cannot be extended straightforwardly in a
general d-dimensional spacetime [49]. Indeed, the Wigner
functions derived in Secs. II-1II are no longer correct in
d # 4 dimensions, for the following two reasons. First,
the Clifford basis decomposition (3) is unjustified in
d # 4 dimensions. This implies that our starting point at

The point-splitting regularization with np(py F u) would in
principle be possible, but is not so easy as that of the vacuum; due
to the pole at py = £u +i(2n+ 1)zT for n =0,£1, ..., it is
nontrivial to perform the Wick rotation, which is required in
implementing the point-splitting regularization.
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Egs. (5)—(7) is modified. Second, the uselessness of the
Schouten identity in d # 4 dimensions brings a lot of extra
singular terms with p~2 in intermediate steps of calculation.
Then we would not derive the solution that satisfies
appropriate conditions, such as 8(p?)p? f)=0.

The above circumstance compels us to choose a regu-
larization scheme that sacrifices at least one symmetry.
Among such schemes, the point-splitting regularization is
compatible with the Wigner function because the point-
splitting parameter is naturally introduced as y*, as shown
in the charge current (10) and the energy-momentum
tensor (11). This is the reason why we employ the
point-splitting regularization in this paper. Although this
scheme in general violates the translational invariance
(namely, 0, 7" + F**J, # 0), it can reveal the consistency
with the Euler-Heisenberg theory, as we discuss later. The
analysis with a more appropriate regularization will be
shown in feature publication.

B. Matter part

We demonstrate how to compute the matter part in
Eq. (34). We perform first the integral in terms of p, and
then p;. In this way, by decomposing each p* into the
transverse component to & := (1,0) and the longitudinal
one, we can replace integrands with nonvanishing tensor

fOITIl; for instance, Pa = Poga and papﬁ - (p())zgaéﬁ +
%ZAU, s with the transverse projector AM :=EHEY — g/,

Performing the tensor decomposition of the integrands,
we express Eq. (34) as the linear combination of

d's(p?)
Iﬁlm ==/2ﬂ'7 p
m.k ) (dPZ)l ( 0

In order to handle the derivative on §(p?), we use the chain
rule; e.g. dipzé(pz) = 25 a5; 8(P?). Then, the integration by
parts in terms of p, removes the derivative on 8(p?). It is
worthwhile to notice that this step generates no surface term
because of f(O)mal(pO — +o00) = 0. In Appendix C, we
show the detailed evaluation. After this step, the integral
T}, is written as the linear combination of another

integral sequence

dkf(O)mat
n|p|m—n ) 35
Plopr S 6s)

m

o d
T i ==/ dp p"—[np(p—p)— (=1)“*’np(p+u)].
0 dp

(36)

There is an important remark about the above compu-
tation manner. In Eq. (35), we have only the matter part
J (0)mat Since the vacuum part is evaluated with the point-
splitting regularization. In some regularization scheme, it
is in principle possible to evaluate Eq. (35) including the
vacuum contribution. In this case, we replace f )ma With
S0y = fopac T f(0)mar In the integrand and evaluate the

integral in the almost same manner. Only one difference
is that we carefully take into account the surface
term contributions from the py-integral. Such contributions
always appear for k = 0 due to the vacuum contribution at
ultraviolet regime: f(o)(Po — +00) =0 but f(())(p() —
—o0) = —1. Although Ref. [44] performs a similar inte-
gration by parts, the above surface terms are missing.

C. Vacuum part

Now we compute the vacuum contribution of Eq. (34)
with the point-splitting regularization. What we need to
evaluate is

d"5(p? <
e (y) = [ 202 - pelot=puer
p

(37)

It is efficient to first evaluate £C;, K4, and K477, which
would lead to the logarithmic ultraviolet divergence with-
out the point-splitting. After the contour deformation to
obtain an integral on the Euclidean momentum phase
space, we can evaluate these three integrals. As shown
in Appendix D, the result is as follows:

Ki(y) =- giyz) . Ky = %9"”’
K1 (y) = — J0) (¢ + 979" + ¢°g"), (38)

3272

with the regularized integral:

g0)= [ =3 (39)

We again emphasize that the infrared divergence at p ~ 0
are completely canceled by those of the matter part.

