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We consider extensions of the Standard Model by a hidden sector consisting of a gauge field coupled
with a scalar field. In the absence of dimensionful parameters in the tree-level potential, radiative symmetry
breaking will induce the electroweak scale of the Standard Model and generate mass for the hidden sector
gauge field. We consider both Uð1ÞD and SUð2ÞD dark sector gauge groups and focus on probing the
models with a combination of direct detection experiments and gravitational wave observatories. We find
that recent dark matter direct detection results significantly constrain the parameter space of the models
where they can account for the observed dark matter relic density via freeze-out. The gravitational wave
signals originating from strongly first-order electroweak phase transition in these models can be probed in
future gravitational wave observatories such as the Laser Interferometer Space Antenna. We show how the
projected results complement direct detection experiments and can help probe parameter space near the
neutrino floor of direct detection.
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I. INTRODUCTION

Despite the success of the Standard Model (SM) of
particle physics, there are many phenomena that it does
not explain and that appear to require new particles and
interactions. One such phenomenon is the missing mass
problem, which is inferred from observations of a wide
range of astrophysical systems including galaxy clusters [1],
galaxies [2], and the cosmic microwave background radi-
ation (CMB) [3]. A possible solution to the missing mass
problem is cold dark matter, constituted by one or more new
stable and neutral massive particles. However, the particle
nature of dark matter (DM) remains unknown [4–6].

The cosmological observations of the light element
abundance and CMB radiation spectrum imply that the
SM degrees of freedom were in thermal equilibrium in the
early Universe [7–11].
If DM was also in thermal equilibrium in the early

Universe via interactions between the DM and the SM, the
observed relic abundance of DM today can arise from
thermal decoupling during the evolution of the Universe.
These DM-SM interactions also offer the prospect of
detecting DM in experiments such as DM direct detection.
The most studied example of this is the weakly interacting
massive particle (WIMP) paradigm. However, the simplest
WIMP models where DM interacts via the SM weak
interactions are very strongly constrained by direct detec-
tion experiments. It is, therefore, important to explore
different types of DM models such as hidden sectors
coupled with the SM via portal interactions.
In this paper, we analyze two simple Uð1ÞD and SUð2ÞD

hidden sector DM models with vector DM candidates
coupled to the SM via a new SM singlet scalar through the
Higgs portal. The models feature scale invariance of the
tree-level Lagrangian and radiative electroweak symmetry
breaking [12]. One scalar mass eigenstate is SMHiggs-like,
with a mass that can be set to the experimentally observed
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value of 125.46� 0.16 GeV [13]. The other eigenstate is
massless at tree level but obtains its mass via loop
corrections. The framework of classically scale-invariant
DM models with radiative symmetry breaking, mediated to
the SM via the Higgs portal, has been explored in the
literature; see, e.g., [14–25].
In this paper, we study how these simple Uð1ÞD and

SUð2ÞD models can be tested with a combination of direct
detection and gravitational wave observations. Direct detec-
tion experiments have provided very stringent constraints
on interactions of weak-scale dark matter with nuclei.
Currently, the most stringent constraints come from the
recent PandaX-4T and LUX-ZEPLIN (LZ) (2022) experi-
ments [26,27]. The models can be parametrized by two
parameters—the DMmass and gauge coupling.We identify
the viable parameter space where the models reproduce the
observed relic density Ωh2 ¼ 0.120 [3] and get a highly
testable relation between these two parameters.
Radiative symmetry breaking in classically scale-

invariant models typically results in a strongly first-order
electroweak phase transition (EWPT) [28,29]. Such a first-
order EWPT could be relevant for baryogenesis and
produces gravitational wave signals which could be observ-
able in upcoming gravitational wave experiments such as
the Laser Interferometer Space Antenna (LISA) [30].
We present a careful examination of the first-order phase

transition using different numerical packages in order to
characterize the theoretical uncertainty in the predictions.
For the primary result of this paper, we use the PYTHON

package CosmoTransitions [31]. Because of the large amount
of supercooling for some of the parameter space, one needs
to be careful about computing the transition but also in
computing the correct gravitational wave signal, as
Coleman-Weinberg-like models face suppression which
can be mitigated by strong supercooling [32].

II. DEFINITIONS OF THE MODELS

We consider two models where the SM is extended with
a hidden sector gauge group, Uð1ÞD and SUð2ÞD, respec-
tively, and a new scalar field S charged under the gauge
group. Spontaneous symmetry breaking of the hidden
sector gauge group takes place when S acquires a vacuum
expectation value (VEV) and leads to new massive vector
DM candidates. The first model we consider is the Uð1ÞD
extension defined by the Lagrangian [22]

LUð1ÞD ¼ L0
SM −

1

4
VμνVμν þ ðDμSÞ�ðDμSÞ−VðH;SÞ; ð1Þ

where L0
SM is the SM Lagrangian without the Higgs

potential, S is the complex scalar SM singlet, and Vμ

is the Uð1ÞD gauge field. The covariant derivative is
Dμ ¼ ∂μ þ igVμ, and the field strength tensor of the
Uð1ÞD vector field is Vμν ¼ ∂μVν − ∂νVμ. The classically

scale-invariant tree-level scalar potential is given by

VðH; SÞ ¼ 1

6
λHðH†HÞ2 þ 1

6
λSðS�SÞ2 þ 2λHSðH†HÞðS�SÞ:

