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We present a minimal grand unified theory model, based on SUð5Þ gauge symmetry and a global Uð1Þ
Peccei-Quinn symmetry, that predicts the existence of an ultralight axion dark matter within a narrow mass
range of ma ∈ ½0.1; 4.7� neV. This mass window is determined through an interplay between gauge
coupling unification constraints, partial proton decay lifetime limits, and the need to reproduce
experimentally observed fermion mass spectrum. The entire parameter space of the proposed model
will be probed through a synergy between several low-energy experiments that look for proton decay
(Hyper-Kamiokande), axion dark matter through axion-photon coupling (ABRACADABRA and
DMRadio-GUT), and nucleon electric dipole moments (CASPEr Electric).
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I. INTRODUCTION

The Standard Model (SM) of elementary particle physics
has performed exquisitely in explaining a multitude of
experimental observations. There are, however, several
important questions that evidently require physics beyond
the SM in order to be fully addressed. For example, one of
the most important discoveries in particle physics is the
observation of nonzero neutrino masses, whereas neutrinos
are strictly massless within the SM framework. Furthermore,
it is well established that approximately 26% of the total
energy density of the universe is in the form of the so-called
dark matter that cannot be of the SM origin. This is
especially puzzling as the stable SM matter only represents
about 5% of the energy density of the universe. Also, the
strong CP problem—why the QCD θ parameter takes the
value 10−10 or less—is still an open issue within the SM.
It might be that all these issues are related. In fact, the

unified gauge theory [1–6] formulation of the elementary
particle interactions is a very popular and successful tool for
tackling the aforementioned shortcomings of the SM. The
simplest possible scenario, among various possible choices

of the grand unified theory (GUT) groups, is the Georgi-
Glashow model [3] that embeds the entire SM gauge group
within an SUð5Þ. In that construction, one 5-dimensional
and one 10-dimensional representation of SUð5Þ comprise
all the fermions of a single SM family. The SUð5Þ
symmetry is broken down to the SM gauge group when
a real Higgs in the adjoint representation acquires a vacuum
expectation value (VEV). The SM symmetry is sub-
sequently broken to SUð3Þ ×Uð1Þem by the VEV of the
SM Higgs doublet that resides within a fundamental
representation. The Georgi-Glashow model, however, is
incomplete since (i) it fails to achieve gauge coupling
unification, (ii) it predicts wrong mass relations between
down-type quarks and charged leptons, and (iii) neutrinos
remain massless as in the SM. On top of that, the Georgi-
Glashow model does not address the strong CP problem,
nor does it include a dark matter candidate.
The most compelling new physics resolution of the strong

CP problem is given in terms of the Peccei-Quinn (PQ)
symmetry [7,8]. In the PQ framework, a global Uð1ÞPQ
symmetry is spontaneously broken by a complex scalar
leading to a nearly massless pseudoscalar particle [9–14],
namely the “axion,” which can, in turn, serve as a cold dark
matter candidate [15–17]. Intriguingly, as first shown in
Ref. [18], the axion can be embedded within the scalar
representation that breaks the GUT symmetry. The model
presented in Ref. [18] did not, however, address several
important GUT issues, such as neutrino mass generation and
gauge coupling unification. For a sample of models that
pursue this particular approach, but with a more realistic
agenda, see Refs. [19–22]. See also Ref. [23] for a discussion
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of other light axionlike particles and their connections
to GUTs.
Our primary interest in this manuscript is to combine

the PQ symmetry with a simple, yet realistic, SUð5Þ GUT
scenario [24,25] and to investigate the main predictions
of such a setup. The SUð5Þ proposal [24,25] in question
extends the particle content of the Georgi-Glashow
model by a 35-dimensional Higgs representation and a
15-dimensional vectorlike fermion representation. Remark-
ably, within that scenario, the observed mismatch between
the down-type quarks and charged leptons is intrinsically
connected to the neutrino mass generation. More specifi-
cally, the difference between the down-type quark and
charged lepton mass matrices is given by a rank-one
matrix. This stipulates that the down-type quarks and
charged leptons have similar, yet, different masses, in
accordance with experimental observations. The neutrino
mass matrix, on the other hand, is made out of a sum of
two rank-one matrices that are transpose of each other.
This, in turn, dictates that one of the neutrinos is strictly a
massless particle. Moreover, since the model relates these
three rank-one matrices, the neutrino masses consequen-
tially mirror the mismatch between the down-type quark
and charged lepton masses and are thus of the normal
hierarchy.
We extend the minimal realistic SUð5Þ proposal [24,25]

with a PQ symmetry to address the strong CP problem as
well as the origin of dark matter and show that such a simple
extension still preserves the most prominent features of the
original model. Our detailed study reveals that the proposed
setup is highly predictive, and that the entire parameter
space of the theory will be fully tested in the near future
through a combination of several experimental efforts.
These comprise the proton decay experiment Hyper-
Kamiokande as well as the axion dark matter experiments
ABRACADABRA, DMRadio-GUT, and CASPEr Electric.
The manuscript is organized as follows. In Sec. II we

introduce the particle content and symmetries of the model.
The details of the PQ symmetry implementation and the
nature of the axion dark matter are discussed in detail in
Sec. III. A numerical study of the model is performed in
Sec. IV, where we also present the most relevant exper-
imental predictions. We briefly conclude in Sec. V.

II. THE MODEL

The model in question comprises 5̄Fi ≡ Fαi,
10Fj ≡ Tαβ

j ¼ −Tβα
j , 15F ≡ Σ̄αβ ¼ Σ̄βα, 15F ≡ Σαβ, 5Ha

≡
Λδ
a (a ¼ 1; 2), a complex 24H ≡ ϕα

β , 35H ≡Φαβγ , and
24V ≡ Γα

β , where Hs, Fs, and V denote whether a given
irreducible representation, i.e., irrep, contains scalars,
fermions, or gauge bosons, respectively, i; jð¼ 1; 2; 3Þ
represent the generation indices, and α; β; γ; δð¼ 1;…; 5Þ
are the SUð5Þ indices. The decomposition of the SUð5Þ
scalar and fermion irreps under the Standard Model (SM)

gauge group SUð3Þ × SUð2Þ ×Uð1Þ is presented in
Table I. We will sometimes, for convenience, refer to a
given irrep/multiplet by using either its dimensionality with
respect to the appropriate gauge group or the associated
symbol.
Beside the nontrivial assignment under the Lorentz

symmetry, the aforementioned SUð5Þ irreps carry the PQ
Uð1ÞPQ charges that are presented in Table II.
Before we write down and discuss relevant parts of the

model Lagrangian, we briefly justify the proposed particle
content.

(i) 24H breaks the SUð5Þ ×Uð1ÞPQ symmetry. It fur-
thermore provides axion dark matter (DM), helps to
generate unification of the SM gauge coupling
constants, and facilitates a process of creation of
the experimentally observed mismatch between the
down-type quark and charged lepton masses.

(ii) 5H1
and 5H2

jointly break the SM gauge symmetry
down to SUð3Þ × Uð1Þem. 5H2

also provides the up-
type quark masses through its vacuum expectation
value (VEV), whereas 5H1

and 5H2
together play an

TABLE I. Content and nomenclature of the scalar and fermion
irreps of the proposal at both the SUð5Þ and SM levels. α; β; γ
ð¼ 1;…; 5Þ are the SUð5Þ indices, ið¼ 1; 2; 3Þ is a generation
index, and að¼ 1; 2Þ refers to two copies of scalars in the
fundamental representation.

SUð5Þ SUð3Þ × SUð2Þ × Uð1Þ
5Ha

≡ Λα
a Ξað1; 2;þ 1

2
Þ

ωað3; 1;− 1
3
Þ

24H ≡ ϕα
β ϕ0ð1; 1; 0Þ

ϕ1ð1; 3; 0Þ
ϕ3ð3; 2;− 5

6
Þ

ϕ3̄ð3̄; 2;þ 5
6
Þ

ϕ8ð8; 1; 0Þ
35H ≡Φαβγ Φ1ð1; 4;− 3

2
Þ

Φ3ð3̄; 3;− 2
3
Þ

Φ6ð6̄; 2;þ 1
6
Þ

Φ10ð10; 1;þ1Þ
5̄Fi ≡ Fαi Lið1; 2;− 1

2
Þ

dci ð3̄; 1;þ 1
3
Þ

10Fi ≡ Tαβ
i

Qið3; 2;þ 1
6
Þ

uci ð3̄; 1;− 2
3
Þ

eci ð1; 1;þ1Þ
15F ≡ Σ̄αβ Σ̄1ð1; 3;−1Þ

Σ̄3ð3̄; 2;− 1
6
Þ

Σ̄6ð6̄; 1;þ 2
3
Þ

15F ≡ Σαβ Σ1ð1; 3;þ1Þ
Σ3ð3; 2;þ 1

6
Þ

Σ6ð6; 1;− 2
3
Þ
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indispensable role in three different mechanisms that
create phenomenologically viable masses for the
down-type quarks, charged leptons, and neutrinos.