All other types of integrals in Eq. (37) are generated by
the derivative of Eq. (38) with respect to y*. It is important
to remind then that in the point-splitting regularization, we
take the limit of y — 0 symmetrically at the end of
evaluation, as follows [50]:

2 v
symm limﬂ =0, symm lim Y ﬂ (40)

y=0 y2 y—0 y2 4

Thanks to the first equation, for example, we readily find
KY = —ihdiK; « y*/y* — 0 in this limit. Eventually, the
integrals (37) other than the three in Eq. (38) vanish in the
following section.

V. EQUILIBRIUM TRANSPORT

We can now evaluate the charge current (10) and the
energy-momentum tensor (11), from the momentum inte-
gral (34). It is then convenient to introduce the following
four-vector fields:
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Bt = Frg,, EV := FrE,,
1
Wt = w'uyfv = Eﬂ_lgﬂyp(;fyapﬁm
a = fE I = PO, (41)

Hereafter, we focus on the equilibrium cases described by
either the condition (33a) or (33b), on top of those in
Eq. (23). Therefore, in the following analysis, either a, or
d,F,, should vanish depending on the choice of Eq. (33a)
or (33b).

The classical and the first-order contributions can be
evaluated with the integral formulas in Appendix C. As

derived in many literatures, we get [17]:

2 2
H wo | T
J’u :—B” — — a)”,
m =327 " (4ﬂ2+ 12>

2 2 3 2
v wo | T y W puT y
T?l) = (4—71'2—'—5)3(”5 ) + (W—FT)w("f )’ (42)

which represent the chiral magnetic effect [51-53] and the
chiral vortical effect [54-56].

For the nonlinear-order contributions to Egs. (10)
and (11), we differently evaluate the matter and vacuum
part, with the help of the integral formulas in Appendices. C
and D, respectively. Since sz) is decomposed into the four

different pieces (28)—(31), so are the corresponding charge
current J’(‘z) and energy-momentum tensor T’(‘g). The result-

ing expressions are as follows:

NET

" _ A
Yor) = =02 %"
J_ia |1
u B , L 2 2 vpo
Tiery = o2 |78 (EX + B7) + &8 E,B, |
Sro) = 52 [‘5" (B-w+E-a)+ 8”””‘53/’“0} :
u
Ty = = 32 & (@ + @), “3)

_ ¢V§Aapppi =+ gl()(ﬂpv)l]’

v H v v
Tlor) = 542 [—EWo, F* 4 2802 B F )

v j_]‘o — ‘7 Vo 1 v
TI{FF):W FroF ——g/‘Fi/,,
TIW —

()3

= (£

Here, the longitudinal component of the derivative dis-
appears, i.e., &-0F,, =0, due to the equilibrium con-
dition (33). For the energy-momentum tensor, the term
with Q" in Eq. (11) yields no contribution, as is readily
checked. We again emphasize that either d,F,, or a* is
admitted to survive due to the conditions (33a) and (33b),
respectively.

We should make a comparison with Ref. [44]. The
authors derived almost the same transport as above, except
for J# (o) T” v and T” . - The first two were not computed
s1nce the aut{lors focused only on constant background
fields. The stark difference from Ref. [44] is found in T( F)-

The two underlying reasons of this difference are eluci-
dated by recalling the arguments in Sec. IV. First, the
authors did not take into account finite surface terms
because of the vacuum contribution in Eq. (34). Second,
they implemented dimensional regularization, without
caring about the modification on the Clifford algebra
in d#4 dimensions. As a result, while our energy-
momentum tensor agrees with that from the Euler—
Heisenberg effective theory, that derived in Ref. [44] does
not (see Sec. VI).

5[~&'&(w-B+a-E)+ @w#BY) + g EY) + 25(”81/)/70161[,865/1],

) Ki 7" - €”§”> (@ + @) + Eerta,meg | (44)

I

An important observation in Egs. (43) and (44) is the
finite contributions from the magneto-vortical terms J’(’ Fo)
and T’(‘;(U). In particular, the charge density J?Fw) ~B-w
agree with that derived in Refs. [28,40,41,44]. There is,
however, a crucial contrast with them in terms of the
derivations. On the one hand, the above early studies
implicitly assume an equilibrium under magnetic field
and vorticity, despite the subtlety of this assumption; the
interplay of magnetic field and rotation classically gen-
erates an effective electric field, which in general prohibits
the equilibration. On the other hand, our J?Fw> ~B-wis

derived from the equilibrium Wigner function, which is
determined by the kinetic equation. We hence verifies the
nondissipativeness of the above magneto-vortical effect,
based on quantum field theory. This is one of the main
findings in this paper.

