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At the HL-LHC and future high energy colliders, a sample of a billion top quarks will be produced,
allowing precision searches for new physics in top quark decay and production. To aid in this endeavor, we
characterize the independent three and four point on-shell amplitudes involving top quarks, under the
assumption of SUð3Þc × Uð1Þem invariance. The four point amplitudes factorize into primary and
descendent amplitudes, where descendants are primaries multiplied by Mandelstam variables. By
enumerating the allowed amplitudes, we can check for amplitude redundancies to find the number of
independent terms and convert those into a Lagrangian which parametrizes these amplitudes. These results
are then cross checked by utilizing the Hilbert series to count the number of independent Lagrangian
operators. Interestingly, we find situations where the Hilbert series has cancellations which, if naïvely
interpreted, would lead to the incorrect conclusion that there are no primary operators at a given mass
dimension. We characterize the four fermion (ffff) and two fermion, two gauge boson (ffVV) operators
respectively up to dimension 12 and 13. Finally, by combining unitarity bounds on the coupling strengths
and simple estimates of the branching ratio sensitivities, we highlight interesting amplitudes for top quark
decay that should be studied more closely at the HL-LHC. Of those highlighted, there are both new charge
current and flavor changing neutral current decays that occur at dimension 8 and 10 in SMEFT.
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I. INTRODUCTION

The search for new physics beyond the Standard Model,
at the LHC and beyond, has been led by the well
established methods of effective field theory (EFT). To
parametrize the indirect effects of new physics there are the
two main paradigms of SMEFT [1,2] and HEFT [3]. These
two approaches have differing assumptions about the
physics at high energy scales and the relative importance
of different effects.
There are however a variety of issues that can obfuscate

the connection between EFTs and experimental signals.
There is the large number of allowed interactions and also
the complication of redundant (or incomplete) bases from
equivalences due to equations of motion and integration by
parts. These issues have motivated work to understand the
direct connection between dimension 6 SMEFT terms and
the physical observables they parametrize [4–7].
These redundancies on the Lagrangian side do not affect

the predictions of physical amplitudes where external
particles are on-shell. Since these amplitudes are the direct

observables accessible to experiment, they provide a useful
intermediary between theory and experiment. Recent work
in the study of amplitudes has allowed greater insight into
the independent amplitudes for a given process. In par-
ticular, the general structure of beyond the Standard Model
amplitudes, given just SUð3Þc ×Uð1Þem invariance, has
been analyzed, using both spinor helicity variables [8–12]
as well as standard variables [13].
Reference [13] was able to characterize the structure of

on-shell 3 and 4 point amplitudes involving the Higgs. To
complete this procedure, a set of potential on-shell ampli-
tudes was constructed out of Lorentz invariant combina-
tions of momenta and polarizations. By studying their
Taylor expansion in the kinematic variables, a set of
independent amplitudes was determined. These could then
be converted into a basis of Lagrangian operators. As a
cross check, the number of independent operators at each
mass dimension could be determined using the Hilbert
Series approach [14–20]. For the four point couplings, this
lead to a number of primary amplitudes/operators whose
multiplication by Mandelstam variables gave descendant
amplitudes/operators. If these new interactions are medi-
ated by the exchange of a massive particle, the lowest order
primary amplitude would be a first approximation to the
relevant phenomenology. Finally, by requiring unitarity up
to an energy Emax, one can place upper bounds on their
coupling strength. These results, when combined with
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simple estimates, suggested that there are new amplitudes
in Higgs decays into Zf̄f;Wf̄f; γf̄f, and Zγγ that could be
searched for at the HL-LHC.
In this paper, we extend this study to amplitudes

involving the top quark. At the HL-LHC and future TeV
colliders, over a billion top quarks will be produced,
allowing the study for rare decays as well as new produc-
tion mechanisms. This requires understanding the general
structure of four fermion operators and two fermion
operators with two gauge bosons, which can result in
primaries up to dimension 11. This vector space of
amplitudes is spanned by these primary and descendant
amplitudes, which in a model agnostic analysis can be
taken to be independent [21]. Interestingly, in this classi-
fication, we find interactions (e.g., γγf̄f) whose Hilbert
series numerator has a complete cancellation in the coef-
ficient for one of the terms, where a naïve inspection
incorrectly concludes that there are no primary operators at
a certain mass dimension. In our analysis, we have also
checked that the primary and descendant structure up to at
least dimension 12, going beyond the existing dimension 8
results using spinor-helicity variables [11,12]. As an initial
look at the phenomenology of these operators, we give
simple estimates that top quark decays for which FCNC
modes [e.g., t → cðll; hγ; hg; Zγ; Zg; γγ; γgÞ] and charged
current decay modes could be interesting to search for at the
HL-LHC. These simple estimates indicate that there are
some decay modes that appear at dimension 8 and 10 in
SMEFT that are worth studying in more detail.
The rest of this paper is organized as follows: Sec. II

describes what amplitudes we will explore and how to
determine independent amplitudes. Section III discusses
the Hilbert series results for our top quark operators. In
Sec. IV, we discuss some relevant phenomenological
issues, such as unitarity bounds on coupling strengths
and also rough estimates for top quark decays at the HL-
LHC. Section V is the main body of results, where we list
the operators for the primary amplitudes. In Sec. VI, we
estimate which top decay amplitudes are interesting for
exploration at HL-LHC. Finally in Sec. VII, we conclude.

II. FINDING INDEPENDENT AMPLITUDES/
COUPLINGS FOR TOP QUARKS

The general on-shell amplitudes needed for top quark
phenomenology are invariant under SUð3Þc ×Uð1Þem and
Lorentz symmetry. For 3 and 4 point interactions, imposing
SUð3Þc and Lorentz symmetry gives the following list:

3pt∶ q̄qV; q̄qh;

4pt∶ q̄qll; qqql; q̄qq̄q; q̄qhh; q̄qhV; q̄qVV ð1Þ

where q is a quark, l is a lepton (charged or neutral),
h is a Higgs boson, and V is any gauge boson. To fully
characterize these 4 point interactions, we also need

additional 3 point interactions for exchange diagrams,
which add

3pt additional∶ VVV; hVV; hhh;llh;llV: ð2Þ

Of these couplings, the three point couplings and q̄qhh; q̄qhV
have been fully characterized (e.g [13]), so in this paper this
leaves the following four point couplings to determine:

q̄qVV∶ WWq̄q;WZq̄q0; ZZq̄q; Zγq̄q; Zgq̄q;Wγq̄q0;

Wgq̄q0; gγq̄q; γγq̄q; ggq̄q; ð3Þ

Four fermion∶ q̄qll; q̄q0ēν; qqql; q̄qq̄q: ð4Þ

When there are identical particles involved, the form of the
amplitude must respect the relevant exchange symmetry and
for these, there are no amplitudes with three or more identical
particles (note that, if we were characterizing down quark
interactions, we would have to consider dddē).
In [13], a general approach for finding independent

amplitudes for 3 and 4 point on-shell amplitudes was
presented. Here, we give a brief overview of the process
and refer to that paper for further details, but will also note
where changes in that approach need to be made. To
characterize four point on-shell amplitudes, we form
Lorentz invariants out of particle momenta, fermion wave
functions, and gauge boson polarizations. For massless
gauge bosons, we use the field strength contribution
ϵμpν − ϵνpμ, so that the amplitude is manifestly gauge
invariant. Three point interactions with a covariant deriva-
tive can also give a four point contact interaction with a
gauge boson; for our cases, the only one that will be relevant
is q̄σμνq0Wμν, which generates a q̄q0Wγ interaction. This
results in a set of amplitudes Ma, giving a linear para-
metrization of the general amplitudesM ¼ P

a CaMa. For
each on-shell amplitude Ma, we can associate a local
Lagrangian operator, which we choose to have the lowest
mass dimension possible, ca

vdO−4 Oa, where we have normal-
ized its coefficient with factors of the Higgs vev to give a
dimensionless coupling ca, resulting in a Lagrangian which
parametrizes the on-shell amplitudes

Lamp ¼
X
a

ca
vdO−4

Oa: ð5Þ

By connecting these amplitudes to Lagrangian operators,
we can work in increasing mass dimension of the corre-
sponding operators. For example, q̄qWW starts at dimen-
sion 5, since the lowest local operator needs two fermions
and two gauge bosons, while q̄qγγ will start at dimension 7.
At a given mass dimension, we write out all of the
amplitudes for the allowed particle helicities. In cases
where there are two particles that are identical, we
symmetrize and antisymmetrize with respect to those
two particles. After finding the allowed primary amplitudes
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for the distinguishable case, we can achieve the indistin-
guishable case by imposing the Bose/Fermi symmetry.
We’ll have more to say on that later, when we have the
Hilbert series results.
For our four point amplitudes, we consider 1þ 2 →

3þ 4 scattering in the center of mass frame, where
p1¼ðE1;0;0;piÞ, p2¼ðE2;0;0;−piÞ, p3¼ðE3;0;pf sinθ;
pf cosθÞ, p4 ¼ ðE4; 0;−pf sin θ; pf cos θÞ. On-shell these
have the constraints

E1 ¼
E2
com þm2

1 −m2
2

2Ecom
; E2 ¼

E2
com þm2

2 −m2
1

2Ecom
;

E3 ¼
E2
com þm2

3 −m2
4

2Ecom
; E4 ¼

E2
com þm2

4 −m2
3

2Ecom
ð6Þ

A general kinematic configuration is determined by the
two continuous parameters Ecom and cos θ as well as the
choice of helicities. However, treating pi, pf, and sin θ as
independent is advantageous for finding amplitude redundan-
cies. On-shell, one can replace even powers of these variables

as sin2θ ¼ ð1 − cos2θÞ; p2
i ¼ ðE2

com−ðm1þm2Þ2ÞðE2
com−ðm1−m2Þ2Þ

4E2
com

,

p2
f ¼ ðE2

com−ðm3þm4Þ2ÞðE2
com−ðm3−m4Þ2Þ

4E2
com

. After doing this, as shown

in detail in [13], theTaylor series coefficients of the amplitudes
expansion in Ecom; pi; pf; cos θ; sin θ must all vanish if there
is an amplitude redundancy. Schematically, if there are Taylor
series coefficients Bα, we then form the matrix ∂Bα

∂Ca
, evaluate it

for random numerical values for the particle masses, and
numerically evaluate its singular value decomposition. The
number of nonzero values in that decomposition is the number
of independent amplitudes and one can find the independent
ones by removing Ca’s one at a time.
There are a few modifications to [13] needed to

address the amplitudes of this paper. First of all, for four
fermion amplitudes, we are required to have fermions in the
final state. Similar to that paper, we can choose a mass
configuration, either m3 ¼ 0, m4 ≠ 0 or m3 ¼ m4, to
constrain the variable dependence of the kinematic varia-
bles in the fermion wave functions. We have checked that
this mass assumption doesn’t affect the basis of indepen-
dent amplitudes. Having final state fermions also results in
dependence on cos θ

2
; sin θ

2
, which can be treated by replac-

ing cos θ ¼ 2 cos2 θ
2
− 1 and sin θ ¼ 2 cos θ

2
sin θ

2
and using

cos θ
2
and sin θ

2
as our variables. Another complication is that

the allowed SUð3Þ gauge invariant contractions are more
diverse than before. This issue interplays with the Bose/
Fermi symmetries of the amplitudes. As an example, for
q̄qgg, interchange of the gluons must result in the same
amplitude. If the gluons are contracted with an fABC then
the amplitude must also be odd under exchange of the
momenta and polarizations of the gluons. On the other
hand, if the gluons are contracted with a dABC then the
amplitude must also be even under exchange of the
momenta and polarizations of the gluons.

III. HILBERT SERIES

The Hilbert series gives a systematic way to count the
number of gauge invariant independent operators, up to
equation of motion and integration by part redundan-
cies [14–20], which provides a useful cross check on
our amplitude counting. It gives a function, whose
Taylor series expansion in a parameter q gives the number
of independent operators at each mass dimension [22]. In
Eq. (7), we list the Hilbert series for each of the four point
operators that we will characterize. The three point and the
other four point operator results can be found in [13].

