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We construct a model of the quintessence axion based on a gauged chiral Uð1Þ symmetry and an
additional flat fifth dimension. The required high qualities are guaranteed by the brane separation.
The observed cosmological constant (i.e., the potential energy of the quintessence axion) is determined by
the size of the extra dimension and the axion decay constant Fa is fixed almost at Fa ≃ 1017 GeV, which is
sufficiently large for the stability of the axion field near the hilltop of its potential. Furthermore, the
movement of the axion can also easily explain the recently reported isotropic cosmic birefringence of the
cosmic microwave background photon.
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I. INTRODUCTION

The space-time metric gðxÞμν might be dynamically
generated and it seems very natural that the Universe is
asymptotically flat and the cosmological constant is going
to vanish in the infinite future [1,2]. Therefore, it is very
interesting to consider the observed cosmological constant
(CC) Λ ≃ ð2.26 × 10−3 eVÞ4 [3] as the temporal potential
energy of some light-scalar boson fields. Under this
circumstance, the mass of the scalar boson must be
extremely small, i.e., ∼10−33 eV, to not roll down to the
potential minimum until the present. Hence, it is very
natural to consider it as a Nambu-Goldstone boson [4–6]
(we call it the quintessence axion [7,8]), and thus its mass is
protected by a global symmetry and against the radiative
corrections. However, it is believed that any global sym-
metries must be broken by nonperturbation effects in
quantum gravity [9]. We need an extremely good mecha-
nism to protect this required global symmetry against the
nonperturbative effects in quantum gravity, that is, the
quintessence axion needs to be of extremely high quality.
Another issue is that we do not know the origin of the
quintessence axion in the UV theory.

In a recent paper [10] we proposed a general framework,
based on gauged chiral Uð1Þ and Z2N symmetries [11,12],
to answer both above questions. However, to get sufficient
suppression for the dangerous high-order operator, many
pairs of chiral fermions are introduced, which render a
relatively small effective axion decay constant, i.e.,
Fa ∼ 3 × 1016 GeV, and make the stability of quintessence
axion potential disconcerting. As mentioned in Ref. [10],
such a Fa seems to be too small to guarantee axion stability.
In this short paper, we construct a consistent model of the
quintessence axion by embedding our framework into a
five-dimensional theory. As we shall see, compared to
Ref. [10], the particle spectrum becomes much simpler and
the additional gauge symmetry Z2N is also not necessary
thanks to the brane separation configuration. Note that in
the following content, we have assumed a vanishing five-
dimensional CC in the effective action.
The geometric structure of this model involves a S1=Z2

orbifold topology for the compactification of the extra
dimension and two 3-branes that are placed on fixed points.
The metric of extra dimension could be flat or warped.
Moreover, we find that the flat setup is more attractive
because it can produce appropriate high-quality quintes-
sence axion [13], while for the warped case, the suppres-
sion is too small to provide a satisfying quintessence axion
candidate, but surprisingly it can be used to produce an
ideal fuzzy dark matter (DM) axion (see Sec. IV). The
brane setup is stabilized through the Goldberger-Wise
mechanism [14,15].
As for the particle content, adopting the same strategy in

Ref. [10], we introduce two Higgs fields ϕi and two pairs of
chiral electrons fψ i; ψ̄ ig with i ¼ 1, 2 and put them on two
different branes [13]. As shown in Ref. [11], two Higgs
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fields indicate two global Uð1Þ symmetries, and one of
their linear combinations which is anomaly free can be
gauged, called Uð1Þg, while the other orthogonal linear
combination is Uð1Þa that is the origin of the axion. By
adopting the proper charge assignments the unwanted
vectorlike mass terms can be avoided. All chiral electrons
acquire mass only through the Yukawa couplings [10].
Furthermore, we introduce one bulk scalarΦ, which carries
Uð1Þg charge and couples to both brane Higgs fields. After
integrating the heavy bulk scalar Φ and the extra fifth
dimension, one ends up with a four-dimensional theory,
where two Higgs ϕ1;2 can couple to each other with an
exponentially suppressed factor, which is similar to the
Yukawa potential. The suppression factor is determined by
the fundamental scale of the five-dimensional theory.
At the lower energy scale, the Uð1Þg and Uð1Þa are

