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Within the bottom-up approach to holography, we construct a class of six-dimensional gravity models
and discuss solutions that can be interpreted, asymptotically in the far UV, in terms of dual five-dimensional
conformal field theories deformed by a single scalar operator. We treat the scaling dimension of this
operator, related to the mass of the one scalar field in the gravity theory, as a free parameter. One dimension
in the regular geometry is compactified on a shrinking circle, hence mimicking confinement in the resulting
dual four-dimensional theories. We study the mass spectrum of bosonic states. The lightest state in this
spectrum is a scalar particle. Along the regular (confining) branch of solutions, we find the presence of a
tachyonic instability in part of the parameter space, reached by a smooth deformation of the mass spectrum,
as a function of the boundary value of the background scalar field in the gravity theory. In a region of
parameter space nearby the tachyonic one, the lightest scalar particle can be interpreted as an approximate
dilaton, sourced by the trace of the stress-energy tensor, and its mass is parametrically suppressed. We also
compute the free energy, along several branches of gravity solutions. We find that both the dilatonic and
tachyonic regions of parameter space, identified along the branch of confining solutions, are hidden behind
a first-order phase transition, so that they are not realized as stable solutions, irrespectively of the scaling
dimension of the deforming field-theory operator. The (approximate) dilaton, in particular, appears in
metastable solutions. Yet, the mass of the lightest state, computed close to the phase transition, is (mildly)
suppressed. This feature is amplified when the (free) parameter controlling the scaling dimension of the

deformation is 5/2, half the dimension of space-time in the field theory.

DOI: 10.1103/PhysRevD.108.015021

I. INTRODUCTION

Investigations into the fundamental nature and origin of
the Higgs boson, the latest particle of the Standard Model
(SM) to have been discovered [1,2], are among the most
topical in theoretical physics, in view of the ongoing
precision experimental program at the Large Hadron
Collider. Because of the approximate (explicitly and
spontaneously broken) scale-invariant nature of the SM
theory, the Higgs boson itself is in fact a dilaton, the
pseudo-Nambu-Goldstone boson associated with dilata-
tions. It is natural to question whether this is just an
accidental symmetry in the SM, or whether it has a more
fundamental, important origin and role [3]. In particular, is
it possible for the Higgs boson to originate as a composite
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dilaton in a more fundamental theory? And if so, what type
of underlying dynamics would yield realistic values for its
mass and couplings?

The literature on the dilaton effective field theory dates
back many decades [4,5], and its applications have been
long discussed in the context of dynamical electroweak
symmetry breaking [6-8], extensions of the SM [9-19],
and, more recently, the interpretation of lattice data
[20-36], in particular in view of the numerical work on
certain SU(3) gauge theories that show indications of a
light scalar bound state in the spectrum [37-48].

The context of gauge-gravity dualities [49-52] is particu-
larly suitable for describing the dilaton and its dynamical
origin, both in its bottom-up [53-67] as well as top-down
[68-72] realizations. In what follows, we restrict our atten-
tion to holographic duals in which the geometry of a com-
pletely smooth classical background in a higher-dimensional
gravity theory contains a shrinking circle, the shrinking of
which can be used to mimic confinement in the dual field
theory, as suggested in Ref. [73]—see also Refs. [74-80].
The spectra of bound states of the strongly coupled theory
can be computed perturbatively in its gravity dual, by
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exploiting the holographic gauge-invariant formalism devel-
oped in Refs. [81-85]—see also Refs. [70-72,80,86]. A
useful diagnostic tool to identify (approximate) dilatons
within such spectra is provided by the probe approximation,
as discussed in Ref. [86]. Furthermore, one can apply
holographic renormalization [87-89] to compute field-
theory quantities, such as the free energy. We also find it
appealing to adopt a simple scale-setting procedure, such as
that proposed in Ref. [90].

Among all possible realizations of the dilaton scenario,
we concentrate on the ideas developed in Refs. [91-94]
see also Ref. [95] and references therein. Namely, we want
to understand whether a light dilaton state might arise in
strongly coupled theories, the renormalization group (RG)
flow of which brings them in close proximity of a tachyonic
instability. In the holographic dual description of conformal
field theories (CFTs)—fixed points of the RG flow—the
notion of the Breitenlohner-Freedman bound [96] captures
the type of instability of interest. In the case of confining
theories, one can generalize this notion and ultimately
arrive to the following, similar conclusions for physical
observables [97-99]. In summary, the classical instability is
resolved by the presence of a first-order phase transition.
The unstable region of parameter space cannot be physi-
cally realized, which protects the physical spectrum from
developing a tachyon. Nevertheless, one may ask whether,
for choices of parameters close to the phase transition, the
lightest (neutral) scalar in the spectrum has mass and
properties that are influenced by the presence of the
tachyonic instability itself, even if the latter is only present
in an unphysical region of parameter space.

The analysis of Refs. [97-99] indicates that it is possible to
realize this scenario within well-established examples of top-
down holographic models, derived as classical solutions of
supergravities in various dimensions. In all three cases
analyzed so far, it has been found that for choices of the
parameters that are close to the phase transition boundary, the
lightest scalar state is not parametrically light, as was
predicted in Ref. [94], on the basis of the results from a
bottom-up model obtained in a dedicated construction—for
models in which no light dilaton is present, see for instance
Refs. [100,101].

In this paper, inspired by Refs. [97-99], we build a class of
bottom-up models that combine the quadratic superpotential
adopted in Ref. [54] and the confinement mechanism in
Ref. [73]. We assume that the holographic description of the
dynamics be encapsulated in a model consisting of one real
scalar, coupled to gravity in D = 6 dimensions, one of which
is compactified on a circle. Along the interesting, physical
branch of solutions the circle shrinks to a point at a finite
position along the holographic dimension, introducing a
dynamical scale, but the geometry is regular and smooth
everywhere. What results is the dual description of a putative
family of four-dimensional, confining theories, that at short
distances are best described by the circle compactification of
a five-dimensional CFT in the presence of an operator with

nontrivial dimension given by max(A,5 — A), where A is a
free parameter appearing in the scalar potential of the gravity
theory.

The generic behavior of the model, for each value of A,
is qualitatively similar to that found in Refs. [97-99] and
described above, as we shall show. The advantage of the
bottom-up approach—aside from having a much simpler
bosonic action—is that it allows us to vary A. We are
interested in the relation between A and the mass spectrum,
in particular for the lightest scalar, and in proximity of the
phase transition.

The paper is organized as follows. We start by defining the
gravity theory in D = 6 dimensions, in Sec. II. We present
several classes of classical solutions in Sec. Il and then study
the spectrum of small fluctuations for one of these classes, the
regular (confining) branch of solutions, in Sec. IV. The free
energy of the different classes of solutions is discussed in
Sec. V, where we analyze which branch of solutions is
energetically favored, depending on the parameters of the
model. We summarize the most salient numerical results in
Sec. VI and outline future lines of research in Sec. VII, while
relegating to the Appendixes many useful technical details.

II. THE MODEL

This section introduces a model, built within the context of
bottom-up holography, that describes a real scalar field ¢
coupled to gravity in D = 6 dimensions, with a simple
quartic scalar potential [54]. The scalar field captures, in the
gravity language, the effects of the deformation of the dual
five-dimensional CFT by a scalar operator, as well as the
formation of the corresponding condensate. Furthermore,
one of the dimensions is compactified on a circle (in both
field theory as well as gravity). As we shall see in Sec. I11, this
system admits solutions in which the circle shrinks smoothly
at the end of space in the IR, thus introducing a physical low-
energy scale, while mimicking (in analogy with top-down
models) the effect of confinement in what would be the dual,
four-dimensional field theory [73]. We also find it convenient
to provide the description of the gravity theory in D =5
dimensions, obtained after reduction on the circle.

A. Action in six dimensions

We follow the conventions in Ref. [86] (see also references
therein), which we summarize in Appendix A. In order for
the model to mimic the dual of a four-dimensional confining
theory, we choose to work in D = 6 dimensions. The action
is the following:

S = Sébulk) + ZSs,lw (1)

i=12

S :/dax\/_—%{i‘;é_égMﬁaMd;aNd;—Vdd’)},
(2)
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(3)
and besides the bulk part, S buu(, it contains also two
boundary actions, Ss;, localized at the boundaries of the
radial coordinate p; < p < p,. The space-time index is
M =0,1,2,3,5,6. The extrinsic curvature A, appearing
in the Gibbons-Hawking-York term of the boundary actions,
depends on the induced metric on the boundaries,
denoted gy -

For the bulk potential Vs, we choose to write

We(@)\* _5 2
7) _ZW6(¢)

5— 5A2
BEBp Sy

i) = (
—_5_

where the superpotential is given by [54]

Weld) = =2 -2 5

The choice of a simple quadratic superpotential provides a
neat field-theory interpretation for backgrounds in which ¢
is nonzero: asymptotically in the UV, the dual field theory
flows toward a CFT in D — 1 = 5 dimensions, deformed by
the insertion of an operator O with scaling dimension given
by max(A, 5 — A), and the two parameters appearing in the
solution of the corresponding second-order classical equa-
tions correspond in field-theory terms to the coupling and
condensate associated with O.