(iii) 35H is essential for neutrino mass generation. It also
helps to provide the gauge coupling unification at
scales compatible with the existing limits on partial
proton decay lifetimes.

(iv) 15F and 15F participate in the neutrino mass gen-
eration mechanism. In addition to that, these SUð5Þ
irreps are, together with 24H and 5H1

, instrumental
in addressing the observed mismatch between the
down-type quark and charged lepton masses.

A. Scalar sector

There are several parts of the scalar sector of the model
that need to be discussed in detail. The SUð5Þ ×Uð1ÞPQ
symmetry breaking is due to

L ⊃ −μ2ϕ�β
α ϕα

β þ ξ1ðϕ�β
α ϕα

βÞ2 þ ξ2ϕ
�β
α ϕα

γϕ
�γ
δ ϕδ

β

þ ξ3ϕ
�β
α ϕδ

γϕ
�α
β ϕγ

δ þ ξ4ϕ
�β
α ϕδ

γϕ
�α
δ ϕγ

β: ð2:1Þ

The VEV of ϕα
β that does the SUð5Þ symmetry breaking

reads

hϕi ¼ vϕffiffiffiffiffi
15

p diagð−1;−1;−1; 3=2; 3=2Þ; ð2:2Þ

where we assume that the VEV of the electrically neutral
component of the SUð2Þ triplet ϕ1ð∈ 24HÞ is negligible.
The squares of masses of multiplets in 24H, as generated
via Eqs. (2.1) and (2.2), are

M2
ϕRe
0

¼ 1

15
ð30ξ1 þ 7ξ2 þ 30ξ3 þ 7ξ4Þv2ϕ ≡m2

1; ð2:3Þ

MϕIm
0
¼ 0; ð2:4Þ

M2
ϕRe
1

¼ 2

3
ðξ2 þ ξ4Þv2ϕ ≡m2

3; ð2:5Þ

M2
ϕIm
1

¼ 1

15
ðξ2 − 30ξ3 þ ξ4Þv2ϕ; ð2:6Þ

M2
ϕRe
8

¼ 1

6
ðξ2 þ ξ4Þv2ϕ; ð2:7Þ

M2
ϕIm
8

¼ −
1

10
ðξ2 þ 20ξ3 þ ξ4Þv2ϕ ≡m2

8; ð2:8Þ

M2
ϕRe
3

¼ M2
ϕRe
3̄

¼ 0; ð2:9Þ

M2
ϕIm
3

¼M2
ϕIm
3̄

¼ 1

30
ð12ξ2− 60ξ3− 13ξ4Þv2ϕ≡m2

5=6: ð2:10Þ

These results are summarized in Table III for convenience.
We again emphasize that 24H also breaks the PQ symmetry
while we currently discuss solely the SUð5Þ symmetry
breaking. (Hence the omission of an overall phase in
Eq. (2.2). The exact role of that phase will be discussed
in Sec. III).
The potential given by Eq. (2.1) dictates that the

imaginary part of ϕ0ð∈ 24HÞ is massless. In fact, the axion
is mostly composed of that particular state, as we show later
on. The real components of ϕ3ð∈ 24HÞ and ϕ3̄ð∈ 24HÞ, on
the other hand, provide the necessary degrees of freedom
for the proton decay mediating gauge bosons in 24V to
obtain a mass MGUT, where

M2
GUT ¼ 5π

6
αGUTv2ϕ: ð2:11Þ

Here,MGUT is also the scale of gauge coupling unification,
and αGUT is the corresponding SUð5Þ gauge coupling.
The scalar fields in the fundamental irreps of SUð5Þ

couple via

L ⊃
X2
a¼1

�
−
1

2
μ2Λa

Λ†
aΛa þ γΛa

ðΛ†
aΛaÞ2

�
þ ζ1ðΛ†

1Λ1ÞðΛ†
2Λ2Þ þ ζ2ðΛ†

1Λ2ÞðΛ†
2Λ1Þ; ð2:12Þ

where we suppress SUð5Þ indices. The doublet-triplet
spitting, i.e., breaking of the mass degeneracy between
Ξa and ωa multiplets, is accomplished via the following
additional terms in the scalar potential:

TABLE II. Uð1ÞPQ charge assignment of the model. H, F, and
V subscripts denote scalar, fermion, or gauge boson SUð5Þ irreps,
respectively, while i ¼ 1; 2; 3.

SUð5Þ irrep 5̄Fi 10Fi 15F 15F 5H1
5H2

24H 35H 24V

Uð1ÞPQ charge − 1
2

− 1
2

− 1
2

− 1
2

−1 þ1 þ1 −1 0

TABLE III. Mass-squared spectrum of a complex irrep
24H ≡ ϕ.

Multiplet
Real part

mass-squared
Imaginary part
mass-squared

ϕ0ð1; 1; 0Þ m2
1

0
ϕ1ð1; 3; 0Þ m2

3
1
4
m2

3 þm2
8

ϕ8ð8; 1; 0Þ 1
4
m2

3 m2
8

ϕ3ð3; 2;− 5
6
Þ 0 m2

5=6

ϕ3̄ð3̄; 2;þ 5
6
Þ 0 m2

5=6
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L ⊃
X2
a¼1

fλΛa
Λ†
aΛaϕ

†ϕþ Λ†
aðαΛa

ϕ†ϕþ βΛa
ϕϕ†ÞΛag þ fκ1Λ†

2ϕ
2Λ1 þ κ2ðΛ†

2Λ1Þϕ2 þ H:c:g: ð2:13Þ

The mass-squared matrices of ωa and Ξa multiplets, in the Λ1-Λ2 basis, are

M2
ω ¼

0
BB@−μ2Λ1

þ v2ϕ
15
ð2αΛ1

þ 2βΛ1
þ 15λΛ1

Þ v2ϕ
�

2
15
κ1 þ κ2

�
v2ϕ
�

2
15
κ1 þ κ2

�
−μ2Λ2

þ v2ϕ
15
ð2αΛ2

þ 2βΛ2
þ 15λΛ2

Þ

1
CCA; ð2:14Þ

M2
Ξ ¼

0
BB@−μ2Λ1

þ v2ϕ
10
ð3αΛ1

þ 3βΛ1
þ 10λΛ1

Þ v2ϕ
�

3
10
κ1 þ κ2

�
v2ϕ
�

3
10
κ1 þ κ2

�
−μ2Λ2

þ v2ϕ
10
ð3αΛ2

þ 3βΛ2
þ 10λΛ2

Þ

1
CCA: ð2:15Þ

Clearly, the required doublet-triplet splitting can be obtained
by an appropriate choice of the model parameters. The
linear combinations of ω1 and ω2 will consequently yield
mass eigenstates, and we denote T1 and T2 in the rest of the
manuscript. Also, Ξ1 and Ξ2 will produce mass eigenstates
H1 and H2, where H1 is identified with the SM Higgs with
125 GeV mass.
Finally, the VEVs of 5Ha

that break SUð3Þ × SUð2Þ ×
Uð1Þ down to SUð3Þ ×Uð1Þem are hΛai ¼ ð0 0 0 0 vΛa

ÞT .
The lepton number conservation is violated via a single

term in the Lagrangian that reads

L ⊃ λΛα
1Λ

β
2Λ

γ
2Φαβγ þ H:c: ð2:16Þ

The neutrino masses will thus be directly proportional to
the dimensionless parameter λ of Eq. (2.16).
The masses of the SM gauge group multiplets in 35H are

determined by the following SUð5Þ contractions

L ⊃ μ235ΦΦ� þ λ0ðΦΦ�Þϕ�ϕþ λ1ΦαβγðΦ�Þαδϵðϕ�Þβδϕγ
ϵ

þ λ2ΦαβϵðΦ�Þαβδðϕ�Þϵγϕγ
δ: ð2:17Þ

The contractions of Eq. (2.17) yield

M2
Φ1

¼ μ235 þ v2ϕ

�
λ0
2
þ 3λ1

20
þ 3λ2

20

�
; ð2:18Þ

M2
Φ3

¼ μ235 þ v2ϕ

�
λ0
2
−
λ1
60

þ 11λ2
90

�
; ð2:19Þ

M2
Φ6

¼ μ235 þ v2ϕ

�
λ0
2
−
2λ1
45

þ 17λ2
180

�
; ð2:20Þ

M2
Φ10

¼ μ235 þ v2ϕ

�
λ0
2
þ λ1
15

þ 1λ2
15

�
: ð2:21Þ

These, in turn, produce a single mass-squared relation
that reads

M2
Φ10

¼ M2
Φ1

− 3M2
Φ3

þ 3M2
Φ6
: ð2:22Þ

The mass spectrum given in Table III and the mass
relation presented in Eq. (2.22) are necessary input for the
gauge coupling unification analysis.