However, the above result does not reproduce the
, which is discovered in
Ref. [40]. This is because our classical Wigner function
R’(‘O) is independent of B*. Contrary, if R’(‘O) depends on B*,

there emerges B*/|B| as a possible tensorial basis of R’(’2>,
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similarly to the fluid velocity &. This is in fact the case of
the CKT in the strong magnetic field [28]. Hence, although
the magneto-vortical coupling generates both the charge
~B - w and the current ~B - @B* /|B|, they are qualitatively
different. Such a difference would be related to their
anomalous nature [57].

Let us argue the conservation laws for the transport in
Egs. (43) and (44). One can compute the divergences 6”J’(‘2>

with the help of Eq. (C14) and the formulas in Appendix E.
We then observe 9,J{.,, = dﬂJ’(‘W) =0, (J’(‘FF) + J’(‘ap)) =0.
Therefore, the nonlinear contribution of the charge current

1s conserved:
0, Jt . =0, (45)

where we impose a,0,F,, = 0 because of the equilibrium
condition (33). This relation holds under both the con-
ditions (33a) and (33b). The divergence aﬂT’g) is computed

(Fw) _

in a similar manner. We find 9,77, & + F*J,

(Fo)
9,T" + FwJ") =0, but

(ww)

v v/ 7(FF)
0,T!% o + F*(J}

oF
( + )

— o[ Fyp P = 40", P, (46)

9T (o)
1

-z |—E B, 0P 4 26, E0, ¥ = 26, E, 0 F%,
T

(47)

where we again drop the product terms ~a,0,F,,. Thus, we
arrive at

2
0, + FJY) #0. (48)
This violation of the translational invariance is a compen-
sation of the point-splitting regularization.

Lastly, we look at the trace of the energy-momentum

tensors in Eq. (44). We first notice that T?’;F), T’(‘;w) and
™

(o) TE traceless irrelevantly to the regularization scheme.
The same is true for T?’; ) a8 long as we utilize the point-

splitting regularization. Eventually, no trace anomaly is
reproduced:

") = 0. (49)

This is another compensation of the point-splitting regu-
larization; the energy-momentum conservation and the
tracelessness do not simultaneously hold. We emphasize
that the QED trace anomaly stems from the fermion loop
corrections, regardless of whether electromagnetic fields
are background or not [58—60]; it is generally inevitable to

introduce some regularization scale. Hence, Eq. (49) is just
a consequence of our regularization.

VI. CONSISTENCY WITH EULER-HEISENBERG
EFFECTIVE THEORY

For consistency check, let us make a comparison with
the Euler-Heisenberg effective theory, which is described
by the following effective Lagrangian:

e’ [wds _ ,Recoshlfies\/2(F +iG)]

Loy = —F ———
) 2(F +19)]
(50)

Imcosh|fes

with F := Fiﬁ/4, Gg:= F“/ji?aﬂ/4 and m being the fermion
mass. Here 7 and e are explicitly written. In the above
Lagrangian, we do not put the conventional counterterms
~1/s* and ~e?F/s, which accounts for the vacuum
energy renormalization and the charge renormalization.
Instead of this minimal subtraction, we introduced the
ultraviolet cutoff parameter s,;, which plays the similar
role to y~! in the point-splitting regularization. The charge
current and the energy-momentum tensor are obtained
from the derivative of the corresponding action with
respect to gauge field A, and metric tensor g,,, respec-
tively. We define them as

Jen = d*x(1 Len),

3A,

2 s
fh= s / dx G (R L), (51)

For the energy-momentum tensor T’gy;, we utilized the
effective action in a general curved spacetime with
g:=det(g,,). We note that the factor #* is from our
convention for the comparison with the CKT analysis; on
top of 4~! by definition of action, the extra 43 is multiplied
because we abbreviate the 773 in the momentum phase
space, following the usual convention in the CKT.