HWWf̄f ¼HWZf̄f0 ¼
4q5þ12q6þ16q7þ6q8−2q9

ð1−q2Þ2 ;

HZZf̄f ¼
2q5þ6q6þ12q7þ6q8þ6q9þ6q10−2q11

ð1−q2Þð1−q4Þ ;

HZγf̄f ¼HZgf̄f ¼HWγf̄f0 ¼HWgf̄f0

¼ 4q6þ12q7þ8q8þð2−2Þq9
ð1−q2Þ2 ;

Hgγf̄f ¼
6q7þ8q8þð4−2Þq9

ð1−q2Þ2 ;

Hγγf̄f ¼
4q7þ2q8þ4q9þ6q10þð2−2Þq11

ð1−q2Þð1−q4Þ ;

Hggf̄f ¼
10q7þ10q8þð14−2Þq9þ14q10þð6−4Þq11

ð1−q2Þð1−q4Þ ;

Hq̄qll ¼Hq̄q0ēν¼Hq1q2q3l¼
10q6þ8q7−2q8

ð1−q2Þ2 ;

Hqqq0l ¼
4q6þ6q7þð6−2Þq8þ2q9

ð1−q2Þð1−q4Þ ;

Hq̄q̄0qq0 ¼
2ð10q6þ8q7−2q8Þ

ð1−q2Þ2 ;

Hq̄q̄0qq ¼Hq̄q̄qq0 ¼
10q6þ8q7þð10−2Þq8þ8q9−2q10

ð1−q2Þð1−q4Þ ;

Hq̄q̄qq ¼
8q6þ4q7þð8−2Þq8þ4q9−2q10

ð1−q2Þð1−q4Þ : ð7Þ

These fractional forms are interpretable in the following
way: the numerator counts the number of primary operators
and the denominator allows for the dressing of these
operators with Mandelstam factors.

For example, looking at Hq̄qll ¼ 10q6þ8q7−2q8
ð1−q2Þ2 , the

numerator says that there are 10 dimension 6 primary
operators and 8 dimension 7 primary operators. Ignore for
now the −2q8, which we’ll see denotes two constraints that
appear at dimension 8. The denominator of 1=ð1 − q2Þ2 has
an expansion of ð1þ q2 þ q4 þ � � �Þ2 which is just count-
ing the number of operators from multiplying the primaries
by Mandelstam factors of s, t (u is redundant to the on-shell
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condition). As we will see when we analyze the amplitudes
of this interaction, two primary amplitudes at dimension 6,
say Ma, Mb (with respective operators Oa, Ob), when
multiplied by a factor of s are redundant to a linear
combination of other amplitudes, so are no longer inde-
pendent at dimension 8. This explains the −2q8 since
treating this as the loss of the two related operators sOa and
sOb and all of their descendants gives the correct counting
of the number of independent terms. Such negative coef-
ficients in the Hilbert series often occur when the particles
have nonzero spin [14–20], as identities relate operators of
different tensor structures when combined with derivatives.
For four point functions, there is an argument from
counting conformal correlators that the number of primary
operators is equal to the product of the spin degrees of
freedom of the participating particles [18,23,24]. In our
results, this is correct for all cases except q̄ q̄ qq, if one
includes the negative coefficients and takes into account
possible SUð3Þc contractions. For example, for q̄qll, the
sum of the numerator coefficients 10þ 8 − 2 ¼ 16 is equal
to the spin counting of 24. On the other hand, the case of
q̄ q̄ qq has further constraints from the crossing symmetry
of the q̄ and q, resulting in fewer operators.
We also note that for some denominators, the factors are

ð1 − q2Þð1 − q4Þ. This results for situations where there are
two identical particles in the amplitude. Assuming the two
initial state particles are the identical pair, s and ðt − uÞ2 are
the Mandelstam factors that have the correct exchange
symmetry between the two particles, so we are allowed to
multiply the primary by an arbitrary set of s and ðt − uÞ2
factors (note that the primary already has a factor of þ=−
when exchanging bosons/fermions).
As you’ll notice in the Hilbert series list, some of the

numerator coefficients are written in an unusual way, for
example the ð14 − 2Þq9 and ð6 − 4Þq11 in Hggf̄f. When we
evaluated the Hilbert series, these would of course have
been 12q9 and 2q11. However, when examining the number
of independent amplitudes at dimension 9, we found 14
new primaries and 2 redundancies when 2 of the dimension
7 amplitudes were multiplied by s. In this way, the Hilbert
series must be interpreted with care, as there can be hidden
cancellations. In some case, there is even a complete
cancellation like the ð2 − 2Þq11 term for γγf̄f, where a
naïve interpretation would have missed the new primaries
at dimension 11.
The Hilbert series also allows for understanding of the

constraints of Bose/Fermi symmetry. For example, for
ggf̄f there are two symmetric contractions for the gluon
SUð3Þ indices (δAB; dABC) and one antisymmetric contrac-
tion (fABC), then swapping the kinematic variables of the
two gluons would result respectively in aþ sign for the first
two and a − sign for the last one. Now, if we calculated the
Hilbert series assuming photons were odd under inter-

change, then Hasym
γγf̄f

¼ 2q7þ6q8þð6−2Þq9þ2q10þ2q11

ð1−q2Þð1−q4Þ . One can

then check that Hggf̄f ¼ 2Hγγf̄f þHasym
γγf̄f

as expected from

the behavior under kinematic variable exchange and the
allowed SUð3Þ contractions.
Note that unlike in [13], due to complications of

enumerating all of the terms, we do not claim to have
examined the full, allowed tensor structures of the ampli-
tudes. Instead, we have checked that we agree with the
Hilbert series up to dimension 13 for q̄qVV amplitudes and
dimension 12 for four fermion amplitudes. Up to those
dimensions, the numerator of these Hilbert series do not
have any additional cancellations. As the Hilbert series
shows, the redundancies that appear at higher dimension
appear in pairs so it seems unlikely there are more, but still
we cannot guarantee that others do not appear at higher
dimension.

IV. PHENOMENOLOGY

A. Unitarity

As in [13], we utilize unitarity to constrain the coupling
strengths of these operators. Since these are new couplings
beyond the Standard Model, they violate unitarity at high
energies. Requiring the amplitudes to satisfy perturbative
unitarity up to a scale Emax, gives an upper bound on the
couplings. The technique follows the work [25–28], where
the unitarity bounds due to high multiplicity scattering was
developed (see also [29–33]).
To stand in for a more detailed calculation of each

amplitude, we utilize a SMEFT operator realization of the
amplitude to act as a proxy. As an example, consider the
case of c

v q̄qWW. This is realized by the dimension 8
SMEFT operator 1

Λ4 ðQL H̃ uR þ H:c:ÞjDμHj2 [34]. Since
we are only looking for an approximate bound, we ignore
Oð1Þ factors like

ffiffiffi
2

p
; g; g0; sin θW; cos θW and only take

into account factors of v. Under this approximation,
c ≈ v4=Λ4. The SMEFT operator has many contact inter-
actions that violate unitarity, but we find that either the
lowest and highest multiplicity give the best bound as a
function of Emax, so we will calculate these for all
interactions and include them in our tables. For this
example, the lowest multiplicity amplitude is for two
quarks and two Goldstones, with a matrix element that

goes asM2→2 ≈
vE3

max
Λ4 , where one factor of Emax comes from

the fermion bilinear and the other two come from the two
derivatives acting on the Goldstones. This is bounded by
phase space factors M2→2 ≤ 8π [25], which translates into
c ≤ ð8πÞv3=E3

max ≈ 0.4
E3
TeV

where ETeV ¼ Emax=TeV. The

highest multiplicity amplitude is for two quarks and 3

Goldstones, with M2→3 ≈
E3
max
Λ4 ≤ 32π2

Emax
, where the bound

again depends on the phase space. This gives the bound
c ≤ ð32π2Þv4=E4

max ≈ 1.2
E4
TeV
. As this example illustrates, we

generally find that the low multiplicity constraint is
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stronger for Emax < 4πv and the high multiplicity one is
stronger for energies above that.

B. Top quark decays

The HL-LHC will produce about 5 billion top quarks,
allowing searches for rare decays as well as new production
modes. Here we will consider decay modifications due to
our amplitudes. The on-shell 2 and 3 body decay modes of
the top quark allowed by the Standard Model quantum
numbers are

t → dW; uðZ; hÞ; dðeν; du;WZ;Wγ;WgÞ;
uðll; q̄q;WW; Zγ; Zg; γγ; γg; ggÞ ð8Þ

along with changes in flavors of quarks and leptons.
Searches for the flavor changing two body decays are

actively being pursued at the LHC (e.g., [35–41]), where
theoretical analyses are often performed in SMEFT
(e.g., [42–45]). Some of the three body decays are higher
order decays that exist in the Standard Model at tree level
(e.g., dWðZ; γ; gÞ; uWW), while the others require flavor
changing neutral current interactions which should be
suppressed in the Standard Model. Searches for new decay
modes can be triggered by requiring one of the tops decays
in the standard leptonic channel and then looking for the
new decay mode for the other top quark.
For this simple analysis of the phenomenology, we will

approximate top decay amplitudes as a constant, assuming
the top quark mass is the only relevant mass scale

MOðt→2Þ≃ cO
vdO−4

mdO−3
t ≈cO

�
mt

v

�
dO−4

mt≈cO22−dO=2mt;

ð9Þ

MOðt → 3Þ ≃ cO
vdO−4

mdO−4
t ≈ cO

�
mt

v

�
dO−4

≈ cO22−dO=2;

ð10Þ

where we have approximated v ≈
ffiffiffi
2

p
mt. Note that this

ignores Oð1Þ enhancements of the form ðmt=mWÞ that can
come from longitudinal polarizations, but is sufficient for
our estimates.
Let us first consider non-FCNC top decays that are

not suppressed in the Standard Model, such as t →
bðW;lν;Wγ;WgÞ. In such cases, one has at least the
Standard Model top background to contend with. For new
amplitudes which are CP even, they will interfere with the
Standard Model amplitude and have enhanced sensitivities
(unless one designs CP violating observables). In this case,
we want to compare the number of new decays to the
fluctuation in the Standard Model top background. Under
our approximation the branching ratios in the Standard
Model and the modification due to interference are

Brðt → 2ÞSM ≈
1

16πmtΓt
jMðt → 2ÞSMj2; ð11Þ

δBrðt→ 2Þ≈ 1

16πmtΓt
jMðt→ 2ÞSMjjMðt→ 2ÞBSMj: ð12Þ

To estimate sensitivity, we require that the new top decays
must be as large as a one sigma deviation in the Standard
Model top background, which for a sample of Nt top
quarks gives NtδBrðt → 2Þ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NtBrðt → 2ÞSM
p

. Such a
calculation gives for two and three body decays the
constraints

2 Body Decays∶ c≳ 5 × 10−6
�
109

Nt

�
1=2

2dO=2;

3 Body Decays∶ c≳ 6 × 10−5
�
109

Nt

�
1=2

2dO=2 ð13Þ

where we have normalized to a total sample of a billion top
quarks.
For FCNC decays, such as t → cðZ; γ; g;WW; Zγ; Zg;

γγ; γg; ggÞ, the branching ratios predicted in the Standard
Model (10−12 to 10−17) are too small to occur at the
HL-LHC (e.g., [46–50]). Thus, for these decays we can
ignore interference and give an estimate that works for both
CP even and odd interactions. If we make an optimistic
assumption that other backgrounds can be neglected, this
requires that the new branching ratios BrBSM give a few
events at the HL-LHC or NtBrBSM ≳ 1. Under our approxi-
mation, this gives the same bounds as Eq. (13).
To get some sense of how well this approximation

works, we have checked in a few existing FCNC searches,
whether the background free assumption works at theOð1Þ
level. As one might expect, one finds that for final states
with a single gluon or photon, where hadronic backgrounds
and fakes are relevant, that this is a poor assumption and
gives a branching ratio bound that is too strong by two and
three orders of magnitude for photon and gluon decays,
respectively. Thus, estimates for these final states should be
viewed as very optimistic. However, we found that the
searches with a Higgs decaying into two photons agree
roughly with our bounds. Similarly, the final states with e,
μ’s give bounds that are correct to a factor of 2–3 as long as
one takes into account tagging efficiencies for b (∼0.5),
e=μ (∼0.8) and, when relevant, Z andW leptonic branching
ratios (∼0.06 and 0.2). Thus, as long as one take these
factors into account, these final states should be more
reliable. Later, when combined with our upper bounds from
perturbative unitarity, these calculations will enable us to
give a simple estimate of which decay amplitudes that are
worth exploring further at the HL-LHC.
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V. INDEPENDENT AMPLITUDES FOR TOP
QUARK PHYSICS

In the following subsections, we will list operators
corresponding to the primary amplitudes for ffVV and
ffff interactions involving the top quark. We will make
comparisons to the Hilbert series to show consistency with
the number of independent operators, including discussions
of redundancies that occur at certain mass dimensions. We
will also give CP properties of the operators and unitarity
bounds on the coupling constants for these interactions.