We treat A as a free parameter—in top-down models, by
contrast, its counterpart descends from first principles. In
all three examples discussed in Refs. [97-99], the first-
order equations involve choices of A > (D —1)/2 (where
D is equal to 6, 7, and 5, respectively, in those three
models). Later in the paper, we will discuss the differences
emerging for 0 < A < (D —1)/2=5/2. For the time
being, it suffices to notice that the counterterm used for
holographic renormalization coincides with Ws when
A < 5/2, while for A > 5/2 one needs the associated
superpotential

_— 1 25(2A - 5)
Wo =250 =80 = n —15) %
- 2 _
12524 - 5)(4A 15A+25)¢6+_._’ ©)

64(4A — 15)2(6A — 25)

which is only known perturbatively in ¢ yet also solves
Eq. (4). In Appendix B, we show this superpotential
expanded to higher orders. Pathological values of A =
15 25 ... appear at increasing orders in ¢. In the following,

A

we will avoid using these special pathological values.
Another special case is A = 5/2, which requires a separate
treatment, as we shall see.

The boundary terms in Eq. (3) play an important role in
this paper. They determine the boundary conditions for the
classical background solutions, via the consistency require-
ments on the variational principle. They are used in the
calculation of the spectrum of fluctuations around such
background solutions. And finally, they enter into the
calculation of the free energy—but notice that this last
calculation requires a modification of the UV-boundary
terms, in which 4, (and f,) must be replaced by the
counterterms required for holographic renormalization.

B. Dimensional reduction to five dimensions

One of the dimensions is compact, the coordinate 0 <
n < 2z describing a circle. In reducing the action to five
dimensions, we write the metric as

A2 = e2#d + % (dn + ydx)2,  (7)

where the space-time index is M =0, 1, 2, 3, 5. The
reduced action then becomes

=S L3S, (8)

i=12

u R 1
Sgb k) _ /d5x _gs{z - 5gMN (603 0Ny + Oy N

— Vi (Ig]) — e PO ) } (9)

El

P=Pi

(10)

Su /d4x\/_{ + e ( +e—%f,-(;()}

where the five-dimensional metric g,;y has determinant gs,
the induced metric on the boundaries is gy, the five-
dimensional Ricci scalar is R, and K is the extrinsic
curvature. The field strength for the vector y,, is given

by F(Z?\, = 0yxn — Oyxyu- The functions f; of the six-
dimensional theory depend explicitly on y, as is required in
order to obtain solutions that lift to geometries in six
dimensions in which the circle shrinks smoothly.

The scalars ®“ = {¢,y} describe a sigma model
coupled to gravity, the action of which is the same as
in Eq. (Al) with D=5 and sigma-model metric
G, = diag(1,6). We consider background solutions in
which y,, = 0, while the metric gy, ¢, and y depend on
the radial coordinate only. The metric in five dimensions
takes the domain-wall (DW) form

ds? = dr? + eMA0dx? ; = eXdp? + 2AVdx 5, (11)
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where we have adopted the convenient choice of radial
coordinate dp = e#dr. The background fields satisfy the
equations of motion

v,

R+ (40,A = 9,1)0, = 0796’ (12)
Y

0/21)( + (40/)’4 - a/))()a/))( = - ?6 ’ (13)

30A7 =3 (08 =302 = Ve, (14)

with boundary conditions given by

04
(0-5), 0
Pi
of:
(60/,)( + ﬂ.i +f,' - %};) =0,
Pi
3
<0/,A+ll-+f,-> =0. (15)
2 Pi

For vanishing f; =0, one obtains solutions that lift to
domain walls in six dimensions.
The solutions satisfy the following equation:

0 =12(0,A)* +30;A —30,%0,A +4Vs.  (16)

which can be combined with Eq. (13) to yield the
conservation law (see also Ref. [97])

9, [e4A‘)((0pA —40,x)] = 0. (17)

This defines a conserved quantity, which vanishes for DW
solutions in six dimensions, for which the metric dsé in
Eq. (7) has the warp factor defined by A=A —y =3y
(or A = 4y).

ITI. CLASSES OF SOLUTIONS

Here, we introduce the three main classes of solutions
that we study in the following. We explain the naming
choices, before we exhibit the functional form of the
solutions, because they introduce some mild abuse of
language, driven mostly by analogy, which we want to
alert the reader to. We start from solutions to the first-order
equations derived from the superpotential formalism, along
the lines of fake supergravity [102]. We call them super-
symmetric solutions, despite the fact that there is no
supersymmetry—the theory is bosonic. The reason for this
naming convention is an analogy with top-down models
derived from higher-dimensional supergravity, for which
the first-order equations coincide with the Bogomol nyi-
Prasad-Sommerfield constraints.

The most important class of solutions of interest, and for
which we compute the spectrum of fluctuations, later in
the paper, is denoted as confining solutions, again with
abuse of language. In models in which a lift to a higher-
dimensional supergravity derived from a string theory
exists, it might be possible to compute the Wilson loop,
along the lines of other holographic models [103—-108], to
expose the area law expected from confinement. This being
a bottom-up model, such calculation cannot be carried out,
yet the solutions are completely smooth and introduce a
mass gap in the spectrum of fluctuations, which are weaker
requirements for the gravity dual of a confining theory.

Finally, we also introduce a set of singular back-
grounds, that we call domain-wall solutions, because in six
dimensions they take the form of Poincaré domain walls.
There is again abuse of language: strictly speaking the
singularity signifies that they should not be taken literally
as background solutions and used with caution—but see
Ref. [109]. Our reason for considering them is that, as we
shall see, they teach us something important about the other
classes of solutions and their stability.

A. UV expansions

All the solutions we work with have the same asymptotic
behavior for large p: they approach the ¢ = 0 critical
point of Vs, with y ~1p and A ~ 3 (equivalently, A ~ p).
Asymptotically in the UV, the gravity duals have common
interpretations in terms of (relevant or marginal) deforma-
tions of the same five-dimensional CFT. We hence classify
all the solutions in terms of a power expansion in the small
parameter z = e ”. The expansion depends on five free
parameters.

Two parameters are additive contributions to y and A,
which we denote y;; and A, respectively. One free para-
meter appears in y in the coefficient of the z° term, and we
denote it as y5. We fix an additive contribution to y5 so that
if A = 4y (as is the case for the DW solutions), then y5 = 0.
For generic values of A, the remaining two free parameters
appear in the expansion of ¢ at orders z* and z>~2, and we
call ¢; (¢y) the coefficient in front of the term with the
smallest (largest) exponent A; (Ay). The expansions take
the generic form

D)=tk h o (18)
1) =0 =3l08@) + 4 (s )4, (19
A(z) :AU—ﬁlog(z)+-~. (20)

3

In the special case with A =5/2, for which the two
independent parameters appear in front of the z>/? and
7°/?log(z) terms in the expansion of ¢, we denote the
former as ¢y, and the latter as ¢p;. As we shall see, these
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coefficients are very important in determining the physical
properties of the solutions and their field-theory duals. For
example, the free energy depends on a combination of
¢y and ys. We further note that, without loss of
generality, one may restrict attention to solutions for which
Ay =0=yy.

The expansion depends nontrivially on A. For definite-
ness, we report here the case A = 3, while more examples
can be found in Appendix C:

25 57
$(2) = 12 + Py’ — ErﬁizG - @f/)%r/)vi + O(2%),

(1)
x(2) = v - %log(Z) - 2*1445324 + <)(5 - 225¢J¢v> 2
- %cﬁzvf +0(2), (22)
M) = Ay = 51080 = 03 + (s = gty )
~ e+ O) (23)

B. Supersymmetric solutions

As the scalar potential Vg is written in terms of a
superpotential Wy, a special class of six-dimensional
DW solutions [for which A(p) = 4x(p) =5 A(p)] is recov-
ered by solving the first-order equations

1 A
6pA=——W6:1+—¢27 (24)
2 4
oWs
0,p =——=—A¢, 25
=550 = A 25)
which, as anticipated, we call supersymmetric solutions:
Plp) = poe™ = ¢ 2%, (26)
1o s LTIEIN
Alp) = p —gdee™ = —log(z) =g dez™®. (27)

Besides ¢, a second, additive integration constant has
been omitted from 4. We recover the AdSq geometry
with ¢, = 0.

C. Confining solutions

The aforementioned confining solutions are such that
the circle parametrized by # shrinks to zero size at some
point p, of the radial direction p—which is hence bounded
from below as p, < p; < p < p, - +oo—and are also
completely regular and smooth, as the metric in six

dimensions has finite curvature invariants and there is no
conical singularity. By power expanding near the end of
space, for small (p — p,), we find that such solutions have
the following form:

D) = b1 = 1 MBI 20+ A = 4)(p - p,)

+ O((p = po)*). (28)

1 1
2(p) = 21 +3108(p = po) + 552 (-80 +8(A - 5)A¢7

- 5A2¢‘Il)(p - p())z + O((p - pn)4)’ (29)
Alp) =A +llo ( )+l(80+A¢2(40
pP) =4y 3 2P = Po 576 1
+A(5¢7 = 8)))(p = po)* + O(p = po)Y).  (30)
where ¢;, y;, A;, and p, are integration constants.
The induced metric on the (p,#) submanifold is
ds3 = dp? + e%dn? = dp? + €% (p— p,)2d* +---,  (31)

which is the metric of the plane, provided 7 has periodicity
27 and we fix y; = 0, to avoid a conical singularity.

As a side remark, when A = 0, we can write the solution
in closed form:

d(p) = &1 (32)
x(p) =xo— élog [cosh @ (p —m))]
+ %log {Sinh G (p— po)ﬂ : (33)
Alp) = A, + - loglsinh(5(5 — p,))]
+ %log {tanh G (- p0)>:| RN

where y, and A, are additive integration constants.