B. Fermion sector

The Yukawa sector of the model is

L ⊃ Yu
ij10F i10F j5H2

þ Yd
ij10F i5̄Fj5

�
H1

þ Ya
i 15F5̄F i5

�
H1

þ Yb
i 15F5̄Fi35

�
H þ Yc

i 10Fi15F24H

þ y15F15F24H þ H:c:; ð2:23Þ

where the PQ charge assignment of Table II and the SUð5Þ
indices are all implicitly understood. The Yukawa matrix
elements of the model are Yu

ij ≡ Yu
ji, Y

d
ij ¼ Yd�

ij ≡ δijYd
i ,

Ya
i , Y

b
i , Y

c
i , and y, where we have used the freedom to rotate

irreps in the SUð5Þ group space to reach this particular
Yukawa coupling basis. The model accordingly has nine-
teen real parameters and fifteen phases in the Yukawa
sector to accommodate all of the masses and mixing
parameters of the SM fermions as well as the masses of
fermions in the 15F-15F vectorlike pair.
The PQ charge assignment forbids a bare-mass term for

the 15F-15F pair. The masses of the associated SM gauge
group multiplets are thus generated solely through the last
term of Eq. (2.23), which reads

L ⊃
yvϕffiffiffiffiffi
15

p
�
3

2
Σ̄1Σ1 þ

1

4
Σ̄3Σ3 − Σ̄6Σ6

�
þ H:c:; ð2:24Þ
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where the overall phase of 24H, once again, is not shown
for simplicity. We subsequently define

MΣ1
¼ y

2

ffiffiffi
3

5

r
vϕ; ð2:25Þ

MΣ3
¼ y

4
ffiffiffiffiffi
15

p vϕ; ð2:26Þ

MΣ6
¼ −

yffiffiffiffiffi
15

p vϕ: ð2:27Þ

It is important to point out that, apart from different
Clebsch-Gordan coefficients, all submultiplets within 15F
have a common mass scale. [Even though Σ1 and Σ3 mix
with the fermions in 5̄Fi and 10Fi, this does not affect
equalities in Eqs. (2.25) and (2.26).] We will show, later on,
that the product yvϕ is rather constrained by a requirement
for the model to simultaneously generate large enough
unification and neutrino mass scales.
The masses of the SM fermions are obtained after the

breaking of the SM gauge group down to SUð3Þ ×Uð1Þem
as follows. The down-type quark sector 4 × 4 mass matrix
can be written as

MD ¼
 
vΛ1

Yd v0ϕY
c

vΛ1
Ya MΣ3

!
; ð2:28Þ

where we introduce v0ϕ ¼ − 1
4

ffiffi
5
3

q
vϕ. This matrix can be

transformed into a block-diagonal form comprising a 3 × 3
part denoted Md and a mass parameter MH as follows

XMDY† ¼
�
Md 0

0 MH

�
; ð2:29Þ

where unitary matrices X and Y take the form

X∼

0
BB@
�
1þ v02ϕ

M2
Σ3
YcYc†

�−1=2
−
�
1þ v02ϕ

M2
Σ3
YcYc†

�−1=2 v0ϕ
MΣ3

Yc

v0ϕY
c†

MH

MΣ3
MH

1
CCA;

ð2:30Þ

Y∼

0
BB@ 1 −

vΛ1v
0
ϕ

M2
H

�
Yd†YcþMΣ3

v0ϕ
Ya†
�

vΛ1v
0
ϕ

M2
H

�
Yc†YdþMΣ3

v0ϕ
Ya
�

1

1
CCA;

ð2:31Þ

with

Md ∼
�
1þ v02ϕ

M2
Σ3

YcYc†
�−1=2�

vΛ1
Yd −

vΛ1
v0ϕ

MΣ3

YcYa

�
;

ð2:32Þ

MH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Σ3
þ v0ϕ

2Yc†Yc
q

≈MΣ3
: ð2:33Þ

Here, 1 ¼ diagð1; 1; 1Þ while Yc, Ya, and Yd are Yukawa
matrices that are featured in Eq. (2.23). It is clear from
Eq. (2.32) that the down-type quark mass matrix Md is
generated through the VEVof 5H1

and the mixing between
fields in 5̄Fi, 10Fi, 15F, and 15F. This is possible due to the
fact that Σ̄3 ∈ 15F and Qi ∈ 10Fi transform in the exact
same way under the SM gauge group [26].
The charged fermion mass matrices of the model can be

succinctly written as

Mu ¼ ð1þ δ2YcYc†Þ−1
28vΛ2

Yu; ð2:34Þ

Md ¼ ð1þ δ2YcYc†Þ−1
2vΛ1

ðYd þ δYcYaÞ; ð2:35Þ

Me ¼ vΛ1
Yd; ð2:36Þ

where δ ¼ −v0ϕ=MΣ3
and v2Λ1

þ v2Λ2
¼ v2 with v ¼ 174

GeV. We note the two most prominent features of the
charged fermion sector. First, Mu can be treated as a
symmetric matrix in the flavor space. Second, a mismatch
between the charged lepton and down-type quark mass
matrices is proportional to a rank-one matrix YcYa. We again
stress that we work in the basis where Yu

ij ≡ Yu
ji and

Yd
ij ¼ Yd�

ij ≡ δijYd
i . This simply means that vΛ1

Yd
i, where

i ¼ 1, 2, 3, are the masses of the SM charged leptons.
The neutrino mass in this model is generated by

utilizing the Yukawa couplings Ya and Yb that appear
in Eq. (2.23) and the lepton number violating term of
Eq. (2.16). Completion of the neutrino mass loop requires,
in addition to the SM fields, the presence of ð1; 3; 1Þ þ
ð1; 3;−1Þð⊂ 15F þ 15FÞ vectorlike fermions and the sca-
lar quadruplet ð1; 4;−3=2Þð⊂ 35HÞ. The corresponding
Feynman diagram illustrating the neutrino mass gener-
ation mechanism is shown in Fig. 1. This particular one-
loop mechanism to generate neutrino masses has been
introduced in Refs. [27,28].
The neutrino mass matrix elements ðMνÞij, at the leading

order, read

ðMνÞij ≈
λv2Λ2

8π2
ðYa

i Y
b
j þ Yb

i Y
a
j Þ

MΣ1

M2
Σ1
−M2

Φ1

ln

�
M2

Σ1

M2
Φ1

�
≡m0ðYa

i Y
b
j þ Yb

i Y
a
j Þ ¼ ðN diagð0; m2; m3ÞNTÞij;

ð2:37Þ
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where m2 and m3 are neutrino mass eigenstates and N is a
unitary matrix. Note that one of the neutrinos is a strictly
massless particle due to the fact that Mν is constructed
out of two rank-one matrices with elements Ya

i Y
b
j and

Yb
i Y

a
j . This is accordingly encoded in the right-hand side

of Eq. (2.37).
Since the charged lepton mass matrix in Eq. (2.36) is

already in a diagonal form, we can write that

N ¼ diagðeiην1 ; eiην2 ; eiην3ÞV�
PMNS; ð2:38Þ

where VPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) unitary mixing matrix, that is defined as VPMNS ¼
R23U13R12Q, with Q ¼ diagð1; eiβν ; 1Þ. Here we use the
PDG parametrization [29] for the R23, U13, and R12

matrices. Note that there is only one Majorana phase βν

appearing in Q due to the fact that one of the neutrinos is
massless.
One especially convenient feature of the neutrino sector

is that the matrices Ya and Yb can be expressed in terms of
the PMNS matrix parameters and phases ηνi , i ¼ 1, 2, 3.
Using the parametrization mentioned in Refs. [30,31] we
can write the two Yukawa coupling vectors Ya and Yb as

YaT ¼ ξffiffiffi
2

p

0
BB@

i r2 N12 þ r3N13

i r2 N22 þ r3N23

i r2 N32 þ r3N33

1
CCA;

YbT ¼ 1ffiffiffi
2

p
ξ

0
BB@

−i r2 N12 þ r3N13

−i r2 N22 þ r3N23

−i r2 N32 þ r3N33

1
CCA; ð2:39Þ

where Nij denotes the ijth element of the unitary matrix

N, r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m0

p
, and r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=m0

p
. Moreover, ξ is a

dimensionless scaling parameter that needs to be intro-
duced if one is to accurately scan over all possible
phenomenologically viable entries in Ya and Yb that
accommodate experimental observables in the neutrino
sector with utmost certainty. Equation (2.39) is applicable

solely to the normal neutrino mass hierarchy scenario since
that is one of the model predictions, as we will discuss later.
For alternative ways of generating neutrino masses within
the SUð5Þ framework, see, for example, Refs. [32–41].