A. f fVV amplitudes

Tables I and II list the primary operators for q̄qWW
interactions. Note that for the primary operators, covariant
derivatives are with respect to SUð3Þc ×Uð1Þem and thus
only involve the photon and gluon. From the Hilbert series,
we expect that there should be 4 operators at dimension 5,
12 operators at dimension 6, 16 operators at dimension 7, 6
operators at dimension 8, and at least two redundancies at
dimension 9. This is precisely what we find, with the 38
listed operators and at dimension 9, sO26 and sO27, where
s ¼ ðpq þ pq̄Þ2, become redundant to other operators. To
be concrete, one can replace these two operators with an
operator of the following form

X
i¼1…4

ðci þ ci;ssþ ci;ttþ ci;sss2 þ ci;ststþ ci;ttt2ÞOi ð14Þ

þ
X

i¼5…25;28…32

ðciþci;ssþci;ttÞOiþ
X

i¼26;27

ðciþci;ttÞOi;

ð15Þ

where the coefficients ci’s only depend on the particle
masses and predict the same on-shell amplitudes as sO26

and sO27. To generate an independent set of operators, one
needs to add descendants of the primaries, which involve
multiplying by arbitrary powers of s and t. However,
because of the redundancies at dimension 9 for sO26

and sO27, one only needs the descendants tnO26 and

tnO27 for O26 and O27. Note that this explains the −2q9
ð1−q2Þ2

part of the Hilbert series for HWWf̄f, since operators of the
form sntmO26 and sntmO27 (with n ≥ 1) are redundant, so
one needs this term in the Hilbert series to correct the
counting of independent operators. We have also listed the
lowest dimensional SMEFT-like operator (that we could
find) which realizes each operator, where the covariant
derivatives are with respect to SUð3Þc × SUð2ÞL ×Uð1ÞY .
We also list the unitarity bounds for each SMEFT operator,
assuming the lowest and highest particle multiplicity.

TABLE I. Primary 5- and 6-dimension operators for q̄qWþW− interactions. As outlined in the text, these operators can be modified to
yield the operators for q̄q0WZ interactions. Under the assumption that q̄ and q are each other’s antiparticles, the operators are Hermitian
and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to create a CP

even and a CP odd operator. To simplify the expressions, we use the shorthand D
↔

μν ¼ D
↔

μD
↔

ν, and similarly, Dμν ¼ DμDν. To get the
descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t.

i Oq̄qWþW−

i CP dOi
SMEFT Operator c Unitarity Bound

1 ðq̄qÞðWþ
μ W−μÞ þ

5

ðQ̄LH̃uR þ H:c:ÞðjDμHj2Þ
0.4
E3
TeV

; 1.2
E4
TeV

2 ðiq̄γ5qÞðWþ
μ W−μÞ − ðiQ̄LH̃uR þ H:c:ÞðjDμHj2Þ

3 ðq̄σμνqÞðiWþ
μ W−

ν Þ þ ðQ̄Lσ
μνH̃uR þ H:c:Þði½DμH�†½DνH� þ H:c:Þ

4 ðiq̄σμνγ5qÞðiWþ
μ W−

ν Þ − ðiQ̄Lσ
μνγ5H̃uR þ H:c:Þði½DμH�†½DνH� þ H:c:Þ

5 ðq̄γνqÞðiWþμD
↔

νW−
μ Þ þ

6

ðQ̄Lγ
νQL þ ūRγνuRÞði½DμH�†D↔ν½DμH� þ H:c:Þ

0.09
E4
TeV

6 ðq̄γνγ5qÞðiWþμD
↔

νW−
μ Þ þ ðQ̄Lγ

νQL − ūRγνuRÞði½DμH�†D↔ν½DμH� þ H:c:Þ
7 ðiq̄γνD↔μqÞðWþμW−

ν þ H:c:Þ þ ðiQ̄Lγ
νD
↔

μQL þ iūRγνD
↔

μuRÞð½DμH�†½DνH� þ H:c:Þ
8 ðiq̄γνγ5D

↔

μqÞðWþμW−
ν þ H:c:Þ þ ðiQ̄Lγ

νD
↔

μQL − iūRγνD
↔

μuRÞð½DμH�†½DνH� þ H:c:Þ
9 ðq̄γνqÞðiWþμDμW−

ν þ H:c:Þ þ ðQ̄Lγ
νQL þ ūRγνuRÞði½DμH�†½DμνH� þ H:c:Þ

10 ðq̄γνγ5qÞðiWþμDμW−
ν þ H:c:Þ þ ðQ̄Lγ

νQL − ūRγνuRÞði½DμH�†½DμνH� þ H:c:Þ
11 ðiq̄γμD↔νqÞðiWþ

μ W−ν þ H:c:Þ − ðiQ̄Lγ
μD
↔

νQL þ iūRγμD
↔

νuRÞði½DμH�†½DνH� þ H:c:Þ
12 ðiq̄γμγ5D

↔

νqÞðiWþ
μ W−ν þ H:c:Þ − ðiQ̄Lγ

μD
↔

νQL − iūRγμD
↔

νuRÞði½DμH�†½DνH� þ H:c:Þ
13 ðq̄γνqÞðWþμDμW−

ν þ H:c:Þ − ðQ̄Lγ
νQL þ ūRγνuRÞð½DμH�†½DμνH� þ H:c:Þ

14 ðq̄γνγ5qÞðWþμDμW−
ν þ H:c:Þ − ðQ̄Lγ

νQL − ūRγνuRÞð½DμH�†½DμνH� þ H:c:Þ
15 ϵμνρσðq̄γνqÞðWþρD

↔μ
W−σÞ þ ϵμνρσðQ̄Lγ

νQL þ ūRγνuRÞð½DρH�†D↔μ½DσH� þ H:c:Þ
16 ϵμνρσðq̄γνγ5qÞðWþρD

↔μ
W−σÞ þ ϵμνρσðQ̄Lγ

νQL − ūRγνuRÞð½DρH�†D↔μ½DσH� þ H:c:Þ
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These operators can also be reworked to account for q̄q0WZ
amplitudes provided we take q → q0 andW → Z. Here, we
use q0 to denote a different quark flavor of the correct
charge.
In Tables III and IV, we list the primary operators for

q̄qZZ interactions. Reading off from the Hilbert series, we
expect to see 2 operators at dimension 5, 6 operators at
dimension 6, 12 operators at dimension 7, 6 operators
at dimensions 8, 9, and 10, and at least 2 constraints at
dimension 11. We do indeed find that there are 38 primary
operators, as well as two redundancies at dimension 11, for
sO31 and sO32. To generate an independent set of oper-
ators, one needs to add descendants of the primaries, which
involve multiplying by arbitrary powers of s and ðt − uÞ2

(note that ðt − uÞ2 respects the exchange symmetry of the
Z’s). However because of the redundancies at dimension
11, for O31 and O32, one only needs their descendants
ðt − uÞ2nO31 and ðt − uÞ2nO32.
We have listed all of the primary operators for q̄qZγ

interactions in Table V. The Hilbert series tells us to expect
4 operators at dimension 6, 12 new operators at dimension
7, 8 operators at dimension 8, and 2 new operators and 2
new redundancies at dimension 9. We note that a naïve
interpretation of the Hilbert series would have missed the 2
new primary operators that appear at dimension 9. We find
that there are 26 primary operators, in agreement with the
Hilbert series, as well as two constraints at dimension
9—sO7 and sO8. Thus for those two operators, one only

TABLE II. Primary 7- and 8-dimension operators for q̄qWþW− interactions, where W̃μν ¼ 1
2
ϵμνρσWρσ . As outlined in the text, these

operators can be modified to yield the operators for q̄q0WZ interactions. Under the assumption that q̄ and q are each other’s antiparticles,
the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which

can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D
↔

μν ¼ D
↔

μD
↔

ν, and similarly,
Dμν ¼ DμDν. To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At
dimension 9, sO26 and sO27 become redundant to other operators and thus one only needs their descendants tnO26 and tnO27 for an
independent set of operators.