The curvature invariants in six dimensions—the Ricci
scalar R = R, the Ricci tensor squared R3 = Ry s Re™ Y,
NRS__

and the Riemann tensor squared R? = Ry 5 2 sRe"
can be written in terms of the nontrivial quantity
d=A -4y, (35)

which vanishes on the DW solutions. After using the
equations of motion, we find the following [97]:
R =6V +2(0,0)%, (36)

R} = 6V +4Vs(0,0) +4(0,0)" . (37)
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1

R} = 3% (32(0,,d)2 <4a,,d\/ 36(0,d)* +

15V/51/6R3 — R2 — 30R + 24(0,d)>

+5V5,/6R3 —R? - 10R> —25(R? - 10R§)>. (38)

All of these quantities are finite when p — p,, as can be
seen by explicitly using the IR expansions:

. ,_15A%
limR = =30 - 3A(5 — A)p,> — 2 ot (39)
p—>/){7
. 2 1 . 2
limR? = —(lim,_, R)?, (40)
P=Po 6 ’
lim R2 _1! li R)? 41
/Jl’rll’lo 4 — g( 1mp—>p(, ) . ( )

|
Interestingly though, as long as A # 0, all these invariants
diverge for ¢p; — oo, suggesting a priori that we should not
be allowed to take the value of ¢; to be arbitrarily large.

D. Singular domain-wall solutions

The last class of solutions of interest to this paper is
given by singular DW solutions. They obey the DW ansatz
A =4y =3 A. Their IR expansion depends explicitly on A
and reads as follows:

¢(,0) = ¢I - \/glog(p _po) + M (2\/%(6A 10g(p —p())(3 log(p _po)(A log(p _pa)(3 ]Og(p _p()) + 2)

25920

—23A + 60) + 37A + 60) — A(47A + 660) + 5400)

+ 1546, (=60¢7 (6Alog(p — p,) + A) + 6V10¢;(6A log(p — p,)(3log(p — p,) + 1)
—23A +60) —4(6log(p — p,)(3Alog(p — p,)(210g(p = p,) + 1)
—23A + 60) + 37A + 60) 4 45vV10A¢3)) + O((p — p,)*). (42)

1 _ (p = p,)* B _ _ ) —
Alp) = clog(p — p,) +—5g-n— (2(6Alog(p — p,)(3log(p — p,)(Alog(p — p,)(3log(p — p,) — 10)

5 12960

+7A +60) — 5(A + 60)) + (1140 — 17A)A + 5400)

+3A¢;(2V10(5(A + 60) — 61og(p — p,) (3Alog(p — p,)(210g(p = p,) = 5) + TA + 60))

+ 15¢,(2(6Alog(p — p,)(3log(p — p,) = 5) +7A + 60)

+ Ay (2V10(5 = 6log(p = p,)) + 15¢1)))) + O(p = p,)*). (43)

In these expressions, ¢; iS an integration constant, and
without loss of generality we omitted an additive integration
constant in 4. We recall that the system of equations is
symmetric under the change ¢ — —¢; hence, a second
branch of solutions can be obtained by just changing the
sign of ¢.

These solutions are singular at the end of space. Their
nature in the gravity theory is unclear, and they do not
admit a transparent field-theory interpretation. In particu-
lar, we do not compute the spectrum of their fluctuations
—otherwise interpreted in terms of bound states in a
putative dual theory—as there is no clear sense in
which this would provide information about observable

|
quantities. Yet, we do compute their free energy later in
the paper, because, as we shall see, for some choices of
parameters, solutions of this class are energetically
favored over the confining ones. We will come back
to this discussion in due time; we only anticipate here
that this finding will force us to restrict our physics
discussions of the confining solutions to a subregion of
the full parameter space.

IV. MASS SPECTRUM OF FLUCTUATIONS

In this section, we restrict our attention to the con-
fining solutions only. Given a background solution in the
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gravity theory, one can linearize the equations of motion of
small fluctuations around it. The resulting mass spectra of
fluctuations of the bosonic fields correspond, following the
gauge-gravity duality dictionary, to spin-0, 1, 2 composite
particles in the (putative) dual confining field theory in four
dimensions. To perform the calculations, we adopt the
gauge-invariant formalism developed in Refs. [§1-85]. We
start from the scalar fluctuations a® = a“%(q, p), where ¢* is
the four-momentum, which obey the following equations
(see also Appendix A 1):

[6%, + (40,A—0,%)0, - e 2Ag?a% — e X% =0. (44)
Because the sigma-model metric is simply G, =
diag(1,6), in the basis ®* = {¢,y}, the sigma-model

connection vanishes, greatly simplifying the equations of
motion, as X' reads as follows:

Xe = J (Gaba(e_z)(vd)

ol opb
4 (e V) (e V)
d,0 G 0,04Gy,
+ 30,A [ ’ o opb P T
16(6_2)(]/5)
— 229 d,D"G,,. 45
9(6/,14)2 P D bc ( )

In all these expressions, the functions A, ®* = {¢, ¥}, and
Ve are evaluated on the background.

A discrete spectrum can be found by imposing the
following boundary conditions':

¢7%09,®°0,04G yy0,0"|
_ [30,A

4y )%
— ~24 2 5¢ 0. ¢ 6 0.®IG Ve b
2 4 q b + P <30pA P db + ad)b a

Pi

(40)

Physical composite states in the dual theory have mass
M? = —¢g?, corresponding to choices of ¢* for which the
boundary conditions at the two boundaries can be satisfied
simultaneously.

The equations of motion for the (transverse and trace-
less) tensor fluctuations ¢#, are the following [80]:

0=[0]+ (40,A — 0,7)0, — e 2 g?ler,,  (47)

while for the vector y,, one looks at the gauge-invariant
transverse polarizations, which obey the bulk equation

0 = P*[02 + (20,A +70,x)0, — e~ q*]y,.  (48)

"The equivalent form of the boundary conditions given in
Eq. (14) of Ref. [70] is convenient in numerical implementations.

where PH =yt —q;—g”. To compute the spectrum of
masses, M > 0, of the bound states in the dual confining
theory, one can impose Neumann boundary conditions on
these two kinds of fluctuations.

The physical results can be recovered by first com-
puting the spectrum for finite values of p; and p,
and then by repeating the calculations to extrapolate
toward the limits p; - p, and p, —» +oo0 [79,80,85].
Equivalent results can be obtained with an alternative
numerical strategy, which improves the convergence in
such limits by making use of the UV and IR expansions
of the fluctuations. One decomposes them in dominant
and subdominant modes, notices that the boundary
conditions are equivalent to suppressing the dominant
fluctuations, and then matches the solutions to the
expansions, evaluated at finite p;,. This nontrivial
process requires knowing the appropriate expansions
at high orders in the small parameters (z in the UV and
p —p, in the IR) but has the great advantage that one
does not require extending the background solutions of
the nonlinear equations of motion to numerically
challenging values at large (small) p — p,. This strategy
was successful in the study of the Klebanov-Strassler
system [83] and its baryonic branch [71,72], and we
adopt it here. We report IR expansions, and one
example of UV expansions, for the fluctuations in
Appendix D.

As explained and exemplified in Ref. [86], as well as
Appendix E, the probe approximation is equivalent to
ignoring the coupling of the states to the trace of the
energy-momentum tensor and hence discarding the mix-
ing in the physical states with the dilaton field. This
approximation fails to reproduce the mass of states with
substantial overlap with the dilatation operator. When
such states are light, they should hence be interpreted as
approximate dilatons, turning this approximation into a
diagnostic tool for the identification of approximate
dilatons. We will perform the analysis of the mass
spectrum in the probe approximation only for the choice
of A =5/2, which turns out to be the most interesting in
the context of this paper.

The mass spectra are computed numerically, and we
report the results in Figs. 1-4, for a few significant
choices of A. For each of them, we compute the
spectrum of spin-0, spin-1, and spin-2 fluctuations. We
conveniently normalize the spectra so that the lightest
tensor state has mass M = 1. For each value of A, we
check the convergence of the spectrum, as a function of
p1 and p, independently, and report numerical results
obtained with choices for which the dependence on the
two cutoffs can be neglected in respect to our numerical
accuracy goal of 0.5%. Finally, we find it convenient to
report in the plots also the critical value of ¢;(c),
obtained from the numerical study of the free energy,
as detailed in the next section.
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FIG. 1. Mass spectrum MWZ of fluctuations, computed for confining backgrounds, with various choices of A, as a function of the IR
parameter ¢;. For each A, we show the spectrum of spin-0 (blue dots), spin-1 (black dots), and spin-2 (red dots) states. The values of the
IR and UV cutoffs in the calculations are, respectively, given by p; — p, = 10~ and p, — p, = 5. All masses are normalized to the mass
of the lightest spin-2 state. The vertical dashed lines denote the critical value ¢;(c).
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FIG. 2. Mass spectrum