III. PECCEI-QUINN SYMMETRY AND AXION
DARK MATTER

We discuss the implementation of the PQ symmetry
within our setup and elaborate on the model’s main
ingredients and experimental detection prospects in the
following.
In the “invisible axion” models [11–14] the PQ sym-

metry is broken by a scalar field that carries a nontrivial
PQ charge, where the scalar is a singlet under the SM.
We embed this scalar within the 24-dimensional Higgs
irrep that is charged under theUð1ÞPQ symmetry, as shown
in Table II. Consequently, our setup unifies the GUT and
PQ breaking scales. The VEVof 24H ≡ ϕα

β can be written
as [18]

hϕi ¼ v̂ϕffiffiffi
2

p diag

�
−1ffiffiffiffiffi
15

p ;
−1ffiffiffiffiffi
15

p ;
−1ffiffiffiffiffi
15

p ;
3

2
ffiffiffiffiffi
15

p ;
3

2
ffiffiffiffiffi
15

p
�
eiaϕðxÞ=v̂ϕ ;

v̂ϕ ≡
ffiffiffi
2

p
vϕ; ð3:1Þ

where the pseudoscalar part, i.e., field aϕðxÞ, essentially
remains massless, whereas the radial mode acquires a
mass of the order of the GUT scale while the global
Uð1ÞPQ symmetry is spontaneously broken with order
parameter vϕ. To correctly identify the massless axion, one
also needs to include all other Higgses that carry PQ
charges and participate in symmetry breaking.
The non-Hermitian operators that are responsible for the

breaking of the re-phasing symmetry of the three scalar
fields are given by the terms in the second line of
Eq. (2.13). The VEVs of neutral components of the
SUð2Þ doublets can be rewritten as

hΛ2i¼
v̂Λ2ffiffiffi
2

p e
i
aΛ2
v̂Λ2 ; hΛ�

1i¼
v̂Λ1ffiffiffi
2

p e
i
aΛ1
v̂Λ1 ; v̂Λa

≡ ffiffiffi
2

p
vΛa

; ð3:2Þ

where we take all VEVs to be real, and, as mentioned
before, we neglect the VEV of the SUð2Þ triplet in 24H.
With these assumptions, the axion field is identified as [42],

a ¼ xΛ2
v̂Λ2

aΛ2
þ x�Λ1

v̂Λ1
aΛ1

þ xϕv̂ϕaϕ
va

;

v2a ¼ x2Λ2
v̂2Λ2

þ x2Λ1
v̂2Λ1

þ x2ϕv̂
2
ϕ; ð3:3Þ

where xi denotes the PQ charge of the corresponding
ith scalar (and x�i ¼ −xi). Since vϕ ∼ 1016 GeV and
vΛa

∼ 102 GeV, the axion mostly resides in 24H with
a ≈ aϕ.

FIG. 1. The 1-loop Feynman diagram which is responsible for
neutrino mass generation.
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The axion field must also be orthogonal to the Goldstone
field eaten up by the Z-boson. This translates into the
following condition

tan2 β ¼ v2Λ2

v2Λ1

¼ x�Λ1

xΛ2

; ð3:4Þ

which, in our benchmark charge assignment, fixes
tan β ¼ 1. Here, we do not present the expression of the
SM Higgs mass eigenstate, which can be obtained via the
diagonalization of the 4 × 4 mass matrix of the CP-even
states. The heaviest one is expected to reside at the GUT
scale, and the lightest one is the SM Higgs boson.
Depending on the chosen hierarchy, the remaining two
eigenstates—one coming from the triplet and the other
from the pair of doublets—can live anywhere in between
the electroweak and GUT scales.
Now, performing a field-dependent axial transformation

that is anomalous under QCD, the axion can be disen-
tangled from the Yukawa interactions. This transformation
generates the effective anomalous interactions of the
following types:

δLeff ¼
αs
8π

a
fa

GG̃þ
�

αem
2πfa

E
N

�
a
4
FF̃: ð3:5Þ

Here, G (F) is the gluon (photon) field strength tensor,
G̃ (F̃) is its dual, and fa is the axion decay constant. The
effective operator of the form aGG̃ is the key to the PQ
solution to the strong CP problem. Since these submultip-
lets carry color and electromagnetic charges, the PQ current
has both QCD and electromagnetic anomalies, with the
corresponding anomaly coefficients [43],

N ¼
X
ψ

Nψ ; E ¼
X
ψ

Eψ ; ð3:6Þ

where sums are taken over all fermions, which we
generically denote by ψ. Using well-known formulas,

Nψ ¼ xψdðIψÞTðCψ Þ; ð3:7Þ

Eψ ¼ xψdðCψÞdðIψ Þ
�
1

12
ðdðIψÞ2 − 1Þ þ Y2

ψ

�
; ð3:8Þ

we obtain jN j≡ N̂ ¼ 13=2 and jEj≡ Ê ¼ 52=3 while the
domain-wall number, which is relevant for cosmology, is

NDW ¼ 2N̂ ¼ 13. Subsequently, we find the axion decay
constant to be

fa ¼
va
2N̂

≈
v̂ϕ

2N̂
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

10παGUT

s
MGUT

N̂
: ð3:9Þ

Since the decay constant is of the order of the GUT scale,
i.e., fa ∼MGUT, we refer to the axion as the “GUT axion.”

Once strong interactions confine, nonperturbative QCD
effects generate a potential that gives rise to a tiny axion
mass [44,45]

ma ¼ 5.7 neV
�
1015 GeV

fa

�

¼ 5.7 neV

�
1015 GeV
MGUT

�
N̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10παGUT

3

r
: ð3:10Þ

This shows that the axion mass is predicted if the grand
unification scaleMGUT is known. We accordingly compute
the predicted range of the GUT scale within our model in
Sec. IV by taking into account all relevant constraints.
Since the nonobservation of proton decay requires the

GUT scale to be large, the axion mass is expected to be
around the neV scale within our setup. An axion in this
mass range is extremely weakly coupled to the SM particles
due to an extremely large decay constant. Remarkably, an
axion with neV mass can serve as an excellent dark matter
candidate and can be searched for efficiently in direct
detection experiments [46] hunting for ultralight axions.
Next, we consider the most relevant axion couplings for

experimental sensitivity. In the low-energy effective
Lagrangian for the axion, it is sometimes convenient to
eliminate the axion coupling to the gluons via a field-
dependent axial transformation of the SM quarks. After
making such a rotation, the axion coupling to the photons is
given by [45],

L ⊃
αem
2πfa

�
Ê

N̂
− 1.92

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡gaγγ

a
4
FF̃; ð3:11Þ

where the model-dependent quantity, apart from fa [see
Eq. (3.9)], in our case, is given by Ê=N̂ ¼ 8=3. In fact, the
dark matter experiment ABRACADABRA [47] has a great
potential to look for an axion dark matter in the mass range
of interest. As shown in Fig. 2, a major part of the
parameter space of our theory will be probed by this dark
matter direct detection experiment. Figure 2 is obtained by
varying the model parameters while imposing all relevant
constraints. The details of our numerical procedure are
relegated to Sec. IV.
Another axion dark matter experiment, the DMRadio-