The above Lagrangian can be expanded in terms of
power of #. This is generally written as follows:

hz‘CEH = _h2.7:+ ‘CEH(O) + f’lzﬁEH(z) + h4£EH(4) 4.
(52)

For the latter convenience, here we multiplied 7> by both
sides. In Eq. (52), what we are now interested in is

Lene) =~ 723
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The mass parameter m is the convergence factor of the
infrared regime at s — oo or p — 0. In our CKT analysis at
equilibrium, we do not care about the infrared divergence,
thanks to the cancellation by the matter part of f . For
comparison with the CKT, we consider the limit of m — 0.}

By replacing s, 12 with y~!, we reduce Eq. (53) to

e2J
EEH(2)|m—>O - _WF;%LH (54)

where J is given by Eq. (39). Inserting Eq. (54) into
Eq. (51) and setting e = 1 as we do in the CKT, we arrive at
the following relations:

T 5
Jl]fZH(Z)|m_’0 - 612 a/lFM = 2Jl(ldF)vac’
v ‘7 vo 1 v 2 v
T}]fZH(Z)|m—>0 T T o2 FAo P — 19” Foy| = ZTl(lFF)vac’

(55)

where “vac” denotes the vacuum contribution. The factor 2
on the right-hand sides is understood as the degrees of
freedom of chirality. These relations guarantee the correct-
ness of J?' or) and T’(’; r) in Egs. (43) and (44). We note that
the matter part and the vortical terms in Eqs. (43) and (44)
are not included here, as they are not enclosed in Eq. (50).

There is an important remark about the spacetime-
dependence of electromagnetic fields. Since the original
Euler-Heisenberg effective theory is for a constant F,,, one
might be skeptical that the above comparison is meaningful
for J’EH(Z) ~ 0,F*. If we take into account the coordinate-

dependence of F,,, the effective Lagrangian acquires the
derivative corrections. However, the leading derivative
correction is of O((dF)?) or of O(Fd*F) [61,62]. In the
power counting of 7, such a term is the fourth-order term,
as it contains four derivatives of gauge field. For this
reason, even when F,, is spacetime-dependent, the
Lagrangian Lgy(y) is unmodified and thus so is Eq. (55).
Therefore, we conclude that the nonlinear CKT is con-
sistent with the Euler-Heisenberg effective theory.

The Euler—Heisenberg effective theory also reveals
underlying physics of the logarithmic behavior of 7 in
Egs. (43) and (44). To illustrate it, we write the Lagrangian
(50) in the following form:

2 "o e’ sy 4
h ‘CEH:_ZFMU 1+12ﬂ210gW + const + O(fl ),

(56)

*Even if we take the massless limit after performing the
integration in Lgy(,), the logarithmically divergent behavior in
terms of sy is unchanged. Thus, the order of taking the limit is
irrelevant to the present discussion.

where the constant is the term without F, . The logarithmic
behavior is the same as that found in the vacuum polari-
zation of QED. From the above Lagrangian, hence, we read

off the effective charge eZ;(M) = €*(1 + 15;2:2 log %—;), and
the f-function f(e.g) := Mde g (M)/dM = €3 (M) /(127°)
[63]. Equation (55) shows that this characteristic of the
charge renormalization is inherited not only in the Euler-
Heisenberg theory, but also in the nonlinear CKT through
the same logarithm 7 ~ log y~'. At the same time, in spite
of Eq. (49), we find that the logarithm 7 in Eq. (44) is an
indirect evidence of the trace anomaly, which is determined
by the QED pS-function.

VII. SUMMARY

In this paper, we formulated the nonlinear CKT under
arbitrary background electromagnetic fields. We derived
the off-equilibrium Wigner function for arbitrary frame
vectors. Imposing the frame-independence of this Wigner
function, we identified an equilibrium Wigner function,
which solves the kinetic equation. As an application, we
compute the transport phenomena at the equilibrium. We
then found that the charge induced by the interplay of
magnetic field and vorticity [40] are permitted at the
equilibrium of the nonlinear CKT. This analysis based
on the Wigner function is, to the best of our knowledge, the
first field-theoretical verification of the nondissipativeness
of the above charge generation. Besides, as an important
finding, we also showed that the nonlinear CKT and the
Euler-Heisenberg effective theory share equivalent trans-
port phenomena. The ultraviolet logarithmic behavior in
the nonlinear CKT is not only a kinetic encoding of the
charge renormalization but also an indirect signature of the
trace anomaly in the kinetic description.

Also, we posed the potential issue that the prominent
schemes, i.e., Pauli-Villars regularization and dimensional
regularization, are incompatible with the CKT. The incom-
patibility of the latter scheme is one reason of the fact that
the energy-momentum tensor in Ref. [44] disagree with that
derived from the Euler-Heisenberg effective theory. For this
reason, we employed the point-splitting regularization,
which is much more compatible with the Wigner function
but cannot directly reproduce the trace anomaly. For the
complete reproduction of the trace anomaly in the kinetic
description, we should find out an appropriate regulariza-
tion in CKT, or rely on frameworks other than the CKT. For
the latter option, the kinetic theory of massive fermions
involving the O(A?) correction is one of the candidates,
since Pauli-Villars regularization could be applicable.