. 0.5f

0.0}

0.0f

e
M|

of fluctuations, computed for confining backgrounds, with various choices of A, as a function of the IR

parameter ¢;. For each A, we show the spectrum of spin-0 (blue dots), spin-1 (black dots), and spin-2 (red dots) states. The values of the
IR and UV cutoffs in the calculations are, respectively, given by p; — p, = 107 and p, — p, = 5. All masses are normalized to the mass
of the lightest spin-2 state. The vertical dashed lines denote the critical value ¢;(c).
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FIG. 3. Mass spectrum Mﬁz of fluctuations, computed for confining backgrounds, with various choices of A, as a function of the IR
parameter ¢;. For each A, we show the spectrum of spin-0 (blue dots), spin-1 (black dots), and spin-2 (red dots) states. The values of the
IR and UV cutoffs in the calculations are, respectively, given by p; — p, = 107 and p, — p, = 5. All masses are normalized to the mass
of the lightest spin-2 state. The vertical dashed lines denote the critical value ¢;(c).
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FIG. 4. Mass spectrum Mﬁz of fluctuations, computed for confining backgrounds, with various choices of A, as a function of the IR
parameter ¢;. For each A, we show the spectrum of spin-0 (blue dots), spin-1 (black dots), and spin-2 (red dots) states. The values of the
IR and UV cutoffs in the calculations are, respectively, given by p; — p, = 107 and p, — p, = 5. All masses are normalized to the mass
of the lightest spin-2 state. The vertical dashed lines denote the critical value ¢;(c).
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V. FREE ENERGY

The free energy density is given by the following
expression:

: (49)

P2

F =— lim " <% 0,A + W2>

pr—+oo

where W, = W if A <5/2 or W, =W, if A >5/2.
This expression has been obtained by adapting the results
in Ref. [97]; it includes the contribution of the bulk
action, evaluated by imposing the equations of motion,
the contribution of the boundary terms in the action, and
the appropriate UV-localized counterterm }V,, which is
required by the rules of holographic renormalization
[87-89], as it removes the UV divergences. The con-
servation law in Eq. (17) has been used to evaluate at p,
(the UV boundary) a term naturally defined at p; (the IR
boundary).

For each choice of the parameter A, one expresses F
in terms of the coefficients appearing in the UV expan-
sion of the background, which can be extracted by
matching the expansions to numerical solutions. Care
must be taken to obtain results that converge as
p» — +oo. We empirically find that, for A <5/2, the
free energy density is

1 5
F: —Eeé‘AU_XU <I6A<§—A)¢j¢v—75){5>, (50)

while for A > 5/2—and retaining in W, a sufficient
number of terms to ensure cancellation of all the
divergences—the free energy density is

1 5
F= —%e‘MU—“ <16(A -5) (2 - A) Py — 75)(5)-

(51)

We explicitly checked that this expression is accurate for
all values of A considered in this paper. In the special
case in which the operator has dimension A =5/2, we

find that
2
>, (52)

_ S
Wa=-2 é_l(’{) <1+510g(kz)

and the free energy density is
1
F = E64AU_XU(20¢J¢V — 47 + T5x5 — 2047 log(k)).
(53)
The appearance of a logarithm introduces a residual

scheme dependence, encoded in the parameter k. In
the following, we make the choice k = A.

Following Refs. [97-99], we find it convenient to define
a scale A as follows [90]:

A= / " dperln=10), (54)

Po

with p, the end of space—other choices are admissible, but
this choice makes contact with earlier studies, where it has
been shown that it allows one to compare the confining and
DW classes of solutions. We then express all of the
quantities of interest in units of such scale A, by defining
the rescaled free energy density

~ F
and the rescaled source as
s
b= AAJ o (56)

where A; is the dimension of the deforming coefficient
(source) associated with the dual operator of dimension
Ay =5 —A;. We hence define also the rescaled conden-
sates to be

s _ Py
¢V = AAV ’ (57)
. _ X5

Given a background solution, in order to compute the
free energy we proceed as follows. First, we match it to the
UV expansions and determine coefficients Ay, yy, @7, ¢y,
and y5. We then shift additively both the radial coordinate p
and the definition of the function A(p), to impose the
constraints A;; = 0 = y. We repeat the determination of
the coefficients and enter the results in the expression for
the free energy density. We compute the scale A for each
background—after the aforementioned shifts of p and
A(p)—and finally plot the resulting, rescaled quantities.
Examples are shown in Figs. 5-8. We do so for both
confining and DW singular solutions and show them
together for each A.

By inspection of the figures, we see the emergence of a
common pattern; in all cases, the confining solutions
minimize the free energy  for small choices of the source

|g$ 7|, while the singular, DW solutions have the lowest F
for larger values of the source. There is a critical value of
|, (c)|, corresponding to a critical value of the IR para-
meter |¢;(c)|, where a first-order phase transition occurs.
For |¢;| < |¢p;(¢)], the confining solutions can be physically
realized, while for |¢;| > |¢;(c)]|, the physical solution is
unknown, so that we are forced to discard these latter regions
of parameter space. We are not claiming that the singular
solutions are physically realized but simply that some other
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FIG. 5. The free energy density F as a function of the source g?) 7, in units of the scale A, for various choices of A. The black curve
denotes the confining solutions, while the red and blue solutions are singular domain-wall ones.

branch of solutions, not identified in this study, might exist
and take over the long-distance dynamics in these cases.
When inspected more closely, the figures show other
interesting features. For A >5/2, both confining and
singular solutions cease to exist above some value of
|, (max)| > |p,(c)|. As we already know (from the
aforementioned arguments) that, at large |d,| > |¢,(c)|,
another branch of solutions must exist (possibly in a more
complete theory), this is not a particularly problematic

finding. While this finding agrees with the results of the
analysis of three distinct examples of top-down holographic
models, reported in Refs. [97-99], it is interesting that this
feature is absent for A < 5/2, in which case confining and
singular solutions exist for any choices of qAﬁ -

In thermodynamics, one can use the concavity theorems
to discuss the stability of possible solutions, determined on
the basis of the shape of the functional dependence of the
free energy on the control parameters. These arguments do
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FIG. 6. The free energy density  as a function of the source ¢, in units of the scale A, for various choices of A. The black curve
denotes the confining solutions, while the red and blue solutions are singular domain-wall ones.

not transfer directly to the case in question because of the (ii) The portion of parameter space in which the tachyon
presence of divergences and scheme dependences (see also appears is always past the phase transition.
Ref. [110] for examples of similar considerations in a different (iii) There is a region of parameter space over which the
context), and caution has to be exercised. Yet, by com- mass of the lightest scalar is parametrically small,
paring Figs. 5-8 with Figs. 1-4, one notices the following. near the point at which it turns tachyonic. But once
(i) A tachyon exists in the spectra of confining theories more this happens only past the phase transition, in
for values of A = 1.8 but only in a portion of para- regions in which the confining solutions are, at best,
meter space (equivalently, for some range of ¢;). metastable.
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FIG. 7. The free energy density F as a function of the source g?) 7, in units of the scale A, for various choices of A. The black curve
denotes the confining solutions, while the red and blue solutions are singular domain-wall ones.
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FIG. 8. The free energy density  as a function of the source ¢, in units of the scale A, for various choices of A. The black curve
denotes the confining solutions, while the red and blue solutions are singular domain-wall ones.

We performed an extensive study of the free energy for
values of A ~ 1.8, nearby where the tachyon appears—
see also the details in Appendix F. We find that the free
energy of the confining backgrounds is a monotonic
function for A below A ~1.7. As expected, the relation
between the behavior of F and the appearance a tachyon
is not precise, and furthermore these features always
appear in a region of parameter space that has already
been excluded, on the basis of earlier considerations.

We hence report on this feature, for completeness, but do
not explore it any further.

VI. SUMMARY

We collect in Table I our numerical results: for repre-
sentative values of A, we tabulate the critical parameters
$;(c) (source) and ¢;(c) (IR asymptotic value of ¢), the
mass of the lightest scalar M(c) (in units of the mass of the
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TABLE I. Summary table of our results. For each A, we report
the critical value of the normalized source ¢,(c) at the phase
transition, the critical value of the IR expansion parameter ¢;(c),
and the value of the mass M(c) of the lightest scalar state at the
transition—expressed in units of the mass of the lightest spin-2
state for the same choices of parameters. For completeness, we
also report the value of the two parameters linked to the

condensates in the dual field theory: ¢y (c) and f5(c).

A bs(c)  ulc) M) dy(c) As(c)

0.50 2.373 1.89 0.571 —-0.063 -0.176
1.00 1.149 0.845 0.553 —-0.208 —-0.328
1.50 0.990 0.567 0.512 —0.369 —0.368
1.70 1.010 0.494 0.482 -0.471 -0.377
1.75 1.022 0.477 0.473 —-0.504 —0.380
1.80 1.038 0.459 0.464 -0.539 -0.382
1.85 1.059 0.442 0.455 -0.579 -0.384
1.90 1.084 0.424 0.446 —-0.625 —0.386
1.95 1.115 0.407 0.436 —0.677 —-0.388
2.00 1.153 0.388 0.427 -0.736 -0.390
225 1.567 0.281 0.385 -1.276 —-0.401
2.30 1.756 0.254 0.379 —1.496 —-0.403
2.35 2.045 0.223 0.374 —1.821 —0.405
2.40 2.554 0.186 0.370 -2.371 —-0.408
245 3.748 0.136 0.367 -3.618 -0.410
2.49 8.750 0.063 0.368 —8.691 -0.412
2.499 27.82 0.020 0.369 -27.80 -0.413
2.50 —0.295 0.107 0.359 0.439 -0.411
2.501 147.3 0.107 0.359 —147.2 -0.411
2.51 14.79 0.107 0.362 —14.69 -0.411
2.55 3.001 0.108 0.372 —2.899 -0.411
2.60 1.528 0.108 0.384 —1.426 -0.411
2.65 1.038 0.108 0.397 -0.935 -0.411
270 0.793 0.109 0.409 —0.689 -0.411
2.75 0.647 0.109 0.421 —0.542 -0.411
3.00 0.358 0.113 0.481 —0.246 -0.411
3.50 0.225 0.127 0.586 —0.068 -0.411
4.00 0.189 0.150 0.616 —0.102 -0.410
4.80 0.136 0.204 0.620 -0.179 -0.410

lightest tensor), in proximity of the transition. For com-
pleteness, we also list the value of the two parameters
representing the condensates in the dual field theory: qASV (¢)
and 75(c). We show in Fig. 9 the mass spectrum and free
energy for the A = 5/2 case, and in Fig. 10 we display the
mass spectrum computed at the critical value ¢;(c), for
each choice of A.