ð2Þ
In principle, a kinetic mixing term BμνVμν with the SM
hypercharge field Bμ could be present, but we assume this
does not arise. For example, the mixing term can be
explicitly prohibited by a Z2 symmetry under which
Vμ → −Vμ and all other fields are singlets. In the unitary
gauge, the scalar fields are written as

H ¼ 1ffiffiffi
2

p
�

0

v1 þ h1

�
; S ¼ 1ffiffiffi

2
p ðv2 þ h2Þ; ð3Þ

and upon symmetry breaking the VEVs v1;2 become
nonzero. The SM gauge boson masses are determined
by v1 ¼ 246 GeV, while the DMmass is determined by the
VEV v2 via M2

V ¼ g2v22.
The second model we consider is the similar SUð2ÞD

extension defined by the Lagrangian [24]

LSUð2ÞD ¼L0
SM−

1

4
Vi
μνV

μν
i þðDμSÞ†ðDμSÞ−VðH;SÞ; ð4Þ

where the DM candidate is now the SUð2ÞD vector triplet
Vi
μ, i ¼ 1; 2; 3. The covariant derivative and the field

strength tensor take the forms

Dμ ¼ ∂μ þ igVi
μti; Vi

μν ¼ ∂μVi
ν − ∂νVi

μ þ gϵijkV
j
μVk

ν;

ð5Þ
where ti ¼ σi=2 are the SUð2Þ generators and σi are the
Pauli matrices. In this non-Abelian model, kinetic mixing
of Vi

μ with SM gauge fields is forbidden by gauge
symmetry. The normalization of the scalar potential is
again chosen as

VðH; SÞ ¼ 1

6
λHðH†HÞ2 þ 1

6
λSðS†SÞ2 þ 2λHSðH†HÞðS†SÞ;

ð6Þ
where we use the same notation as in theUð1ÞD case but the
scalars are now both complex SUð2Þ doublets and in the
unitary gauge given by

H ¼ 1ffiffiffi
2

p
�

0

v1 þ h1

�
; S ¼ 1ffiffiffi

2
p
�

0

v2 þ h2

�
: ð7Þ

In both of the above models, the two neutral scalar states
h1;2 mix via the mass mixing matrix

M2 ¼
 

1
2
λHv21 þ λHSv22 2λHSv1v2

2λHSv1v2
1
2
λSv22 þ λHSv21

!
: ð8Þ
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This mass matrix has two eigenvalues, one of which is zero.
In terms of the potential, it can be understood as one
direction being flat, corresponding to the massless eigen-
value. The field configuration perpendicular to the flat
direction corresponds to the massive eigenstate. We iden-
tify the tree-level massive field h with the SM Higgs, and
the massless field hS is the scalon, which will obtain a
nonzero mass at one-loop level. The mass eigenstates are
connected to the gauge eigenstates via a mixing matrix of
the form

�
h

hS

�
¼
�

cos α − sin α

sin α cos α

��
h1
h2

�
; ð9Þ

where the mixing angle α describes the mixing between the
SM and DM sectors. This angle is restricted to small values
by experiment, sinα≲ 0.2 for MS > Mh=2 [33].
We choose the hidden sector gauge coupling g

and the dark matter mass MV as the input parameters.
Using the minimization conditions, the rest of the para-
meters of these models can then be written in uniform
notation as

v2 ¼
cVMV

g
; sin α ¼ v1

v
; ð10Þ

λH ¼ 3M2
h

v21
cos2α; λS ¼

3M2
h

v22
sin2α;

λHS ¼ −
M2

h

2v1v2
sin α cos α; ð11Þ

where Mh is the SM-Higgs mass, fixed to the observed
value Mh ¼ 125.46 GeV [13], cV ¼ 2 for the SUð2ÞD
model, and cV ¼ 1 for the Uð1ÞD model. We have also
defined v2 ¼ v21 þ v22.
To see how the scalon, which is massless at tree level,

obtains a mass, we consider the loop corrections to the flat
direction in the potential using the Gildener-Weinberg
formalism [12]. The first-order loop corrections lead to
an effective potential of the general form

V1
effðhSÞ ¼

1

64π2
Xn
k¼1

gkM̃4
k

�
ln

�
M̃2

k

Λ2

�
− Ck

�
; ð12Þ

where n is the number of states (including bosons and
fermions), M̃k refers to tree-level field-dependent masses
described in Appendix B, which relate to the true mass as
M̃k ¼ Mk

hS
v [12,23], gk is the degrees of freedom (with

positive values for bosons and negative for fermions),
Ci ¼ 3=2ð5=6Þ, and Λ is a renormalization scale. One
can rewrite Eq. (12) in terms of the true massesMk and get
rid of the renormalization scale by minimization of the

potential. This yields

V1
effðhSÞ ¼ Bh4S ln

�
h2S
v2

−
1

2

�
; B ¼ 1

64π2v4
Xn
k¼1

gkM4
k:

ð13Þ
The scalon field is massless at tree level but obtains a mass
from the loop corrections which can be seen by evaluating
the second-order derivative of the effective potential in
Eq. (13) at the minimum, yielding

M2
S ¼

1

8π2v2
ðgVM4

V þ 3M4
Z þ 6M4

W þM4
h − 12m4

t Þ; ð14Þ

where gV is the degrees of freedom for the vector
boson: gV ¼ 9 for the SUð2ÞD model and gV ¼ 3 for the
Uð1ÞD [22]. Here,MS is the scalon mass for each respective
model, and MV is the DM candidate. Notice that Eq. (14)
relates the scalon and DM masses. In order for the scalon
mass to be non-negative, this sets a lower bound for the
DM masses. The bound is MV > 240 GeV for the SUð2ÞD
model and MV > 185 GeV for the Uð1ÞD model.