GUT [48,49], will also be sensitive in detecting axions with
GUT scale decay constant fað∼1016 GeVÞ. DMRadio-GUT
will be far more sensitive compared to its previous two
phases, i.e., DMRadio-50L and DMRadio-m3, since it will
have a factor of three enhancement in the field and a factor of
ten enhancement in volume relative to DMRadio-m3. The
projected 3σ sensitivity of DMRadio-GUT is also presented
in Fig. 2 by a green shaded region, which will probe a
significant portion of the parameter space. Yet another
proposal utilizing an optomechanical cavity [50] filled with
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superfluid helium is shown to be highly promising in
detecting ultralight axion dark matter. This proposed exper-
imental method, with a cavity size of order Oð10 mÞ is
expected to be sensitive to axion-photon couplings for
axions with the GUT scale size decay constant. In Fig. 2,
the corresponding theoretical reach is shown with solid
black lines. The ABRACADABRA experiment will be
sensitive to axion masses as low as ma ∼ 2 neV, whereas
the sensitivity of DMRadio-GUTand optomechanical cavity
is about ma ∼ 0.4 neV and ma ∼ 0.1 neV, respectively.
A combination of all these axion dark matter experiments
will eventually probe the entire parameter space of the
proposed model.
Intriguingly, ultralight axion dark matter can also be

efficiently searched for via oscillating nucleon electric
dipole moments (EDM). As already stated, the QCD axion
solves the strong CP problem by promoting the θ param-
eter into the dynamical axion field. Consequently, the
effective θ angle gives rise to an EDM for nucleons sourced
by the axion. Owing to the dynamical nature of the axion,
this EDMwill change in time, giving rise to unique signals.
In the effective Lagrangian, the coupling of the axion to
nucleon n takes the following form,

L ⊃ −
i
2
gaDaψ̄nσμνγ5ψnFμν: ð3:12Þ

The nucleon electric dipole moment generated through the
above operator is given by dn ¼ gaDa. The classical field
that describes the axion field can be written as
a ¼ a0 cosðmatÞ. The amplitude, a0, is determined from
the local dark matter density, namely, ρDM ¼ 1

2
m2

aa20,
which assumes the axion comprises 100% of dark matter

within our setup. The nucleon electric dipole moment is
then determined by the dark matter energy density,
dn ¼

ffiffiffi
2

p
gaD

ffiffiffiffiffiffiffiffiffi
ρDM

p
cosðmatÞ=ma. Moreover, the nucleon

electric dipole moment can also be expressed in terms of
the axion decay constant. In terms of our model param-
eters, it can be rewritten in the following form [51]:

dn ≈ a
2.4 × 10−16

fa
e · cm|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

gaD

; ð3:13Þ

with roughly a 40% uncertainty [52], where the decay
constant is given in Eq. (3.9). (See also Refs. [53–55].) The
corresponding coupling as a function of the axion mass is
shown in Fig. 3. As can be seen from this figure, excitingly,
the CASPEr Electric [56,57] experiment alone will probe
almost the entire parameter space of our model. The width
of the band corresponds to the calculation uncertainty as
mentioned before. Figure 3 is also obtained by varying
model parameters after one imposes all the relevant
constraints. The exact details will be discussed later in
the text.
Since the axion is ultralight in our setup, it can constitute

the entirety of the dark matter. It is important to point out
that the breaking of the GUT symmetry to that of the SM
gauge group SUð5Þ × Uð1ÞPQ → SUð3Þ × SUð2Þ ×Uð1Þ
leads to an overproduction of superheavy monopoles that
must be inflated away. As discussed above, spontaneous
breaking of the PQ symmetry leads to NDW distinct
degenerate vacua, giving rise to a domain-wall problem,
which also requires dilution to be consistent with cosmol-
ogy. Both of these problems, along with the horizon and
flatness problems, can be elegantly solved via inflation
taking place after the GUT symmetry breaking. We,

10–12 10–11 10–10 10–9 10–8 10–7
10–23

10–21

10–19

10–17

10–15

10–13

10–11

ma [eV]

|g
aD
|
[G
eV

-2
]

CASPEr Electricphase I

phase II

phase
III spin n

oise

GUT ax
ion

FIG. 3. Axion coupling to the nucleon EDM operator as a
function of the axion mass. The blue band (that lies on the QCD
line) corresponds to the prediction of our model; see text for
details. The shaded regions show the sensitivity projections of
CASPEr Electric [56,57] in its various phases. Moreover, the
ultimate sensitivity limit is given by the nuclear spin noise.

FIG. 2. Expected reach in the ma vs gaγγ plane for the broad-
band (Broad) and resonant (Res) strategies of the ABRACA-
DABRA (ABD) experiment [47]. The blue line (that lies on the
QCD line) corresponds to the prediction of our model. The
projected 3σ sensitivity of DMRadio-GUT [48,49] is also
presented in the green shaded region. Furthermore, the expected
theoretical reach using the optomechanical cavity method [50] is
shown with solid black lines. See text for more details.
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however, do not specify the details of the inflationary
dynamics, which is beyond the scope of this work. The
amount of axion dark matter produced then depends on
whether the PQ symmetry is restored or not after inflation.
We assume that the Uð1ÞPQ remains broken during
inflation and is never restored afterwards. In such a
scenario, the relic abundance of the axion dark matter is
given by [58]

Ωh2 ∼ 0.12
�
5 neV
ma

�
1.17
�

θi
1.53 × 10−2

�
2

; ð3:14Þ

which shows that the initial value of θi ¼ ai=fa, where ai
is the value of the axion field, needs to be somewhat
smaller than unity to be consistent with the observed dark
matter relic abundance Ωh2 ∼ 0.12� 0.001 [59]. Thus, for
θi ∼ 10−2, the axion is composed of all the dark matter.

IV. UNIFICATION, AXION MASS,
AND PROTON DECAY

In our model, the axion decay width fa is connected to
the GUT scale MGUT due to the fact that 24H simulta-
neously breaks the SUð5Þ and Uð1ÞPQ symmetries. This, in
particular, directly relates the axion mass ma to the GUT
scale MGUT via Eq. (3.10). Moreover, since the partial
proton lifetimes are proportional to the fourth power of the
GUT scale, our model can be simultaneously probed with
axion dark matter and proton decay experiments.

A. Unification

The renormalization group equations (RGEs) for the
gauge couplings can, at the 2-loop level, be written as [60]

μ
dα−1

dμ
¼ −

1

2π

�
bSMi þ

X
J

bJiHðμ −MJÞ
�

−
1

8π2

�X
J

ðbSMij þ bJijHðμ −MJÞÞα−1j þ βYi

�
:

ð4:1Þ

Here, bSMi (bSMij ) are the SM 1-loop (2-loop) gauge
coefficients, while bJi (bJij) are the 1-loop (2-loop) gauge
coefficients of the multiplets J with intermediate-scale
massesMJ, i.e.,MZ < MJ < MGUT. These coefficients are
listed in Appendix. Moreover, βYi are the Yukawa con-
tributions and H is the Heaviside step function defined as

HðmÞ ¼
�
1; m > 0

0; m ≤ 0
: ð4:2Þ

Note that we neglect the effect of the Yukawa couplings
Ya, Yb, and Yc on the running of the gauge couplings.

In order to investigate the viable part of the parameter
space giving gauge coupling unification, we freely vary
the masses of the fields ϕRe

1 , ϕIm
1 , ϕIm

3 , ϕRe
8 , ϕIm

8 , Σ1, Σ3, Σ6,
Φ1, Φ3, Φ6, Φ10, and H2 between the TeV and the GUT
scale, while taking into account the mass spectrum
constraints presented in Sec. II. Some of these states
remain light to achieve high scale unification to be
compatible with proton decay bounds. To get an under-
standing of how these states can be light, let us consider
the masses of ϕRe

1 and ϕIm
8 , which are given by Eqs. (2.5)

and (2.8), respectively. It can be easily seen that by
adjusting the relevant quartic couplings, they can, in
principle, live in the low energies (similar arguments
are applicable for the rest of the states that reside some-
what below the GUT scale; for details, see Sec. II). Such
adjustments, however, introduce additional fine-tuning
problems on top of the usual doublet-triplet splitting
problem, which we accept. We also ensure that the scalar
leptoquark mediated proton decay is sufficiently sup-
pressed by varying the masses of T1 and T2 between 3 ×
1011 GeV and the GUT scale. The numerical fit is
performed by running the gauge couplings at the 2-loop
level from the GUT scale to the Z mass scale at which a
χ2-function that we define later in detail is minimized.
We use the low-scale values g1 ¼ 0.461425þ0.000044

−0.000043 ,
g2 ¼ 0.65184þ0.00018

−0.00017 , and g3 ¼ 1.2143þ0.0035
−0.0036 [61] as our

input, where gi ¼
ffiffiffiffiffiffiffiffiffi
4παi

p
. To demonstrate that within our

setup, the gauge couplings can indeed unify, Fig. 4 shows
one possible particle mass spectrum giving exact gauge
coupling unification that is in agreement with the current
proton decay constraints and that yields correct neutrino
mass scale via Eq. (2.37).