The main results of the paper can be summarized as
follows. The model allows us to study the spectrum and the
free energy for any generic value of the parameter A, which
is equal either to the dimensionality of the coupling
deforming the dual CFT or to the associated condensate.
Furthermore, for each A we restrict attention to regular
backgrounds, the dual field theory of which has a mass gap
and a discrete spectrum of bound states. These solutions of

the gravity equations of motion in five dimensions lift to
completely regular and smooth solutions in six dimensions
and admit an end of space in the radial direction p > p,. We
compute the spectrum of fluctuations of solutions of this
type, which with abuse of notation we call confining. We
find that for all values of the parameter 0 < A < 5 that we
studied, there exists a first-order phase transition, that
bounds from above the source associated with the scalar
field ¢b. This is demonstrated by the existence of domain-
wall solutions in six dimensions that, for large enough values
of the deforming parameters, are energetically favored
(despite being singular) over the confining ones. We find
that for A = 1.8, the mass spectrum contains a tachyon,
provided the deforming parameter is large enough. But this
tachyon always appears only in an unphysical portion of
parameter space, well beyond the phase transition.
Conversely, in the physical portion of parameter space,
all fluctuations have positive M> > 0 and are never para-
metrically light.

By inspecting Figs. 1-4, we notice that the mass of the
lightest state in the spectrum, in units of the mass of the
lightest tensor, becomes smaller when the source increases
toward its critical value. Hence, the minimum value M(c)
of the mass of the lightest scalar is found in immediate
proximity of the transition. For each choice of A, we
compute the mass spectrum of bound states of the dual
theory precisely at the phase transition point, which is
displayed in Fig. 10. We find two interesting, unexpected
features, which we highlight in closing this section.

First, the mass of the lightest scalar state has a minimum in
proximity of A = 5/2, in which case the mass of such state is
approximately one-third of the mass of the tensor. We show
explicitly in the top panel of Fig. 9 the mass spectrum
computed in the probe approximation, which shows signifi-
cant disagreement with the mass of the lightest scalar for
large values of ¢;. In this case, the lightest scalar particle has a
substantial overlap with the dilaton [86]. Unfortunately, this
feature appears only inside the metastable (or tachyonic)
region(s) of parameter space, while the probe approximation
captures well the mass of the lightest scalar in the physical
region, when |¢;| < |¢;(c)].

Second, this summary plot displays a peculiar disconti-
nuity at A = 5/2 (see the inset of Fig. 10). The numerical
value for the mass of the lightest scalar at A = 5/2 aligns
well with those obtained for A > 5/2 and is the absolute
minimum of the mass. However, the sequence of masses
of the lightest scalar state one obtains for A < 5/2
converges to a slightly higher value. We do not know
why this second feature emerges and highlight to the reader
the intrinsic numerical difficulty of some of the analysis we
carried out. Yet, this discontinuity is a small effect, when
compared to the much more significant first feature we
found, namely that the mass of the lightest scalar is
minimized for A = 5/2.
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FIG. 9. The mass spectrum of fluctuations for A = 5/2, displaying the spin-0O (blue dots), spin-1 (black dots), and spin-2 (red dots)
states, in units of the mass of the lightest spin-2 state (left panel). The spectrum also includes the masses of the scalars computed in the
probe approximation (orange dots), for comparison with the complete calculation (blue dots). The values of the IR and UV cutoffs in
the calculations are, respectively, given by p; — p, = 10~ and p, — p, = 5. The (normalized) free energy density F, as a function of the
source g?) 7, for A = 5/2 (right panel). The black curve denotes the confining solutions, while the red and blue solutions are singular
domain-wall ones. The vertical, dashed line in the left panel indicates the position of the first-order phase transition evident in the

right panel.
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FIG. 10. The mass spectrum of fluctuations of the gravity
theory (corresponding to the bound states of the dual field theory)
evaluated at the critical ¢;(¢) for each choice of A. We display the
spin-0 (blue dots), spin-1 (black dots), and spin-2 (red dots)
states. The values of the IR and UV cutoffs in the calculations are,
respectively, given by p; —p, = 10™° and p, —p, = 5. All
masses are normalized to the mass of the lightest spin-2 state.

VII. OUTLOOK

In a broad class of bottom-up holographic models, in
which the background geometry ends smoothly, so as to
introduce a mass gap in the dual field theory in a way that
mimics a confining theory, and furthermore in the presence of
an additional deformation (and the corresponding conden-
sate), we found evidence of the presence of a first-order phase
transition. The nature of the model allows one to treat A, the
dimensionality of the deformation or condensate, as a free
parameter and study the physics as a function of A. All the

fluctuations of the gravity backgrounds have positive mass
squared, M? > 0, for all values considered, 0 < A < 5, in
the physical portion of the parameter space, before the
appearance of the phase transition. Interestingly, in portions
of the parameter space well beyond the phase transition, the
lightest scalar state in the theory becomes first an approxi-
mate dilaton, its mass being parametrically suppressed,
and then a tachyon. All of these results confirm and general-
ize the findings in the three top-down models studied in
Refs. [97-99], as well as the expectations of Refs. [92-94].

Restricting attention to the physical region of parameter
space, in which the confining solutions are stable, we found
some evidence that the mass of the lightest state in the
spectrum becomes smaller in the limit A — 5/2—half of
the dimension of the space-time of the CFT that the dual
theory flows from in the UV—in line with the suggestion,
in Ref. [91], that such values of A are special. However, the
lightest mass is light, but not parametrically so, as predicted
in Ref. [94].

This study suggests that the phase transition we uncov-
ered in this class of models cannot be rendered arbitrarily
weak, nor of second order, and the lightest state cannot be a
dilaton with tunable, small mass. The phenomena associ-
ated with confinement in the dual field theory and its
specific implementation—which we borrowed from
Witten’s model [73]—are playing an important role in
yielding this conclusion. These findings support the argu-
ments according to which inferring the properties of long-
distance dynamics on the basis solely of the short-distance
characterization of the theory (its fixed points and the
classification of their deformations) is misleading, as the
RG flow away from fixed points, ultimately leading to
confinement, adds important nonperturbative effects.
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It is premature to try to generalize these conclusions: the
class of models analyzed here does not cover all possible
realizations of confining field theories, and possibly the
limitation of all these studies descends from the fact that
confinement is described always in the same way, in terms
of a shrinking circle in the internal geometry of a higher-
dimensional gravity theory. For instance, top-down holo-
graphic models in which the analysis of the spectrum of
fluctuations has been performed include Refs. [71,72,111],
and the results (in particular, regarding the presence of light
states) are model dependent, as the mechanism introducing
a mass gap is different from the mechanism of interest here.
‘We remind the reader that in Refs. [98,112] a similar model,
but derived from maximal supergravity in seven dimen-
sions, was studied. The main difference here is the fact that,
in the bottom-up model considered in the present paper, A
is a free parameter. The search for models that realize a
weak phase transition, and in which a parametrically light
dilaton can be realized, in the presence of a nearby
instability in the parameter space of the theory, continues.

We conclude by anticipating that we will further extend
this six-dimensional model, along lines similar to those
followed in Ref. [112], in the complementary context of
composite Higgs models, in future publications [113-115].
In this different context, we will extend the sigma model to
incorporate an internal gauge symmetry. We will study how
to break the corresponding global symmetry in the field
theory, how to (weakly) gauge a subgroup, and how to
exploit vacuum (mis)alignment to construct a composite
Higgs model, with semirealistic features—in particular in
reference to electroweak symmetry breaking.

All data displayed in the figures of this manuscript can be
downloaded from Ref. [116]. We refer the reader to
Refs. [117,118] and references therein for recent surveys
on open science.
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APPENDIX A: SIGMA MODEL COUPLED
TO GRAVITY

For the purpose of fixing our conventions, we write here
the action of the two-derivative sigma model in D dimen-
sions, consisting of n scalars ®¢, witha = 1, ..., n, coupled
to gravity:

S= / de\/_{———gM G o0y @ oy ® — V(D) |.
(A1)

We denote by M =0,...,3,5,...,D the D-dimensional
space-time indexes. The D-dimensional metric g,y has
determinant g and signature mostly +. The D-dimensional
Ricci scalar is denoted by R. The sigma-model metric is
G, and its inverse is G*?. The potential V is a function of
the scalars ®“.