III. FREEZE-OUT RELIC DENSITY

The dark matter abundance in the models is determined
via the freeze-out mechanism. While other effects like
supercooling and filtering of DM can play a role in
radiative symmetry breaking models such as those we
study [34–37], we will see that the standard freeze-out
mechanism is operational throughout the parameter space
of interest in this work.
To see how the observed DM abundanceΩh2 ¼ 0.120�

0.001 [3] is generated via the freeze-out mechanism, we
recall the basic formalism below. The present-day dark
matter density is obtained from the Boltzmann equation

dnV
dt

þ 3HnV ¼ −hσaviðn2V − n2V;eqÞ; ð15Þ

where nV is the number density of the dark matter, H is the
Hubble parameter, and hσavi is the thermally averaged
annihilation cross section. The DM equilibrium number
density in the broken phase is given as

neqV ðTÞ ¼ gV

�
MVT
2π

�
3=2

e−
MV
T : ð16Þ

Equation (15) can be rewritten using entropy conservation,
the yield YV ¼ nV

s , and x ¼ MV
T into the form

dYV

dx
¼ 1

3H
ds
dx

hσaviðY2
V − Y2

V;eqÞ; ð17Þ

and solving this equation we obtain the present-day yield
Y0
V that links to the abundance as

Ωh2 ¼ MVs0Y0
Vh

2

ρc0
≃ 2.755 × 108MVs0Y0

VGeV
−1; ð18Þ
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where

s0 ¼ 2.8912 × 109m−3; ρc0 ¼ 10.537h2GeV m−3

for H ¼ h100 km=s=Mpc; ð19Þ

and h ¼ 0.678.
To solve the Boltzmann equation numerically, we use the

micrOMEGAs package [38]. This software uses CalcHEP input
files with the model Feynman rules to compute the
thermally averaged cross section, which we generate with
the LanHEP package [39,40]. The numerical results for the
relic density for both models can be seen in Fig. 1. To
assess the validity of the numerical results, we have
compared these to the analytical result, obtained in the
nonrelativistic limit and under the approximation of instan-
taneous freeze-out. Both of these approximations tend to
overestimate the relic density. Nevertheless, the analytical
result deviates only up to around 10% for the Uð1ÞD model
and slightly more for the SUð2ÞD model, considering only
the leading annihilation processes σðVV → hShSÞ for the
Uð1ÞD model and σðViVj → hShSÞ plus the semiannihila-
tion process σðViVj → VkhSÞ for the SUð2ÞD model.
From Fig. 1, it is evident that both models can reproduce

the observed relic density. A larger coupling g leads to more
efficient annihilation of the vector DM candidate V into
scalons hS, and, thus, the correct abundance is obtained for a
correspondingly higher vector massMV . In the non-Abelian
model, the semiannihilation process is taken into account in
the analytic approximation by defining the effective ther-
mally averaged total annihilation cross section as

hσavi ¼ hσannvi þ
1

2
hσsemiannvi; ð20Þ

where the first term is the annihilation and the second term is
the semiannihilation cross section.
The addition of the semiannihilation generally leads to

more efficient annihilation, and, thus, one would expect the
relic density to be lower. However, the SUð2ÞD result in
Fig. 1(b) is very close to the Uð1ÞD result in Fig. 1(a),
which indicates that there is not much difference in the
abundance for the two models considered. The origin of
this is that, while the additional degrees of freedom in the
non-Abelian model increase the relic density, this is bal-
anced by the reducing effect of the semiannihilations.
Concretely, the semiannihilations increase the overall
thermally averaged total annihilation cross section only
by roughly 15%.
Finally, we comment on the possibility of a freeze-in

origin for the DM abundance in these models. In the freeze-
in regime, the DM particle V needs to be feebly coupled to
the visible sector, so that it does not reach equilibrium with
the SM thermal bath in the early Universe. To achieve this,
either the gauge coupling g needs to be very small, so that
the vector remains decoupled while the scalar S is in
equilibrium, or the portal coupling λHS can be very small,
so that both the vector and the scalar remain decoupled
from the SM.
In the first scenario, the typical scale for the gauge

coupling would be g ∼Oð10−7Þ, as seen from the approxi-
mate relation [41]

YVðTÞ ∼ g2
Mpl

T
; ð21Þ

whereMpl is the reduced Planck mass. Since this process is
IR dominated, the dominant production would be at
the lowest kinematically allowed temperature T ∼MV .

FIG. 1. The red line representing the Planck Collaboration result ofΩh2 ¼ 0.120� 0.001 is shown in red, and both models can match
it via a freeze-out relic density [3].
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Thus, we can approximate the abundance by the replace-
ment T ¼ MV in the above to obtain

Y0
V ∼ g2

Mpl

MV
: ð22Þ

Consider now the relationship between the coupling
and DM mass in Eqs. (11) and (14). If the coupling is
g ∼Oð10−7Þ as necessary for the freeze-in mechanism to
work, the VEV v2 becomes very large and the scalon mass
MS is approximately zero. The presence of a very light
scalar in the spectrum is potentially problematic, e.g., due
to Higgs invisible decays, unless suppressed by a small
portal coupling. On the other hand, the scenario where the
portal coupling would be very small would also require a
large hidden sector VEV v2 ≫ v1. If the gauge coupling is
not very small, then this implies that the DM mass MV
becomes very large. In this case, the hidden sector can be
effectively populated only in the broken phase, as there is
no scalar mixing in the unbroken phase. However, in this
scenario, there will be large supercooling, as discussed
below, and the DM production should take place after
reheating from thermal inflation. Now the scalar VEV is
mostly in the S direction v2 ≫ v1, so that the energy stored
in the inflaton field mostly goes into S-quanta, but, since
these are feebly coupled to the SM, the reheating will be
very slow and the reheating temperature suppressed. Thus,
the heavy DM cannot be efficiently produced after reheat-
ing, since Tr ≪ MV . While there might be some way to
overcome these apparent problems with freeze-in [42,43],
we do not consider this scenario further in this work.