spontaneously broken by vacuum expectation values
(VEVs) of brane Higgs fields. One Nambu-Goldstone
particle is absorbed by the gauge field and becomes its
longitudinal mode, and the other one is the axion. Here the
axion potential is generated through the exponentially
suppressed coupling between two brane Higgs fields.
The hilltop of axion potential can explain the observed
CC. Meanwhile, the axion decay constant Fa is directly
linked with the fundamental scale of the extra dimension,
which is large enough to ensure stability. Another interest-
ing fact is that the quintessence axion can couple to the
photon field through the Chern-Simons type term, which
could explain the reported isotropic cosmic birefringence
(ICB) simultaneously [16].

II. THE SETUP

We consider a R4 × S1=Z2 topology, where the extra
dimension is flat. The metric is given by

ds2 ¼ ημνdxμdxν − dy2; ð1Þ

where μ ¼ 0;…; 3 is the 4D indices. Here ημν ¼
diagð1;−1;−1;−1Þ is the Minkowski metric. The y-dim
is compactified and let 0 ≤ y ≤ L. The extra-dimensional
setup entails a cutoff denoted as M�. Two 3-branes are put
on two endpoints in the y-dim, namely y ¼ 0 and y ¼ L.
Two pairs of chiral electrons fψ1; ψ̄1g and fψ2; ψ̄2g are put
on two different branes separately. Here we assume that
ψ i ∈ ð1; 1; CYÞ and ψ̄ i ∈ ð1; 1;−CYÞ under the Standard
Model SUð3Þc × SUð2ÞL ×Uð1ÞY gauge transformations.
Besides, they are also charged under the gauged Uð1Þg
symmetry. Two brane Higgs fields ϕi are introduced so that
the electrons can receive mass through the Yukawa cou-
plings. Moreover, because of the Uð1Þg gauge invariance,
the Uð1Þg charge of ϕi can be fixed. In addition, we
introduce a bulk scalar Φðxμ; yÞ, which also carries the
Uð1Þg charge and can interact with both ϕ1 and ϕ2 on two

separated branes. The Uð1Þg charge assignments of all
particles are given in Table I.
After adopting the proper normalization such that all

scalar fields have mass dimensions 1, the 5D action can be
expressed as

S5 ¼
Z

d4xdy
ffiffiffiffiffiffi
−g

p ½Lbulk þ L1δðyÞ þ L2δðy − LÞ�; ð2Þ

where

Lbulk ¼ M3�R5 þM�jDaΦj2 −M3�jΦj2 þ � � � ; ð3aÞ

L1 ¼ jDμϕ1j2 − c1M2�ϕ1Φþ � � � ; ð3bÞ

L2 ¼ jDμϕ2j2 − c2M2�ϕ2Φ� þ � � � : ð3cÞ

TheDa is the covariant derivative that contains the gauge
fields, R5 is the 5D Ricci scalar, c1;2 is the dimensionless
order-one coupling constant. The dots contain terms of
gauge field and fermions. Since we are only interested in
the interactions between scalars, they are neglected for
simplicity.
There is only one fundamental scale in our 5D setup, and

that is M�. The higher dimensional gravitational action is
given by SHE;5 ¼

R
d5xM3�

ffiffiffiffiffiffi−gp
R5. Note that for the flat

extra dimension, with the metric given in Eq. (1), R5 ¼ R,
whereR is the 4DRicci scalar. By integrating over the y-dim
and matching with the usual 4D Hilbert-Einstein action,
i.e., SHE ¼ R

d4x
ffiffiffiffiffiffiffiffi−g4

p ðM3�LÞR ¼ R
d4x

ffiffiffiffiffiffiffiffi−g4
p

M2
PlR with

MPl ¼ 2.4 × 1018 GeV identified as the reduced Planck
scale, one can obtain that

M�L ¼
�
MPl

M�

�
2

: ð4Þ

Using the method of variation, the equation of motion of
Φ can be obtained, that is