If we adopt the ansatz for the background solutions, that
the metric is of the DW form and that the scalar fields only
depend on the radial coordinate

ds} = dr? + X 0dx? . (A2)
D1 = ®(r), (A3)
then the equations of motion are given by

020 + (D —1)0,A0,® + G,.0,®"0,®° — G aq? =0,
(A4)

5 4
(D-1)(0,A)? 4+ PA+——=V =0, (A5)

D-2

(D-1)(D-2)(0,A)? —=2G,,0,90,®> + 4V =0, (A6)

where the sigma-model connection is

1

g ab = _GdL(a Gcb + acha acGu/))' (A7)

Furthermore, if one finds a solution, WW(®%), to the
following partial differential equation:

», OWOW D —
= A8
v 2 aCI)“ opb D — 2 (A8)
then any solution to the first-order equations
0,A = 2 W, (A9)
o D=2
0
0,d* = G ﬂh (A10)
oD
is also a solution of the second-order classical

equations (A4)—(AO6).

1. Linearized equations for scalar fluctuations

In general, the linearized equations of motion can be
put in gauge-invariant form following the formalism in
Refs. [81-85] (where more details can be found). For the
scalars, the gauge-invariant fluctuations a“ obey the fol-
lowing equation:

D2+ (D —1)0,AD, — e *¢?|a“

— X% =0. (All)
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Here, we used the notation that, given a field X¢, the
sigma-model covariant and background-covariant deriva-
tives are defined by D, X* = 9, X + G“;.X¢ and D, X =
0,X% + G,.0,®"X¢, respectively, in terms of the sigma-
model connection G%,. of Eq. (A7). The sigma-model
Riemann tensor is then given by R%,.; = 0.G%4—
0,9 e + G oG pa — G 40Gpe- The matrix X? reads as
follows:

a a a av
X c = —R bcdarq)barq)d + D(? (G b ﬁ)
4 oV v
0,0 —— + G ——9,0IG
T D-294 [ P o T G d“]
16V
0,00, "G, (A12)

T D-220,A7

We add infinitely large, boundary-localized mass terms
for all the fluctuations of ®“, that hence satisfy Dirichlet
|

1 25(2A-5) ., 125(2A —5)(4A% — 15A + 25)

boundary conditions. The resulting boundary conditions
for the gauge-invariant variables a“ are the following:

0,9°0,9'G,,D,a"|,.

D—-2)0,A _ .
4y oV
+ 9,®°¢ <m 0,DG , + ﬁ)} a’,. (A13)

APPENDIX B: OF SUPERPOTENTIALS

The associated superpotential, Eq. (6), that is used for
example in the context of holographic renormaliza-
tion when A > 5/2, is not known in closed form. Yet,
we can write it as a power expansion in ¢, and we
find that

We=-2-55-0)¢" 16(4A — 15)

64(4A — 15)2(6A — 25)
625(128A5 — 480A% + 800A% — 4 x 103°A% + 11250A — 9375)

¢6

¢8

1024(4A — 15)3(48A2 — 410A + 875)

625

" 4096(25 — 6A)2(15 — 4A)*(16A% — 142A + 315)

(3072A% + 25600A7 — 433600A°

+ 1292 x 10°A3 + 1065 x 10°A* — 10862500A% + 18531250A2 — 12734375A + 3515625)¢'°

3125

(24576A1° + 1320960A°

©32768(25 — 6A)2(4A — 15)5(192A%3 — 2584A2 1 11590A — 17325)

— 8153600A8 — 45968 x 10°A7 + 473 x 10°A° — 12998 x 10°A5 + 100425 x 10*A*
+ 133625 x 10*A% — 25625 x 10°A2 + 10°A + 87890625)¢p'?

15625

" 131072(35 — 8A)2(15 — 4A)5(6A — 25)3(336A% — 4612A% + 21100A — 32175)

(4718592A1

+ 714670080A 13 — 2224128 x 103A'2 — 140363776 x 10°A!! + 155181568 x 10*A10 — 54067432 x 10°A°
— 6193644 x 10°A3 + 107537295 x 10°A7 — 3559741875 x 10°AS 4 53236421875 x 10*A3
— 2431853125 x 10°A* — 318709765625 x 10° A3 + 450370605468750A2

— 162176513671875A + 823974609375)¢'

78125

© 4194304(35 — 8A)2(4A — 15)7(6A — 25)3(5376A% — 98992A3 + 683500A% — 2097300A + 2413125)
x (150994944A'° + 57881395200A'5 + 1092472012800A 14

— 27151204352 x 10°A'3 + 8460660736 x 10*A'2 + 13597392384 x 10°A!!

— 13484257056 x 10°A10 4+ 4795751472 x 107 A° — 398284926 x 103A8

— 254111197 x 10°A7 + 9657946325 x 108A°% — 14713569328125 x 10°A>

+ 88646595703125 x 10*A* + 26974482421875 x 10*A3 — 617424755859375 x 103A2

+224028259277343750A + 61798095703125)¢'6
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—390625[16777216(25 — 6A)*(15 — 4A)%(16A% — 142A + 315)?

% (48384A% —901680A% + 630110042 — 19569500A + 22790625)]!

x (7247757312A% + 6263874256896A'° + 303911927808 x 103A!8

— 5902748929228800A'7 — 2758035111936 x 10*A'® + 13174340632576 x 105A'S

— 115787186756608 x 10°A'* + 31365013166976 x 10°A"3 + 17161524832384 x 107 A!?

— 18328634352128 x 108A!" + 726376592369 x 10'°A10 — 140457265478675 x 103 A°

+ 3591879533675 x 10°A3 + 4946038879446875 x 107A7 — 126333638659140625 x 10°A°
+ 1469488973640625 x 108A% — 7281017740966796875 x 10*A* — 14333258841552734375 x 10°A3
+322610068359375 x 108A2 — 10350940532684326171875A + 115871429443359375)¢'3
—390625[134217728(25 — 6A)*(9 — 2A)%(4A — 15)°(8A — 35)3x

x(193536A5 — 4526016A* + 42336320A% — 197998900A2 + 462983 x 103A — 433021875)]~!
x (463856467968 A% + 870020787732480A%> + 93468471475568640A%!

— 537522325998796800A% — 4220626598363136 x 10*A'? 4 70461689518882816 x 10*A!S
— 24426057346514944 x 10°A'7 — 38568233605083136 x 10°A !0

+ 51863822701075456 x 107 A'> — 27603786074733376 x 108A1

+ 5554033898884608 x 10°A'3 + 1756207389007328 x 10'0A 2

—1601187067059638 x 10" A'! + 53057037376123675 x 10'0A1°

— 922419869075040625 x 10°A° + 5120596044251203125 x 103A3

+ 138753717 x 10403125 x 10'°A7 — 371419078250947265625 x 107 A°

+ 4075653348253369140625 x 109A5 — 20041289228924560546875 x 105A*

— 9840867372802734375 x 107 A® 4- 54259196491241455078125 x 10* A2

— 169888076331138610839843750A — 60832500457763671875)¢p*° + - - -

We show explicitly terms up to O(¢*’) in order to
allow the reader to inspect the presence of a pathology
in the expansion: for special choices such as A =
1525 35 955 65 75 8 13 some coefficients diverge.

4°6°8°2°12°14°16°18° 4 >~
APPENDIX C: ASYMPTOTIC EXPANSION
OF THE BACKGROUND SOLUTIONS

In the main body of the paper, we showed the IR
expansion for the confining solutions for any value of
A, in Egs. (28)—(30). For the singular domain-wall

|

3 35
¢ =z, + 22 Py + §Z11/2¢%¢V + =By + o(27),

PO G ()(5 _ 3¢,¢V> L (25;(5453 L ¢V> L (125;(5453 _ 65¢3¢v> +o(d),

3 24 100 48

A=

3 6 4 25 192

_4log(s) 43 +ZS<)(_5 _3¢J¢v> +Zé(zs;(5¢%_ 1 ¢3¢v) L <lzsxs¢3_65¢3¢v) t o),

(B1)

|
solutions, we provided the IR expansions in Eqgs. (42)
and (43). Contrary to the IR expansions, the functional
form of the UV expansions depends explicitly on A. In the
main body of the paper, we reported the expansion for
A =3. In this appendix, we provide a few additional
representative examples of the UV expansions, expres-
sed as power series in z = e™”. For simplicity, we set
Ay =0=yy.
For A=1/2,
we have

and hence A;=1/2, Ay, =9/2,

192 (1)
720 896 16128 (€2)
180 3584 4032 (©3)
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For A =1, and hence A; =1, Ay =4, we have

¢ =zp;+ by + —26¢J¢v +o(z7),

log(z)

p= =B 25 4 (T~ Adsdhy) =5 O by~ 12575) + o(),
_Alog(z) 2’ (125x5¢5 — 96¢¢v )

For A =3/2, and hence A; = 3/2, Ay, = 7/2, we have

2
b =2"p+ 2Py + 5213/24’345\/ + o(z7).

log(z) !
r==—3- 3¢J + mz 3(100ys — 7spy) — ﬁicﬁ% +o(27),
4log( ) 1
A=-"2 3¢, +mz (2525 = 28¢s¢v) = 47 + 0(2).

For A = 17/10, and hence A; = 17/10, A, = 33/10, we have

42
_ 17/10 33/10
$=z btz oy + 25

_ log(z) 1 17/542 1 .5 187¢,¢y 1 /542
X = 3 24t b7+ 27\ x5 2500 ¢y +o(2),

0Py + 0(2),

3 6 4 625 6

A _4log(z) lz”/sqﬁ% LS <)§ 187¢J¢v) 3 1133/5¢%/ + o).