IV. INFLATION, REHEATING, AND
SUPERCOOLING

In the previous section, we discussed the DM abundance
in the standard freeze-out scenario. The situation may,
however, be more complicated [34,36,37,44], due to a
possible phase of thermal inflation characteristic of classi-
cally scale-invariant models with radiative symmetry break-
ing. The thermal history in the models can be summarized in
terms of the following temperature thresholds:

(i) TFO.—The freeze-out temperature of the DM can-
didate defined roughly by neqV hσvi ¼ H.

(ii) Tn.—The nucleation temperature when the proba-
bility to nucleate an expanding bubble of the broken
phase vacuum inside a Hubble horizon becomes of
Oð1Þ, approximately the temperature at which the
phase transition completes.

(iii) T inf .—The temperature at the beginning of thermal
inflation defined by ρV ¼ ρrad, where ρV is the
energy density of the false unbroken vacuum [i.e.,
the difference in the potential between the local
minimum at VðhS ¼ 0Þ and the true minimum at
VðhS ¼ vÞ] and ρrad is the energy density of the

radiation-dominated Universe. When ρV begins to
dominate the energy density, inflation begins.

In the case of the two vector DMmodels discussed in this
paper, the finite temperature potential includes the thermal
integral summing over the bosons and fermions [45]:

V1
effðhS; TÞ ¼

Xn
k¼1

gk

�
1

64π2
M̃4

k

�
ln

�
M̃2

k

Λ2

�
− Ck

�

þ T4

2π2

Z
∞

0

y2 ln
�
1 ∓ e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2�M̃2

k=T
2

p �
dy

�
:

ð23Þ

For some models, it might be necessary to consider the
additional ring diagrams for the bosons, but for this inves-
tigation they can be ignored as they are insignificant [46].
This thermal potential is not amenable to an analytic
solution but can be approximated using modified Bessel
functions of the second kind [23]. We compute the
freeze-out temperature TFO numerically with micrOMEGAs

and the nucleation temperature Tn numerically using
CosmoTransitions and BubbleProfiler (for cross-checking, see
Appendix C) [31,38,47].
Let us now consider the thermal history of the model

depending on the order of the above three temperature
thresholds. If Tn > TFO, the phase transition completes
before DM freeze-out, and the freeze-out then takes place
as usual in the broken phase. This means that we can
calculate the relic abundance as presented in the previous
section.
In the opposite case Tn < TFO, there are three scenarios

to consider. The filtered DM scenario takes place for the
ordering TFO > Tn > T inf . In this situation, there is no
thermal inflation, as the phase transition completes before
inflation would begin, but the DM annihilations are
immediately out of equilibrium after the phase transition,
and, therefore, the abundance is set by the number of DM
particles that are able to enter the boundary to the broken
phase, as described in Ref. [36].
The supercool DM scenario [34] takes place for

TFO > T inf > Tn. In this situation, there is a period of
thermal inflation, which ends at Tn. After inflation, the
latent heat stored in the false vacuum is released to reheat the
Universe back to temperature T inf , under the assumption of
instant reheating, or to a lower reheating temperature for
delayed reheating. However, since TFO > T inf , no DM is
produced in reheating, and the abundance is set by the
amount that was present before inflation, diluted by the
expansion of the scale factor and by the filtering effect as in
the above scenario.
Finally, there is the case where T inf > TFO. In this

situation, assuming instant reheating, the reheating will
bring DM back to equilibrium, and the relic abundance is
again obtained via the usual freeze-out mechanism as
presented in the previous section.
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The inflation temperature is obtained by solving for T inf
from

ΔVðT infÞ ¼ Vhigh
eff ðhS; T infÞ − V low

eff ð0; T infÞ ¼
g�π2

30
T4
inf ;

ð24Þ

where Vhigh
eff ðhS; TÞ is the true vacuum and V low

eff ð0; TÞ is the
false vacuum. We find that, throughout the parameter space
of interest in this work, we are either in the first or the last
situation described above, and the DM abundance is thus
obtained via the usual freeze-out mechanism in both cases.
See Appendix A for more on the reheating.

V. DIRECT DETECTION

In this section, we present the direct detection constraints
on the two models. We will see that the recent results from
the LZ experiment significantly affect the SUð2ÞD model
and that the Uð1ÞD model is already very constrained.
To compute the direct detection cross section, we again

use the micrOMEGAs package [38]. The DM coupling to
nucleons arises from the scalar mixing and is mediated via
exchange of the SM-like Higgs h and the scalon hS in the t
channel leading to a spin-independent cross section with
negligible difference between protons and neutrons. The
results of this computation for both models are shown in
Fig. 2. The correct relic abundance is obtained along the red
solid line.
The purple region is excluded by LHC constraints on to