B. Proton decay

The formulas for the proton decay widths of various
decay channels can be found in Refs. [62,63]. For example,

FIG. 4. Example for the choice of the intermediate-scale
particle masses giving gauge coupling unification.
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the decay width for the proton decay channel having a pion
and a charged lepton in the final state is given by1

Γðp → π0eþα Þ ¼
mpπ

2

�
1 −

m2
π

m2
p

�
2

A2
L
α2GUT
M4

GUT

× ðA2
SLjcðecα; dÞhπ0jðudÞLuLjpij2

þ A2
SRjcðeα; dcÞhπ0jðudÞRuLjpij2Þ: ð4:3Þ

Here, mp ¼ 0.9393 GeV and mπ ¼ 0.134 GeV denote the
proton and pion masses, respectively, while α ¼ 1, 2 with
eþ1 ≡ eþ and eþ2 ≡ μþ. The leading log renormalization of
the dimension six operators is encoded via AL ¼ 1.2 [65]
and ASLðRÞ, where

2

ASLðRÞ ¼
Y

i¼1;2;3

YMZ≤MI≤MGUT

I

�
αiðMIþ1Þ
αiðMIÞ

� γLðRÞi
bSM
i

þ
P

MZ≤MJ≤MI
J

bJ
i ;

ð4:4Þ

with γLðRÞi ¼ ð23ð11Þ=20; 9=4; 2Þ [66–68]. Moreover, we
take the hadron matrix elements, such as, for example,
hπ0jðudÞLuLjpi ¼ 0.134ð5Þð16Þ GeV2 and hπ0jðudÞR×
uLjpi ¼ −0.131ð4Þð13Þ GeV2, from Refs. [69,70].
Finally, the c-coefficients of Eq. (4.3) read [71–73]

cðecα; dβÞ ¼ ðU†
RU

�
LÞ11ðE†

RD
�
LÞαβ þ ðE†

RU
�
LÞα1ðU†

RD
�
LÞ1β;
ð4:5Þ

cðeα; dcβÞ ¼ ðU†
RU

�
LÞ11ðE†

LD
�
RÞαβ; ð4:6Þ

cðνl; dα; dcβÞ ¼ ðU†
RD

�
LÞ1αðD†

RNÞβl; ð4:7Þ

where the unitary matrices UL=R, EL=R, DL=R, and N
diagonalize the SM fermion mass matrices through the
following transformations

Mu ¼ ULM
diag
u U†

R; Md ¼ DLM
diag
d D†

R;

Me ¼ ELM
diag
e E†

R; Mν ¼ NMdiag
ν NT: ð4:8Þ

The current experimental constraints and future sensi-
tivities for the various partial lifetimes that we use in our
numerical analysis are presented in Table IV. For a recent
review on the subject, see Ref. [74].

C. Numerical procedure

We start our numerical analysis by constructing matrices
Mu, Me, Ya, Yb, and Yc at the GUT scale, as described in
the next few paragraphs.
Since the up-type quark mass matrix Mu is approx-

imately symmetric, we have that UR ¼ U�
L. This allows us

to express Mu as

Mu ¼ ULdiagðmu;mc;mtÞUT
L: ð4:9Þ

We furthermore parametrize the up-type quark mixing
matrix UL in terms of the down-type quark mixing matrix
DL, the Cabibbo-Kobayashi-Maskawa (CKM) matrix
VCKM, and five GUT phases βu1 , β

u
2 , η

u
1 , η

u
2 , and ηu3 , as

UL¼DLdiagðeiβu1 ;eiβu2 ;1ÞVT
CKMdiagðeiη

u
1 ;eiη

u
2 ;eiη

u
3Þ: ð4:10Þ

In our analysis, we set ηu1 ¼ ηu2 ¼ ηu3 ¼ 0 since these three
phases do not affect the proton decay predictions at all.
We set EL ¼ ER ¼ 1 sinceMe is diagonal and real. This

also means that we can simply constructMe via an equality
that reads

Me ¼ diagðme;mμ; mτÞ: ð4:11Þ

Ya and Yb are constructed via Eq. (2.39) using the
neutrino mixing matrix N ¼ diagðeiην1 ; eiην2 ; eiην3ÞV�

PMNS as
an input. Note that VPMNS contains the CP violating phase
δν as well as the Majorana phase βν. We furthermore take
Yc to be a general complex 1 × 3 matrix through

Yc ¼ ðyc1eiη
c
1 yc2e

iηc
2 yc3e

iηc
3ÞT: ð4:12Þ

Once the parameter dependence ofMu,Me, Ya, Yb, and Yc

is properly accounted for, as described above, we can also
construct Md and Mν that are given by Eqs. (2.35)
and (2.37), respectively. We treat λ in Mν as a free
parameter while the two Higgs VEVs that enter Md and

TABLE IV. Present experimental bounds on the partial life-
times τp as well as future sensitivities for 10 years of runtime,
both at 90% confidence level.

Decay channel
Current bound

τp [yrs]
Future sensitivity

τp [yrs]

p → π0eþ 2.4 × 1034 [75] 7.8 × 1034 [76]
p → π0μþ 1.6 × 1034 [75] 7.7 × 1034 [76]
p → η0eþ 1.0 × 1034 [77] 4.3 × 1034 [76]
p → η0μþ 4.7 × 1033 [77] 4.9 × 1034 [76]
p → K0eþ 1.1 × 1033 [78] —
p → K0μþ 3.6 × 1033 [79] —
p → πþν̄ 3.9 × 1032 [80] —
p → Kþν̄ 6.6 × 1033 [81] 3.2 × 1034 [76]

1The Mathematica package ProtonDecay [64] can be used to
compute the decay widths of various nucleon decay channels.

2If the denominator of the exponent vanishes for some factor,
i.e., the 1-loop running of a specific gauge coupling is constant
within a certain interval, the respective factor in Eq. (4.4) is
replaced with exp½γLðRÞiαðMIþ1Þ�=ð2πÞ.
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Mν are given by vΛ1
¼ vΛ2

¼ 174=
ffiffiffi
2

p
GeV due to the

constraint that tan β of Eq. (3.4) is equal to one.
In summary, the free parameters for our numerical

analysis are the unification scaleMGUT and the correspond-
ing gauge coupling αGUT, the masses of the fields3 ϕIm

3 , ϕRe
8 ,

ϕIm
8 , Σ1,Φ1, Φ3,Φ6, T1, T2, andH2, the phases βu1;2, δ

ν, βν,
ην1;2;3, the Yukawa parameters yc1;2;3, η

c
1;2;3, the quartic Higgs

coupling λ, and the scaling parameter ξ. These 24 param-
eters are fitted to the experimental observables that are the
SM gauge couplings g1, g2, and g3, and the down-type
quark masses md, ms, and mb, while requiring that the
current proton decay constraints, as given in Table IV, are
satisfied. Note that the charged lepton masses, the up-type
quark masses, the neutrino mass squared differences, the
CKM mixing parameters, and the known PMNS mixing
parameters are all automatically accounted for.
Since there are more parameters than observables, proton

decay cannot be predicted sharply in all decay channels as
we will discuss in the next section. But, due to the fact that
the neutrino mass matrix is connected to the mismatch
between the charged lepton and down-type quark mass
matrices, our model predicts the PMNS parameters δν and
βν to be in relatively narrow intervals.
The gauge couplings are fitted to their low-energy scale

values [61] after the 2-loop level running from the high
scale to the low scale is performed. To simplify the analysis,
we do not run the Yukawa parameters from low scale to the
GUT scale using RGEs, and the down-type quark and
neutrino masses are directly fitted at the high scale using
the high scale values provided in Ref. [82]. The χ2-function
is obtained comparing the theoretical prediction pi with the
experimental central value ei, normalized with the corre-
sponding experimental standard deviation σi of the ith
observable via