For A =7/4, and hence A; =7/4, Ay, = 13/4, we have

51
_ 7/4 13/4
d=2""¢;+ 77" Py + 160

_ log(z) 1 7/2 42 5 ey 1 713242
B R TR U et v R VR A GO

2P py + o(2),

4log(z) 1 x5 Oldspy\ 1
A= _208%)  oapge  s(XS _ZIPIPV T 1320 7.
3 c? d7+z <4 300 ? ¢y +o(27)
For A =9/5, and hence A; =9/5, Ay = 16/5, we have

301235 p3¢y

_ ,9/5 16/5
d=2Pd;+ ¢y + 1000

+o(z7),

3 24 625 24

4 625

A= _410g(z) _1218/5453 + 75 <){5 192¢J¢V> —1232/545%/ + 0(27)'

3 6 6
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+o(7").

_IOg(Z) _ izlg/5¢% + ZS <)(5 _48¢J¢V> _LZ32/5¢%/ 4 0(Z7),

(C4)

(C5)

(C10)

(C11)

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

(C18)
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For A = 37/20, and hence A; = 37/20, A, = 63/20, we have

11312137/20¢3¢V

_ ,37/20 63/20
$=z ¢tz oy + 4000

+o(z7),

_ log(z) 1 37/1042 | 5 TT7¢s¢v 1 6371042 7
=3 g N\ =00 ) Tag % dv Hol@),

4log(z) 1 vs T77¢¢ 1
A=—3—6z37/'0¢3+25<45—25010‘/ _6163/10¢%’+0(Z7)'

For A =19/10, and hence A; = 19/10, Ay = 31/10, we have

33
¢ =210, + 31104, 1 Ezw/m(ﬁﬁbv +o(27),

log(z 1 589 1
. g(z) __Z19/5¢3 +7 ()(5 _M) ——231/547%/ + o(2)),

3 7500 ) " 24
log(z) 1 Xs 589,y 1

A= 2082 1 o5 e s (X5 s 7

3 60 dite (4 375 ) T6° Pyl

For A =39/20, and hence A; = 39/20, A, = 61/20, we have

9792139/20¢3¢V

_ ,39/20 61/20
=1z d;t+z oy + 4000

+o(77),

I I 793 1
g = -0 L sonoge <)(5 - 74)’%) — o 105 + o(2),

3 24 10000 24
4log(z) 1 vs 193¢, 1
A= — 3( )_6Z39/10¢3+Z5<ZS_ 25010V _6Z61/10¢%’+0(Z7)'

For A =2, and hence A; =2, Ay, = 3, we have

9
¢ =2, +Ppa, + %zwﬁqﬁv +0(77),

log(@) 1, 1 !
—__—o_ — 5(25y< —2 62 7,
3 24Z ¢J+25Z< X5 dbv) 24Z ¢y +o(z)
_4log(z)

A:

1 1 1
3 624453 + mzs(%ﬂfs - 32¢,4v) - 6Z6¢%/ +o(2).
For A =9/4, and hence A; =9/4, Ay, = 11/4, we have

¢ =22"4p, + 24y + o(2)).

log(z) 1 020, 1 s I,
— ——77(400y5 — 33 — 71242 ),
X 3 T ¢J+4OOZ (400ys bbv) 2t ¢y +o(2')
log(z) 1 1 1
A=A Lo o 50505~ 33seh) g2+ ().
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For A =23/10, and hence A; = 23/10, A, = 27/10, we have

¢ — Z23/10¢J + Z27/10¢V + 0(27)’

log(z) 1 355 (25005 — 207¢,¢y) 1 27/5.12 ;
3 Tl 2500 248 v tod),
log(z) 1 22 (625ys — 828¢,y) 1
A=— _2.23/5 42 2 27]5 42 7 .
3 6% Pt 2500 g3 v tol)

For A = 47/20, and hence A; =47/20, A, = 53/20, we have

¢ — Z47/20¢j + 253/20¢V + 0(Z7),

_ log(z) 1 440, 2°(30000y5 — 2491¢p,¢py) 1 53/10 42 7
D T VR 30000 5l v told),
4log(z) 1 S(1875y5 — 2491¢,¢p) 1
A—— 3( ) _8247/10¢3 i ( 57500 1Pv) _6253/10¢%/ +o(2)).

For A = 12/5, and hence A; = 12/5, Ay = 13/5, we have
b =22, + oy +o(2),

log(z 1 1 1
y =18 L ausgs g L6257~ 52h) = 57 25 + 0l

log(z) 1 22(625y5s — 832¢,0y) 1
A=_—_° 7 24/542 _ 1 .26/542 7y

For A =49/20, and hence A; =49/20, Ay, = 51/20, we have
b =90, + 50, 1 o(Z),

log(z) 1 22(10000ys — 833¢,¢y) 1

— _ __— 49/10 42 5171042 7
X 3 ;i it 10000 s vt o),
4log(z) 1 (6255 — 833¢,¢py) 1
A—— L 49/10 42 1 s171042 7.
3 Tt Wit 2500 go v told)

For A = 249/100, and hence A, = 249/100, A, = 251/100, we have

B = 24910 4 2511004 4 52T,

log(z) 21_4Z249/50¢3 + 75 <)(5 _ W) - LZ251/50¢%, +o(z"),

r="73 250000 24

4log(z) 1 Y5 2083344\ 1
A= Y aaess040 5 (X2 L as1/50 42 7y
3 6% Pty 62500 gd v tol@)

For A = 2499/1000, and hence A, = 2499/1000, A, = 2501/1000, we have

¢ — Z2499/1000¢J + Z2501/1000¢V + 0(27)
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_log(z) 3 izz499/500¢% T ()(5 _ W) _ izzsol/soo(ﬁ% +o(),

3 24 25000000 ) ~ 24
log(z) 1 ¥5 20833334,y 1

A= L 24997500 42 5 (X2 _ 1 2501/500 42 7.

36" itz (4 6250000 6° Py +o(2)

For A =5/2, and hence A; = Ay = 5/2, we have

1
b= pv + §y27 log(2) + 35 (S0 — 25 -+ 843)2132

1 1
5 4y — )2 0g(2) + 43N0 (2) + 0(2P).

3 600

2= =50 (it g (2508 = 205) ) = {5 b 0g(e) = 3 0D + o),

41 1 1 1
_4log(z) +=—— (7515 — 50¢p3, — 4¢p3)2° — §¢V¢,z5 log(z) — gq’ﬁzslogz(z) + o(z%).

A= 3 300

For A =2501/1000, and hence A; = 2499/1000, A, = 2501/1000, we have

¢ — Z2499/1000¢j + Z2501/1000¢V + 0(Z7)

og(z) 1 400/50012 1 .5 2083333¢,¢y 1
== 5 (5 _ Z200200PsPv ) L 2501/500 42 7.
3 24° 9512\ %5 = 35000000 2° ¢y +o(2')

log(z) 1 Y5 208333344, 1
A=~ 2499/500 42 5(A2 _£YO292P PV 1 2501/500 42 7y
3 6" 1tz (4 6250000 6° ¢y +o(2)

For A =251/100, and hence A; =249/100, A, = 251/100, we have

B = 249/100g 4 ;251/1004 1 (),

_ log(z) 1 249/50 12 | 5 20833¢,¢y 1 551750 42 7
¥=mm3 Tt T B g0 ) Tt v e,
log(z) 1 Y5 2083344y 1
A—— 1 249750 412 | 5 _ _ 1 251750 42 7).
3 6L hita <4 62500 g7 v tol@)

For A =51/20, and hence A; = 49/20, Ay = 51/20, we have
¢ — Z49/20¢j + Z51/20¢V + 0(Z7),

_ log(z) 1 90,5 22(10000ys —833¢,4v) 1 5 7
B TR 10000 24Py o).

4log(z) 1 (62575 — 833¢,y) 1
A= = N0 Sso0 ~ gl +old).

For A = 13/5, and hence A; = 12/5, Ay = 13/5, we have

¢ — Z12/5¢J + Zl3/5¢v + 0(Z7)7
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_ log(z) 1 2U/542 4 & 1 265 12
=B g 625 (62575 = S2ybv) = 5, 2B + 0(), (C65)
4log(z) 1 (62575 — 832 1
Az—%—gzwstbg%— ( )(52500 ¢J¢V)_gzz6/5¢%+o(z7)' (C66)

For A =53/20, and hence A; = 47/20, A, = 53/20, we have

¢ = 247/20451 + 253/204)‘/ +o(27), (C67)
log(z) 1 2>(30000ys — 2491¢,¢py) 1
B R VRN 0000 "2l 0+ o@D, (Ces)
4log(z) 1 22 (18755 — 2491¢p,¢ 1
A= _%_gzu/loq{ﬁ T ( 57500 1Pv) _6Z53/1o¢%/ +o(). (C69)
For A =27/10, and hence A; = 23/10, A, = 27/10, we have
125
§ = 7B/0p, 4 271/104, See 2991043 4 0(77), (C70)

log(z) 1 23/5 42 2°(2500y5 — 207¢,¢y) |1 27/5 42 7
== - 1
3 s it 2500 24Pyt ol). (€7
4log(z) 1 2(625y5 — 828¢,¢ 1
A= 3( ) _6223/5¢3 i ( 52500 1Pv) _6227/5¢%/ +o(2)). (C72)
For A = 11/4, and hence A; =9/4, A, = 11/4, we have
¢ _ 29/4¢ +Z11/4¢ 44 27/4¢3 ( 7)’ (C73)
log(z 1 1
p= = g (4008~ 330,,) 2V o), ()
4log(z) 1 1
A= 08E)_Langs L5y - 330,0) - L2V + o). (C75)
For A = 3, and hence A; =2, Ay = 3, we have
¢ =2¢;+ Py - —Z°¢1 - —Z Hdidv) + o(2), (C76)
log(z 1 29,9 1
X = —%—ﬁz“¢3+zs (){5—%) —ﬂzé¢%/+0(z7), (C77)
4log(z) 1 x5 8y 1
A=— S a2 52 _SPIPVY 1 6.0 7.
2 Lo (15 - M) Lo o) (c73)
For A =7/2, and hence A; =3/2, Ay =7/2, we have
3/2 7/2 25 o432l 213242
¢:Z/¢J+Z/¢V_€ 2125 - 10° Phipy + o(2), (C79)
log(z
X = —¥ 2¢; +@Z (100xs — 7 spv) + *Z6¢4 —*Z7¢2 +o(Z'), (C80)
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410g() 3 25 64 1 55 7
3 25+ 100Z 32515 — 28¢¢by) +24Z & 6° ¢y +o(z’). (C81)