Higgs decays into two scalons h → hShS [50,51]. This
process becomes kinetically forbidden for larger DM mass
MV , as larger DM mass leads to larger scalon mass as
shown in Eq. (14). In the orange region, the DM-nucleon
cross section is below the neutrino floor, and the yellow

regions indicate the exclusion limit due to the LZ experi-
ment [27], providing a significant improvement over the
XENON1T experiment shown in green [48]. Finally, the
gray region shows the projected exclusion limit from
XENONnT [49].
For both models, we can observe a narrow wedge in the

parameter space where the direct detection cross section is
strongly suppressed, reaching values below the neutrino
floor. This is due to a destructive interference between
the t-channel diagrams mediated by the two scalar mass
eigenstates, when the masses are degenerate [52,53]. In the
Uð1ÞD model, this interference region occurs for DM mass
around 0.9–1 TeVand coupling 0.65 ≤ g ≤ 0.7. Outside of
the interference region, the model cannot produce an Oð1Þ
fraction of DM without being excluded by direct detection,
unless the DM mass is well above 10 TeV.
For the SUð2ÞD model, the new constraints from LZ alter

the picture compared to the situation with the previous
XENON1T limits: The relic abundance line above the
interference region is now excluded for DM masses below
7.5 TeV, while prior to the LZ result there were no
constraints beyond 1 TeV. In the interference region, we
find the nucleation temperature for the phase transition
below the QCD scale. This alters the computation for the
gravitational wave signal, as the phase transition will be
completed in conjunction with the QCD phase transition, as
discussed in Refs. [54,55]. This picture slightly changes
when including additional scalar self-energy corrections for
the SUð2Þ model [56]. First, the scalon mass is slightly
larger than in our leading-order analysis, pushing the
interference region in Fig. 2(b) to the right. Additionally,
the correction appears to slightly increase the nucleation
temperature compared to our results. However, we find that
overall the resulting gravitational wave (GW) signal is not
significantly affected, and the GW signal prediction

FIG. 2. The red line shows the correct relic abundance Ωh2 ¼ 0.12 [3]. The yellow region is excluded by the LZ (2022) experiment
[27], the green region is the XENON1T experiment [48], the purple region is the LHC constraint for exotic Higgs decay, the orange
region is the neutrino floor, and the gray region is the projected 90% CL exclusion limit constraint from the XENONnTexperiment [49].
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remains comparable to our results presented in the next
section.
For DM mass above 7.5 TeV, the model is again allowed

by direct detection. In Fig. 2, we have marked three
benchmark points allowed by direct detection with the
blue, indigo, and purple markers. These points will be used
as examples for analyzing the GW signals in the next
section.

VI. GRAVITATIONAL WAVES

The strongly first-order phase transition possible in
classically scale-invariant models is interesting due to
the implications for baryogenesis [57] and due to poten-
tially observable GW signals.
To explore the gravitational wave signals, we consider

the finite temperature potential in Eq. (23). This potential
contains a barrier between the unbroken false vacuum and
the broken phase minimum, leading to a first-order phase
transition. At the nucleation temperature Tn, the phase
transition will complete via the formation of bubbles of the
true vacuum. The expanding and colliding bubbles deposit
energy in the surrounding plasma, generating gravitational
waves as described in Refs. [58–60].
For the purpose of solving Eq. (23) and obtaining the

parameters that describe the gravitational wave signal, we
use the PYTHON package CosmoTransitions [31], with custom
modifications including a method of computing the β value.
The relevant parameters are the latent heat normalized with
respect to the radiation energy, α, the inverse duration of the
phase transition, β, and the nucleation temperature Tn,
defined as [24,61]

α≡ 1

ρ

�
ΔV −

T
4

dΔV
dT

�����
Tn

;
β

H
≡ T

dðS3=TÞ
dT

����
Tn

; ð25Þ

where

ΔV ¼ Vhigh
eff ðhS;TÞ−V low

eff ðhS;TÞ; ρ¼ geπ2

30
T4
n; ð26Þ

where the ge ≈ 103 is the number of effective degrees of
freedom during the nucleation at the temperature Tn.
Finally, the Euclidean action is defined as

S3 ¼ 4π

Z
∞

0

r2
�
1

2

�
dhS
dr

�
2

þ VeffðhSÞ
�
dr; ð27Þ

where r is the radial distance from the center of the true
vacuum bubble.
In order to assess the reliability of the results, we make

use of two different numerical tools for computing the
nucleation temperature and the β and α parameters. The
parameters α and β depend heavily on the nucleation
temperature Tn, so that possible errors on Tn will propagate
to α and β. For the computation we use CosmoTransitions and
BubbleProfiler [31,47]. As shown in Appendix D, we obtain a
smaller numerical error with CosmoTransitions, but the results
of both numerical computations agree within uncertainty.
In general, we find that for sub-TeV DM masses the
nucleation temperature in the BubbleProfiler implementation
tends to be smaller than in CosmoTransitions.
In Fig. 2, we identify three benchmark points allowed by

all constraints. These benchmark points are shown in Fig. 3
corresponding to the indigo diamond, blue square, and
purple hexagon shown in Fig. 2.
Notice that the first point is below one TeV, the trend we

observed regarding the performance of the two simulation
tools is noticeable, and the BubbleProfiler nucleation temper-
ature is significantly below the value obtained from
CosmoTransitions, affecting also the α and β parameters. At
this point, the critical temperature is Tc ¼ 303.
In summary, both CosmoTransitions and BubbleProfiler show

similar behavior for both models and are in reasonable
agreement. For high masses, the latter tool yields slightly
higher nucleation temperatures, and, therefore, α is also a
bit lower and β as indicated by Eq. (25).
Having computed the relevant parameters for calculating