i Oq̄qWþW−

i CP dOi
SMEFT Operator c Unitarity Bound

17 ðq̄D↔μνqÞðWþμW−νÞ þ

7

ðQ̄LD
↔

μνH̃uR þ H:c:Þð½DμH�†½DνH� þ H:c:Þ

0.02
E5
TeV

; 0.07
E6
TeV

18 ðiq̄γ5D
↔

μνqÞðWþμW−νÞ − ðiQ̄LD
↔

μνH̃uR þ H:c:Þð½DμH�†½DνH� þ H:c:Þ
19 ðiq̄D↔μqÞðWþνDνW−μ þ H:c:Þ − ðiQ̄LD

↔

μH̃uR þ H:c:Þð½DνH�†½DνμH� þ H:c:Þ
20 ðq̄γ5D

↔

μqÞðWþνDνW−μ þ H:c:Þ þ ðQ̄LD
↔

μH̃uR þ H:c:Þð½DνH�†½DνμH� þ H:c:Þ
21 ðiq̄D↔μqÞðiWþνDνW−μ þ H:c:Þ þ ðiQ̄LD

↔

μH̃uR þ H:c:Þði½DνH�†½DνμH� þ H:c:Þ
22 ðq̄γ5D

↔

μqÞðiWþνDνW−μ þ H:c:Þ − ðQ̄LD
↔

μH̃uR þ H:c:Þði½DνH�†½DνμH� þ H:c:Þ
23 ϵμνρσðiq̄D

↔μ
qÞðWþρD

↔ν
W−σÞ þ ϵμνρσðiQ̄LD

↔μ
H̃uR þ H:c:Þð½DρH�†D↔ν½DσH� þ H:c:Þ

24 ϵμνρσðq̄γ5D
↔μ

qÞðWþρD
↔ν

W−σÞ − ϵμνρσðQ̄LD
↔μ

H̃uR þ H:c:Þð½DρH�†D↔ν½DσH� þ H:c:Þ
25 ðiq̄σμνD↔ρqÞðiWþ

ν D
↔

μW−ρ þ H:c:Þ − ðiQ̄Lσ
μνD

↔

ρH̃uR þ H:c:Þði½DνH�†D↔μ½DρH� þ H:c:Þ
26 ðq̄σμνqÞði½DρWþ

ν �D
↔

μW−ρ þ H:c:Þ þ ðQ̄Lσ
μνH̃uR þ H:c:Þði½DρνH�†D↔μ½DρH� þ H:c:Þ

27 ðiq̄σμνγ5qÞði½DρWþ
ν �D

↔

μW−ρ þ H:c:Þ − ðiQ̄Lσ
μνH̃uR þ H:c:Þði½DρνH�†D↔μ½DρH� þ H:c:Þ

28 ðq̄σμνγ5D
↔

ρqÞðiWþ
ν D
↔

μW−ρ þ H:c:Þ þ ðQ̄Lσ
μνD

↔

ρH̃uR þ H:c:Þði½DνH�†D↔μ½DρH� þ H:c:Þ
29 ðq̄qÞðWμνWμνÞ þ

7

ðQ̄LH̃uR þ H:c:ÞðWaμνWa
μνÞ

0.4
E3
TeV

; 1.2
E4
TeV

30 ðiq̄γ5qÞðWμνWμνÞ − ðiQ̄LH̃uR þ H:c:ÞðWaμνWa
μνÞ

31 ðq̄qÞðWþμνW̃−
μνÞ − ðQ̄LH̃uR þ H:c:ÞðWaμνW̃a

μν þ H:c:Þ
32 ðiq̄γ5qÞðWþμνW̃−

μνÞ þ ðiQ̄LH̃uR þ H:c:ÞðWaμνW̃a
μν þ H:c:Þ

33 ðq̄γμD↔νρqÞðiWþνD
↔

μW−ρÞ þ

8

ðQ̄Lγ
μD
↔

νρQL þ ūRγμD
↔

νρuRÞði½DνH�†D↔μ½DρH� þ H:c:Þ

0.006
E6
TeV

34 ðq̄γμγ5D
↔

νρqÞðiWþνD
↔

μW−ρÞ þ ðQ̄Lγ
μD
↔

νρQL − ūRγμD
↔

νρuRÞði½DνH�†D↔μ½DρH� þ H:c:Þ
35 ðiq̄γμD↔ρqÞðiWþνD

↔

μDνW−ρ þ H:c:Þ − ðiQ̄Lγ
μD
↔

ρQL þ iūRγμD
↔

ρuRÞði½DνH�†D↔μ½DρνH� þ H:c:Þ
36 ðiq̄γμγ5D

↔

ρqÞðiWþνD
↔

μDνW−ρ þ H:c:Þ − ðiQ̄Lγ
μD
↔

ρQL − iūRγμD
↔

ρuRÞði½DνH�†D↔μ½DρνH� þ H:c:Þ
37 ðq̄γμqÞði½DρWþ

ν �D
↔

μDνW−ρÞ þ ðQ̄Lγ
μQL þ ūRγμuRÞði½DνρH�†D↔μ½DρνH� þ H:c:Þ

38 ðq̄γμγ5qÞði½DρWþ
ν �D

↔

μDνW−ρÞ þ ðQ̄Lγ
μQL − ūRγμuRÞð½DνρH�†D↔μ½DρνH� þ H:c:Þ
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needs their descendant operators tnO7 and tnO8. These
operators can also be adapted to account for q̄q0Wγ, q̄qZg,
and q̄q0Wg where we use a prime to denote a different
quark flavor. To get q̄qZg operators, one replaces
Fμν → Gμν, to get q̄q0Wγ operators, one should make
the replacement q → q0 and Z → W, and to get q̄q0Wg
operators one needs to make the replacements q → q0,
Fμν → Gμν, and Z → W.
Table VI lists the primary operators for q̄qgγ inter-

actions. Reading the appropriate Hilbert series, we expect
to find 6 dimension 7 operators, 8 dimension 8 operators,
and 4 dimension 9 operators, as well as 2 operators that
become redundant at dimension 9, so the analysis again
finds 2 additional dimension 9 primary operators that a
quick interpretation of the Hilbert series would have
missed. We indeed find the 18 operators we expect from
the Hilbert series analysis, as well as two operators that
become redundant at dimension 9—sO5 and sO6. Thus, for
those two operators, we can just add their descendants tnO5

and tnO6.

We list the primary operators for q̄qγγ interactions in
Table VII. From the Hilbert series, we expect that there
should be 4 operators at dimension 7, 2 operators at
dimension 8, 4 operators at dimension 9, 6 operators at
dimension 10, and 2 operators at dimension 11, giving 18
total primary operators in agreement with the Hilbert series.
We also find that there are two new redundancies at
dimension 11 for sO7 and sO8. This gives rise to a
complete cancellation in the Hilbert series at dimension
11 between the two new operators O17, O18 and the two
redundancies for sO7, and sO8. Given the redundancies,
for O7 and O8, we only need the descendant operators
ðt − uÞ2nO7 and ðt − uÞ2nO8.
In Tables VIII and IX, we list all of the primary operators

for q̄qgg interactions. The Hilbert series says that we
should expect 10 operators at dimension 7, 10 operators
at dimension 8, 14 operators at dimension 9, 14 operators
at dimension 10, and 6 operators at dimension 11.
Additionally, we find that there are 2 redundancies at
dimension 9—sO9 and sO10—and 4 redundancies at

TABLE III. Primary 5-, 6-, and 7-dimension operators for q̄qZZ interactions. Under the assumption that q̄ and q are each other’s
antiparticles, the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian
conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

D
↔

μν ¼ D
↔

μD
↔

ν, and similarly, ∂μν ¼ ∂μ∂ν. To get the descendant operators, once can add contracted derivatives to get arbitrary
Mandelstam factors of s; ðt − uÞ2.

i Oq̄qZZ
i CP dOi

SMEFT Operator c Unitarity Bound

1 ðq̄qÞðZμZμÞ þ
5

ðQ̄LH̃uR þ H:c:ÞjDμHj2
0.4
E3
TeV

; 1.2
E4
TeV2 ðq̄iγ5qÞðZμZμÞ − ðiQ̄LH̃uR þ H:c:ÞjDμHj2

3 ðiq̄γνD↔μqÞðZμZνÞ þ

6

ðiQ̄Lγ
νD
↔

μQL þ iūRγνD
↔

μuRÞð½DμH�†½DνH� þ H:c:Þ
0.09
E4
TeV

4 ðiq̄γνγ5D
↔

μqÞðZμZνÞ þ ðiQ̄Lγ
νD
↔

μQL − iūRγνD
↔

μuRÞð½DμH�†½DνH� þ H:c:Þ
5 ðq̄γνqÞðZμ

∂μZνÞ − ðQ̄Lγ
νQL þ ūRγνuRÞð½DμH�†½DμνH� þ H:c:Þ

6 ðq̄γνγ5qÞðZμ
∂μZνÞ − ðQ̄Lγ

νQL − ūRγνuRÞð½DμH�†½DμνH� þ H:c:Þ
7 ðq̄γνqÞðZ̃νσZσÞ þ

6
ðQ̄Lγ

νQL þ ūRγνuRÞðB̃νσH†DσH þ H:c:Þ 0.4
E3
TeV

; 1.2
E4
TeV8 ðq̄γνγ5qÞðZ̃νσZσÞ þ ðQ̄Lγ

νQL − ūRγνuRÞðB̃νσH†DσH þ H:c:Þ
9 ðq̄qÞðZμνZμνÞ þ

7

ðQ̄LH̃uR þ H:c:ÞðBμνBμνÞ
0.4
E3
TeV

; 1.2
E4
TeV

10 ðiq̄γ5qÞðZμνZμνÞ − ðiQ̄LH̃uR þ H:c:ÞðBμνBμνÞ
11 ðq̄qÞðZμνZ̃μνÞ − ðQ̄LH̃uR þ H:c:ÞðBμνB̃μνÞ
12 ðiq̄γ5qÞðZμνZ̃μνÞ þ ðiQ̄LH̃uR þ H:c:ÞðBμνB̃μνÞ
13 ðiq̄σμνD

↔

ρqÞðZμ
∂
ρZνÞ þ

7

ðiQ̄LσμνD
↔

ρH̃uR þ H:c:Þð½DμH�†½DρνH� þ H:c:Þ

0.02
E5
TeV

; 0.07
E6
TeV

14 ðq̄σμνγ5D
↔

ρqÞðZμ
∂
ρZνÞ − ðQ̄LσμνD

↔

ρH̃uR þ H:c:Þð½DμH�†½DρνH� þ H:c:Þ
15 ðq̄D↔μνqÞðZμZνÞ þ ðQ̄LD

↔

μνH̃uR þ H:c:Þð½DμH�†½DνH� þ H:c:Þ
16 ðiq̄γ5D

↔

μνqÞðZμZνÞ − ðiQ̄LD
↔

μνH̃uR þ H:c:Þð½DμH�†½DνH� þ H:c:Þ
17 ðiq̄D↔νqÞðZμ

∂μZνÞ − ðiQ̄LD
↔

νH̃uR þ H:c:Þð½DμH�†½Dν
μH� þ H:c:Þ

18 ðq̄γ5D
↔

νqÞðZμ
∂μZνÞ þ ðQ̄LD

↔

νH̃uR þ H:c:Þð½DμH�†½Dν
μH� þ H:c:Þ

19 ðiq̄D↔μ
qÞðZ̃μσZσÞ þ

7
ðiQ̄LD

↔μ
H̃uR þ H:c:ÞðB̃μσH†DσH þ H:c:Þ

0.09
E4
TeV

; 0.9
E6
TeV20 ðq̄γ5D

↔μ
qÞðZ̃μσZσÞ − ðQ̄LD

↔μ
H̃uR þ H:c:ÞðB̃μσH†DσH þ H:c:Þ
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dimension 11—sO21, sO22, sO23, and sO24. As noted in
Sec. III, there are three ways we can contract the SUð3Þ
indices, two symmetric and one antisymmetric. For exam-
ple, O1 and O2 in Table VIII should be read as
ðq̄δABqÞðGAμνGB

μνÞ and dABCðq̄TAqÞðGBμνGC
μνÞ, respec-

tively, where TA are the generators of SUð3Þ. O7 in
Table VIII should be ready as fABCðq̄TAqÞðGBμνGC

μνÞ.
Thus, for O9;10;21;22;23;24, we only need to add their
descendants with factors of ðt − uÞ2.

B. f f f f amplitudes

In Table X, we have listed the primary operators for
q̄qll interactions. As the numerators of the Hilbert series
suggests, there should be 10 primaries at dimension 6, 8
primaries at dimension 7, and at least two redundancies at
dimension 8. This is precisely what we find with the listed
18 operators, where at dimension 8, sO9 and sO10 are
redundant to the other operators, where s ¼ ðpq þ pq̄Þ2.

