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Massive vector particles are minimal dark matter candidates that motivate a wide range of laboratory
searches, primarily exploiting a postulated kinetic mixing with the photon. However, depending on the high
energy field content, the dominant vector dark matter (VDM) coupling to visible particles may arise at
higher operator dimension, motivating efforts to predict direct detection rates for more general interactions.
Here, we present the first calculation of VDM absorption through its coupling to electron electric (EDM) or
magnetic (MDM) dipole moments, which can be realized in minimal extensions to the Standard Model and
yield the observed abundance through a variety of mechanisms across the eV–MeV mass range. We
compute the absorption rate of the MDM and EDM models for a general target and then derive direct
detection constraints from targets currently in use: Si and Ge crystals and Xe and Ar atoms. We find that
current experiments are already sensitive to VDM parameter space corresponding to a cosmological freeze-
in scenario, and future experiments will be able to completely exclude MDM and EDM freeze-in models
with reheat temperatures below the electroweak scale. Additionally, we find that while constraints on the
MDM interaction can be related to constraints on axionlike particles, the same is not true for the EDM
model, so the latter absorption rate must be computed from first principles. To achieve this, we update the
publicly available program EXCEED�DM to perform these new calculations.

DOI: 10.1103/PhysRevD.108.015024

I. INTRODUCTION

Light vector particles are economical extensions to the
Standard Model (SM) that require no stabilizing sym-
metries or mediator particles to account for the dark
matter (DM) in our Universe. The cosmological abundance
of vector DM (VDM) can arise through a variety of
mechanisms [1–10]. Minimally, VDM can be produced
gravitationally through quantum fluctuations during infla-
tion [11]. Alternatively, the VDM abundance can arise
through its SM interactions via the “freeze-in” mecha-
nism [12,13], which relates VDM production at early times
to observable signatures in terrestrial laboratories.
The most commonly studied VDM interaction is kinetic

mixing with the SM photon through the VμνFμν operator,
where Vμ is the VDM field, with mass mV , and Vμν ≡
∂μVν − ∂νVμ is its field strength tensor. This interaction can
populate the VDM through the infrared (IR) freeze-in

mechanism, in which the DM is initially absent at reheating
and builds up through sub-Hubble interactions as the
Universe expands. While this mechanism is elegant and
predictive, it is excluded for nearly allmV by a combination
of direct and indirect detection searches [14], so there is
motivation to explore alternative possibilities.
In the absence of kinetic mixing, the leading, viable,

V-SM interactions are the electric (EDM) and magnetic
dipole moment (MDM) operators,

LMDM ¼ dM
2

VμνΨ̄σμνΨ ð1Þ

LEDM ¼ dE
2
VμνΨ̄iσμνγ5Ψ; ð2Þ

which have mass dimension five, σμν ¼ i
2
½γμ; γν�, andΨ is a

charged SM fermion field represented as a Dirac spinor in
the broken electroweak phase. Such operators can be the
leading VDM interaction with SM particles if suitable new
states are integrated out at energy scales above E > 1=dE;M
(for a concrete model, see Refs. [15,16]).
The phenomenology of the MDMmodel was fist studied

in Ref. [17], where it was shown that VDM with keV≲
mV ≲MeV can viably freeze-in, while avoiding indirect
detection, and warm DM constraints. Since the MDM
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operator has mass dimension five, the cosmological abun-
dance depends on the reheat temperature, TRH. This UV
sensitivity makes it possible to viably freeze-in VDM by
leveraging the potentially large TRH to enhance cosmo-
logical production, while evading indirect detection con-
straints that exclude freeze-in through kinetic mixing.
While Ref. [17] mainly studied the indirect detection

bounds on the MDM interaction, direct detection con-
straints were left for future work. In this paper, we extend
this analysis to study VDM absorption onto atomic and
crystal targets:

(i) Atomic targets: For keV≲mV≲MeV, large exposure
liquid noble experiments, e.g., XENON [18–20] and
DarkSide [21,22], are expected to be sensitive to
absorption events when the VDM model couples to
the electron. We will refer to these targets as “atomic
targets,” since we approximate them as a collection
of individual atoms, such that the total absorption
rate is a simple sum of contributions from each atom.
Atomic targets are especially interesting because
they close the open window between the low mass
(mV ∼ keV) warm DM constraints, and the indirect
detection bounds which are dominant at higher
(mV ∼MeV) masses. As we will see, these targets
also play a key role in testing the predictive freeze-in
scenarios for a wide range of TRH.

(ii) Crystal targets: For lower masses, mV ≲ keV,
freeze-in is not a viable production mechanism since
the DM would be too warm. However, there are a
variety of production mechanisms which can pop-
ulate the DM; see Sec. II A for more details. For
these DMmodels, the energy levels of atomic targets
are no longer suitable for efficient VDM absorption.
Thus, for eV≲mV ≲ keV, we also compute absorp-
tion rates and extract constraints for crystal Si and
Ge targets with lower energy thresholds. These
targets are utilized in several current and future
experiments including,CDEX[23],DAMIC [24–28],
EDELWEISS [29–31], SENSEI [32–34], and
SuperCDMS [35–37].

In principle Ψ, in Eqs. (1) and (2), could be any charged
SM fermion. However, since our main focus is VDM
absorption onto direct detection targets, for the remainder
of this work, we will only consider the electron coupling.
Furthermore, throughout our analysis, we treat the EDM
and MDM cases separately, though our results generalize
easily to scenarios in which both dM and dE are nonzero.
Previous VDM absorption rate calculations [14,38–42]

have been focused on the kinetically mixed scenario, for
which the absorption rate is simply related to the photon
absorption rate. However, this relation does not hold in
general; for generic interactions, the absorption rate must
be calculated from first principles [40,41]. For our oper-
ators of interest, Eqs. (1) and (2), we generalize the
procedure outlined in Ref. [40] and find that, while the

MDM absorption rate can be related to the photon
absorption rate, the same is not true for the EDM inter-
action, which requires a dedicated calculation.
Moreover, we show that for 100 keV≲mV even the

absorption rate of the familiar kinetically mixed model
cannot be related to the photon absorption rate due to the
kinematic mismatch (see Sec. III). We perform the first
principles absorption calculation by extending the publicly
available code EXCEED�DM [42–45] with support for
atomic targets and make the modifications publicly avail-
able as well.
This paper is organized as follows. In Sec. II, we discuss

cosmological production mechanisms that can populate
VDM in the early Universe. In Sec. III, we derive the
electronic absorption rate of VDM in the MDM and EDM
models. In Sec. IV, we begin by comparing our first
principles calculation of the VDM absorption rate to
previously computed photoelectric cross section, and then
we compute, and discuss, the direct detection constraints
for both the MDM and EDM models. Lastly, in Sec. V, we
summarize our results and discuss how future work may
extend experimental sensitivity to these scenarios.

II. COSMOLOGICAL PRODUCTION

Viable DM candidates that allow for absorption proc-
esses are generically out of equilibrium in the early
Universe, as the interaction strengths required to thermalize
with the SM also induce particle lifetimes much shorter
than the age of the Universe. Thus, in this section, we
briefly survey a variety nonthermal VDM production
mechanisms, categorized according to whether or not the
abundance arises from SM interactions.

A. Production from additional BSM fields

In a broad class of models, the nonthermal VDM
abundance depends on the details of the very early
Universe. For example, if the V mass is nonzero during
inflation and light compared to the Hubble rate, there is a
cosmic abundance of longitudinally polarized vectors
arising from inflationary fluctuations [11],

ΩV ≃ΩDM

�
HI

1014 GeV

�
2
�
6 μeV
mV

�
1=2

; ð3Þ

whereHI is the inflationary Hubble scale,Ωi ≡ ρi=ρc is the
present day abundance fraction of species i, ρc ≈ 4 ×
10−47 GeV4 is the critical density, and ΩDM ¼ 0.264 [46].
If V couples to additional fields that undergo nontrivial
evolution in the earlyUniverse, theVDMproduction rate can
be further be enhanced through parametric resonance, which
can yield the observed DM abundance even if gravitational
production through inflationary fluctuations is ineffi-
cient [7,10]. The VDM abundance can also arise from initial
conditions via preinflationary misalignmnent [3,9,47].

GORDAN KRNJAIC and TANNER TRICKLE PHYS. REV. D 108, 015024 (2023)

015024-2



However, as noted in Ref. [3], misalignment is inefficient at
producing VDM abundance unless the vector is nonmini-
mally coupled to gravity.
Since these mechanisms populate VDM independently

of its coupling to the SM, we remain agnostic to the UV
details of such scenarios. Throughout this work, we assume
that one of these mechanisms suffices to produce the
abundance—particularly in the low mass (mV ≲ keV)
regime, where SM freeze-in (discussed below) production
is excluded by structure formation bounds on warm DM.

B. Production from SM freeze-in

The freeze-in mechanism postulates that DM is initially
not populated when the SM radiation bath is created after
inflation. Self-consistency requires the DM-SM interaction
rate to be sub-Hubble at this time, so that DM does not
thermalize with visible matter. In this class of models, the V
abundance is

ΩV ≃
mVs0
ρc

Z
TIR

TRH

dT
T

hΓVin̄V
Hs

; ð4Þ

where hΓVi is the thermally averaged VDM production
rate, n̄V is the number density the V particles would have if
they were in chemical equilibrium at temperature T, H is
the Hubble expansion rate during radiation domination, s is
the entropy density, and a zero subscript represents a
present day quantity. The integration range in Eq. (4) spans
from the reheat temperature TRH to the temperature at
which freeze-in production halts, which typically satisfies
TIR ¼ maxðmV;mSMÞ, where mSM is the mass of the main
SM species driving freeze-in production.