Several potential developments are invoked from the
nonlinear CKT. First, the nonlinear transport phenomena is
one of the pivotal research fields in condensed matter
physics [64]. Also, the merit of the nonlinear CKT could be
found in, for instance, the so-called nonlinear Hall effect
[65,66], which originates from the Berry curvature dipole.
In the nonlinear CKT, such contribution would be hidden
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(see also Refs. [67-69], which argue nonlinear corrections
of the Berry curvature). Besides, it is straightforward but
complicated to extend the present nonlinear CKT to the
collisional case by starting from the Kadanoff-Baym
equation with fermionic self-energy [70,71]. In the non-
linear CKT, it is also interesting to take into account
dynamical gauge fields, which bring the chiral plasma
instabilities [72]. These applications will be discussed
elsewhere.
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APPENDIX A: CHARGE CURRENT,
ENERGY-MOMENTUM TENSOR,
AND SPIN TENSOR AT O(#?)

In this Appendix, we derive the charge current and
energy-momentum tensor with the Wigner function. The
former for the right-handed massless fermions is defined as

J(x.y) = el Py ), (A1)

where we define Pg:=1(1+47°), O_:=e?P20(x)
—
and 0,:=0(x)e"P72 with D,:=0,+iA,/h, D,:=
pl
3,4 —iA,/h. Here, the operators e™2/2 and D2
represent the covariant translation, and thus their insertion
is equivalent to enclosing the Wilson line [43]. Inthe y — 0
limit, the above current is reduced to the usual definition in

quantum field theory. Let us here recall that the Wigner
function is defined as

Ri(x, p) = tr [7”PRW(X7 p)} :

e e ((i7,), (W ),) (A2)

N =

Wab(x? p) =

S~

Then, performing the inverse Wigner transformation, we
write the above current as Eq. (10):

JH(x,y) = 2/ ePYMRI(x, p). (A3)

For the spin tensor, the inverse Wigner transformation of
the standard field-theoretical definition yields Eq. (12):

)
S/“’/’(x, y) = Ztr<l/_/+{7//‘, GDP}PRW—>
= —Dhetro / e”"Ry(x,p)  (Ad)
P
with o = 1", .

Let us derive the kinetic expression of the energy-
momentum tensor. Unlike the charge current and spin

tensor, the definition of the energy-momentum tensor is
ambiguous due to the derivative operator. We here employ
the canonical energy-momentum tensor defined as follows:

y ih
Tlclan(xvy) ::E(ﬂ“’ _gﬂbtllﬂ)a

=iy, Pr(DY)_ = (D) *Pryr_ ). (AS)
Note that (D*y)_ = ¢P/2D y is inequivalent to D, y_ =
D”e‘»‘"D/ 2y when electromagnetic fields are spacetime-
dependence [see Eq. (A7)]. In the limit of y — 0, this
definition is consistent with the classical canonical momen-
tum tensor

oL P oL
a0V dayu

with £ =2 [p(x)y* PeDw (x) = #(x) Dy Pry(x)].  In
Eq. (AS5), the last term with ¢" vanishes due to the
Dirac equation. To reduce the first two terms, we prepare
the following identities:

0" (x) = 'y - gL (A06)

L)
. . 1y N
D,y (x) = [ DD, + 5 F (5,0 D}p(x),

die () = [D,e” -2 gue eyt (a7
with
> (y- 0y
Fale) = 3ty P
> (y- 0y
Gulx:3) = Dy P (A8)

n

These are derived from e'Xe™" = eV X with C(Y)X =
[Y, X]. Performing the inverse Wigner transformation, we
rewrite Eq. (A5) as

v : 1 _
Tem(x,y) = {—ma; + Y aF”yi] tr<1// +yﬂPRy/_>

=2 / e/ p R (x, p)
p

+ %y - OF"*y, - 2/ ePY"RI(x, p)  (A9)
P
up to O(#?). In the second line, we need carefully to
perform the integral by parts because the surface terms in
general are generated. At least at the equilibrium described
by Eq. (23), however, we can show that no surface term
appears, as follows. The second term can be decomposed
into the contributions from the vacuum and the matter

parts, H‘dmel}’, f(O)vac(pO) - _‘9(_170) and f(O)mat(pO) -

O(po)np(po — ) + O(=po)np(—po +p). The  former
should be proportional to y*y”y=3 for the dimensional
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reason, and thus vanishes in the symmetric limit of
y = 0. The latter yields no surface term because of
f©ma(Po)d(p*) = 0 for p, — 0. Therefore, at the equi-
librium, performing the integral by parts leads to

() =2 [ €0t + RQRA ). (AL0)
P
Its symmetric part is given by Eq. (11).