χ2 ¼
X
i

�
pi − ei
σi

�
2

: ð4:13Þ

To minimize the χ2-function we apply a differential evolu-
tion algorithm. This minimization yields a satisfactory
benchmark point and thus proves the viability of our model.
Then, starting from this benchmark point, a Markov-chain-
Monte-Carlo (MCMC) analysis with a flat prior distribution,
involving a Metropolis-Hasting algorithm, is performed
giving us a total of 6 × 106 datapoints. Finally, we use
these points to calculate the highest posterior density (HPD)
regions of various quantities.
For the numerical analysis, all parameters are freely

varied in such a way that the perturbativity of all Yukawa
and Higgs couplings is satisfied. In particular, the absolute
values of all entries in Ya, Yb, and Yc as well as the absolute

value of λ are all required to be less than or equal to 1. To
this end, the scaling parameter ξ ensures that the full
parameter space is covered with the chosen parametrization
of the matrices Ya and Yb. Furthermore, although we fix
some model parameters during the fitting/minimization
procedure by directly plugging in experimental central
values of some observables, we still vary these parameters
in the subsequent MCMC analysis.
It is not necessary to fit the up-type quark masses in our

numerical analysis, as already mentioned above. We,
however, briefly address perturbativity of the top quark
Yukawa coupling. The Yukawa couplings, once the GUT
symmetry is broken down to the SM gauge group, need to
be matched with the Yukawa couplings of the effective
theory, which in our case resembles the type-II 2HDM (two
Higgs doublet model). Thus, in the initial basis, the up-type
quark sector interacts with one Higgs doublet whereas the
down-type quark and charged lepton sectors interact with
the other Higgs doublet. Consequently, the SM top quark
Yukawa coupling reads ySMt ¼ cos βŷ, where ŷ is the
coupling we are interested in while cos β ¼ 1=

ffiffiffi
2

p
. To

investigate the perturbativity of ŷ we need to study the
following RGEs [83]

16π2μ
d
dμ

ŷ¼
(�

−8g23−
9

4
g22−

17

12
g21

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

negative

þ 9

2|{z} ŷ2
positive

)
ŷ; ð4:14Þ

and

16π2μ
d
dμ

gk ¼ c|{z}
k

ðc3;c2;c1Þ2HDM¼ð−7;−3;7Þ

g3k: ð4:15Þ

Here, for simplicity, we only consider an effective theory
of 2HDM. We evolve these RGEs from the MZ scale to
the GUT scale, which we choose to be 1016 GeV. The
initial value of the top quark Yukawa is extracted from the
value of the top quark mass in the MS scheme, i.e.,
m̄tðm̄tÞ ¼ 163 GeV [84], providing us with ŷ ¼ m̄t=
ðv cos βÞ, where v ¼ 174.104 GeV. (Recall that m̄t is
the scale-dependent mass and not the physical mass of
the top-quark [84].) Our result for the running of ŷ is
presented in Fig. 5. Clearly, the coupling ŷ remains
perturbative up to the GUT scale due to an interplay
between the gauge and Yukawa coupling contributions
of Eq. (4.14).
To generate Fig. 5, we solely consider an effective

2HDM scenario. Our scenario, however, is more complex
since several scalar multiplets live significantly below the
GUT scale. These fields affect the running of the gauge
couplings, as can be seen in Fig. 4, and make the couplings
substantially larger, at higher energy scales, when com-
pared to the 2HDM case. This simply means that the

3Note that the masses of the fields ϕRe
1 , ϕIm

1 , Σ3, Σ6, Φ10 are
obtained via the mass relations discussed in Sec. II.
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negative contributions in Eq. (4.14) are even more impor-
tant than in the 2HDM case and can thus easily result in
smaller coupling ŷ at the high energy scale, if compared to
naive expectation. This effect has already been pointed out
in Ref. [25], where the RGE running of the charged fermion
Yukawa couplings has been implemented.

D. Results

In this section, we present the outcome of our numerical
study. We are interested in the full axion mass range, the
predictions for partial proton decay lifetimes, and the viable
range of the Dirac CP and Majorana phases of the PMNS
matrix.
The axion mass ma is connected to the GUT scaleMGUT

and gauge coupling αGUT via Eq. (3.10). We can therefore
obtain the predicted range of the axion mass by maximizing
and minimizing Eq. (3.10). We demand viable gauge
coupling unification and correct neutrino mass scale while
making sure that none of the current proton decay con-
straints are violated. We findma ∈ ½0.1; 4.7� neV which we
present in Figs. 2 and 3. As discussed in more detail in
Sec. III, this already demonstrates that the full parameter
space will be probed by two kinds of future axion DM
experiments that are sensitive to either the axion to photon
coupling or to the nucleon EDM.
To start our numerical analysis, we find a viable bench-

mark point from a full χ2 fit. In particular, for the case of
normal neutrino mass ordering, we obtain that

Ya ¼ ð−0.120þ i0.00943; 0.513þ i0.200; 0.898Þ; ð4:16Þ

Yb ¼ ð0.109þ i0.150; 0.348þ i0.334; 0.195 − i0.0211Þ;
ð4:17Þ

Yc ¼ ð0.00115þ i0.00198;−0.0532þ i0.0852;

− 2.781 − i0.743Þ × 10−6; ð4:18Þ

for MGUT ¼ 1016.2 GeV, mH2
¼ 103.77 GeV, MT1

¼
MT2

¼1014.55GeV, MϕRe
1
¼104.39GeV, MϕIm

1
¼104.12GeV,

MϕIm
3
¼104.40GeV, MϕRe

8
¼104.09GeV, MϕIm

8
¼103.71GeV,

MΣ1
¼1013.41 GeV,MΣ3

¼1012.63 GeV,MΣ3
¼1013.24 GeV,

MΦ1
¼1011.63 GeV, MΦ3

¼105.28GeV, MΦ6
¼104.18GeV,

MΦ10
¼ 1011.63 GeV, α−1GUT ¼ 15.62, and λ ¼ 1.00. If the

proton decay pull is neglected, this choice of the input
parameters gives χ2 below 0.01. This is thus a perfect fit for
the gauge couplings as well as for the fermion masses and
mixings. It is to be pointed out that even though the
benchmark point presented here corresponds to a scenario
with T1 and T2 masses being two orders of magnitude
smaller than the GUT scale, these fields can easily reside
at the GUT scale without significantly affecting the value
of MGUT.
The PMNS Dirac CP phase, for this benchmark point, is

given by δν ¼ −48.5°, whereas the PMNS Majorana phase
is βν ¼ −71.3°. We note that for the case of inverted
neutrino mass ordering, no good fit-point can be obtained.
This is due to the fact that the Yukawa matrix Ya is needed
to generate both the viable neutrino masses and the correct
mismatch between the charged lepton and down-type quark
masses. In the case of inverted ordering, the first two entries
in Ya would need to be somewhat larger than the third
entry. This is, however, in conflict with the down-type
quark mass fit that requires the first entry of Ya to be
smaller than the second and third entries. Therefore, our
model predicts that the neutrinos have normal mass
ordering.
From the aforementioned benchmark point, we start an

MCMC analysis with a flat prior. All obtained points are
presented in Fig. 6 in a plane of axion mass vs partial
proton decay lifetime in the dominant decay channel
p → π0eþ. We also present the future sensitivities of the
DM experiments ABRACADABRA, DMRadio-GUT, and
CASPEr Electric, as discussed in Sec. III, as well as the

FIG. 6. The generated points from the MCMC analysis pre-
sented in the ma − τðp → π0eþÞ plane. The current Super-
Kamiokande bound is represented by a gray box, while the
future Hyper-Kamiokande sensitivity is indicated by a blue
dotted line. Moreover, the projected sensitivity of various axion
DM experiments is also shown: ABRACADABRA (ABD) with a
red dotted line, DMRadio-GUTwith a green dotted line, CASPEr
Electric with a brown dotted line. For details, see the main text.