1. Excluding renormalizable freeze-in

Massive vectors that kinetically mix with the photon can
be frozen in through this same interaction, while main-
taining a cosmologically long lifetime, for couplings that
yield the observed DM abundance. For mV < 2me, the
dominant decay channel is V → 3γ, which can be cosmo-
logically metastable due to the sharp phase space suppres-
sion in the width for this process ð∝m9

V=m
8
eÞ. However, the

keV≲mV ≲ 2me window is almost fully excluded by a
combination of x-ray and direct detection limits [14]. For
lighter (mV ≲ keV) masses, these direct bounds can be
evaded, but in this regime the VDM is too warm for viable
structure formation.
If the vector particle is the gauge boson of an Abelian

SM extension—e.g., gauged B − L or Li − Lj, where B
and L are the baryon and lepton number, respectively—it
can couple directly to visible particles in the absence of
kinetic mixing (see Ref. [48] for a review). However, in the
absence of additional new field content at low energies, all
anomaly free Uð1Þ extensions require V couplings to
neutrinos. Thus, for gauge couplings that would produce

the observed DM abundance (e.g., g ∼ 10−11 for the ALP
and kinetically mixed dark photon models [14]), V → ν̄ν
decays are prompt on cosmological timescales, so the
vector is not a viable DM candidate.
Similar considerations apply to VDM whose population

freezes in through other dimension four operators (e.g.,
VμΨ̄γμγ5Ψ). Since IR dominated freeze-in predicts a one-
to-one correspondence between production and late time
decay, the irreducible loop-level decay V → 3γ decay is
comparably constrained by the same x-ray bounds that
exclude kinetic mixing. Thus, any viable model of VDM
freeze-in through SM interactions must involve operators
beyond mass dimension four.

2. Freeze-in through dipole operators

In light of the above considerations, we now consider
freezing in VDM through MDM and EDM interactions. In
the early Universe, if electroweak symmetry is restored at
high temperatures, the interactions in Eqs. (1) and (2) can
be resolved as

LUV
MDM ¼ dMffiffiffi

2
p

v
HVμνL̄σμνec ð5Þ

LUV
EDM ¼ idEffiffiffi

2
p

v
HVμνL̄σμνγ5ec; ð6Þ

where L is the first generation lepton doublet, ec is the right-
handed electron singlet, and H is the Higgs doublet. After
electroweak symmetry breaking (EWSB), the Higgs doublet
acquires a vacuum expectation value hHi ¼ ½0; v= ffiffiffi

2
p �T ,

where v ¼ 246 GeV, and the operators in Eqs. (5) and (6)
reduce to theMDM and EDM dipole interactions in Eqs. (1)
and (2), respectively.
Since these interactions are higher dimension operators,

the VDM freeze-in abundance will depend on the reheat
temperature of the universe after inflation, TRH. If TRH >
160 GeV then the Universe is initially in the unbroken
electroweak phase [49], and the freeze-in abundance
accumulates through the interactions in Eqs. (5) and (6).
As shown in Ref. [17], this yields

ΩV ≈ΩDM

�
mV

3 MeV

��
dM=E · GeV

10−13

�
2
�
TRH

TeV

�
3

; ð7Þ

where VDM is produced via eh → eV and eþe− → hV
reactions, and h is the Higgs field. Note that Eq. (7) holds
for both the MDM and EDM models.
If, on the other hand, TRH < 160 GeV, the radiation era

begins in the broken electroweak phase, and VDM freeze-
in proceeds through the interactions in Eqs. (1) and (2), for
which the abundance satisfies [17]
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ΩV ≈ΩDM

�
mV

MeV

��
dM=E · GeV

10−10

�
2
�
TRH

GeV

�
: ð8Þ

Here, the main freeze-in reactions are now eγ → eV and
eþe− → γV. The key difference between Eqs. (8) and (7) is
the TRH dependence; the VDM abundance is more strongly
dependent on TRH in the unbroken electroweak phase. Note
that in both Eqs. (7) and (8), we only use one of the MDM/
EDM operators to calculate the abundance. Additionally,
similar to Eq. (7), this expression holds for both the MDM
and EDM models. In Figs. 1 and 2, we show gray dashed
contours corresponding to the dM=E necessary to generate
the observed freeze-in abundance for various choices of
TRH andmV ≳ keV. For smaller masses, freeze-in produces
warm VDM in conflict with the observed matter power
spectrum on small scales [17], and therefore, the abundance
curves do not extend below mV ∼ keV.
As discussed earlier, for smaller masses the abundance

must be set by other mechanisms. However, for this to be
true, it must be the case that the VDM is not thermalized via
pair annihilation and Compton-like scattering processes.
Conservatively assuming TRH ¼ 1 MeV leads to a cosmo-
logical consistency condition of dM=E ≲ 10−6 GeV−1, we
do not plot above above this value in Figs. 1 and 2.

III. ABSORPTION RATE CALCULATION

In this section, we calculate VDM absorption rates
through the MDM and EDM interactions in Eqs. (1) and
(2), respectively. Bosonic DM absorption rates in
atomic targets have previously been calculated for the
axionlike particles (ALP) and kinetically mixed dark
photons [14,38,39]. However, since we are studying differ-
ent DM interactions, the corresponding absorption rates
need to be derived from first principles.
In our calculation, we follow the approach in

Refs. [40,41], which extracted general absorption rates
in terms of bosonic self-energies in the nonrelativistic (NR)
limit of the interaction Lagrangian.1 The advantages of this
approach are that it applies to any DM model or target
electronic structure, and automatically incorporates any in-
medium effects [although these are mainly important for
crystal targets with OðeVÞ band gaps].
If the dark photon, V, does not mix with the photon, A,

the optical theorem tells us that the absorption rate of the ith

polarization of V, Γi
V , is given by

FIG. 1. Projected 95% C.L. constraints (three events, no background) on the dM parameter in the MDM model, Eq. (1), in crystal Si
(red) and Ge (blue) targets, and atomic Xe (green) and Ar (purple) targets. Crystal targets assume an exposure of 1 kg · yr, and atomic
targets assume an exposure of 10 ton · yr. Dashed lines are constraints using rescaled photon absorption data. Photon absorption data for
the crystal targets are a combination of Refs. [50,51], and data for the atomic targets are a combination of Refs. [51,52], shown in Fig. 3.
Previous constraints on ALPs from XENONnT [18], XENON1T [19], XENON10=100 [20], and SuperCDMS [53] (shaded teal, orange,
cyan, red, respectively) have been recast by converting those constraints to photon absorption cross sections, and using Eq. (26). Indirect
detection bounds on V → 3γ from INTEGRAL [17,54] are shown in shaded blue. Gray dashed lines apply if the DM is produced via the
freeze-in mechanism [13,17]. The warm DM limit (WDM) is taken from Ref. [17], and the lines labeled by TRH correspond to the
necessary reheat temperature to generate the relic abundance via Eqs. (7) and (8).

1The NR limit is appropriate here since the energy and
momentum transfers in the process are both much smaller than
the electron mass.
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Γi
V ¼ −

1

mV
Im½Πi

VV �; ð9Þ

where Πi
VV is the self-energy of the ith polarization.

However, if V mixes with A (e.g., through a loop of
electrons) then V and A are no longer the eigenstates of the
theory, and the true eigenstates, V 0 and A0, are those that
diagonalize the 2 × 2 self-energy matrix between V and
A [40,41,55]. In this case, the VDM absorption rate is
related to the imaginary part of the V 0; V 0 self-energy,

Γi
V 0 ¼ −

1

mV
Im½Πi

V 0V 0 � ð10Þ

≈ −
1

mV
Im

�
Πi

VV þ
X
j

Πij
VAΠ

ji
AV

m2
V − Πj

AA

�
; ð11Þ

where we have assumed that V, A are perturbatively
coupled. The absorption rate per unit exposure, averaged
over the incoming DM polarizations, now becomes

R ¼ ρV
ρTmV

1

3

X3
i¼1

Γi
V 0 ; ð12Þ

where ρV ¼ 0.4 GeV=cm3 is the DM mass density, and ρT
is the target mass density. Assuming that the self-energies
are independent of polarization, shown explicitly in
Appendix B for the isotropic targets of interest here,
Eq. (12) becomes