Thus, for those two operators, one only needs their
descendants tnO9 and tnO10. We have listed a potential
SMEFToperator to realize this interaction. In some cases, a
linear combination of the amplitudes may have a lower
dimension SMEFT operator. For example, q̄qll −
q̄iγ5qliγ5l can be realized by the SMEFT operator
ðϵabQ̄LauRL̄LbeR þ H:c:Þ. This would affect the unitarity
bound by removing the higher multiplicity bound of
15=E4

TeV. We can also convert these operators to account
for baryon-lepton interactions between uu0dē and udd0ν.
The primes indicate different flavors and thus, we do not
need to consider any issues with indistinguishable particles.
For example, tcde interactions can be found by replacing
q̄ → tc; q → c;l → ec;l → d where tc and ec are the
charge conjugated 4-component spinor for the top quark
and the electron and the SUð3Þ indices are contracted with
an epsilon tensor. For the baryon-neutrino coupling, the
number of operators would depend on whether the neutrino

TABLE IV. Primary 8-, 9-, and 10-dimension operators for q̄qZZ interactions. Under the assumption that q̄ and q are each other’s
antiparticles, the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian
conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

D
↔

μν ¼ D
↔

μD
↔

ν, and similarly, ∂μν ¼ ∂μ∂ν. To get the descendant operators, once can add contracted derivatives to get arbitrary
Mandelstam factors of s; ðt − uÞ2. At dimension 11, sO31 and sO32 become redundant to other operators. Thus, for these two, we need
only their ðt − uÞ2nO31 and ðt − uÞ2nO32 descendants.

i Oq̄qZZ
i CP dOi

SMEFT Operator c Unitarity Bound

21 ðiq̄γνD↔ρqÞð½∂νZμ�∂ρZμÞ þ

8

ðiQ̄Lγ
νD
↔

ρQL þ iūRγνD
↔

ρuRÞð½Dμ
νH�†½Dρ

μH� þ H:c:Þ

0.006
E6
TeV

22 ðiq̄γνγ5D
↔

ρqÞð½∂νZμ�∂ρZμÞ þ ðiQ̄Lγ
νD
↔

ρQL − iūRγνD
↔

ρuRÞð½Dμ
νH�†½Dρ

μH� þ H:c:Þ
23 ðq̄γνD↔μρqÞðZμ

∂
ρZνÞ − ðQ̄Lγ

νD
↔

μρQL þ ūRγνD
↔

μρuRÞð½DμH�†½Dρ
νH� þ H:c:Þ

24 ðq̄γνγ5D
↔

μρqÞðZμ
∂
ρZνÞ − ðQ̄Lγ

νD
↔

μρQL − ūRγνD
↔

μρuRÞð½DμH�†½Dρ
νH� þ H:c:Þ

25 ðiq̄γνD↔ρqÞðZμ∂
ρμZνÞ þ ðiQ̄Lγ

νD
↔

ρQL þ iūRγνD
↔

ρuRÞð½DμH�†½Dρμ
ν H� þ H:c:Þ

26 ðiq̄γνγ5D
↔

ρqÞðZμ∂
ρμZνÞ þ ðiQ̄Lγ

νD
↔

ρQL − iūRγνD
↔

ρuRÞð½DμH�†½Dρμ
ν H� þ H:c:Þ

27 ðq̄D↔ναqÞðZμ∂
αμZνÞ þ

9

ðQ̄LD
↔

ναH̃uR þ H:c:Þð½DμH�†½DαμνH� þ H:c:Þ
0.001
E7
TeV

; 0.004E8
TeV

28 ðiq̄γ5D
↔

ναqÞðZμ∂
αμZνÞ − ðiQ̄LD

↔

ναH̃uR þ H:c:Þð½DμH�†½DαμνH� þ H:c:Þ
29 ðiq̄σμνγ5D

↔

ρσqÞð½∂μZρ�∂σZνÞ þ ðiQ̄LσμνD
↔

ρσH̃uR þ H:c:Þð½DμρH�†½DσνH� þ H:c:Þ
30 ðq̄σμνD↔ρσqÞðZμν∂

σZρÞ −

9

ðQ̄Lσ
μνD

↔

ρσH̃uR þ H:c:ÞðBμνH†DσρH þ H:c:Þ
0.006
E6
TeV

; 0.05E8
TeV

31 ðiq̄σμνD↔σqÞð½∂ρZμν�∂σZρÞ þ ðiQ̄Lσ
μνD

↔

σH̃uR þ H:c:Þð½∂ρBμν�H†DσρH þ H:c:Þ
32 ðiq̄σμνD↔ρqÞð½∂μZ̃νσ �∂ρZσÞ − ðiQ̄Lσ

μνD
↔

ρH̃uR þ H:c:Þð½∂μB̃νσ �H†DρσH þ H:c:Þ
33 ðq̄γμD↔νσqÞð½∂μρZν�∂σZρÞ −

10

ðQ̄Lγ
μD
↔

νσQL þ ūRγμD
↔

νσuRÞð½Dν
μρH�†½DσρH� þ H:c:Þ

3×10−4

E8
TeV

34 ðiq̄γμD↔σqÞð½∂μρZν�∂σνZρÞ þ ðiQ̄Lγ
μD
↔

σQL þ iūRγμD
↔

σuRÞð½DμρνH�†½DσνρH� þ H:c:Þ
35 ðiq̄γμγ5D

↔

σqÞð½∂μρZν�∂σνZρÞ þ ðiQ̄Lγ
μD
↔

σQL − iūRγμD
↔

σuRÞð½DμρνH�†½DσνρH� þ H:c:Þ
36 ðq̄γαD↔μ

βqÞðZ̃μρ∂
ρβZαÞ þ

10

ðQ̄Lγ
αD
↔μ

βQL þ ūRγαD
↔μ

βuRÞðB̃μρH†Dρβ
α H þ H:c:Þ

0.001
E7
TeV

; 0.004E8
TeV

37 ðq̄γαγ5D
↔μ

βqÞðZ̃μρ∂
ρβZαÞ þ ðQ̄Lγ

αD
↔μ

βQL − ūRγαD
↔μ

βuRÞðB̃μρH†Dρβ
α H þ H:c:Þ

38 ðiq̄γργ5D
↔μ

αβqÞðZ̃μρ∂
βZαÞ − ðiQ̄Lγ

ρD
↔μ

αβQL − iūRγρD
↔μ

βαuRÞðB̃μρH†DαβH þ H:c:Þ
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is Majorana or Dirac, where the Dirac case has twice the
operators, since one can use either ν or νc.
In Table XI, we have listed the primary operators for

uude interactions, where all SUð3Þ indices are contracted
by an epsilon tensor. As the Hilbert series suggests, there
should be 4 primaries at dimension 6, 6 primaries at
dimension 7, 6 primaries with 2 redundancies at dimension
8, and 2 primaries at dimension 9. The table shows the
stated number of independent primaries and we find that at
dimension 8, sO3 and sO4 are redundant to the other
operators, where s ¼ ðpu þ pūÞ2. Thus, for those two, one

only needs their descendants ðt − uÞ2nO3 and ðt − uÞ2nO4.
To account for uddν interactions, one replaces u → d;
dc → uc; ec → ν=νc, where again the case of Dirac neu-
trinos allows twice as many operators.
In Table XII, we have listed the primary operators for

q̄qq0q0 interactions. Notably the Hilbert series for this has a
numerator that is twice the q̄qllHilbert series. This factor of
two is simply for the two allowed SUð3Þ contractions, one
where theqq0 are either in the 6 or 3̄ representation, leading to
the symmetric (S) and antisymmetric (A) operators. Again, at
dimension 8, sO9 and sO10 are redundant to the other

TABLE V. Primary operators for q̄qZγ interactions. As outlined in the text, these operators can be modified to yield the operators for
q̄qZg, q̄q0Wγ, and q̄q0Wg interactions. Under the assumption that q̄ and q are each other’s antiparticles, the operators are Hermitian and
have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to create a CP even

and a CP odd operator. To simplify the expressions, we use the shorthand D
↔

μν ¼ D
↔

μD
↔

ν, and similarly, Dμν ¼ DμDν. To get the
descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At dimension 9, sO7 and sO8

become redundant to other operators. For these two, one only needs their tnO7 and tnO8 descendants.

i Oq̄qZγ
i CP dOi

SMEFT Operator c Unitarity Bound

1 ðq̄γνqÞðFνμZμÞ −

6

ðQ̄Lγ
νQL þ ūRγνuRÞðBνμH†DμH þ H:c:Þ

0.4
E3
TeV

; 1.2
E4
TeV

2 ðq̄γνγ5qÞðFνμZμÞ − ðQ̄Lγ
νQL − ūRγνuRÞðBνμH†DμH þ H:c:Þ

3 ðq̄γνqÞðF̃νσZσÞ þ ðQ̄Lγ
νQL þ ūRγνuRÞðB̃νσH†DσH þ H:c:Þ

4 ðq̄γνγ5qÞðF̃νσZσÞ þ ðQ̄Lγ
νQL − ūRγνuRÞðB̃νσH†DσH þ H:c:Þ

5 ðq̄qÞðFμνZμνÞ þ
7

ðQ̄LH̃uR þ H:c:ÞðBμνBμνÞ
0.4
E3
TeV

; 1.2
E4
TeV

6 ðiq̄γ5qÞðFμνZμνÞ − ðiQ̄LH̃uR þ H:c:ÞðBμνBμνÞ
7 ðq̄qÞðF̃μνZμνÞ − ðQ̄LH̃uR þ H:c:ÞðBμνB̃μνÞ
8 ðiq̄γ5qÞðF̃μνZμνÞ þ ðiQ̄LH̃uR þ H:c:ÞðBμνB̃μνÞ
9 ðiq̄D↔νqÞðFνμZμÞ −

7

ðiQ̄LD
↔

νH̃uR þ H:c:ÞðBνμH†DμH þ H:c:Þ

0.09
E4
TeV

; 0.9
E6
TeV

10 ðq̄D↔νγ5qÞðFνμZμÞ þ ðQ̄LD
↔

νH̃uR þ H:c:ÞðBνμH†DμH þ H:c:Þ
11 ðiq̄σμνD

↔

ρqÞðFμρZνÞ þ ðiQ̄LσμνD
↔

ρH̃uR þ H:c:ÞðBρμH†DνH þ H:c:Þ
12 ðq̄σμνqÞðFμρ

∂ρZνÞ − ðQ̄LσμνH̃uR þ H:c:ÞðBμρH†Dν
ρH þ H:c:Þ

13 ðq̄σμνγ5D
↔

ρqÞðFμρZνÞ − ðQ̄LσμνD
↔

ρH̃uR þ H:c:ÞðBμρH†DνH þ H:c:Þ
14 ðiq̄σμνγ5qÞðFμρ

∂ρZνÞ þ ðiQ̄LσμνH̃uR þ H:c:ÞðBμρH†Dν
ρH þ H:c:Þ

15 ðiq̄D↔μ
qÞðF̃μσZσÞ þ ðiQ̄LD

↔μ
H̃uR þ H:c:ÞðB̃μσH†DσH þ H:c:Þ

16 ðq̄γ5D
↔μ

qÞðF̃μσZσÞ − ðQ̄LD
↔μ

H̃uR þ H:c:ÞðB̃μσH†DσH þ H:c:Þ
17 ðq̄γνqÞð½∂νFμρ�ZμρÞ −

8
ðQ̄Lγ

νQL þ ūRγνuRÞð½∂νBμρ�BμρÞ 0.09
E4
TeV18 ðq̄γνγ5qÞð½∂νFμρ�ZμρÞ − ðQ̄Lγ

νQL − ūRγνuRÞð½∂νBμρ�BμρÞ
19 ðiq̄γνD↔ρqÞð½∂νFμρ�ZμÞ þ

8

ðiQ̄Lγ
νD
↔

ρQL þ iūRγνD
↔

ρuRÞð½∂νBμρ�H†DμH þ H:c:Þ

0.02
E5
TeV

; 0.07
E6
TeV

20 ðiq̄γνγ5D
↔

ρqÞð½∂νFμρ�ZμÞ þ ðiQ̄Lγ
νD
↔

ρQL − ūRγνD
↔

ρuRÞð½∂νBμρ�H†DμH þ H:c:Þ
21 ðiq̄γνD↔μqÞðFμρ

∂ρZνÞ þ ðiQ̄Lγ
νD
↔

μQL þ iūRγνD
↔

μuRÞðBμρH†DνρH þ H:c:Þ
22 ðiq̄γνγ5D

↔

μqÞðFμρ
∂ρZνÞ þ ðiQ̄Lγ

νD
↔

μQL − iūRγνD
↔

μuRÞðBμρH†DνρH þ H:c:Þ
23 ðq̄γμD

↔

νρqÞðFμρZνÞ − ðQ̄LγμD
↔

νρQL þ ūRγμD
↔

νρuRÞðBμρH†DνH þ H:c:Þ
24 ðq̄γμγ5D

↔

νρqÞðFμρZνÞ − ðQ̄LγμD
↔

νρQL − ūRγμD
↔

νρuRÞðBμρH†DνH þ H:c:Þ
25 ðq̄D↔μνqÞðFμρ

∂ρZνÞ þ
9

ðQ̄LD
↔

μνH̃uR þ H:c:ÞðBμρH†Dν
ρH þ H:c:Þ

0.006
E6
TeV

; 0.05E8
TeV26 ðiq̄γ5D

↔

μνqÞðFμρ
∂ρZνÞ − ðiQ̄LD

↔

μνH̃uR þ H:c:ÞðBμρH†Dν
ρH þ H:c:Þ
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operators, where s ¼ ðpq þ pq̄Þ2. Thus one only needs to
add their descendants tnO9 and tnO10.
In Table XIII, we have listed the primary operators for