ðημν∂μ∂ν − ∂
2
y þM2�ÞΦðxμ; yÞ

¼ −M�½c1ϕ�
1ðxμÞδðyÞ þ c2ϕ2ðxμÞδðy − LÞ� þ � � � : ð5Þ

Here the dots represent the insignificant gauge terms that
do not violate Uð1Þa, so they will not contribute to the
Uð1Þa-breaking operator. Combining Eqs. (2) and (5), we
can derive the low-energy effective 4D Lagrangian by

TABLE I. The Uð1Þg charge assignment.

i ψ iðxμÞ ψ̄ iðxμÞ ϕiðxμÞ Φðxμ; yÞ
1 1 1 −2 2
2 −1 −1 2
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integrating the extra dimension (see the Appendix for more
detailed derivations), which can be expressed as

Leff;int ¼ c1c2M2�e−M�Lϕ1ðxμÞϕ2ðxμÞ þ H:c:

¼ c1c2M2�ϕ1ϕ2e−ðMPl=M�Þ2 þ H:c: ð6Þ

It shows that the interaction term between ϕ1 and ϕ2

violates Uð1Þa and also gets suppressed by an exponential
factor. The origin of this exponential suppression factor is
from the Fourier space decomposition of δðyÞδðy − LÞ,
which gives rise to a factor proportional to eipL, where p is
the Fourier space momentum variable. After integrating
over the momentum space, this picks up the residue at
p ¼ iM�, resulting in this factor of e−M�L [13]. This can be
also thought of as the suppression due to a Yukawa-like
propagator of a mediator particle whose mass lies at M�.

III. THE QUINTESSENCE AXION

In our model, the possible lowest-order operator that
obeys the gauge Uð1Þg symmetry but breaks the global
Uð1Þa symmetry is

O ¼ M2�ϕ1ϕ2e−ðMPl=M�Þ2 þ H:c: ð7Þ

Note that the order one coupling constant has been
neglected. After spontaneous symmetry breaking, one can
expand two Higgs fields as ϕ1 ¼ ðf1=

ffiffiffi
2

p Þ exp ðiã=f1Þ and
ϕ2 ¼ ðf2=

ffiffiffi
2

p Þ exp ðib̃=f2Þ, where fi is the VEV of ϕi.
The axion a is a linear combination of ã and b̃ [11]. This
operator (7) generates the potential of a, which is

V ¼ Λa

2

�
1 − cos

a
Fa

�
; ð8Þ

where

Λa ¼ 2f1f2M2�e−ðMPl=M�Þ2 ; Fa ¼
f1f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p : ð9Þ

The Λa represents the potential energy at the hilltop, which
can be used to explain the observed CC, and Fa is the axion
decay constant. Note that here we already assumed that the
true vacuum has zero potential energy.
To quantitatively discuss the quality of quintessence

axion, here we take f2 ¼ f1 ¼ M� as a benchmark, and the
numerical evaluation gives us

Λa ≈ Λ
�

M�
1.47 × 1017 GeV

�
515

: ð10Þ

As one could see, Λa is extremely sensitive to the value of
M�. Therefore, to satisfy the observation, the size of the
extra dimension (equally the value of M�) is almost fixed.
Besides, the axion decay constant is

Fa ¼
M�ffiffiffi
2

p ¼ 1.04 × 1017 GeV; ð11Þ

which is large enough to ensure the stability.
Since the chiral electrons ψ i and ψ̄ j carryUð1ÞY charges,

we can show that the ½Uð1Þa� × ½Uð1ÞY�2 anomaly is non-
zero (more detailed derivations can be found in Ref. [10]).
After doing the anomaly matching, the Chern-Simons type
term appears in the form of

L ⊃ cγ
a
Fa

g2

16π2
FμνF̃μν; ð12Þ

where cγ ¼ C2
Y is an anomaly coefficient, Fμν and F̃μν

are photon field strength and its dual. As shown in
Refs. [17,18], this quintessence axion could explain the
ICB. In order to explain the observed nonvanishing
rotation angle β ¼ 0.35� 0.14 deg [16], we should have
cγ ≳ 15 [17]. Therefore, we can choose that CY ≳ 4. In
addition to choosing a relatively larger hypercharge, one
can also adopt the same strategy in Ref. [10], that is
introducing N copies pairs of electrons on each brane,
which implies cγ ¼ NC2

Y . For CY ¼ 1, we need N ≳ 15 to
explain the ICB. This N is similar to the concept of family
number in the Standard Model. Note that we have checked
that neither of these strategies will produce a Landau pole
of Uð1ÞY gauge coupling.