APPENDIX B: SOLUTION AT O(#?)

In this Appendix, we derive the second-order solution
R‘(‘z). The basic step of the following calculation is parallel

to Ref. [37]. Inserting R’(‘O) and R’Zl) into Eq. (9), we find
R = 225(p*) R,

2n -
+ ? [_pﬂQ ' pf(O) + pDDﬂl/ - py /u/f(l)}(s(pz)’

with 7?,,82) satisfying p25(p2)7~€’(‘2) =68(p*)p-Rpp) =

Here, we have introduced
1 1 -
D,,8(p*) = 3 Eupeld’ (ZZA(AJ(O))—?F‘”szm))&l’z)

+20u,2,f 0)5(P?). (B2)

where (A, f (0)) represents the derivative operation acting
only on fq), but others operate on all on the right. For this
R’&), Eq. (7) yields

RS2 = 8(p?)[puf @) + Z A F (1))

e D) (B
where we introduce a vector u”, and define f ) = u - 7~2(2) /
(p-u)and 2" :=e""p u,/(2p-u), similarly to Eq. (18).
The last term with complicated structure due to the Levi-
Civita symbols can be reduced with the Schouten identity:
Eyupapl + gy/)o%pﬂ + gpo—ﬂﬂpu + 8(;%;wpp + giﬂb/)p(r =0 and

Pa = p()éa’

2
p
Palp = (Po)*Eals + _Aa/}’

PaPpPy = (Do) Eubp, +
PaPpPyPs = (p0)4§a£ﬂ€y§6
(Po)
llvl4

15

(AaﬁAy(S + AayA/}(S + AaéAﬁy)

2
nyy n/’p

1 1 1
Ep = =SB = e, o+ e S (B4

In the CKT at O(#?), Eq. (B4) is quite helpful in the sense
that the frame-independent part and the p? term can be
extracted. After straightforward computation with these
relations, we arrive at

1
? 8aﬁyu2/’fupapﬂy5(p2)

= _5<p2) uv€
5(p? Ny =~ 1.
+ (pz )Zﬁu A +—CF% +—Fp; | p-Afg)
P n p
(BS)
It should be mentioned that the singular factors (p?)~! and

(p?)~2 in Eq. (B5) does not conflict with the nonsingular
condition §(p?) p27~2’(‘2) = 0. One can show this by noting
(P*)™"8(p*)p-Af o) #0forn > 1but §(p*)p - Af) =
which follows from the classical kinetic equation (5).
Plugging Eqgs. (B3) and (B5) into Eq. (B1), and proceeding
computation, we obtain the second-order solution R’(’Z)
in Eq. (19).

APPENDIX C: INTEGRAL FORMULAS
FOR MATTER CONTRIBUTION

In this Appendix, we derive the integral formulas for the
matter contribution. At equilibrium, the matter contribution
in Eq. (34) is the following form:

S 2 dk
/zﬂ (IZ ?pm - f(olma‘ (C1)
» (P?) dpg
with  f(oma = O(Po)nr(po — 1) + 0(=po)np(—=po + 1)
and np(x) = (¢/* 4+ 1)~!. In the integrands, we can imple-

ment the following replacement:

(gaAﬂy + gﬂAya + éy aﬂ)

(fafﬂAya + &8, Aps + EulsBp, + EpE A s + &S5 Ay, + &, E500p)

(C2)
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with & :=(1,0) and the transverse projector A# :=
&g — g™, Then, the above integral is represented as a
linear combination of

d's(p?)

7 / 2125 )

k= (dpz)z .k

dkf() ma
Fn,m,k = (po)n\p|n—m d( 3{ t’ (C3)

Po
with [ )= J (‘;11)74. We start from
1

5(p*) = 20pl (6, +6-),  6r:=08(po FIp).- (C4)

Then the first, second, and third derivatives are computed as

(%) = o (0 +2L),
&(p) = -@(5; #0L) g (34 ),
§"(p?) = 16;3[p| (8 40) = g (0 +87)
T 16[)1(3)[p| (817 + o). (c5)

where the primes on 6, denote the derivative with respect
to po. For [ =0, we readily compute Eq. (C3) by using
Eq. (C4).