R ¼ −
ρV

ρTm2
V
Im

�
ΠVV þ ΠVAΠAV

m2
V − ΠAA

�
; ð13Þ

and computing the absorption rate becomes a problem of
evaluating the relevant self-energies, ΠVV;ΠVA;ΠAV;ΠAA.
To calculate the self-energies, we use an NR effective

field theory (EFT) of electrons appropriate for energy and
momentum transfers below the electron mass. This
involves taking the NR limit of the QED Lagrangian,
supplemented with the interaction terms from Eqs. (1) and
(2). This procedure is a tedious, but straightforward,
exercise performed in Ref. [40], and which we detail in
Appendix A. The full expressions of the NR limit of the
MDM and EDM Lagrangians, to Oðm−2

e Þ, can be found in
Eqs. (A22) and (A23), respectively.
While the full NR Lagrangians are relatively compli-

cated, different approximations only leave a few important
terms. First, we assume that the target has no spin ordering
(i.e., there is no net electronic spin polarization) and that the
electronic states are spin degenerate. This allows all of the
self-energies to be written in terms of spin-independent
matrix elements. Second, in typical targets the electron
velocity, ve ∼ Zα≳ 10−2, is greater than the halo DM
velocity of ∼10−3. This allows us to neglect many terms
which are proportional to the DM momentum, q.
Explicitly, the terms which will give the dominant

contribution to the absorption rates, via ΠVV , are

LNR
MDM ⊃

idMmV

me
ψ†ðσ × kÞψ · V ð14Þ

FIG. 2. Projected 95% C.L. constraints (three events, no background) on the dE parameter in the EDM model, Eq. (2), in crystal Si
(red) and Ge (blue) targets, and atomic Xe (green) and Ar (purple) targets. Crystal targets assume an exposure of 1 kg · yr, and atomic
targets assume an exposure of 10 ton · yr. Shaded regions with dashed outline are expected direct detection constraints derived by
rescaling the constraints in analogy with Fig. 1. Indirect detection bounds from INTEGRAL [54] are shown in shaded blue. Gray dashed
lines apply if the DM is produced via the freeze-in mechanism [13,17]. The warm DM limit is taken from Ref. [17], and the lines labeled
by TRH correspond to the reheat temperature that yields the observed VDM abundance via Eqs. (7) and (8).
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LNR
EDM ⊃

idEmV

m2
e

ψ†ðσ · kÞkψ · V; ð15Þ

for the MDM and EDM models, respectively, where σ are
the Pauli matrices, and k ¼ −i∇ is the electron momen-
tum. These lead to the self-energies,

ΠMDM
VV ¼ 2

3
d2Mω

2Π̄vi;vi ð16Þ

ΠEDM
VV ¼ d2Eω

2

3
Π̄vivj;vivj ; ð17Þ

where i, j are summed indices, ω is the energy flowing
through the self-energy diagram, and vi are the components
of v≡ k=me. The Π̄O1;O2

are then computed in terms of the
target electronic structure [40–42],

Π̄O1;O2
¼ 1

V

X
IF

1

hFjFi
�

T O1
T �

O2

ω−Δωþ iδ
−

T O2
T �

O1

ωþΔω− iδ

�
; ð18Þ

where V is the target volume, jIi; jFi are the initial and
final electronic states, respectively, ωI , ωF are the initial
and final state energies, respectively, T O ≡ hFjOjIi is the
transition matrix element for Hermitian operatorO, and δ is
the width of the electron resonance.2 This expression will
take different forms in crystal and atomic targets, since the
electronic states, jIi; jFi, differ between them. Explicit
forms for the transition matrix elements that define Π̄O1;O2

for crystal targets have been discussed in detail in
Refs. [40–42]. In Appendix B, we derive the results for
atomic targets. Note that this definition of Π̄ is a slight
generalization from previous works to account for nonunit
normalized final states, hFjFi ≠ 1. This is useful when
working with a continuum of final states, as appropriate for
atomic targets.
Additionally, one can show that starting from the

complete Lagrangians in Appendix A, at leading order
the V, Amixing self-energies are only nonzero in the MDM
model and are related to the photon self-energy,

ΠMDM
VA ¼ ΠMDM

AV ¼ −
dM
e

ω2

2me
ΠAA; ð19Þ

so the MDM model generates mV=me suppressed mixing
effects, while there are no mixing effects in the EDM
model.

With all of the self-energies computed, we can now
compute the absorption rates for the MDM and EDM
models by substituting Eqs. (16), (17), and (19) in to
Eq. (13). While the expressions in terms of the self-energies
are identical between different targets, for the MDM model
the rate can be written in terms of the photon self-energy
since both the V, A mixing term and the imaginary part of
the V, V self-energy are related to ΠAA,

1

3
Im½Π̄vi;vi � ¼

1

e2
Im½ΠAA�: ð20Þ

Therefore, while the MDM model absorption rate can be
written in terms of the photon self-energy, that does not
necessarily imply that it is related to the photon absorption
rate. The reason for this is kinematics: when a photon with
energy ω is absorbed, the momentum absorbed by the
target is q ¼ ω. Therefore, the photon absorption rate is
determined by ΠAAðq ¼ ωq̂;ωÞ, where q̂ is the direction of
the incoming photon. However, when VDM with energy
ω ≈mV is absorbed, the momentum absorbed by the target
is much smaller, q ∼mVvV , where vV ∼ 10−3 is the VDM
velocity. Therefore, only when,

ΠAAðq ¼ mV q̂; mVÞ ≈ ΠAAðq → 0; mVÞ; ð21Þ

can the VDM absorption rate be related to the photon
absorption rate, at incoming photon energies of ω ¼ mV .
To understand when this is a good approximation, it is
important to know that ΠAA is a function of the matrix
element T 1. If the dipole approximation is valid,

T 1 ¼ hFjeiq·xjIi ≈ iq · hFjxjIi; ð22Þ

then Eq. (21) is also approximately true, since the
ΠAAðq → 0; mVÞ depends on the approximated, right side
of Eq. (22), and ΠAAðq ¼ mV q̂; mVÞ depends on the left
side of Eq. (22) evaluated at q ¼ mV q̂. The dipole
approximation is valid when qx ≪ 1, where x is a typical
distance scale. For atomic targets, typical x values are
a0=Z, where a0 is the Bohr radius, and Z is the
nuclear charge. Therefore, for Eq. (21) to be valid,
mV ≲ Z=a0 ∼ 4ZkeV. For the atomic targets of interest
here, Xe and Ar, this implies that the absorption rate of
VDM with mass mV , can only be related to the photon
absorption rate, at ω ¼ mV , for mV ≲ 100 keV. Moreover,
the most accurate VDM absorption rate calculation for
mV ≳ 100 keV would be a first principles calculation done
in the dipole approximation, as opposed to rescaling the
photon absorption rate.
While this is an important conceptual point, it is also at

the boundary of interesting VDM parameter space, since
indirect detection constraints from V → 3γ become impor-
tant near mV ∼MeV. Therefore, for the most interesting
VDM masses, it is appropriate to relate the MDM model
absorption rate to the photon absorption rate.

2Strictly speaking, there should be an additional phase factor
in the definition of the transition matrix element: T O ¼
hFjeiq·xOjIi [40–42]. However, for absorption kinematics,
q ≪ ω, the phase factor is generally negligible, except for
O ¼ 1 due to state orthonormality. Therefore, when discussing
T 1, we keep the phase factor.
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For crystal targets, the natural way to express this is to
write ΠAA is terms of the dielectric function, ϵðωÞ [40],

ΠAA ¼ ω2ð1 − εÞ; ð23Þ

while for atomic targets it is more natural to use the
photoelectric cross section, σpe. These are related by

ωIm½ε�≡ σ1 ¼ nTσpe; ð24Þ

where nT is the target number density. Using these relations
the absorption rates are given by

RMDM ¼ 2ρV
ρT

d2M
e2

m2
VIm½ε�

�
1þ m2

V

8m2
e

1 − jεj2
jεj2

�
ð25Þ

≈
2ρV
mT

d2M
e2

mVσpe ð26Þ

REDM ¼ −
d2E
3

ρV
ρT

Im½Π̄vivj;vivj �; ð27Þ

where mT is the mass of the target atom. Therefore, we see
that while the MDM absorption rate can be related to
photon absorption in a target, this is not true for the EDM
model; a similar result was found for the scalar DM
absorption model discussed in Ref. [40]. Therefore to
make projections for the direct detection constraints on
the EDM model, the absorption rate must be computed
from first principles.

IV. DIRECT DETECTION CONSTRAINTS

From the discussion in Sec. III, we know that while the
absorption rate of the MDMmodel can be related to photon
absorption, via the dielectric in crystal targets or the
photoelectric cross section in atomic targets, the EDM
absorption rate must be computed from first principles.
Since the first principles calculation relies on an
assumption about the initial and final electronic states in
the target, we begin by discussing the electronic configu-
rations assumed for the crystal Si, Ge, and atomic Xe, and
Ar targets used here.
For Si and Ge targets, we use the publicly available

electronic configuration from Ref. [56], which has been
used previously [42] to compute the absorption rate for
scalar, axionlike particle, and kinetically mixed dark
photon models. Detailed information about the electronic
configuration can be found here [57], and a longer
discussion regarding modeling of the electronic configu-
ration in this way can be found in Refs. [42,45]. The
configurations use three different methods to approximate
the electronic states. The deeply bound, “core” (all orbitals
inclusively below 2p in Si and 3d in Ge) states are assumed
to be solutions to the Hamiltonian of an isolated atom,
which are computed using the RHF method [58]. These

states are expanded in an STO basis, and tabulated values of
the coefficients can be found in Ref. [59]. The states closer
to the Fermi surface, including four valence bands below
and 60 (82) conduction bands above in Si (Ge), are
computed with density functional theory (DFT) methods,
expanded in a Bloch basis with an Ecut ¼ 2 keV, and are
all-electron reconstructed. Lastly, the highest energy states,
with energies between 60 eV and 1 keV above the Fermi
surface are treated as free plane waves. Lastly, following
the treatment in Refs. [40,42], we model the electron width
as δ ¼ 0.2þ 0.1ω.
Relative to the electronic states in crystal targets, those in

atomic targets are much simpler. This is because all
electrons in the target are tightly bound to an individual
atom, and therefore, the electronic states can be determined
in isolation of the other atoms in the target. Similar to the
deeply bound, “core” electron states in crystal targets, we
use the results of an RHF calculation [59] for the initial
electronic states. For the final states, we use the continuum
solutions to the Hamiltonian with a V ¼ −Z=r potential,
where Z is the nuclear charge, sometimes known as
“Coloumb wave functions” [60–63], with Z set by the
binding energy of the initial electronic state.3 This approxi-
mation for the initial and final electronic states has been
used in previous studies of DM-electron interactions in Xe
and Ar targets [60,64,65]. More details about the initial and
final electronic states, and the conventions used here, can
be found in Appendix C.
To compute the absorption rates in Si, Ge, Xe, and