IV. SUMMARY AND DISCUSSION

As an extension of our previous work [10], in this paper,
we propose a new quintessence axion model by introducing
a chiral Uð1Þ gauge symmetry and the flat fifth extra
dimension. More specifically, the new Higgs fields ϕi and
fermion pairs fψ i; ψ̄ ig are placed on two separate branes.
Integrating out the charged bulk field Φ, we find that the
lowest Peccei-Quinn (PQ) breaking operator gets sup-
pressed by a factor of ∼e−ðMPl=M�Þ2 , which can provide
us an appropriate quintessence axion. A key observation is
that the decay constant Fa is now linked with the brane
separation scale, i.e., M�. Compared with Ref. [10], our
current model has several advantages: (1) the gaugedZ2N is
not needed because of the brane separation setup; (2) the
suppression factor is independent of pairs of fermions, so
not too many fermions are needed; (3) the Fa can be as
large as ∼1017 GeV, so there is no instability problem;
(4) the Uð1Þg charge assignment is simpler.
Moreover, our model can also easily explain the

observed ICB by setting CY ≳ 4 or introducing N ≳ 15
copies of the fermion pairs on each brane. One important
merit of this model is that the axion potential V and axion
decay constant Fa are independent of N, thus more pairs of
fermion will not affect the results of Eqs. (10) and (11).
Here the suppression factor comes from the brane

separation and the effective interaction between ϕ1 and
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ϕ2 is generated from bulk mediator Φ. One could also
consider a special geometry like a wormhole to connect two
branes and thus generate interaction like (7), which is also
exponentially suppressed by the wormhole action [19]. In
this case, the bulk Φ is absent and the goal could also be
achieved.
Another interesting fact is that in this work we only

discuss the flat extra-dimension case, while for the warped
case, the suppression factor becomes ∼e−MPl=M� , whereM�
is now the mass scale associated with the infrared (IR)
brane [20,21]. Because of the stability requirement, i.e.,
Fa ≳ 1017 GeV, there is no proper quintessence axion
candidate. However, this warped geometry can provide
us with an excellent fuzzy DM candidate. The fuzzy DM of
mass 10−21–10−19 eV [22–26] is very attractive, since we
may naively understand the size of galaxies by its de
Broglie wavelength. Furthermore, it may not have small-
scale problems including the cusp-core problem. By
adopting f1 ¼ f2 ¼ M�, to get the correct fuzzy DM mass
ma ¼ 10−19 eV, we can derive Fa ≃ 8.3 × 1015 GeV,
which is consistent with the initial value of the fuzzy
DM field to explain the DM density by its coherent
oscillation.
We can build a QCD axion model in the present

framework introducing an additional chiral Uð1Þ gauge
symmetry where the additional fermions are two pairs of
quarks Qi and antiquarks Q̄i (i ¼ 1, 2). The PQ breaking
scale Fa can be 109−16 GeV. We see the required high
quality to solved the strong CP problem is maintained with
M� ≃ 1016−17 GeV. It is remarkable that there is no serious
domain wall problem even if the PQ symmetry breaking
occurs after the inflation, since the domain wall number in
the model is NDW ¼ 1.
The present model can also be easily embedded in a

supersymmetric theory. In this case, we have dimension-5
proton decay operators [27,28] suppressed by only one
power of the fundamental cutoff M� ≃ 1017 GeV. These
enhanced proton decays will be tested in JUNO and Hyper-
Kamiokande experiments [29].
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APPENDIX: EXTRA-DIMENSIONAL
SUPPRESSION FROM BULK PROPAGATOR

In this appendix, we provide details on the exponential
suppression in the effective theory noted in the text as a
result of integrating out the heavy mediator and the fifth
dimension.