FIG. 5. RGE running of the Yukawa coupling that is relevant
for to top quark mass generation. See text for details.
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future sensitivity of the proton decay experiment Hyper-
Kamiokande, as discussed in Sec. IV B. Figure 6 nicely
visualizes how various parts of the model parameter space
can be probed through the synergy between three different
kinds of experiments testing (i) the axion to photon
coupling, (ii) the nucleon EDM, and (iii) proton decay.
For example, if the axion mass is observed to be above
3 neV, proton decay via p → π0eþ necessarily has to be
seen by Hyper-Kamiokande if our model is realized in
nature. Moreover, regardless of whether proton decay will
be observed by Hyper-Kamiokande, the former two kinds
of experiments will be able to cover the entire parameter
space of our model.
We are also interested in the proton decay predictions of

all two-body decay channels within our model. First, we
want to obtain the full allowed range for all partial proton
lifetimes, which is for the decay channel p → π0eþ already
hinted in Fig. 6. To this end, we vary all the parameters,
including the intermediate-scale particle masses in the
MCMC analysis. The 1σ (dark) and 2σ (light) HPD results
of this analysis are shown in Fig. 7. The blue line segments
indicate the current experimental bounds, while the red line
segments represent the future sensitivities. (See, for exam-
ple, Table IV.) Figure 7 shows that a part of the predicted 1σ
HPD interval for the two decay channels p → π0eþ and
p → η0eþ will be tested by Hyper-Kamiokande. The large
uncertainty in these partial lifetime predictions that are
coming from the dependence on the fourth power of the
GUT scale can be erased by considering ratios of specific
decay channels.4 Figure 8 shows the prediction of such
ratios with the dominant decay channel p → π0eþ in the

denominator. Especially interesting is the prediction for the
ratio τðp → η0eþÞ=τðp → π0eþÞ, since both τðp → η0eþÞ
and τðp → π0eþÞ will be partly tested by Hyper-
Kamiokande. This ratio is predicted very sharply.
However, such a sharp prediction for this particular ratio
is not only specific to our model but a more common feature
of models in which gauge boson mediated proton decay
is dominant and in which the contribution involving the
c-coefficient cðec; dÞ dominates the contribution with the
c-coefficient cðe; dcÞ. Nevertheless, these ratios of partial
proton lifetimes provide an interesting additional opportu-
nity to probe our model.
In order to understand the dependence of different decay

channels on the flavor structure in the fermion mass
matrices, we fix the mass scales to the same values as
listed below Eq. (4.18) and only vary the parameters in the
fermion mass matrices in the MCMC analysis, computing
for each point the proton decay prediction for individual
decay channels. We visualize the 1σ (dark) and 2σ (light)
HPD results of this analysis in Fig. 9, where the blue line
segments indicate the current experimental bounds at
90% confidence level presented in Table IV. Interestingly,
the partial lifetimes, for some channels, are much more
sharply predicted than for the others. The sharp prediction
for the decay channels with an antineutrino in the final state
is a generic feature for models with a (nearly) symmetric up-
type quark mass matrix. On the other hand, the fact that the
partial lifetime of the decay channel p → π0eþ has such a
sharp prediction is uncommon and represents a nice feature
of our model, which also implies that this decay channel is
predicted to be the dominant one.5

FIG. 7. The predicted 1σ (dark) and 2σ (light) HPD intervals of the proton lifetime for various decay channels. The blue (red) line
segments indicate the current (future) experimental bounds (sensitivities) at 90% confidence level. Interestingly, a part of the predicted
1σ region for both decay channels p → π0eþ and p → η0eþ lies within the reach of Hyper-Kamiokande.

4For recent works analyzing ratios of partial proton decay
lifetimes in models with predicted GUT scale quark-lepton
Yukawa ratios, see Refs. [40,64].

5Note, however, that proton decay mediated by the two scalar
triplets T1 and T2 could enhance the decay channel p → Kþν̄.
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The interesting result that some decay channels yield
much sharper predictions than others can be understood by
investigating the freedom in the mixing matrices that are
defined in Eq. (4.8). This is demonstrated in the following
example, where we compare the predictions for the p →
π0eþ and p → π0μþ lifetimes. The relevant c-coefficients
of the two decay channels in question read

cðecα; dÞ ¼ ðD�
LÞα1 þ ðU�

LÞα1ðUT
LD

�
LÞ11; ð4:19Þ

cðeα; dcÞ ¼ ðD�
RÞα1: ð4:20Þ

As it can be seen from Eq. (2.35), the left mixing of the
down-type quark mass matrix DL strongly depends on the
Yukawa matrix Yc, while the right mixing DR dominantly
depends on the Yukawa matrix Ya. Since Ya has to be

chosen in such a way that the correct PMNS parameters and
neutrino masses are obtained, there cannot be a strong
hierarchy between Ya entries. On the other hand, a strong
hierarchy of the entries in Yc is required in order to produce
the correct mismatch between the down-type quark and
charged lepton masses. Therefore, DR appears to have a
large mixing, whereas DL is for all points in the MCMC
almost equal to the identity matrix. This, in particular, also
implies that the CKM mixing is mostly coming from UL.
Hence, in the case of a positron in the final state, i.e., for
α ¼ 1 in Eqs. (4.19) and (4.20), the contribution coming
from cðec; dÞ dominates over the contribution coming from
cðe; dcÞ in the decay width formula [see Eq. (4.3)], since
jðULÞ11j; jðDLÞ11j > jðDRÞ11j. Contrarily, if an antimuon is
in the final state (α ¼ 2), the contribution involving
cðμ; dcÞ is dominant over the contribution from cðμc; dÞ,

FIG. 9. The 1σ (dark) and 2σ (light) HPD intervals of the proton lifetime for various decay channels for a benchmark scenario with
MGUT ¼ 1016.2 GeV. The blue line segments represent the current experimental bounds at 90% confidence level.

FIG. 8. The 1σ (dark) and 2σ (light) HPD intervals of ratios of the proton lifetime of various decay channels. Interestingly, the ratio
τðp → η0eþÞ=τðp → π0eþÞ (which will partly be tested by Hyper-Kamiokande) is predicted very sharply.
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since jðDRÞ21j > jðULÞ21j; jðDLÞ21j. Now, varying over
the full flavor freedom, since we always roughly have
jðULÞ11j ≈ jðVCKMÞ11j; jðDLÞ11j ≈ 1, the dominating
c-coefficient cðec; dÞ only varies by an order 1 factor.
This results in a very sharp prediction for the partial lifetime
of the decay channel p → π0eþ. On the other hand,
jðDRÞ21j roughly varies within the interval [0.1, 1], result-
ing in a much less sharp prediction for the partial lifetime of
the decay width p → π0μþ.
Finally, from our MCMC results, we deduce the HPD

intervals of the Dirac CP and Majorana phase of the
PMNS matrix. At 1σ we obtain δν ∈ ½−22.6°; 34.4°� and
βν ∈ ½−124.1°;−71.4°�, while our 2σ HPD results are δν ∈
½−50.7°; 55.6°� and βν ∈ ½−132.2°;−54.1°�. Future experi-
ments involving these two observables also have the
potential to probe our model and to possibly further reduce
the allowed parameter space. For instance, our 2σ HPD
results for mββ, the effective mass parameter for the
neutrinoless double beta decay, is predicted to be
mββ ∈ ½1.46; 2.24� meV, well below the current experi-
mental bound of mββ < 61 meV provided by Ref. [85].

V. CONCLUSIONS

We present a minimal model of unification based on an
SUð5Þ gauge group augmented with a Peccei-Quinn
symmetry that predicts the existence of ultralight axion
dark matter within a narrow mass range of ma ∈
½0.1; 4.7� neV. This mass window is determined through

an interplay between gauge coupling unification con-
straints, partial proton decay lifetime limits, and the need
to reproduce the experimentally observed fermion mass
spectrum. The model also predicts that neutrinos are
purely of Majorana nature, possessing a normal mass
hierarchy spectrum, where one of the neutrinos is a
massless particle. We discuss the gauge boson mediated
proton decay signatures of the model and specify expected
partial lifetime ranges for two-body nucleon decays. Our
analysis yields viable 2σ ranges for the Dirac CP phase
δν ∈ ½−50.7°; 55.6°� and for the neutrinoless double beta
decay mββ ∈ ½1.46; 2.24� meV, respectively, through
which the model may be tested in the neutrino experi-
ments. Finally, we demonstrate that the entire parameter
space of the model will be tested through a synergy
between several low-energy experiments that look for
proton decay (Hyper-Kamiokande) and axion dark matter
(ABRACADABRA and DMRadio-GUT by measuring the
axion-photon coupling, and CASPEr Electric by measur-
ing the nucleon electric dipole moments).

APPENDIX: RENORMALIZATION GROUP
RUNNING OF THE GAUGE COUPLINGS

The 2-loop renormalization group equations of the SM
gauge couplings are given in Eq. (4.1). Here, we present the
1-loop and 2-loop gauge coefficients of multiplets listed in
Table I. The 1-loop gauge coefficients ðb1b2b3Þ are

b
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whereas the 2-loop gauge coefficients read
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