GW spectra, we can consider the following equation for
computing the total signal:

Ωtoth2 ¼ Ωcolh2 þΩswh2 þ Ωturbh2; ð28Þ

FIG. 3. Table with benchmark points used for the discussion of gravitational wave signals. The two first benchmark points are from the
Uð1ÞD model, and the last is from the SUð2ÞD model.
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where the first term is the collision term, the second term is
the sound wave term, and the last term is the turbulence
term. The collisions from the bubbles themselves contribute
to the GW spectra, but this term is more than 10 orders of
magnitude lower than the other terms and plays no
significant role in the result. The collisions also produce
bulk motion in the fluid. This causes sound waves that
result in the primary contribution to the GW spectra.
Finally, there is also some turbulence caused by the
collisions which contribute to the GW spectra [23,60,62].
The relevant equations for computing the GW spectra
are [32]

Ωcolh2ðfÞ ¼ 0.5 × 10−5v2w
H2

β2

�
ge
100

�
−1
3

�
κcolα

1þ α

�
2
�
f�
fcol

�
3

×

�
1þ 2

�
f�
fcol

�
2.07
�

−2.18
; ð29Þ

Ωswh2ðfÞ ¼ 4.175× 10−6vwðH�τswÞ
H
β

�
ge
100

�
−1
3

�
κswα

1þ α

�
2

×

�
f�
fsw

�
3
�
1þ 3

4

�
f�
fcol

�
2
�

−7
2

; ð30Þ

Ωturbh2ðfÞ ¼ 3.32 × 10−4vwð1 −H�τswÞ
H
β

�
ge
100

�
−1
3

×

�
κsw
1þ α

�3
2

�
f�
fturb

�
3

�
1þ f�

fturb

�
−11

3

1þ 8πf�
; ð31Þ

for the collision, sound wave, and turbulence terms, respec-
tively. Note we use ge ≈ 103. These terms are all corrected
for redshifting, but the frequency f� is not redshifted to
today. The different frequency terms are given as

fcol ¼
1.1
vw

β

H
; fsw ¼ 1.16

vw

β

H
; fturb ¼

1.75
vw

β

H
; ð32Þ

the frequency f redshifted to today is given as

f ¼ 1.65 × 10−5 Hz
Treh

100 GeV

�
ge
100

�1
6

f�; ð33Þ

and the reheating temperature is approximated as [63]

Tn ¼ Tnð1þ αÞ14: ð34Þ

To obtain the values for κsw, it is necessary to determine
the wall velocity vw. To this end, one needs to determine the
Jouguet velocity [64]. This can be done using

vJ ¼
1ffiffiffi
3

p 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α2 þ 3α

p

1þ α
: ð35Þ

From this, one can compute the wall velocity

vw ¼

8>><
>>:

ffiffiffiffiffi
ΔV
αρ

q
if

ffiffiffiffiffi
ΔV
αρ

q
< vJ;

1 if
ffiffiffiffiffi
ΔV
αρ

q
≥ vJ;

ð36Þ

which in the case for this model based on the Coleman-
Weinberg mechanism yields vw ¼ 1. Having investigated
this value, we can use the appropriate equation for
κsw [65–67]. In the limit of vw → 1, we use [32]

κswjvw→1 ¼
αeff
α

αeff
0.73þ 0.083

ffiffiffiffiffiffiffi
αeff

p þ αeff
; ð37Þ

where

αeff ¼ αð1 − κcolÞ; κcol ≈
3

2

γeq
γ�

; ð38Þ

γeq ¼
α−α∞
αeq

; α∞ ¼ 15g2

π4ge

�
v

Treh

�
2

; αeq ¼
180g3

π3ge

v
Treh

;

ð39Þ

γ� ¼
2

3

R�
R0

; R� ¼ ð8πÞ13 vw
β
; R0 ¼

�
3S

2πΔV

�1
3

: ð40Þ

The sound wave duration is defined as

H�τsw ≡minð1;H�τshÞ; H�τsh ≈
ð8πÞ13maxðvw; csÞ

Ūf

H
β
;

Ūf ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

κswα

1þ α

r
; ð41Þ

where cs ¼
ffiffiffiffiffiffiffiffi
1=3

p
. Since vw → 1, this reduces the shock

duration to

H�τsh ≈
ð8πÞ13
Ūf

H
β
: ð42Þ

The result of this computation can be seen in Fig. 4 for
the three benchmark points and their respective parameters,
two from the Uð1ÞD model and one from the SUð2ÞD. The
dominant terms are the turbulenceΩturb and the sound wave
Ωsw, even though the duration of the sound wave is rather
short: H�τsw < 0.15.
The marker shape indicates the parameter as shown in

Fig. 2. The diamond and square shapes are from the Uð1ÞD
model. For the SUð2ÞD model, we have the high mass case
marked by the hexagon shape. The projected sensitivity
curves (for the configurations C1–C4) for the LISA
detector are also shown [30], and one can see that for
the Uð1ÞD model the signal should be detectable by three
out of four configurations at a frequency at around 1 mHz,
but for the SUð2ÞD model the mass becomes too high and
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we need other future experiments to detect such high DM
mass models such as the proposed TianQin detector [68].