Ar targets, we use EXCEED�DM [42–45]. While
EXCEED�DM has been used extensively with the elec-
tronic configurations of Si and Ge, it did not previously
support atomic targets. We added support for this class of
targets and have made these updates publicly available in a
new version. Additionally, the MDM and EDM model
absorption rate calculation in Si and Ge targets has also
been added.
Before discussing the constraints on the MDM and EDM

models, it is important, when possible, to verify the
electronic configurations being used against measured
photon absorption data. This has been done previously
for Si and Ge [40], and therefore, we focus on the Xe and
Ar calculations. Using Eq. (26), we can compute the
photoelectric cross section, σpe, by rescaling the dark
photon absorption rate in the MDM model. In Fig. 3,
we compare the photoelectric cross sections computed with
EXCEED�DM to a variety of other calculations and
measurements [38,51,52,62]. Overall, we find good agree-
ment in both Xe and Ar targets, withOð1Þ discrepancies for
ω≲ keV, and ω≳ 100 keV. The slight disagreement at
low energies is somewhat expected due to our “isolated”

3The ZF parameter used in calculating the final states is
assumed to be related to the binding energy; see Appendix C for
more details.
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atom approximation, which completely neglects the target
environment when solving for the electronic wave func-
tions. A more sophisticated approach (e.g., using the DFT
formalism) for the electronic states involved in low ω
absorption would likely reduce this discrepancy.
At high energies, the difference between the XCOM and

EXCEED�DM calculations is due to the kinematic differ-
ence between photon and dark photon absorption discussed
in Sec. III. This high energy discrepancy can also be
understood in the context of the standard dipole approxi-
mation in Eq. (22). For photon absorption, when
qx ¼ ωx ≫ 1, or equivalently when ω≳ Z=a0, the dipole
approximation breaks down, and one must use the expo-
nential form of the operator in the transition matrix element.
The XCOM calculation uses the exponential form, whereas
the dashed orange curve from Ref. [62] uses the dipole
approximation, which underestimates the photon absorp-
tion rate at high ω. Reference [62] also computes σpe in the
exponential form and reaches same conclusion: the dipole
approximation underestimates the photon absorption rate
for large q ¼ ω. However, while the dipole approximation
is not appropriate for photon absorption at high ω, it is
appropriate for dark photon absorption, since q ≪ ω, and
therefore, qx ≪ 1 is still valid even when ω ∼MeV,
contrary to photon absorption.
With verification that our electronic configurations

reproduce other observables, we now discuss the con-
straints for the MDMmodel, shown in Fig. 1, as well as the
EDMmodel, shown in Fig. 2. For both the MDM and EDM
models, the lowest probeable DM mass is set by the
minimum energy difference between initial and final states,

since ω ≈mV . For crystal targets, this is the band gap,
which is about 1.11 eV in Si, and 0.67 eV in Ge. In atomic
targets, this is the ionization energy (or negative of the
binding energy) of the least bound electron, i.e., the 5p
electron in Xe, with EI ≈ −12 eV and the 3p electron in Ar,
with EI ≈ −16 eV.4 The high DM mass cutoff in Si and Ge
at mV ∼ 1 keV is due to the fact that the electronic
configuration only includes final states with final energies
up to a keV. That is, the cutoff is just an analysis cutoff, not
a physical one. However, for mV ≳ keV future iterations of
the XENON experiments are expected to dominate the
bounds due to their large exposure. Therefore, it is unlikely
that Si and Ge target projections will be important above
for mV ≳ keV.
As discussed in Sec. II, for mV ≳ keV, the cosmological

abundance can be set by the freeze-in mechanism. This
lower bound is set by constraints on structure forma-
tion [66–68] and is shown as a dashed gray vertical line
in Figs. 1, 2. If the DMwas lighter than this, it would be too
hot and suppress structure formation on small scales. For
masses larger than this, the abundance is then set by the
reheat temperature, TRH, via Eqs. (7) and (8). As shown in
Fig. 1, we find that current direct detection constraints,
mainly XENONnT [18], set a lower bound on the viable

FIG. 3. The photoelectric cross section, σpe, of Xe (left panel) and Ar (right panel) targets computed with various methods. The
calculation done with EXCEED�DM, and subsequently used to constrain the MDM model in Fig. 1, is shown in solid red.
Experimental measurements from Ref. [52] are shown in dashed green. Other experimental measurements, used in Ref. [38], to place
constraints on other DM models with Xe targets, are shown in dashed purple. Photoelectric cross sections from the NIST database,
computed with the XCOM program [51], are shown in dashed blue. Lastly, we show the photoelectric cross section for the K shell of Ar
(dashed orange), computed under the dipole approximation in Ref. [62], to further illustrate the discrepancy between the photoelectric
cross section computed with photon versus dark photon kinematics, as discussed in Sec. III.

4DM with a mass below the ionization energy could cause a
transition from a filled bound state to an unfilled bound state in an
atomic target. However, the observable would then be a low
energy scintillated photon when the electron decays back down,
as opposed to an outgoing electron, and therefore, evade
detection in the standard experimental detection channels.
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reheat temperature for the MDM model, TRH ≳ 100 GeV.
The constraint increases to nearly TRH ≳ 103 GeV for
mV ∼ 1 keV. This nearly closes the previously open
parameter space on MDM VDM production via subelec-
troweak scale reheat temperatures. Roughly 100× greater
exposure will be needed to make the same statement
about TRH ∼ 103 GeV, due to the stronger scaling of the
abundance with TRH above the electroweak scale, as
shown in Eq. (7). Furthermore, low threshold analyses
of atomic targets, along with even lower threshold con-
straints from crystal target experiments such as CDEX [23],
DAMIC [24–28], EDELWEISS [29–31], SENSEI [32–34],
and SuperCDMS [35–37] will constrain models producing
low mass MDM coupled DM via the other mechanisms
discussed in Sec. II.
Similar conclusions, to that of the MDMmodel, hold for

the EDM model shown in Fig. 2; although the constraints
are slightly weaker. This can be understood from Eqs. (26),
(27): the EDM absorption rate is suppressed relative to the
MDM scenario by a factor of v2e, and therefore, constraints
are weaker by, roughly, a factor of Zα. Since the EDM
absorption rate is not related to the photon absorption rate,
there are no official direct detection constraints. To get an
estimate of where these would lie, we assume that the
projections, solid lines in Fig. 2, can be rescaled by the
same factor that would bring the solid lines in agreement
with the edge of the shaded regions in Fig. 1. Essentially,
we are assuming the same “detection efficiency” in both the
EDM and MDM models. These rescaled, expected limits
are shown as shaded regions with dashed edges in Fig. 2.

V. CONCLUSION

In this paper, we have studied the absorption rate of
vector dark matter particles that couple to electrons
preferentially through electric and magnetic dipole moment
operators. We use these results to place new limits on these
scenarios from a variety of direct detection searches
utilizing both crystal and atomic targets, and make projec-
tions for future searches, which are poised to improve
experimental sensitivity to these interactions by several
orders of magnitude across the eV–MeV mass range. This
parameter space is particularly interesting because it covers
masses and dipole couplings that can yield predictive
cosmological freeze-in production through the same oper-
ator responsible for absorption reactions; freeze-in through
kinetic mixing is nearly fully excluded for all choices of
particle mass.
While it has been known for some time that the

absorption of the kinetically mixed dark photon, and
ALPs, can be related to the photon absorption
rate [14,38,39], this relation does not hold in general.
Indeed, in Ref. [40], it was shown that for scalar DM this
relationship does not exist. Following the ideas presented in
Ref. [40], albeit with a different derivation discussed in
Appendix A, in Sec. III we derive the NR limit of UV

Lagrangians in Eqs. (1), (2) and use these to compute the
self-energies and absorption rate. This procedure is general
to any DM model and therefore, should be useful for future
studies of different DM models. We find that while the
absorption rate of the MDM model can be related to the
photon absorption rate, this is not true for the EDM model,
which therefore must be computed from first principles.
To compute the absorption rate of the EDM model, we

modified EXCEED�DM [42–45], the program previously
used in the first principles study of DM absorption on
crystal targets [40–42]. We implemented two main
improvements: first, we added support for absorption
calculations involving atomic targets, i.e., transitions
between bound and continuum states using the standard
approximations for these electronic states [60,64]. Second,
we added the EDM and MDM absorption rate calculation
for crystal targets, e.g., Si and Ge (in addition to the atomic
targets previously mentioned). Updates to the program are
publicly available.
The results of these new calculations were discussed in