For [ > 1, performing the integration by parts, we can
replace d/dp in Eq. (C5) with that on F, ,, ;. For instance,
the integral for / = 1 reads

d F
I,l,m / /dp 5 +5 n,m.k
ke 4lp| o )dpo Do

with [ = [ 4p_ In a similar manner, we obtain
p - (271)3. )

(Co)

1 d F & F
:Z-%m //dp (5 +5—)|: nmk nm,k:|,
C p8lpl) T dpo py dpt P}
(C7)
1
3 =— | —— [ dpy(6,.+6_
n,m.k /16@|/ po( ++ )
d 3F d? 3F d&dF
|: nmk — n;‘m,k . nﬁgl,k:|' (CS)
dpo py dpg ps dpy Py

Carrying out the momentum integration in Egs. (C6), (C7),
and (C8), we finally derive

1

Igmk 4r 2u7m+1,ka <C9)

-1
i =5 = DT o+ T, (C10)

8

2= o ym-ng
n,m.k 1671'2 m—3.k
+(2n=3)T mosks1 + T m-1x42]- (C11)
-1
Ifzmk 307 2[(”_ 1)(n=3)(n— )jm—S,k
+ 3(” —5n+ 5)~7m—4,k+l

+3(n =2)T -z k2 + Tm-2.443)s (C12)

where the integral sequence 7, is given by

o k
Ta= [ Ao lne(p=p) = (=1 g (51

(C13)

One can show the following recursion equations for m > 0
and k > O:

Tmstgrr = —=(m+ 1) T s

aﬂjm.k = Eﬂjm,k+l + aﬂ(jm+l,k+l + kjm.k)‘ (C14)

The former is useful to reduce Egs. (C10)—(C12), and
the latter is helpful to compute the divergence of J¥
and TH.

APPENDIX D: POINT-SPLITTING
REGULARIZATION

In this Appendix, we demonstrate the evaluation of K,
K5, and K577, where

n 2
IC/;[I"'”M (y) = / 2ﬂ'd 5(p )pﬂl . o
p

@ P [=0(=po)]eir/m.

(D1)

As usual, the point-splitting regularization is implemented
with the Euclidean momentum integral. For the above
integral, the simple Wick rotation with p, — —ip, cannot
be admitted due to the delta function and step function,
which are defined on real space. For this reason, we first
write them as

1 1 1 0 ixt
8(x) = —Im——, e(x)z—,/ dr—

T x—Iie 2mi J_ T—1in

(D2)

with positive infinitesimals ¢ and 7.
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Let us first compute /C;(y), which can be expressed as

Ki) = 5 (K, KD, Kis=

-2 e dr eiPo(e+yo/h)=ipy/h
2_fci/_oof+in/p (P Fie?

(D3)

We can now deform the contours of py-integral, together with that of z-integral, along the imaginary axis. Introducing

another positive infinitesimal d, we compute

-2
27i

—ico+d  dr
Ky =

ico+d

o0 dTE

—ico
TG
T+1’1 p Jico

-2 1 [ d
= (£1)- ._/ L/
2ri —itg + 6+ 1

1)

dpo eipo(t+yo/h)—ip-y/h
21 (p* T ie)
wdpy, eP4(=itg+6+yo/h)=ipy/h

(—p3)?

o 271

e—ipa(zpHid)—ippye/h

— (£1)- =

— (£1)-

i/
], o0

where we denote the Euclidean splitting parameter
as yp = \/yj +y* with y;:=iy, and inner product as
PE-YE =Dy + psys. In the following, we suppress the
subscript E. Due to this contour deformation, the integral
(D3) is represented as the momentum integral in the
Euclidean four-dimensional half hypersphere:

e~ipy/h

Ki(y) = —2/9(194)

— _L °°dp/ Ee_ipycosw/h’ (DS)
477.'2 0 P Jp,>0 277.'2

DOTE+16/pE

—ipg: YE/h

(pE)

: (D4)

|
where o is the angular valuable defined by p-y = pycos.