First, we discuss the case for the flat extra dimension.
Starting with the action in Eq. (2), we obtain the classical
equation of motion for Φ, given in Eq. (5). Utilizing this
equation of motion, and plugging back into the action, we
can integrate out the extra dimension y. This generates the
effective four-dimensional interaction terms for ϕ1;2. The
leading order suppression factor comes from the zero-mode
for the bulk propagator, namely

Leff;int¼2c1c2M3�

Z
dyϕ1δðyÞϕ2

�
1

−∂2yþM2�
δðy−LÞ

�

¼2c1c2M3�

Z
∞

−∞

dk
2π

ϕ1ϕ2

k2þM2�

Z
dyδðyÞeikðy−LÞ; ðA1Þ

where we have used the representation of one delta function
in terms of its exponential integration, and it is implied that
Hermitian conjugation is added. Now, the integral over
the extra dimension gives rise to a factor e−ikL. Hence, we
obtain

Leff;int ¼ 2c1c2M3�ϕ1ϕ2

Z
∞

−∞

dk
2π

e−ikL

k2 þM2�
: ðA2Þ

The final integration over k picks up the residue at
the pole k ¼ −iM�, and the resultant four-dimensional
effective interaction term is given by

Leff;int ¼ c1c2M2�ϕ1ϕ2e−M�L þ H:c:; ðA3Þ

which is Eq. (6) in the main text. Note that this can be
inferred just by looking at the form of the bulk propagator
of Φ in the position space in the extra dimension.
Moving on to the case of warped extra dimension, the

background metric now depends on the extra dimension in
a nonfactorizable way, namely

ds2 ¼ gabdxadxb ¼ ðkzÞ−2ðημνdxμdxν − dz2Þ; ðA4Þ

where k is the AdS curvature scale, a, b runs from 0–4, and
μ, ν ranges from 0–3, and z≡ eky=k is the conformal
coordinate. This background solution is obtained for
appropriate choices for the brane tensions and the bulk
cosmological constant. As in the flat case, the origin for the
suppression factor can be understood by looking at the
limits of the bulk propagator. This was studied in great
detail by Ref. [21], which also considered the effects of the
dressed propagator for the timelike mediator momentum.
We sketch the argument in this appendix.
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In the AdS background, the propagator is obtained from

�
1ffiffiffiffiffijgjp ∂að

ffiffiffiffiffi
jgj

p
gab∂bÞ þM2�

�
Δðx; x0Þ

¼ −i
δð5Þðx − x0Þffiffiffiffiffijgjp : ðA5Þ

Further, depending on the brane localized potentials for Φ,
the propagator needs to satisfy appropriate boundary
conditions. Moving to the mixed coordinate space ðp; zÞ,
where ημν∂μ∂νΦ ¼ −ημνpμpνΦ, and p≡ ffiffiffiffiffiffiffiffiffiffi

pμpμ
p

, the sol-
ution for the propagator between z, and z0 in the asymptotic
limit of jpj > 1=minðz; z0Þ, is suppressed as

Δpðz; z0Þ ∝ e−jImpjjz−z0j; ðA6Þ

where this suppression is analogous for the flat space for
spacelike propagators, and for the timelike propagator this
imaginary part is generated from 1PI dressed propagator.

Similar conclusions hold for a vector propagator, which in
the A5 ¼ 0 gauge takes the form [20]

Δp;μνðz; z0Þ ≃
kz
p
K1ðpz0Þ
K0ðpzÞ

ημν þ pure gauge; ðA7Þ

and asymptotically, for jpjminðz; z0Þ ≫ 1, the Bessel-K
function behaves as

KαðηÞ ≃
ffiffiffiffiffi
π

2η

r
e−η þOðα2Þ: ðA8Þ

For application to our case, M� is identified with the mass
of the IR brane. With above asymptotic form for the
propagator, the interaction Lagrangian becomes

Leff;int ∼ c1c2M2�ϕ1ϕ2e−MPl=M� þ H:c:; ðA9Þ

where the bulk propagator is assumed at MPl, and
jz − z0j ¼ j1=MPl − 1=M�j ≃ 1=M�.
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