q̄qq̄q interactions when two of the quarks are identical for
the specific case of uut̄ c̄. There are again two allowed
SUð3Þ contractions, specified by whether the uu are in
symmetric (S) or antisymmetric (A) combination. Since
we’re suppressing the SUð3Þ indices, this makes some of
the expressions look identical, which occurs in the
blocks (1–4) and (5–8), (11–12) and (17–18), (19–22)
and (25–28), and (29–30) and (31–32). At dimension 8,
sO3 and sO4 become redundant and at dimension 10, sO27

and sO28 become redundant, where s ¼ ðpu þ pūÞ2. Thus
one only needs to add descendants forO3;4;27;28 with factors
of ðt − uÞ2. These four redundancies explain the two −2
terms in the Hilbert series numerator.
In Table XIV, we have listed the primary operators for

q̄qq̄q interactions when the two quarks are identical and the
two antiquarks are identical, for the specific case of uut̄ t̄.
There are again two allowed SUð3Þ contractions, specified
by whether the uu are in symmetric (S) or antisymmetric
(A) combination. Since we’re suppressing the SUð3Þ
indices, this makes some of the expressions look identical,

with (1–3) and (4–6) being the same, as well as (13–15) and
(18–20). At dimension 8, sO2 and sO3 become redundant
and at dimension 10, sO19 and sO20 become redundant.
Thus one only needs the descendants of O2;3;19;20 with
factors of ðt − uÞ2. These four redundancies explain the two
−2 terms in the Hilbert series.

VI. INTERESTING TOP DECAY AMPLITUDES
FOR THE HL-LHC

Now that we have all of the results, we can compare our
unitarity upper bounds on the coupling strengths with our
estimate of the couplings needed for HL-LHC sensitivity to
the new top quark decays in Eq. (13), to highlight which top
decay amplitudes are worth studying in more detail at the
HL-LHC. In the following, we will assume we have top
quark pair production, where one top quark decays into a b
quark and a leptonicW, with a b-tagging efficiency of 0.5, a
lepton tagging efficiency of 0.8, and a W leptonic branch-
ing ratio of 0.2. For the Higgs modes, we will assume it
decays to photons with a branching ratio of ∼2 × 10−3.
First, let us consider two body decays of the top quark.

For the charged current decays, we have t → Wðb; s; dÞ,

TABLE VI. Primary operators for q̄qgγ interactions. Under the assumption that q̄ and q are each other’s antiparticles, the operators are
Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to

create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D
↔

μν ¼ D
↔

μD
↔

ν. To get the descendant
operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At dimension 9, sO5 and sO6 become
redundant to other operators. For these two, one only needs their tnO5 and tnO6 descendants.

i Oq̄qgγ
i CP dOi

SMEFT Operator c Unitarity Bound

1 ðq̄qÞðFμνGμνÞ þ

7

ðQ̄LH̃uR þ H:c:ÞðBμνGμνÞ

0.4
E3
TeV

; 1.2
E4
TeV

2 ðiq̄γ5qÞðFμνGμνÞ − ðiQ̄LH̃uR þ H:c:ÞðBμνGμνÞ
3 ðq̄σμνqÞðFμρGν

ρÞ − ðQ̄LσμνH̃uR þ H:c:ÞðBμρGν
ρÞ

4 ðiq̄σμνγ5qÞðFμρGν
ρÞ þ ðiQ̄Lσμνγ5H̃uR þ H:c:ÞðBμρGν

ρÞ
5 ðq̄qÞðFμνG̃μνÞ − ðQ̄LH̃uR þ H:c:ÞðBμνG̃μνÞ
6 ðiq̄γ5qÞðFμνG̃μνÞ þ ðQ̄RH̃uR þ H:c:ÞðBμνG̃μνÞ
7 ðq̄γνqÞð½∂νFμρ�GμρÞ −

8

ðQ̄Lγ
νQL þ ūRγνuRÞð½∂νBμρ�GμρÞ

0.09
E4
TeV

8 ðq̄γνγ5qÞð½∂νFμρ�GμρÞ − ðQ̄Lγ
νQL − ūRγνuRÞð½∂νBμρ�GμρÞ

9 ðiq̄γνD↔μqÞðFμρGνρÞ þ ðiQ̄Lγ
νD
↔

μQL þ iūRγνD
↔

μuRÞðBμρGνρÞ
10 ðiq̄γνγ5D

↔

μqÞðFμρGνρÞ þ ðiQ̄Lγ
νD
↔

μQL − iūRγνD
↔

μuRÞðBμρGνρÞ
11 ðiq̄γνD↔ρqÞðFνμGρμÞ þ ðiQ̄Lγ

νD
↔

ρQL þ iūRγνD
↔

ρuRÞðBνμGρμÞ
12 ðiq̄γνγ5D

↔

ρqÞðFνμGρμÞ þ ðiQ̄Lγ
νD
↔

ρQL − iūRγνD
↔

ρuRÞðBνμGρμÞ
13 ðiq̄γνD↔ρqÞðF̃μνGμρÞ − ðiQ̄Lγ

νD
↔

ρQL þ iūRγνD
↔

ρuRÞðB̃μνGμρÞ
14 ðiq̄γνγ5D

↔

ρqÞðF̃μνGμρÞ − ðiQ̄Lγ
νD
↔

ρQL − iūRγνD
↔

ρuRÞðB̃μνGμρÞ
15 ðq̄D↔μνqÞðFμρGν

ρÞ þ

9

ðQ̄LD
↔

μνH̃uR þ H:c:ÞðBμρGν
ρÞ

0.02
E5
TeV

; 0.07
E6
TeV

16 ðiq̄γ5D
↔

μνqÞðFμρGν
ρÞ − ðiQ̄LD

↔

μνH̃uR þ H:c:ÞðBμρGν
ρÞ

17 ðiq̄σμνD
↔

σqÞðFμρDρGνσÞ þ ðiQ̄LσμνD
↔

σH̃uR þ H:c:ÞðBμρDρGνσÞ
18 ðq̄σμνγ5D

↔

ρqÞðFμσDσGνρÞ − ðQ̄LσμνD
↔

ρuR þ H:c:ÞðBμσDσGνρÞ
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which have left and right handed vector and tensor
couplings, which can be distinguished by the lepton
angular distributions [51]. In addition, the tensor opera-
tors can be constrained by top quark production [52].
For flavor changing neutral current decays, we have
t → ðu; cÞðh; Z; γ; gÞ, which are all actively being searched
for at the LHC [35–41]. For all of these two body decays,
there is a dimension 6 SMEFT operator that realizes the
coupling, which explains why they are actively being
studied. Our constraints on the coupling strengths agree
that these are interesting and could potentially probe
unitarity violating scales up to several tens of TeV.
Now, let us consider three body decays. We do not

consider all hadronic decays of the top quark since those
suffer from large combinatorial backgrounds at the LHC
and our estimates would be entirely too optimistic. The
charged current contact interaction t → ðb; s; dÞðē; μ̄; τ̄Þν
has a different lepton pair invariant mass, which could be
interesting to look for in terms of the quark-charged lepton
invariant mass distribution. Here our estimates say that all
of the dimension 6CP even amplitudes could be interesting,

even with unitarity violation occurring around 5 TeV, while
the dimension 7CP even amplitudes are interesting if
unitarity violation occurs at about ∼3 TeV. Thus, these
are worth exploring as there is room to increase the
coupling for lower scales of unitarity violation. The other
three body decays with a charged current interaction are
t → ðb; s; dÞWðγ; gÞ, which are generated at higher order in
the Standard Model (we do not consider t → dWZ since
this is so close to being kinematically closed and thus, our
assumptions about the phase space and matrix element
would be wrong.). Contact amplitudes, unlike the Standard
Model processes, are not enhanced in the collinear/soft
limits so these might be distinguishable. Here, we find that
of the operators in Table V the operators 3–4, 5 and 8 could
be interesting for unitarity violation occurring at ∼6 TeV,
operators 10 and 14–15 need unitarity violation by
∼3 TeV, and operators 19–22 and 25 need unitarity
violation just above a TeV. However, since we should
interpret our estimates carefully for these photon and gluon
decays, the lowest dimension operators are probably the
most realistic to explore.

TABLE VII. Primary operators for q̄qγγ interactions. Under the assumption that q̄ and q are each other’s antiparticles, the operators
are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to

create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D
↔

μν ¼ D
↔

μD
↔

ν, and similarly, ∂μν ¼ ∂μ∂ν. To
get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s; ðt − uÞ2. At dimension 11,
sO7 and sO8 become redundant to other operators. For these two, one only needs their ðt − uÞ2nO7 and ðt − uÞ2nO8 descendants.

i Oq̄qγγ
i CP dOi

SMEFT Operator c Unitarity Bound

1 ðq̄qÞðFμνFμνÞ þ
7

ðQ̄LH̃uR þ H:c:ÞðBμνBμνÞ
0.4
E3
TeV

; 1.2
E4
TeV

2 ðq̄iγ5qÞðFμνFμνÞ − ðiQ̄LH̃uR þ H:c:ÞðBμνBμνÞ
3 ðq̄qÞðFμνF̃μνÞ − ðQ̄LH̃uR þ H:c:ÞðBμνB̃μνÞ
4 ðiq̄γ5qÞðFμνF̃μνÞ þ ðiQ̄LH̃uR þ H:c:ÞðBμνB̃μνÞ
5 ðiq̄γνD↔μqÞðFμρFρνÞ þ

8
ðiQ̄LD

↔

μγ
νQL þ iūRD

↔

μγ
νuRÞðBμρBρνÞ 0.09

E4
TeV6 ðiq̄γνγ5D

↔

μqÞðFμρFρνÞ þ ðiQ̄LD
↔

μγ
νQL − iūRD

↔

μγ
νuRÞðBμρBρνÞ

7 ðiq̄σμνD
↔

ρqÞðFμσ
∂
ρFν

σÞ þ

9

ðiQ̄LσμνD
↔

ρH̃uR þ H:c:ÞðBμσ
∂
ρBν

σÞ
0.02
E5
TeV

; 0.07
E6
TeV

8 ðq̄σμνγ5D
↔

ρqÞðFμσ
∂
ρFν

σÞ − ðQ̄LσμνD
↔

ρH̃uR þ H:c:ÞðBμσ
∂
ρBν

σÞ
9 ðq̄D↔μνqÞðFμρFν

ρÞ þ ðQ̄LD
↔

μνH̃uR þ H:c:ÞðBμρBν
ρÞ

10 ðiq̄γ5D
↔

μνqÞðFμρFν
ρÞ − ðiQ̄LD

↔

μνH̃uR þ H:c:ÞðBμρBν
ρÞ

11 ðiq̄γνD↔ρqÞð½∂νFμσ �∂ρFμσÞ þ

10

ðiQ̄Lγ
νD
↔

ρQL þ iūRγνD
↔

ρuRÞð½∂νBμσ �∂ρBμσÞ

0.006
E6
TeV

12 ðiq̄γνγ5D
↔

ρqÞð½∂νFμσ �∂ρFμσÞ þ ðiQ̄Lγ
νD
↔

ρQL − iūRγνD
↔

ρuRÞð½∂νBμσ �∂ρBμσÞ
13 ðq̄γνD↔μσqÞðFμρ

∂
σFνρÞ − ðQ̄Lγ

νD
↔

μσQL þ ūRγνD
↔

μσuRÞðBμρ
∂
σBνρÞ

14 ðq̄γνγ5D
↔

μσqÞðFμρ
∂
σFνρÞ − ðQ̄Lγ

νD
↔

μσQL − ūRγνD
↔

μσuRÞðBμρ
∂
σBνρÞ

15 ðq̄γνD↔αβqÞðF̃νσ∂
βFσαÞ þ ðQ̄Lγ

νD
↔

αβQL þ ūRγνD
↔

αβuRÞðB̃νσ∂
βBσαÞ

16 ðq̄γνγ5D
↔

αβqÞðF̃νσ∂
βFσαÞ þ ðQ̄Lγ

νD
↔

αβQL − ūRγνD
↔

αβuRÞðB̃νσ∂
βBσαÞ

17 ðq̄σμνD
↔

σαqÞðFμρ
∂
α
ρFνσÞ −

11
ðQ̄LσμνD

↔

σαH̃uR þ H:c:ÞðBμρ
∂
α
ρBνσÞ

0.001
E7
TeV

; 0.004
E8
TeV18 ðiq̄σμνγ5D

↔

σαqÞðFμρ
∂
α
ρFνσÞ þ ðiQ̄LσμνD

↔

σαH̃uR þ H:c:ÞðBμρ
∂
α
ρBνσÞ
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Flavor changing decays are highly suppressed in the
Standard Model, so these are very promising to search
for. To start with, four fermion contact terms t →
ðc; uÞðe; μ; τÞðē; μ̄; τ̄Þ are being searched for at the LHC
in the lepton flavor violating modes to eμ [53]. Here our
estimates say that dimension 6CP even and odd amplitudes
are interesting for unitarity violation above 9 TeV, while
dimension 7CP even and odd amplitudes require unitarity
violation by ∼4 TeV. The existing CMS search probes the
dimension 6 amplitudes [53], but does not look for the