Sec. IV, and shown in Figs. 1 and 2. We began by verifying
the first principles calculation against other photoelectric
cross section measurements and calculations, in Xe and Ar
targets, in Fig. 3. We find good agreement, up to Oð1Þ
factors, with the largest discrepancies below ∼100 eV, and
above ∼100 keV. At low energies, the discrepancy is likely
due to a too simplified treatment of the electronic states.
Future work using more advanced methods, e.g., density
functional theory, should decrease the disagreement and
also lead to more accurate scattering rate calcula-
tions [60,64]. At high energies, the difference is due to
using the dipole approximation in the transition matrix
element. However, as discussed in Sec. III, the dipole
approximation is appropriate in the context of DM absorp-
tion, since kinematically the dark photon is depositing
much less momentum, relative to a photon, for a given
energy deposition. Therefore, strictly speaking, in this
region, even the kinetically mixed dark photon absorption
rate cannot be related to the measured photon absorption
rate. While this is a theoretically interesting point, the
difference ends up being marginal; and, moreover, the DM
masses for which this is important are ruled out by indirect
detection, as seen in Figs. 1 and 2.
VDM coupling to electrons via MDM and EDM

operators are simple, motivated extensions to the SM
which can account for the DM abundance, and therefore
must be searched for in every possible avenue. In this paper,
we have shown how to compute the direct detection rate for
these models, and aim to include them in future official
analyses alongside ALP and kinetically mixed dark photon
constraints. Even without considering MDM and EDM
couplings to other SM fermions, there is interesting physics
beyond the scope of this paper yet to be explored.
Searching for VDM masses below mV ∼OðeVÞ will
require utilizing more novel excitations in low threshold
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experiments, such as phonons [69–83] and mag-
nons [80,83–87], or electronic excitations in more novel
targets, such as small band gap crystals [41,88–91] and
superconductors [92–94]. Additionally, a detailed study of
stellar cooling constraints is important and may place
stronger constraints for mV ≲ 10 keV than the thermal-
ization requirement discussed in Sec. II.
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APPENDIX A: NONRELATIVISTIC
LAGRANGIANS

The initial step in any calculation of DM induced
electronic excitation rates is to reduce the UV Lagrangian,
written in terms of the four component Dirac field,Ψ, to the
nonrelativistic (NR) Lagrangian, written in terms of a light,
two component field, ψ , which solves a charged particle
Schrödinger equation. In general, this is a nontrivial problem
for electrons in background electromagnetic potentials. To
leading order in the DM-electron coupling, this can be done
in two separate steps. The first step is to find theΨ → ψ map
which reduces to the NRQED Lagrangian starting from

LQED ¼ Ψ̄ðiγ0D0 þ iγiDi −meÞΨ; ðA1Þ

where Dμ ¼ ∂μ þ ieAμ. The second step is to apply the
same field transformation, Ψ → ψ , on a UV DM-electron
interaction vertex, e.g., Ψ̄OUVΨ, which creates a UV to NR
map to one written in terms of the light field, ψ ,

Ψ̄OUVΨ → ψ†ONRψ ; ðA2Þ

where OUV is a 4 × 4 matrix, and ONR is a 2 × 2 matrix.
In Sec. A 1, we derive the NRQED Lagrangian to

Oðm−2
e Þ. That is, we take the low energy, momentum limit

of Eq. (A1) to find LNR
QED, whose leading terms give the

Schrödinger equation of a charged particle. While the
NRQED Lagrangian has clearly been known for a long
time, we rederive it starting from Eq. (A1) since we are
using a different method to take the UV to NR limit than
was done in previous calculations [40]. Therefore, a
complete derivation is useful in comparing to previous
results, as well as a pedagogical introduction to NRQED.
Then, in Sec. A 2, we apply the field transformation on the
MDM and EDM interactions of interest in Eqs. (1) and (2),
respectively. The final result of these calculations is
summarized in Table I.

1. NRQED Lagrangian via Foldy-Wouthuysen
transformation

We begin with the NRQED step, which can be done in
many ways [95]. One detailed recipe for doing this in
the context of DM absorption on electrons is given
in Ref. [40]. Here we use an alternative formulation, known
in other contexts as a Foldy-Wouthuysen (FW) trans-
formation [96–100]. For this problem, and for reasons that
will become clear shortly, it is better to work in the Dirac
basis, where

γ0¼
�
1 0

0 −1

�
; γi¼

�
0 σi

−σi 0

�
; γ5¼

�
0 1

1 0

�
: ðA3Þ

The main problem that we are trying to solve is that the
QED Lagrangian in Eq. (A1) mixes the two, two-compo-
nent fields inside Ψ, which makes solving the system for
each two-component field difficult. To see this, define

TABLE I. NR limit (right column), Ψ̄OUVΨ → ψ†ONRψ , of the relevant UV operators (left column) needed to
find the NR limit of the MDM and EDM interactions in Eqs. (1) and (2), respectively. We only keep terms involving
two fields (excluding the electron field, ψ).

OUV ONR

σ0iV 1
2me

ð½∂iV� þ iϵijkσjð½∂kV� þ 2V∂kÞÞ − eV
me

ðϵijkσjAkÞ − eV
2m2

e
ð½∂0Ai� − ½∂iA0�Þ

σijV ϵijkðVσk þ 1
2m2

e
ð½∂kV�σm∂m þ σmð2V∂m þ ½∂mV�Þ∂k − iϵkmn½∂mV�∂n þ 1

2
½∂2V�σkÞÞ

þ ieϵijk

2m2
e
ðσmAmð2V∂k þ ½∂kV�Þ þ Akσmð2V∂m þ ½∂mV�Þ − Vσm½∂kAm� þ 3Vσm½∂mAk� þ iϵkmnAm½∂nV�Þ

iσ0iγ5V −σiV − 1
2m2

e
ð½∂iV�σm∂m þ σmð2V∂m þ ½∂mV�Þ∂i − iϵimn½∂mV�∂n þ 1

2
½∂2V�σiÞ

− ie
2m2

e
ðσmAmð2V∂i þ ½∂iV�Þ þ Aiσmð2V∂m þ ½∂mV�Þ − Vσm½∂iAm� þ 3Vσm½∂mAi� þ iϵimnAm½∂nV�Þ

iσijγ5V − ϵijk

2me
ð½∂kV� þ iϵkmnσmð2V∂n þ ½∂nV�ÞÞ − eVϵijk

me
ϵkmnσmAn − eVϵijk

2m2
e
ð½∂0Ak� − ½∂kA0�Þ
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Ψ ¼ e−imet

�
ψ

ψh

�
; ðA4Þ

where ψ ;ψh are two component fields, and substitute Ψ
back in to the QED Lagrangian,

LQEDðψ ;ψhÞ ¼ ψ†ðiD0Þψ þ ψ†
hðiD0 − 2meÞψh

þ ψ†
hσ

iDiψ þ ψ†σiDiψh: ðA5Þ

Only ψh has a mass term, and therefore, it is referred to as
the “heavy” component, and ψ is the “light” component.
We also see that ψ and ψh are coupled due to the presence
of σiDi. One approach to decouple the terms is to integrate
out the heavy field, ψh. This is the approach taken in
Ref. [40]. The idea here, and that of the FW procedure, is to
perform consecutive field redefinitions, at each order in
1=me,

Ψ → e−imetU1U2…Ψ; ðA6Þ

where Ui are some operators acting on Ψ, to remove the
mixing between ψ and ψh, defined (in the Dirac basis) as
the upper and lower components, respectively, of Ψ on the
right-hand side of Eq. (A6). To do this efficiently, it is
important to identify the terms which mix ψ and ψh, or
equivalently, the upper and lower components of Ψ.
In the context of FW transformations, the operators

which mix ψ and ψh are known as odd operators, and
diagonal operators are even. They are defined by their (anti)
commutation relations with γ0. Specifically, an odd oper-
ator, O, satisfies, fO; γ0g ¼ 0, and an even operator, E,
satisfies ½E; γ0� ¼ 0. The goal of the FW transformation is
then to remove all odd operators from the Lagrangian at
each order in 1=me, thereby decoupling ψ and ψh at any
given order.
Specifically, the recipe is to find n Hermitian operators,

fX0;…; Xn−1g, such that the field redefinition,

Ψ → e−imet

�
exp

�
−i

X0

me

�
… exp

�
−i

Xn−1

mn
e

��
Ψ; ðA7Þ

removes all the odd operators to Oðm−n
e Þ. To expand the

QED Lagrangian, Eq. (A1), to Oðm−2
e Þ we need to find X0,

X1. One can show that the X0, X1 which do this are

X0 ¼ −
1

2
γiDi; X1 ¼

e
4
γ0γiF0i; ðA8Þ

where ½Dμ; Dν� ¼ ieFμν. With X0, X1 in hand the NRQED
Lagrangian of ψ to Oðm−2

e Þ can be derived by substituting
the X0, X1 in Eq. (A8) toΨ in Eq. (A7), theΨ in to the QED
Lagrangian in Eq. (A1). While seemingly inconspicuous,
the phase factor e−imet plays an important role here. To see
this explicitly, note that under the FW transformation,

LQED → Ψ†
�
exp

�
i
X1

m2
e

�
exp

�
i
X0

me

��
eimetðiγ0D − γ0meÞ

× e−imet

�
exp

�
−i

X0

me

�
exp

�
−i

X1

m2
e

��
Ψ: ðA9Þ

Furthermore, we can define P− ≡ 1
2
ð1 − γ0Þ and rewrite the

QED Lagrangian without the eimet phase as

LQED ¼ Ψ†
�
exp

�
i
X1

m2
e

�
exp

�
i
X0

me

��

× ðiD0 þ iγ0γiDi þ 2meP−Þ

×

�
exp

�
−i

X0

me

�
exp

�
−i

X1

m2
e

��
Ψ; ðA10Þ

and, again, X0, X1 are given by Eq. (A8). Therefore, as in
the derivation of Eq. (A5), this phase factor introduces an
operator projecting the mass on to the lower component of
Ψ. Following the derivation in Eq. (A10) further, the ψ part
of the QED Lagrangian becomes

LNR
QED ¼ ψ†Tr

�
Pþ

�
iD0 −

2

me
γ0X2

0 −
1

m2
e
γ0fX1; X0g

��
ψ

þO
�

1

m3
e

�
ðA11Þ

⊃eψ†
�
−1þ 1

8m2
e
ðp2þ2ip ·ðσ×kÞÞ

�
A0ψ

þeψ†
�

1

2me
ðK0þiðσ×pÞÞþ ω0

8m2
e
ð−p−iðσ×K0ÞÞ

�
·Aψ

−
e2

2me
A2ψ†ψþ ie2

4m2
e
ψ†½ðσ×p0ÞA0� ·Aψ ; ðA12Þ

where Pþ ¼ ð1þ γ0Þ=2 is only nonzero in the upper left
diagonal component, the trace is in 2 × 2 block diagonal
space, and we have ignored the ψh terms. The Pauli
matrices are given by σ, the momentum variables
(k;p;ω0) are shorthand for derivatives, pμ ¼ i∂μ, k acts
on ψ , p and ω0 act on A, p0 acts on A0, and K0 ¼ 2kþ p.