VII. DISCUSSION AND CONCLUSIONS

We have investigated two vector DM models in light of
existing DM direct detection experiments and future GW
experiments. Both of the models investigated in this work
are already strongly constrained by direct detection. For the
SUð2ÞD model, this is, in particular, due to recent results
from the LZ experiment, which has ruled out most of
parameter space consistent with a full relic abundance from
freeze-out in the range MV ∈ ð1–8Þ TeV, and with
XENONnT either the DM will be detected or the entire
parameter space above the neutrino floor will be ruled out
as shown in Fig. 2.
GW signals in both models have been discussed in

earlier literature. In our analysis, we find that results differ
significantly between different numerical implementations.
Recently, the SUð2ÞD model was discussed in Ref. [56],
and we find that their results for the α and Tn parameters
agree with our findings.
Regarding theUð1ÞD model, it was previously suggested

that GW signals could be used to probe the model in case
the direct detection cross section remains below the
neutrino floor [23]. We agree with this conclusion, but
numerically we find differences to Ref. [23] in the GW
parameters. While we can reproduce the critical tempera-
ture reported, the nucleation temperature and the α and β
parameters differ from those reported in Ref. [23]. Their
results were obtained with the AnyBubble package [69], for

which we failed to obtain results in agreement with the
other two numerical implementations used in this work.
This raises the question of comparability between the

phase transition parameters obtained via the various
numerical implementations available. This issue has been
investigated in Ref. [47], where a fairly good agreement
between BubbleProfiler and CosmoTransitions is observed. This is
compatible with our findings.
The finite temperature potential in both cases leads to a

strong first-order electroweak phase transition. The Uð1ÞD
model can produce significant GW signals, which can be
detected by LISA [30], and future experiments would be able
to test the SUð2ÞD model also in the high DM mass regime.
In conclusion, in this paper we have made two

main observations. First, the Uð1ÞD model is ruled out
by direct detection for all DM masses in the range
MV ∈ ð1 − 4ÞTeV, except for a small gap near the SM-
Higgs and scalon interference. Extrapolation from Fig. 2(a)
suggests that higher masses are also excluded, though it is
beyond this paper to look into very heavy DM masses
beyond 100 TeV where the direct detection constraints will
begin to relax. This means that, except masses in the
interference zone and possibly very heavy masses, this
model is no longer viable. And with upcoming experiments
this interference gap is closing. Given a suitable DM signal
is found around in the interference zone, then one can see
from Fig. 4 that one should find a GW signal with the
upcoming LISA experiment [30].
Second, for the SUð2ÞD model, we find that for DM

masses beyond 8 TeV the model is still viable, but the
heavy mass reduces the possible GW signal, and LISA is
not expected to see a signal from this model, but other
future experiments with higher precision might detect it.
Conclusively, the parameter space of vector DM Higgs
portal models is dramatically shrinking, and the models
may become excluded in the near future.
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APPENDIX A: SUPERCOOLING,
INFLATION, AND REHEATING

The investigation of the GW spectra leads to the
discussion of supercooling in the models presented. As

FIG. 4. The GW spectra for two different sets of transition
parameters for the Uð1ÞD model and one for the SUð2ÞD model
(g ¼ 2.0, MV ¼ 7530) computed with CosmoTransitions (dashed
lines) and BubbleProfiler (dotted lines). The sensitivity curves
(C1–C4) of the LISA detector are also shown [30]. According
to this result, the signals from this model are strong enough for
LISA to detect the GW signal from the phase transition.
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shown in the GW section, there are orders of magnitude in
the difference between the critical and nucleation temper-
atures at the low mass scale. As discussed in the other
papers, this can lead to different kinds of phenomena
including inflation, filtering, and reheating [34,36,37].
These effects are expected to affect the GW signal for
low masses, and it might affect some of the results even
presented in Fig. 4, but it is beyond this paper to look at
the details of this. As discussed in a recent paper, the
Universe could escape inflation via bubble nucleation or
via quantum tunneling, two different scenarios leading to
different GW signals [44].
We would, however, like to highlight the fact that strong

supercooling from hundreds of GeV to the QCD scale
might not be a big issue for the models. The bigger the
supercooling, the greater the inflation, as the scalon Higgs
field will be stuck in a false vacuum acting like a
cosmological constant. The main inflationary constraint
is that any amount of inflation resulting from supercooling
should not exceed the max number of e-folds:

Nmax ¼ 23.8þ ln
TR

TeV
; ðA1Þ

where TR is the reheating temperature after the inflationary
epoch and one finds that this limits the temperature to
TR < 6.6 × 1015 GeV [44]. To compute the reheating
temperature, we are interested in computing the decay of
the inflaton-like field, which in this case is the scalon Higgs
field S for the Uð1ÞD model. Because of the mass con-
straints, only the scalon Higgs is kinetically allowed to
decay as ΓðhS → h; hÞ, but this requires a DM mass of
MV > 1 TeV. From the Lagrangian, we find that the
Feynman rule for this vertex and this yields the decay

ΓðhS → 2hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

S − 4M2
h

p
32πM2

S
jMj2; ðA2Þ

where

jMj2 ¼
�
M2

h

4v1
ð5þ 3 cosð4αÞÞ sinðαÞ

�
2

: ðA3Þ

We can furthermore include decays into quarks and leptons:

ΓðhS → ff̄=ll̄Þ ¼ NC

8π

m2
b

v21
MS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
b

M2
ϕ

s
sinðαÞ2; ðA4Þ

where NC ¼ 3 for fermions and NC ¼ 1 for leptons. Using
the decays, one can calculate the reheating temperature TR

using the following equation [70]:

TR ≈ 0.2

�
200

g�

�
1=4 ffiffiffiffiffiffiffiffiffiffi

ΓMpl

p
; ðA5Þ

where Mpl is the reduced Planck mass and g� ¼ 103.
Considering a rather low mixing value 0 ≤ α ≤ π

64
and a

mass range of 250 GeV ≤ MV ≤ 2500 GeV, the reheating
temperature is somewhere around 0.1–1.6 PeV, yielding a
mass of the scalon field around 1 GeV < MS < 200 GeV.
This is so hot that the Universe will reheat back to a
temperature much hotter than the scales of freeze-out. It
also satisfies the constraint from Eq. (A1); thus, it is not too
hot and not causing too much inflation. One can repeat this
exercise for the SUð2ÞD, but the result is roughly the same
with the main differences being a slightly heavier scalon
mass, 1 GeV < MS < 350 GeV, and higher reheating
temperature 0.1–2 PeV. Conclusively, dark matter produc-
tion can take place via freeze-out as the Universe sub-
sequently cools down again.