To proceed, it is useful to introduce two integral
sequences. The first one is

[ eVi=pe

z,0= | 5

(D6)

This Z,(x) can be written with the Bessel function of the
first kind J,,(x) and the Struve function H,,(x), as follows:

2,00 _%_.JQT(JC)_Hzx(x)’
200 = 22 W 6] M) 4 e (y)

2400 = 4 AL ) S0 ()

Zy(x) = _221% 2xJ4(x) = (x)f =3)J5(x) |, =2xHa(x) + x(fz _3)H,(x) |

2= A I A8t o

X

One important property of Z,(x) is that the integral from 0 to co are analytically evaluated as:

JACEICRES

o 4i
dz Z =——,
A 7 24(2) 152

JACECR

o i
dz Z5(z) = ——.
JACEAORES

2i 0 i
- dz Z =——,
3 A 7 25(2) 3

T
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Another property is the recurrence relation

Z(x) = =121 (%),

where the latter follow from Z,(x) =z 0.

At (x /
Pa>

The second useful integral is

Zn(x) =

2 . ﬁ”” e ixcosw

i / 42 2, (2), (D9)

(D10)

This tensor is decomposed into the longitudinal component to $* := y#/y and transverse one with the projector
A" = 9 — P9, The coefficients of them is determined by Z,, as follows:

»A:Z()a :y”Zl7

AHvp — yﬂAvApZ3 + (yﬂAw + yvA/w + ypAﬂv)

A#rre — yﬂ Av’\pj\;zrz4

~ ~ ~ ~ ~ ~ 1
+ (A;wj\)pya + Aupyaj}y 4 A/I()'j\)ﬂj‘)l/ 4 A/’M)A)Dj\/p 4 Au/)j\)yj)a 4 Aucj}y&p)g

o - - 1
+(AMDA/M+AM/1AV”+AW’AW))B

where we abbreviate the argument x on A#"*#» and Z,.

-1
A I)A’”?”32+A””§[Zo—zz],

(21 - 2],

Let us come back to the evaluation of IC; With the help of A and 2, we get

1 o d
’Q()’) = L

(=) [rdz i
Ax? z 2

with

—1
T = / " dp (D13)
o P
Here we interchanged the order of integration, as do
in the point-splitting regularization for axial anomaly in
two dimensions [50]. The ultraviolet logarithmic diver-
gence is now regularized by the splitting parameter y.
The infrared divergence (z = 0) is to be canceled by the
matter part.
In the same manner, we can calculate K" and K5”. The
only extra relation to be utilized is

d"s(p?)
dp)r =

(p2 _ie)n+l . (D14)

Finally, we get the following expressions:

4 (py/h) =
vs
1/h/ dp/ dz Z,(pz/h)

(2, = 24,

(20 -22, + Z4], (D11)
1 o d
“ i ?pZo(py/ h)

Sﬂ (D12)

uv _ v

K80 = 1 g,
K (y) = — (g 4 grge 4 o). (DIS)

3272

where we perform the analytic continuation to Minkowski
spacetime after integration.

APPENDIX E: FORMULAS OF
BACKGROUND FIELDS

In this Appendix, we show several formulas of
electromagnetic field and fluid vorticity fields, which
are defined in Eq. (41). The two rank tensors F,,,
ﬁ‘ldﬂﬂv and their duals are expanded with E,, B,, a
and w, as follows:
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F;w = Eﬂgl/ - El/éﬂ - EuvpaBp§o-7
ﬁ_laﬂﬂy = aﬂél/ - al/é},{ - Eyypawp§67

Thanks to them, one can show ¢,,,,0’E? = —¢,,,,

F;w = Byfv - Byfﬂ + 8ﬂungp§Ga
w

Wy = w/tél/ - wl/éﬂ + gyypaapgg- (El)

a’B° or equivalently,

w[yEu] = —a[ﬂBl,]. (E2)

Using the equilibrium conditions d,a = F,,f” in Eq. (23) and $ - dF,, = 0 in Eq. (33), we find

0= a[ﬂab]a = Fﬂ[ﬂay]ﬂﬂ. (E3)

Combined with Egs. (E1) and (E2), this leads to

a[”ED] = a)[”B,,] =0. (E4)

Besides, by using the expanded form (E1), we express the derivatives of the background fields as

,E, =¢,E(E-a+B-w)—-g,B- -0+ B,o,+ 28 (4€0)pos@” BT + &0, F ),
ava = gyéI/(a ‘B-w- E) + @ - E - Eﬂa)l/ - 2§(y€v)paﬂapE0§l =+ glaypyﬂa

0ya1/ = gpé:v(az + (1)2> - g;wwz + 0,0, —a,d, + Zg(pgv)paﬂapwo—gi’

0,0, = gua - ®—2a,w,.
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