2. NR limit of MDM and EDM interactions

With the field redefinition which diagonalizes QED
Lagrangian found in Eq. (A7), we can now use this to
expand the interactions in Eqs. (1) and (2). However, before
this, we can reach a more general result: the NR limit of a
UV general operator, to any order in 1=me (still only
leading order in DM-electron coupling),

Ψ̄OΨ → ψ†
�
exp

�
i
Xn−1

mn
e

�
… exp

�
i
X0

me

�
γ0O

× exp

�
−i

X0

me

�
… exp

�
−i

Xn−1

mn
e

��
ψ ; ðA13Þ
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where the outer most brackets, ½� � ��, implicitly indicate
taking the 2 × 2 upper diagonal component of the 4 × 4
matrix. All X act to the right, meaning that those on the left
side of O will also act on O. To Oðm−2

e Þ, this expression
simplifies to

Ψ̄OΨ ≈ ψ†
�
exp

�
i
X1

m2
e

��
γ0Oþ i

me
½X0; γ0O�

−
1

m2
e
½ðX0Þ2; γ0O�

�
exp

�
−i

X1

m2
e

��
ψ ðA14Þ

≈ ψ†
�
γ0Oþ i

me
½X0; γ0O� − 1

m2
e
½ðX0Þ2; γ0O�

þ i
m2

e
½X1; γ0O�

�
ψ ; ðA15Þ

where ½ðAÞ2; B�≡ ½A; ½A;B��, and we have made use of
the Campbell-Baker-Hausdorff formula when expanding
matrix products of the form eXYe−X.
Focusing on Eqs. (1) and (2), in three component

notation, we can expand the operators as

dM
2

VμνΨ̄σμνΨ ¼ dMð−∂0Vi þ ∂
iV0ÞΨ̄σ0iΨ

þ dM∂iVjΨ̄σijΨ ðA16Þ
idE
2

VμνΨ̄σμνγ5Ψ ¼ idEð−∂0Vi þ ∂
iV0ÞΨ̄σ0iγ5Ψ

þ idE∂iVjΨ̄σijγ5Ψ; ðA17Þ

and therefore, we see that there are four O operators whose
NR limit must be extracted,

Ψ̄σ0iVΨ; Ψ̄σijVΨ; Ψ̄σ0iγ5VΨ; Ψ̄σijγ5VΨ: ðA18Þ

Each of the terms in Eq. (A15) can be further simplified,
defining Γ≡ γ0O,

½X0;ΓV� ¼
1

2
ðγiΓð∂iVÞ þ ½γi;Γ�VDiÞ ðA19Þ

½X1;ΓV� ¼ −
e
4
½γ0γi;Γ�VF0i ðA20Þ

½ðX0Þ2;ΓV� ¼ ½X0; ½X0;ΓV��

¼ 1

4
ð½γi; ½γj;Γ��ÞVDiDj þ

1

4
γi½γj;Γ�ð∂iVÞDj

þ 1

4
½γi; γjΓ�ð∂jVÞDi þ

1

4
γiγjΓð∂i∂jVÞ

þ ie
4
½γj;Γ�γiVFij; ðA21Þ

where ð∂iVÞ indicates that the derivative operator only acts
on V. The final NR expansion, to Oðm−2

e Þ, is given in
Table I.
We can now substitute the results in Table I to the terms

in Eqs. (A16) and (A17) to find the NR limit of the
Lagrangians given in Eqs. (1) and (2),

LNR
MDM≈

dM
me

ψ†
�
−
q2

2
− iq · ðσ ×kÞ

�
V0ψ

þdMψ

�
−iðσ ×qÞ

�
1−

q2

4m2
e

�
þ ω

2me
ðqþ iðσ×KÞÞþ 1

2m2
e
ð−iðq×kÞðσ ·KÞþq2k− ðq ·kÞqÞ

�
·Vψ

−
edM
2m2

e
ψ†½ðp ·qÞ�A0V0ψ þ edMψ†

�
i
me

ðσ ×qÞþ ω0

2m2
e
q

�
·AV0ψ

þ edMψ†
�
−

ω

me
iðσ ×AÞþ 1

2m2
e
ðiðσ · ðKþ 3pÞÞðq×AÞþ iðσ ·AÞðq× ðk−pÞÞ−q2Aþðq ·AÞq−ωω0AÞ

�
·Vψ

þ edMω
2m2

e
ψ†½p� ·VA0ψ ðA22Þ

LNR
EDM ≈ idEψ†

�
q · σ

�
1−

q2

4m2
e

�
þ 1

2m2
e
ð−ðk · qÞðσ ·KÞ− q2ðσ ·kÞÞ

�
V0ψ

þ idEψ†
�
−ωσ

�
1−

q2

4m2
e

�
þ 1

2me
ð−ðσ · qÞKþ ðq ·KÞσÞ þ ω

2m2
e
ððσ ·KÞkþ ðσ ·kÞq− iðq×kÞÞ

�
·Vψ

þ iedE
2m2

e
ψ†½ðq ·K− p · qÞσþ ðσ ·Kþ 3ðσ · pÞÞq� ·AV0ψ

þ iedEψ†
�
1

me
ððσ · qÞA− ðq ·AÞσÞ− ω0

2m2
e
ðq×AÞ þ ω

2m2
e
ð−ðσ ·AÞðK− pÞ− ðσ · ðKþ 3pÞÞA− ðq×AÞÞ

�
·Vψ

−
edE
2m2

e
ψ†½p× q� ·VA0ψ ; ðA23Þ
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where, similar to Sec. A 1, the momentum are shorthand for
derivatives acting on different fields and ω, q act on V,
p;ω0 act on A, and k acts on ψ .

APPENDIX B: SELF-ENERGY CALCULATIONS

With the NR limit of the QED, MDM, and EDM
Lagrangians, given in Eqs. (A12), (A22), and (A23),
respectively, we can now derive the self-energies needed
to compute the rate in Eq. (13). To do this in full generality,
one must first compute the diagonal self-energies in the
component basis, i.e., Πμν

VV and Πμν
AA, then find the polari-

zation vectors, ϵμλ , such that they are diagaonlized, i.e.,

Πμν
ϕϕ ¼ −

X
λ

ϵμλΠλ
ϕϕϵ

ν;�
λ : ðB1Þ

where ϕ ∈ fV; Ag. The off-diagonal self-energies, Πλλ0
VA are

then simply the off diagonal self-energies in the component
basis, Πμν

VA, projected on to the polarization vectors.
For the targets of interest (Xe, Ar, Si, and Ge), we can

make a key simplifying assumption: isotropy. Assuming
that the targets are isotropic the spatial components of the
self-energies become

Πij ¼ 1

3
δijΠkk; ðB2Þ

where the repeated k index on the right-hand side is
summed. Under this assumption, it can be shown that
the polarizations which diagonalize Πμν

ϕϕ are given by the
standard longitudinal and transverse polarization vectors,

ϵμ� ¼ ð0; q̂�Þ; ϵμL ¼ 1ffiffiffiffiffiffi
Q2

p ðq;ωq̂Þ; ðB3Þ

where q� are two orthogonal vectors satisfying q · q� ¼ 0

and Q2 ¼ ω2 − q2.
The Ward identity (WI) simplifies the calculation of

projecting the component basis self-energies to the polari-
zation basis. One can show that

ϵμLΠμνϵ
ν
L ¼ Q2

q2
Π00; ðB4Þ

and therefore, the longitudinal self-energy can be computed
from Π00 alone. Additionally, the transverse components
are only related to Πij. Therefore, these are the only self-
energies we need to compute.
In Secs. B 1, B 2, and B 3, we derive the leading order

contributions to the self-energies in the component basis
and then project them on to the polarization basis, i.e., the
T, L components, via the inverse of Eq. (B1). Finding the
leading order contribution is a relatively straightforward
exercise in power counting with respect to the dimension-
less variables, ve ¼ k=me, vV ¼ q=mV , and mV=me, where

ve is the electron velocity, q is the dark photon momentum,
and mV is the dark photon mass. The main subtlety,
discussed in detail in Ref. [40], is due to state orthonor-
mality, which reduces the order of operators. For example,
while an interaction of the form, A0ψ

†ψ is naivelyOð1Þ, the
reduced self-energy, Π̄, Eq. (18), depends on

hFjeiq·xjIi ≈ iq · hFjxjIi ∼OðvevVÞ; ðB5Þ

and therefore, this is a suppressed operator.
At the end of each section, we find that ΠT ≈ ΠL (these

are the self-energies projected on to the transverse and
longitudinal polarization vectors), and therefore, Πλ is
approximately independent of λ, justifying the simplifica-
tion in Sec. III. Additionally, we find that the mixing
between V, A in the EDM model is negligible, and
therefore, the section deriving this is absent.
The self-energies resulting from these calculations will

be written in terms of some “reduced” self-energies Π̄O1;O2
,

which are only dependent on the target electronic structure.
References [40,42] details how these are computed for
crystal targets, and in Sec. B 4, we derive the formula for
atomic targets.