APPENDIX B: MODEL IMPLEMENTATION
IN CosmoTransitions

For the implementation of the model in CosmoTransitions,
we feed in the tree-level potentials as shown in Eqs. (2) and
(6). Then we manually implement the field-dependent mass
matrix, indicated by the tilde, with the massive SM bosons,
plus the new bosons, and the top quark:

M̃2
W ¼ g2W

4
h21; M̃2

Z ¼
g2W þg2Z

4
h21; m̃2

t ¼
λ2t
2
h21; ðB1Þ

where the Yukawa coupling of the top quark is λt ¼ 1. The
DM candidates have their respective implementations for
each model where

M̃2
V ¼ cVg2h22; ðB2Þ

with cV ¼ 1 ð1=4Þ for theUð1ÞD [SUð2ÞD] model, and then
the scalar mass matrices yield

M̃2
h;S¼

1

4

�
h21ðλhþ2λϕhÞþh22ðλϕþ2λϕhÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h41ðλh−2λϕhÞ2þh42ðλϕ−2λϕhÞ2þ2h21h

2
2ð2λhλϕhþ28λ2ϕh−λhλϕþ2λϕλϕhÞ

q 	
:

ðB3Þ
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The mass parameters are expressed in terms of the fields, as
this is how they are implemented in the code since we are
considering the thermal evolution where the minimal field
value is not necessary that of the VEVs. At zero tempera-
ture is, however, where we have the minima such that
h1 → v1 and h2 → v2.
A custom solution is made for computing the beta value.

This is done by simply calculating the action divided by the
temperature around the point of the nucleation temperature,
making a fit to those plots, and taking the derivative, etc.
Some tweaks have been done to the source code to make
this work and also to improve the precision at low
nucleation temperatures.

APPENDIX C: MODEL IMPLEMENTATION
IN BubbleProfiler

For this package, we give it the full thermal potential in
Eq. (23), but instead of evaluating the thermal integral
an approximation is made using Bessel function [23].
Specifically, we use the modified Bessel functions K2ðkxÞ
as follows:

Z
∞

0

y2 lnð1∓e−
ffiffiffiffiffiffiffiffiffi
y2�x2

p
Þdy¼−

X3
k¼1

x2

k2
K2ðkxÞ

−
X2
k¼1

ð−1Þkx2
k2

K2ðkxÞ; ðC1Þ

where x ¼ MS=T and k ¼ 3 (2) for bosons (fermions) is
sufficient for all practical purposes as also discussed in
Ref. [23]. In the case of CosmoTransitions, we kept the default
of k ¼ 8, but according to tests this does not bring any
significant numerical improvement.

BubbleProfiler is written in C++ but comes with a command
line interface (CLI). Using this, one can implement simple
potentials like polynomials. In order to avoid implementing
all these functions, we created a PYTHON interface where
we implement the model in PYTHON. Then we create a
higher-order polynomial fit to the full potential. This
polynomial is then fed to BubbleProfiler via the CLI together
with other relevant parameters. We compute several points
around the nucleation temperature and make a fit to that,
from there we determine the β and Tn value, and the latter is
then used to find α.

APPENDIX D: COMPUTING PARAMETERS
OF THE EWPT

The essential computation for the phase transition is
finding the relationship between the action and temper-
ature. The nucleation temperature condition is defined as

SðTÞ
T

����
Tn

≈ 140; ðD1Þ

thus when the action divided by the temperature is equal to
140. We can compute the action and by dividing by the
temperature a plot of this relationship can be obtained as
seen in Fig. 5.
Given some data points, it is possible to make a fit and

from that read off the Tn value. Furthermore, the fit is also a
function of S3ðTÞ=T, which can, thus, be used to compute
β. Now recall that α is evaluated at the nucleation temper-
ature and α ∝ 1=T4

n; thus, the value of α is also highly
dependent on the nucleation temperature. Since our
BubbleProfiler result, in general, yields a slightly higher
nucleation temperature, we get a lower value of α as

FIG. 5. A comparison of the apparent error when computing the β and Tn parameters when computing the EWPT parameters in the
Uð1ÞD model for g ¼ 0.75 and MV ¼ 1184. Note that the temperature range is different for the implementation; thus, the range is
different in the plots.
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discussed in the GW section. For lower masses, the
BubbleProfiler result yields significantly lower nucleation
temperatures, suggesting that our implementation might
not be as good in this regime.
Looking at Fig. 5, we see that the apparent error of

BubbleProfiler is significantly higher than the error from the

CosmoTransitions result. This may be attributed to the fact that
we used an approximated potential via our custom PYTHON

interface instead of implementing the model using C++.
This leads us to consider CosmoTransitions as the better result
in this paper even though BubbleProfiler is claimed to be more
accurate [47].
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