dimension 7 amplitudes since they appear at dimension 8 in
SMEFT. We can also consider flavor changing neutral
current decays involving gauge bosons, including t →
ðc; uÞðhγ; hg; Zγ; Zg; γγ; γg; ggÞ, but not t → ðc; uÞWW
since it is also nearly kinematically closed. Again, our
estimates are too optimistic for the decay modes that are
completely hadronic, sowewill focus on the other cases. For
the decays with a Higgs and a photon or gluon, using the
amplitudes and unitarity bounds in Table 3 of [13] and
assuming the diphoton Higgs decay, we find that the

TABLE VIII. Primary 7-, 8-, and 9-dimension operators for q̄qgg interactions. There are three allowed SUð3Þ contractions, 2
symmetric ones—δAB and dABC—and one antisymmetric one—fABC. For example, Oq̄qgg

1 ¼ ðq̄δABqÞðGAμνGB
μνÞ,

Oq̄qgg
2 ¼ dABCðq̄TAqÞðGBμνGC

μνÞ, and Oq̄qgg
9 ¼ fABCðq̄TAσμνqÞðGBμρGCν

ρÞ. Under the assumption that q̄ and q are each other’s
antiparticles, the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian
conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

D
↔

μν ¼ D
↔

μD
↔

ν. To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s; ðt − uÞ2. At
dimension 9, sO9 and sO10 become redundant to other operators and at dimension 11, sO21, sO22, sO23, and sO24 become redundant to
other operators. For the O9;10;21;22;23;24 operators, one only needs descendants with factors of ðt − uÞ2.

i Oq̄qgg
i CP dOi

SUð3Þ SMEFT Operator c Unitarity Bound

1, 2 ðq̄qÞðGμνGμνÞ þ
7 δAB, dABC

ðQ̄LH̃uR þ H:c:ÞðGμνGμνÞ
0.4
E3
TeV

; 1.2
E4
TeV

3, 4 ðiq̄γ5qÞðGμνGμνÞ − ðiQ̄LH̃uR þ H:c:ÞðGμνGμνÞ
5, 6 ðq̄qÞðGμνG̃μνÞ − ðQ̄LH̃uR þ H:c:ÞðGμνG̃μνÞ
7, 8 ðiq̄γ5qÞðGμνG̃μνÞ þ ðiQ̄LH̃uR þ H:c:ÞðGμνG̃μνÞ
9 ðq̄σμνqÞðGμρGν

ρÞ þ
7 fABC

ðQ̄LσμνH̃uR þ H:c:ÞðGμρGν
ρÞ 0.4

E3
TeV

; 1.2
E4
TeV10 ðiq̄σμνγ5qÞðGμρGν

ρÞ − ðiQ̄LσμνH̃uR þ H:c:ÞðGμρGν
ρÞ

11, 12 ðiq̄γνD↔μqÞðGμρGνρÞ þ
8 δAB, dABC

ðiQ̄Lγ
νD
↔

μQL þ iūRγνD
↔

μuRÞðGμρGνρÞ 0.09
E4
TeV13, 14 ðiq̄γνγ5D

↔

μqÞðGμρGνρÞ þ ðiQ̄Lγ
νD
↔

μQL − iūRγνD
↔

μuRÞðGμρGνρÞ
15 ðq̄γνqÞð½DνGμρ�GμρÞ þ

8 fABC

ðQ̄Lγ
νQL þ ūRγνuRÞð½DνGμρ�GμρÞ

0.09
E4
TeV

16 ðq̄γνγ5qÞð½DνGμρ�GμρÞ þ ðQ̄Lγ
νQL − ūRγνuRÞð½DνGμρ�GμρÞ

17 ðiq̄γνD↔μqÞðGμρGνρÞ − ðiQ̄Lγ
νD
↔

μQL þ iūRγνD
↔

μuRÞðGμρGνρÞ
18 ðiq̄γνγ5D

↔

μqÞðGμρGνρÞ − ðiQ̄Lγ
νD
↔

μQL − iūRγνD
↔

μuRÞðGμρGνρÞ
19 ðiq̄γμD↔ρqÞðGνρG̃μνÞ þ ðiQ̄Lγ

μD
↔

ρqþ iūRγμD
↔

ρuRÞðGνρG̃μνÞ
20 ðiq̄γμγ5D

↔

ρqÞðGνρG̃μνÞ þ ðiQ̄Lγ
μD
↔

ρq − iūRγμD
↔

ρuRÞðGνρG̃μνÞ
21, 22 ðiq̄σμνD

↔

σqÞðGμρDσGν
ρÞ þ

9 δAB, dABC

ðiQ̄LσμνD
↔

σH̃uR þ H:c:ÞðGμρDσGν
ρÞ

0.02
E5
TeV

; 0.07
E6
TeV

23, 24 ðq̄σμνγ5D
↔

σqÞðGμρDσGν
ρÞ − ðQ̄LσμνD

↔

σH̃uR þ H:c:ÞðGμρDσGν
ρÞ

25, 26 ðq̄D↔μνqÞðGμρGν
ρÞ þ ðQ̄LD

↔

μνH̃uR þ H:c:ÞðGμρGν
ρÞ

27, 28 ðiq̄γ5D
↔

μνqÞðGμρGν
ρÞ − ðiQ̄LD

↔

μνH̃uR þ H:c:ÞðGμρGν
ρÞ

29 ðq̄D↔ρqÞðGμνDρGμνÞ þ

9 fABC

ðQ̄LD
↔

ρH̃uR þ H:c:ÞðGμνDρGμνÞ

0.02
E5
TeV

; 0.07
E6
TeV

30 ðiq̄γ5D
↔

ρqÞðGμνDρGμνÞ − ðiQ̄LD
↔

ρH̃uR þ H:c:ÞðGμνDρGμνÞ
31 ðq̄D↔ρqÞðGμνDρG̃μνÞ − ðQ̄LD

↔

ρH̃uR þ H:c:ÞðGμνDρG̃μνÞ
32 ðiq̄γ5D

↔

ρqÞðGμνDρG̃μνÞ þ ðiQ̄LD
↔

ρH̃uR þ H:c:ÞðGμνDρG̃μνÞ
33 ðiq̄σμνD

↔

σqÞðGμρDρGνσÞ − ðiQ̄LσμνD
↔

σuR þ H:c:ÞðGμρDρGνσÞ
34 ðq̄σμνγ5D

↔

σqÞðGμρDρGνσÞ þ ðQ̄LσμνD
↔

σuR þ H:c:ÞðGμρDρGνσÞ
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TABLE IX. Primary 10- and 11-dimension operators for q̄qgg interactions. There are three allowed SUð3Þ contractions, 2 symmetric
ones—δAB and dABC—and one antisymmetric one—fABC. Under the assumption that q̄ and q are each other’s antiparticles, the operators
are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to

create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D
↔

μν ¼ D
↔

μD
↔

ν, and similarly Dμν ¼ DμDν.
To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s; ðt − uÞ2.

i Oq̄qgg
i CP dOi

SUð3Þ SMEFT Operator c Unitarity Bound

35, 36 ðiq̄γνD↔σqÞð½DνGμρ�DσGμρÞ þ

10 δAB, dABC

ðiQ̄Lγ
νD
↔

σQL þ iūRγνD
↔

σuRÞð½DνGμρ�DσGμρÞ

0.006
E6
TeV

37, 38 ðiq̄γνγ5D
↔

σqÞð½DνGμρ�DσGμρÞ þ ðiQ̄Lγ
νD
↔

σQL − iūRγνD
↔

σuRÞð½DνGμρ�DσGμρÞ
39, 40 ðq̄γνD↔μσqÞðGμρDσGνρÞ − ðQ̄Lγ

νD
↔

μσQL þ ūRγνD
↔

μuRÞðGμρDσGνρÞ
41, 42 ðq̄γνγ5D

↔

μσqÞðGμρDσGνρÞ − ðQ̄Lγ
νD
↔

μσQL − ūRγνD
↔

μuRÞðGμρDσGνρÞ
43, 44 ðq̄γμD↔ρσqÞðGνρDσG̃μνÞ þ ðQ̄Lγ

μD
↔

ρσQL þ ūRγμD
↔

ρσuRÞðGνρDσG̃μνÞ
45, 46 ðq̄γμγ5D

↔

ρσqÞðGνρDσG̃μνÞ þ ðQ̄Lγ
μD
↔

ρσQL − ūRγμD
↔

ρσuRÞðGνρDσG̃μνÞ
47 ðq̄γνD↔μσqÞðGμρDσGνρÞ þ

10 fABC
ðQ̄Lγ

νD
↔

μσQL þ ūRγνD
↔

μσuRÞðGμρDσGνρÞ 0.006
E6
TeV48 ðq̄γνγ5D

↔

μσqÞðGμρDσGνρÞ þ ðQ̄Lγ
νD
↔

μσQL − ūRγνD
↔

μσuRÞðGμρDσGνρÞ
49, 50 ðq̄σμνD

↔

σαqÞðGμρDα
ρGνσÞ −

11 δAB, dABC
ðQ̄LσμνD

↔

σαH̃uR þ H:c:ÞðGμρDα
ρGνσÞ

0.001
E7
TeV

; 0.004E8
TeV51, 52 ðiq̄σμνγ5D

↔

σαqÞðGμρDα
ρGνσÞ þ ðiQ̄LσμνD

↔

σαH̃uR þ H:c:ÞðGμρDα
ρGνσÞ

53 ðiq̄D↔μνσqÞðGμρDσGν
ρÞ þ

11 fABC
ðiQ̄LD

↔

μνσH̃uR þ H:c:ÞðGμρD
↔

σGν
ρÞ 0.001

E7
TeV

; 0.004
E8
TeV54 ðq̄γ5D

↔

μνσqÞðGμρDσGν
ρÞ − ðQ̄LD

↔

μνσH̃uR þ H:c:ÞðGμρDσGν
ρÞ

TABLE X. Primary operators for qqll interactions (As described in the text, these operators can be modified to yield the operators for
baryon-lepton interactions uu0de and udd0ν.). Under the assumption the q̄; q and l;l are each other’s antiparticles, the operators are
Hermitian and have the listedCP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to create a
CP even and aCP oddoperator. To get the descendant operators, one can add contracted derivatives to get arbitraryMandelstam factors of s,
t. At dimension 8, sO9 and sO10 become redundant and thus, one only needs to consider O9 and O10 with arbitrary factors of t.