A=-1"2

For A =4, and hence A; =1, Ay =4, we have

7875 18312577¢)

5
b=y + 2 B+ Dy~ G = L by + e P 4 o(), (c82)

1
X== —oi(Z) 2¢J

3125z6¢,

o)+ _Z (1515 —4d,y) + 1536 +280

128 (12553 — 156¢3¢y) +o(27),  (C83)

4log(z) 1, i 1 3125 2125y 542 — 249643y )
——2°(75y5 — 64 205 2 ! 7).
3 295 -5 2'0; +3OOZ (7515 — 64 ,9v) + 384 ° g+ 1120 o(z")

A=—

(C84)

For A =24/5, and hence A; = 1/5, Ay = 24/5, we have

2875 589375z¢p7  1194097540625z7/°¢7  40083780796875z°/° ¢
¢=2P b+ g 168 <P+ 1216 ot 72930816 "t 64827392 ’
206305363012094528125z!1/3p1 515551881355558516505468757'3/3 13
8070232375296 44741368288641024
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APPENDIX D: ASYMPTOTIC EXPANSIONS numerical study, we report here only one example, for
OF THE FLUCTUATIONS illustrative purposes.

As described in the body of the paper, in order to
improve the numerical convergence of the spectra of
fluctuations, we write the asymptotic expansions of For convemence we put p, =0 and A; =0 in this
such solutions, both in the IR and in the UV. For the  subsection,” while ¥ =0 in order to avoid a conical
UV case, the expansion depends crucially on A; while we  singularity, as explained in the main text. For the fluctua-
did compute it explicitly for all the values of A used in the  tions of the scalars ®* = {¢, y}, we have

|

1. IR expansions

1 1
al = a},o + ‘1},1 log(p) + Zﬂz |:_ZA(0},O(A<15¢% —4)+20) + 64’1(“?,0 - a%,l)(A<5¢% —4) +20))

+@(afy —al;) ~ 350l (AQ5AG +20(10 ~ 11A)G3 +48(A —5) +400)
+log(p) <a} ]< A:‘ﬁ L (A-5)A+ q2> - gag,Agb,(A(sgb; _4)+ 20))] + O, (D1)
@ = ay + aj loglp) + {—im(a;p — ol )(AGSH —4) +20) + (a3, — a)
~ 2 a3 (AGFA(SH] ~ 8) +40) + 80) + 1= aF (AGH(A(547 — 8) + 40) + 80)
+1log(p) <—45—1a}JA2¢§ +a} (A =5)A¢; + a7, <—§A2¢j‘ +3(A=5)A¢? + ¢* - 30))} +0(p*. (D2)

For the fluctuations of the vector y,,, we have

1
D =y 2p™ +5q"01.2108(p) + 010 + 15500 P*[15364701 + 80AD; ¢y (2(8A% — 50A +75) — 3¢?)

12288"
+ 128(A — 5)Ap; 2 (=3(A — 5)A + 3g% — 50) — 64(9g* + 604> — 500)v; _, + 125A%p, 68
— 1000(A —2)A%; 9% +768q"p; _; log(p)] + O(p*). (D3)

’The dependence on p, and A; can be reinstated by making the substitutions p — p — p, and g> — e 24¢* in the expressions.
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For the tensor fluctuations ¢*,, we have

1
e = e+ e log(p) + —=p*[48q% (e — e1;) — 25A% b7 + 40(A — 5)Ae; b7 — 400e; ; + 48e; ;47 log(p)] + O(p*).

192

(D4)
2. UV expansions
In this subsection, we put A =3, and Ay = 0 = ;. We write the expansions in terms of z = e™".
For the fluctuations of the scalars, we have
1 1 1
al =al?2 +al + Eaéqzz“ + gaéqzzS + &ai(Zq“ —99¢7)z% + O(Z7), (D5)
1 1 1
@ = 0} — a4 ade e+ ol 4l (gt~ 1497)0 + () (D6)
For the vector fluctuations, we have
LT R SN 5 L 4 2\.6
b =g — £ oz + o ¢ 0ozt + 052+ 170 ¢ (g — 147)z
1
+ %q2(70b0)(5 — 209, ¢py 4 505)z" 4 O(2%). (D7)
For the tensor fluctuations, we have 0=[D?+ (D —-1)3,AD, — e~ ¢*]p*
- [Va‘c - Rabcdarq)barq)d]pc (El)

1 1
e = ey ——e0q’2> +=—eoq*zt +es® + O(20).

6 24 (D8)

APPENDIX E: PROBE APPROXIMATION

In this appendix, we further discuss the probe approxi-
mation. More details can be found in Ref. [86]. The

fluctuations a“ = ¢“ — ‘gf’; h are formed by the mixing of

the fluctuations of the scalars ®* = (¢, y) and fluctua-
tions h of the trace of the four-dimensional part of the
metric. The latter couples to the trace of the stress-energy
tensor of the boundary theory. If a¢ is mostly composed

of h, and hence a“ z‘gfj h, the couplings of the states
sourced by the operators at the boundary are well
approximated by the dilatonic counterparts. Conversely,
in the probe approximation for computing spectra, one
neglects the mixing between the scalar and metric
fluctuations. This will lead to correct results only if
a? ~ ¢?, such that the contribution of 4 in Eq. (Al1) can
be neglected.

The probe approximation is hence obtained by
neglecting the contributions from the metric fluctua-
tions, in particular &, in Egs. (All) and (A13), leading
to [86]

for the equations of motion, while the boundary conditions
reduce to

0=y, (E2)
In these equations, we have replaced a“ with the probe
fluctuations that we denote by p<.

We perform the calculation of the spectra of scalar
fluctuations in two ways for A = 5/2 in the body of the
paper. First, by solving the exact Eq. (A11), with the boundary
conditions in Eq. (A13), and finding the spectrum of masses.
Then, we repeat the calculation for the same background, but
using the probe approximation and solving Eq. (E1), with the
boundary conditions in Eq. (E2). If the two processes result in
different spectra, overlap with the dilaton cannot be neglected.
In the next subsections, IR and UV expansions for fluctuations
in the probe approximation are given.

1. IR expansions

In this subsection, we put A = 5/2. As in Appendix D,
we put p, = 0 and A; = 0, while y; = 0 in order to avoid a
conical singularity. For the fluctuations of the scalars in the
probe approximation, we have

The dependence on y;; and Ay can be reinstated by making the substitution ¢> — e2v=24v42 in the expressions.
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2. UV expansions

For the UV expansions we put Ay =0=yy, as
explained in Appendix D. Also, the expansions are con-
sidered for A = 5/2 and are written in terms of z = e™*.

The fluctuations of the scalars in the probe approxima-
tion are more complicated to derive in this case as some
of the exponents in expansions are nonrational numbers.
The part of the expansion which is of importance in our
calculations will be in the following form:

p! =1log(2)2%7pl (14 -) +252pL (1 +---),  (E5)
p=p( ) F2pi(l+-0),  (E6)

where a. = (5 £ 1/35/3)/2.

_SP},1¢1 n 51’},0471) n Az(

101 3 P1odi 3 51,47 . 591007

12 12 48 48 )

2 2 2 4
q SA¢; 2 o7 5¢;
1 _ A2 (2L _ 27T
+ 4 12 + 12 96

96

+ % - S?f% + A2 <% - Lﬁ) )) log(p)] +0pY). (B4

APPENDIX F: MORE ABOUT
THE FREE ENERGY

In this short appendix, we report some details of the free
energy density study for values of A close to A ~1.8. In
Fig. 11 we show a detail of Fig. 8, that highlights the
evolution of the free energy of the confining solutions. We
notice that this is monotonic for A = 1.7, while it has a local
maximum and minimum, and changes in concavity, when
A = 1.95. It would be tempting to correlate this behavior
with the appearance of a tachyon in the spectrum, but, as we
comment in the main body of the paper, the presence of
divergences, treated via holographic renormalization, turns
the concavity of F into a scheme-dependent quantity.
We hence do not further pursue this line of enquiry in
this paper.
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FIG. 11. The free energy F as a function of the source (/3 7, in units of the scale A, for representative choices of A near A ~ 1.8, above

which the spectrum of fluctuations contains a tachyon in part of the parameter space. The black curve denotes the confining solutions,
while the red and blue solutions are singular domain-wall ones.
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