1. QED

Starting from the NR limit of the QED Lagrangian in
Eq. (A12), one can derive the photon self-energies,

Π00
AA¼−e2Π̄1;1; Πij

AA¼−
e2

m2
e
Π̄ki;kj þ

e2

me
δijΠ̄1; ðB6Þ

where the single O reduced self-energy, Π̄O, is given by

Π̄O ≡ −
1

V

X
I

hIjOjIi; ðB7Þ

where I runs over filled electronic states. Note that this
result was also derived in Ref. [40]. The Π̄1 term can be
reduced using a WI, ωΠ0μ − qiΠiμ ¼ 0, to

Π00
AA ¼ −e2Π̄1;1;

Πij
AA ¼ e2

q2
δij

�
1

m2
e
qiΠ̄ki;kjq

j − ω2Π̄1;1

�
−

e2

m2
e
Π̄ki;kj : ðB8Þ

Under our isotropic target approximation, we can replace
Π̄ki;kj →

1
3
Π̄ki;kiδ

ij, thereby reducing the self-energies to

Π00
AA ¼ −e2Π̄1;1; Πij

AA ¼ −
e2ω2

q2
Π̄1;1δ

ij: ðB9Þ

Lastly, projecting on to the polarizations gives
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Π�
AA¼

e2ω2

q2
Π̄1;1; ΠL

AA¼
e2Q2

q2
Π̄1;1≈

e2ω2

q2
Π̄1;1: ðB10Þ

Note that explicit expressions for Π̄O1;O2
are computed in

Refs. [40–42] for crystal targets and in Appendix C below
for atomic targets.

2. Magnetic dipole moment

For the MDM model, two types of self-energies need to
be computed: the dark photon self-energy with itself, ΠVV ,
and the mixing of the dark photon with the photon via ΠVA.
For readability, we split these two calculations in to the
subsections below.

a. Dark photon self-energy

Starting from the MDM interaction in Eq. (A22), the
leading order contribution to the self-energies in the
component basis are

Π00
VV ¼ −

d2M
m2

e
Π̄q·ðσ×kÞ;q·ðσ×kÞ;

Πij
VV ¼ −

d2Mω
2

m2
e

Π̄ðσ×kÞi;ðσ×kÞj : ðB11Þ

The dominant term in Eq. (A22), when computing, e.g.,
Πij

VV , can be easily extracted. Simply take the q → 0 limit
of terms involving Vψ†ψ , and there is only a single
remaining term. To further reduce these expressions, we
must make an additional approximation relative to the
photon self-energy calculations. We assume that the target
is not spin ordered, and therefore, the sums over initial and
final states can be split in to

P
I →

P
i

P
s, where s

indexes the spin states. This allows the Pauli matrices to
be traced over in the reduced self-energy expressions, e.g.,
in Eq. (B11),

Π̄ðσ×kÞi;ðσ×kÞj → δijΠ̄ki;ki − Π̄ki;kj : ðB12Þ

Note that our convention for non spin-ordered targets is to
absorb the factor of 2, from the Pauli spin matrix trace, in to
Π̄. With this substitution, the equations in Eq. (B11)
become

Π00
VV ¼ −

d2M
m2

e
ðq2Π̄ki;ki − qiqjΠ̄ki;kjÞ;

Πij
VV ¼ −

d2Mω
2

m2
e

ðδijΠ̄ki;ki − Π̄ki;kjÞ: ðB13Þ

Using the isotropic approximation, analogous to Sec. B 1,
these self-energies simplify to

Π00
VV ¼ −

2d2Mq
2

3m2
e

Π̄ki;ki ;

Πij
VV ¼ −

2d2Mω
2

3m2
e

δijΠ̄ki;ki : ðB14Þ

Lastly, we project these into the polarization basis to reach
our final results,

Π�
VV ¼−

2d2Mω
2

3m2
e

Π̄ki;ki ; ΠL
VV ¼−

2d2Mω
2

3m2
e

Π̄ki;ki : ðB15Þ

b. Dark photon-photon mixed self-energy

The dark photon-photon mixed self-energy is computed
from the MDM and QED Lagrangians in Eqs. (A22) and
(A23), respectively. Note that while we will only compute
ΠVA, at this order ΠVA ¼ ΠAV. The leading order mixed
self-energies are given by

Π00
VA ¼ −edM

q2

2m2
e
Π̄1 þ

edM
4m3

e
qiqjΠ̄ðσ×kÞi;ðσ×kÞj ;

Πij
VA ¼ −edM

ω2

2m2
e
δijΠ̄1 þ

edM
4m3

e
ω2Π̄ðσ×kÞi;ðσ×kÞj ; ðB16Þ

where, similar to the previous section, we have assumed
that the target is not spin ordered, i.e., Π̄σ ¼ 0. This
assumption also allows us to trace out the σ matrices,

Π00
VA ¼ −

edMq2

2m2
e

�
Π̄1 −

1

3me
Π̄ki;ki

�
;

Πij
VA ¼ −

edMω2

2m2
e

δij
�
Π̄1 −

1

3me
Π̄ki;ki

�
: ðB17Þ

As done in Sec. B 1, we now replace Π̄1 via a WI, and
utilize our isotropic assumption to get to

Π00
VA ¼

edMω2

2me
Π̄1;1; Πij

VA¼
edMω2

2me

ω2

q2
δijΠ̄1;1: ðB18Þ

Lastly, projecting on to components gives

Π�
VA ¼ −

edMω4

2meq2
Π̄1;1; ΠL

VA ¼ −
edMω4

2meq2
Π̄1;1; ðB19Þ

which are related to the photon self-energies given in
Sec. B 1.

3. Electric dipole moment

The dark photon self-energy in the EDM model is
derived from the Lagrangian in Eq. (A23). In the compo-
nent basis, they are given by
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Π00
VV ¼ −

d2E
m4

e
qiqjΠ̄kiðσ·kÞ;kjðσ·kÞ;

Πij
VV ¼ −

d2Eω
2

m4
e

Π̄kiðσ·kÞ;kjðσ·kÞ: ðB20Þ

Again assuming no spin ordering and target isotropy, we
can replace

Π̄kiðσ·kÞ;kjðσ·kÞ → Π̄kikα;kjkα →
1

3
δijΠ̄kikj;kikj ; ðB21Þ

leading to

Π00
VV ¼ −

d2Eq
2

3m4
e
Π̄kikj;kikj ;

Πij
VV ¼ −

d2Eω
2

3m4
e
Π̄kikj;kikj : ðB22Þ

Lastly, projecting on to components gives

Π�
VV ¼ d2Eω

2

3m4
e
Π̄kikj;kikj ; ΠL

VV ¼ d2Eω
2

3m4
e
Π̄kikj;kikj : ðB23Þ

4. Atomic target self-energy

In this subsection, we simplify the reduced self-energy,
also given in Eq. (18),

Π̄O1;O2
¼ 1

V

X
IF

Gðω;ωF − ωI; δÞ
hIjIihFjFi T O1

T �
O2
; ðB24Þ

for the electronic states in an atomic target. More detailed
specifics about the electronic states are discussed in Sec. C.
While our focus will be on an atomic target with a single
atomic species, the analysis here easily generalizes to
multiple atomic species. In such a target, there are N ¼
n × V target atoms, where n is the number density and V is
the target volume. Each atom hosts bound electronic states,
which are indexed by the quantum numbers n;l; m.
Assuming these states are spin degenerate, the sum over
initial electron states in Eq. (B24) becomes

X
I

→ 2 × n × V ×
X
nlm

: ðB25Þ

The discrete nature of this sum makes this substitution
intuitive. On the other hand, the final states form a
continuum indexed by k;l0; m0 where l0; m0 are angular
quantum numbers, and k is a continuous momentum. The
sum over k then becomes an integral,

X
F

→
X
kl0m0

→ δð0Þ
Z

dk
X
l0m0

; ðB26Þ

where δð0Þ is a normalization coefficient, which will
drop out of the final formulas. The simplest way to take
care of this is to define the initial (discrete, bound) and
final (continuum) states with discrete and continuous
normalizations,

hIjIi ¼ 1 ðB27Þ

hFjFi ¼ 2πδð0Þ: ðB28Þ

Substituting these sums and state normalizations leads to a
reduced self-energy of

Π̄O1;O2
¼2n

X
nll0mm0

Z
dk
2π

Gðω;ωF−ωI;δÞT O1
T �

O2
; ðB29Þ

where δ is the electron width. Further simplifications can be
made to isolate the imaginary part of this self-energy
needed to compute the rate in Eqs. (26) and (27). In the
limit of zero electron width, δ → 0, the Green’s function,G,
simplifies

lim
δ→0

Im½Gðω;Δω; δÞ� ¼ −πδðω − ΔωÞ: ðB30Þ

This delta function reduces the k integral, since ωF ¼
k2=2me, such that

lim
δ→0

Im½Π̄O1;O2
�

¼−2n
X

nll0mm0

Z
dk
2
δ

�
k2

2me
−ω−ωI

�
T O1

T �
O2

ðB31Þ

¼ −nme

X
nll0mm0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðωþ ωIÞ

p T O1
T �

O2
; ðB32Þ

and the imaginary part of the reduced self-energy becomes
a simple sum. The transition matrix elements, T O, are
derived in Appendix C.

APPENDIX C: ATOMIC ABSORPTION
TRANSITION MATRIX ELEMENTS

To compute the self-energies derived in Sec. B, the
transition matrix elements, T O ≡ hFjOjIi must be com-
puted. The details of this calculation for crystal targets, e.g.,
Si and Ge, has been discussed in Refs. [40,42], and similar
calculations for transitions between atomic bound and
continuum states have been performed in the scattering
limit [60,64,101]. In this appendix, we derive the transition
matrix elements between the bound and continuum elec-
tronic states in an isolated atom (appropriate for Xe and Ar
targets), in the absorption limit.
We begin by defining the initial, jIi, and final, jFi,

quantum states (mainly for comparison with other con-
ventions). The initial, bound states are labeled by the
standard quantum numbers, n;l; m, and satisfy
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hn0l0m0jnlmi ¼ δnn0δll0δmm0 : ðC1Þ

Note that the states are dimensionless. The position space
representation of these states is

hxjnlmi≡ ffiffiffiffi
V

p
ψnlmðxÞ ¼

ffiffiffiffi
V

p
RnlðxÞYlmðx̂Þ; ðC2Þ

where hxjxi ¼ 1, and ψnlm has dimension eV3=2. We
assume that the position space representation of these
states can be further expanded as

ψnlmðxÞ ¼ RnlðxÞYlmðx̂Þ; ðC3Þ

where Rnl has dimension eV3=2, and Ylm are the spherical
harmonics, normalized to

Z
dΩY�

l0m0Ylm ¼ δll0δmm0 : ðC4Þ

In order to satisfy the orthonormality relationship in
Eq. (C1), the Rnl must satisfy

Z
drr2R�

n0lRnl ¼ δnn0 : ðC5Þ

A useful basis to expand Rnl in is the “Slater type orbital”
basis,

RnlðrÞ ¼
X
j

CnljRSTOðr;Zlj; nljÞ ðC6Þ

RSTOðr;Z; nÞ ¼ a−3=20

ð2ZÞnþ1
2ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
�
r
a0

�
n−1

e−Zr=a0 ; ðC7Þ

where a0 is the Bohr radius, Cn;l;j; nl;j; Zlj are coefficients
found by solving the isolated atom Hamiltonian. We use the
coefficients tabulated in Ref. [59] to compute the results in
the main text.
The final states are taken to be the Coloumb wave

function solutions to a −Z=r potential [60–65]. These states
are labeled by k;l; m, where k is a continuous index.
Different conventions are reasonable for orthonormalizing
these states; here we choose

hk0l0m0jklmi ¼ 2πδðk − k0Þδll0δmm0 : ðC8Þ

The position space representation can be decomposed in a
way analogous to the initial states,

hxjklmi ¼
ffiffiffiffi
V

p
ψklmðxÞ ¼

ffiffiffiffi
V

p
RklðxÞYlmðx̂Þ; ðC9Þ

where Rkl have dimension eV. Note that the Rkl here differ
from those defined in Ref. [60] by a factor of k=2π.
Specifically, Rkl ¼ ðk=2πÞ ffiffiffiffi

V
p

R̄kl, where R̄kl are defined
in Ref. [60]. The Rkl in Eq. (C9) satisfy

Z
drr2R�

k0lRkl ¼ 2πδðk − k0Þ; ðC10Þ

and are explicitly given by [61],

Rklðr;ZFÞ ¼
2

r
Clρ

lþ1e−iρ1F1ðlþ 1 − iη; 2lþ 2; 2iρÞ;
ðC11Þ

where we have defined

Cl ¼
2l

ð2lþ 1Þ! e
−πη=2jΓðlþ 1þ iηÞj;

ρ ¼ kr; η ¼ −
Z
a0k

; ðC12Þ

and 1F1ða; b; cÞ is the confluent hypergeometric function
of the first kind. One common approximation for the ZF
parameter [35,102,103] is to relate it to the binding energy
of the state it was absorbed from, i.e.,

ZF ¼ n ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

ωI

13.6 eV

r
; ðC13Þ

where n, ωI are properties of the initial states used when
calculating the transition matrix elements, T . With these
conventions, the transition matrix elements become

hkl0m0jOjnlmi¼
Z

d3xR�
k0l0Y

�
l0m0 ðO · ðRnlYlmÞÞ: ðC14Þ

In the next two subsections, we derive explicit forms for
the O needed to derive the atomic absorption rate for the
magnetic dipole and electric dipole models studied in the
main text.

1. O= vi = − i∇i=me

The main identity needed is from Ref. [60],

∇iðfðrÞYlmÞ

¼
X1
k¼−1

X1
q¼−1

�
ciðl; m; k; qÞ df

dr
þ diðl; m; k; qÞ f

r

�

× Ylþk;mþq; ðC15Þ
where

cxðl; m;−1;−1Þ ¼ −icyðl; m;−1;−1Þ

¼ −
A−−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l − 1Þð2lþ 1Þp ðC16Þ

cxðl; m;−1; 1Þ ¼ icyðl; m;−1; 1Þ

¼ A−þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l − 1Þð2lþ 1Þp ðC17Þ
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cxðl; m; 1;−1Þ ¼ −icyðl; m; 1;−1Þ

¼ Aþ−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 3Þð2lþ 1Þp ðC18Þ

cxðl; m; 1; 1Þ ¼ icyðl; m; 1; 1Þ

¼ −
Aþþ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 3Þð2lþ 1Þp ðC19Þ

czðl; m;−1; 0Þ ¼ A−0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2l − 1Þð2lþ 1Þp ðC20Þ

czðl; m; 1; 0Þ ¼ −
Aþ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2lþ 3Þð2lþ 1Þp ðC21Þ

dxðl; m;−1;−1Þ ¼ −idyðl; m;−1;−1Þ

¼ −
ðlþ 1ÞA−−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l − 1Þð2lþ 1Þp ðC22Þ

dxðl; m;−1; 1Þ ¼ idyðl; m;−1; 1Þ

¼ ðlþ 1ÞA−þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l − 1Þð2lþ 1Þp ðC23Þ

dxðl; m; 1;−1Þ ¼ −idyðl; m; 1;−1Þ

¼ −
lAþ−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 3Þð2lþ 1Þp ðC24Þ

dxðl; m; 1; 1Þ ¼ idyðl; m; 1; 1Þ

¼ lAþþ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 3Þð2lþ 1Þp ðC25Þ

dzðl; m;−1; 0Þ ¼ ðlþ 1ÞA−0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2l − 1Þð2lþ 1Þp ðC26Þ

dzðl; m; 1; 0Þ ¼ lAþ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2lþ 3Þð2lþ 1Þp ðC27Þ

Aþþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðlþmþ 2Þ

p
ðC28Þ

Aþ0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþmþ 1Þðl −mþ 1Þ

p
ðC29Þ

Aþ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mþ 1Þðl −mþ 2Þ

p
ðC30Þ

A−þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −m − 1Þðl −mÞ

p
ðC31Þ

A−0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþmÞðl −mÞ

p
ðC32Þ

A−− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþm − 1ÞðlþmÞ

p
: ðC33Þ

All other ci and di are zero, and we require that l ≥ 0;
jmj ≤ l;lþ k ≥ 0 and jmþ qj ≤ lþ k for the spherical
harmonic to have physical parameters.
Using Eq. (C15), the transition matrix element is

given by

T vi ¼ hkl0m0jvijnlmi ðC34Þ

¼ −
i
me

½ciðl; m;Δl;ΔmÞI0;1
nkll0

þ diðl; m;Δl;ΔmÞI1;0
nkll0 �; ðC35Þ

where Δl ¼ l0 − l;Δm ¼ m0 −m, and we have defined
the integral, Iα;β

nkll0 , as

Iα;β
nkll0 ≡

Z
drr2

R�
kl0

rα
dβRnl

drβ
: ðC36Þ

Note that the selection rules, jΔlj ≤ 1 and jΔmj ≤ 1 arise
here from the finite nature of the sums over k, q.

2. O = vivj = −∇i∇j=m2
e

To compute the second derivative of the initial state wave
functions, we simply need to use the identity in Eq. (C15)
twice,

∇i∇jðfðrÞYlmÞ¼
X
kk0qq0

�
cicj

d2f
dr2

þðdicjþdjciÞ1
r
df
dr

þdjðdi−ciÞ f
r2

�
Ylþkþk0;mþqþq0 ; ðC37Þ

where it is understood that the c, d superscripted with i are
evaluated at ðl; m; k; qÞ, and the those superscripted with j
are evaluated at ðlþ k;mþ q; k0; q0Þ.
Therefore the transition matrix element is given by

T vivj ¼ hkl0m0jvivjjnlmi ðC38Þ

¼ −
1

m2
e

X
kq

�
cicjI0;2

nkll0 þ ðdicj þ cjdiÞI1;1
nkll0

þ djðdi − ciÞI2;0
nkll0

�
; ðC39Þ

where Iα;β
IF is defined in Eq. (C36), and it is understood

that the c, d superscripted with i are evaluated at ðl; m; k; qÞ,
and those superscripted with j are evaluated at
ðlþ k;mþ q;Δl − k;Δm − qÞ. The selection rules for this
transition matrix element are jΔlj ≤ 2 and jΔmj ≤ 2.
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