i Oq̄qll
i CP dOi

SMEFT Operator c Unitarity Bound

1 ðq̄qÞðllÞ þ
6

ðQ̄LH̃uR þ H:c:ÞðL̄LHeR þ H:c:Þ
1.5
E2
TeV

; 15
E4
TeV

2 ðq̄iγ5qÞðllÞ − ðiQ̄LH̃uR þ H:c:ÞðL̄LHeR þ H:c:Þ
3 ðq̄qÞðliγ5lÞ − ðQ̄LH̃uR þ H:c:ÞðiL̄LHeR þ H:c:Þ
4 ðq̄iγ5qÞðliγ5lÞ þ ðiQ̄LH̃uR þ H:c:ÞðiL̄LHeR þ H:c:Þ
5 ðq̄γμqÞðlγμlÞ þ

6

ðQ̄Lγ
μQL þ ūRγμuRÞðL̄LγμLL þ ēRγμeRÞ

1.5
E2
TeV

6 ðq̄γμγ5qÞðlγμlÞ þ ðQ̄Lγ
μQL − ūRγμuRÞðL̄LγμLL þ ēRγμeRÞ

7 ðq̄γμqÞðlγμγ5lÞ þ ðQ̄Lγ
μQL þ ūRγμuRÞðL̄LγμLL − ēRγμeRÞ

8 ðq̄γμγ5qÞðlγμγ5lÞ þ ðQ̄Lγ
μQL − ūRγμuRÞðL̄LγμLL − ēRγμeRÞ

9 ðq̄σμνqÞðlσμνlÞ þ
6

ðQ̄Lσ
μνH̃uR þ H:c:ÞðL̄LσμνHeR þ H:c:Þ

1.5
E2
TeV

; 15
E4
TeV10 ϵμνρσðq̄σμνqÞðlσρσlÞ − ϵμνρσðQ̄Lσ

μνH̃uR þ H:c:ÞðL̄Lσ
ρσHeR þ H:c:Þ

11 ðq̄γμqÞðilD↔μlÞ þ

7

ðQ̄Lγ
μQL þ ūRγμuRÞðiL̄LHD

↔

μeR þ H:c:Þ

0.4
E3
TeV

; 1.2
E4
TeV

12 ðq̄γμqÞðlγ5D
↔

μlÞ − ðQ̄Lγ
μQL þ ūRγμuRÞðL̄LHD

↔

μeR þ H:c:Þ
13 ðq̄γμγ5qÞðilD

↔

μlÞ þ ðQ̄Lγ
μQL − ūRγμuRÞðiL̄LHD

↔

μeR þ H:c:Þ
14 ðq̄γμγ5qÞðlγ5D

↔

μlÞ − ðQ̄Lγ
μQL − ūRγμuRÞðL̄LHD

↔

μeR þ H:c:Þ
15 ðiq̄D↔μ

qÞðlγμlÞ þ ðiQ̄LH̃D
↔μ

uR þ H:c:ÞðL̄LγμLL þ ēRγμeRÞ
16 ðq̄γ5D

↔μ
qÞðlγμlÞ − ðQ̄LH̃D

↔μ
uR þ H:c:ÞðL̄LγμLL þ ēRγμeRÞ

17 ðiq̄D↔μ
qÞðlγμγ5lÞ þ ðiQ̄LH̃D

↔μ
uR þ H:c:ÞðL̄LγμLL − ēRγμeRÞ

18 ðq̄γ5D
↔μ

qÞðlγμγ5lÞ − ðQ̄LH̃D
↔μ

uR þ H:c:ÞðL̄LγμLL − ēRγμeRÞ
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TABLE XI. Primary operators for uude interactions, where dc and ec are the charge conjugated down-type quark and charged lepton
4-component spinor andSUð3Þ indices are contractedwith an epsilon tensor (These operators can bemodified to yield the operators foruddν

interactions by simply taking u → d; dc → uc; ec → ν=νc.). To simplify the expressions, we have defined a back-forth derivativeD
↔u

μ, which

only acts on the u fields, and similarlyD
↔u;Q

μ which acts on uR andQL (but notQ
c
L). To get the descendant operators, one can add contracted

derivatives to get arbitrary Mandelstam factors that respect the exchange symmetry between the two up-type quarks, i.e., s; ðt − uÞ2. At
dimension 8, sO3 and sO4 become redundant and thus, one only needs to considerO3 andO4 descendants with arbitrary factors of ðt − uÞ2.
i Ouude

i dOi
SMEFT Operator c Unitarity Bound

1 ðdcuÞðecuÞ
6

ðdcRH̃†QL þ Q̄c
LHuRÞðēcRH̃†QL þ L̄c

LHuRÞ
1.5
E2
TeV

; 15
E4
TeV

2 ðdciγ5uÞðecuÞ ðidcRH̃†QL − iQ̄c
LHuRÞðēcRH̃†QL þ L̄c

LHuRÞ
3 ðdcuÞðeciγ5uÞ ðdcRH̃†QL þ Q̄c

LHuRÞðiēcRH̃†QL − iL̄c
LHuRÞ

4 ðdciγ5uÞðeciγ5uÞ ðidcRH̃†QL − iQ̄c
LHuRÞðiēcRH̃†QL − iL̄c

LHuRÞ
5 ðdcγμuÞðecDμuÞ

7

ðQc
Lγ

μQL þ d̄cRγ
μuRÞðēcRDμH̃†QL þ L̄c

LHDμuRÞ

0.4
E3
TeV

; 1.2
E4
TeV

6 ðdcγμuÞðeciγ5DμuÞ ðQc
Lγ

μQL þ d̄cRγ
μuRÞðiēcRDμH̃†QL − iL̄c

LHDμuRÞ
7 ðdcγμγ5uÞðecDμuÞ ðQc

Lγ
μQL − d̄cRγ

μuRÞðēcRDμH̃†QL þ L̄c
LHDμuRÞ

8 ðdcγμγ5uÞðeciγ5DμuÞ ðQc
Lγ

μQL − d̄cRγ
μuRÞðiēcRDμH̃†QL − iL̄c

LHDμuRÞ
9 ðdcDμuÞðecγμuÞ ðdcRDμH̃†QL þ Q̄c

LHDμuRÞðL̄c
Lγ

μQL þ ēcRγ
μuRÞ

10 ðdciγ5DμuÞðecγμuÞ ðidcRDμH̃†QL − iQ̄c
LHDμuRÞðL̄c

Lγ
μQL þ ēcRγ

μuRÞ
11 ðdcuÞð½Dμec�D↔u

μuÞ

8

ðdcRH̃†QL þ Q̄c
LHuRÞð½DμēcR�D

↔Q;u
μ H̃†QL þ ½DμL̄c

LH�D↔Q;u
μ uRÞ

0.09
E4
TeV

; 0.9
E6
TeV

12 ðdciγ5uÞð½Dμec�D↔u
μuÞ ðidcRH̃†QL − iQ̄c

LHuRÞð½DμēcR�D
↔Q;u

μ H̃†QL þ ½DμL̄c
LH�D↔Q;u

μ uRÞ
13 ðdcuÞð½Dμec�iγ5D

↔u
μuÞ ðdcRH̃†QL þ Q̄c

LHuRÞði½DμēcR�D
↔Q;u

μ H̃†QL − i½DμL̄c
LH�D↔Q;u

μ uRÞ
14 ðdciγ5uÞð½Dμec�iγ5D

↔u
μuÞ ðidcRH̃†QL − iQ̄c

LHuRÞði½DμēcR�D
↔Q;u

μ H̃†QL − i½DμL̄c
LH�D↔Q;u

μ uRÞ
15 ðdcγμuÞð½Dνec�γμD

↔u
νuÞ 8

ðQc
Lγ

μQL þ d̄cRγ
μuRÞð½DνL̄c

L�γμD
↔Q;u

ν QL þ ½DνēcR�γμD
↔Q;u

ν uRÞ 0.09
E4
TeV16 ðdcγμγ5uÞð½Dνec�γμD

↔u
νuÞ ðQc

Lγ
μQL − d̄cRγ

μuRÞð½DνL̄c
L�γμD

↔Q;u
ν QL þ ½DνēcR�γμD

↔Q;u
ν uRÞ

17 ðdcγμuÞð½Dνec�D↔u
νDμuÞ 9

ðQc
Lγ

μQL þ d̄cRγ
μuRÞð½DνēcR�D

↔Q;u
ν DμH̃†QL þ ½DνL̄c

LH�D↔Q;u
ν DμuRÞ 0.02

E5
TeV

; 0.07
E6
TeV18 ðdcγμuÞð½Dνec�iγ5D

↔u
νDμuÞ ðQc

Lγ
μQL þ d̄cRγ

μuRÞði½DνēcR�D
↔Q;u

ν DμH̃†QL − i½DνL̄c
LH�D↔Q;u

ν DμuRÞ

TABLE XII. Primary operators for q̄qq̄0q0 interactions. There are two allowed SUð3Þ contractions, the S indicates where q, q0 form a
symmetric 6 representation under SUð3Þ, while A has the antisymmetric 3̄ representation. For example, with explicit indices we have

Oq̄qq̄0q0
1;S ¼ ðq̄fαqfαÞðq̄0βgq0βgÞ and Oq̄qq̄0q0

1;A ¼ ðq̄½αq½αÞðq̄0β�q0β�Þ, where qfαqβg ¼ qαqβ þ qβqα and q½αqβ� ¼ qαqβ − qβqα. Under the

assumption the q̄; q and q̄0; q0 are respectively each other’s antiparticles, the operators are Hermitian and have the listed CP properties.
If they are not, each of these operators has a Hermitian conjugate, which can be used to create a CP even and a CP odd operator. To get
the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors of s, t. At dimension 8, sO9 and sO10

become redundant and thus, one only needs to consider O9 and O10 with arbitrary factors of t.

i Oq̄qq̄0q0
i;S=A CP dOi

SMEFT Operator c Unitarity Bound

1 ðq̄qÞðq̄0q0Þ þ
6

ðQ̄LH̃uR þ H:c:ÞðQ̄0
LH̃u0R þ H:c:Þ

1.5
E2
TeV

; 15
E4
TeV

2 ðq̄iγ5qÞðq̄0q0Þ − ðiQ̄LH̃uR þ H:c:ÞðQ̄0
LH̃u0R þ H:c:Þ

3 ðq̄qÞðq̄0iγ5q0Þ − ðQ̄LH̃uR þ H:c:ÞðiQ̄0
LH̃u0R þ H:c:Þ

4 ðq̄iγ5qÞðq̄0iγ5q0Þ þ ðiQ̄LH̃uR þ H:c:ÞðiQ̄0
LH̃u0R þ H:c:Þ

5 ðq̄γμqÞðq̄0γμq0Þ þ
6

ðQ̄Lγ
μQL þ ūRγμuRÞðQ̄0

LγμQ
0
L þ ū0Rγμu

0
RÞ

1.5
E2
TeV

6 ðq̄γμγ5qÞðq̄0γμq0Þ þ ðQ̄Lγ
μQL − ūRγμuRÞðQ̄0

LγμQ
0
L þ ū0Rγμu

0
RÞ

7 ðq̄γμqÞðq̄0γμγ5q0Þ þ ðQ̄Lγ
μQL þ ūRγμuRÞðQ̄0

LγμQ
0
L − ū0Rγμu

0
RÞ

8 ðq̄γμγ5qÞðq̄0γμγ5q0Þ þ ðQ̄Lγ
μQL − ūRγμuRÞðQ̄0

LγμQ
0
L − ū0Rγμu

0
RÞ

9 ðq̄σμνqÞðq̄0σμνq0Þ þ
6

ðQ̄Lσ
μνH̃uR þ H:c:ÞðQ̄0

LσμνH̃u0R þ H:c:Þ
1.5
E2
TeV

; 15
E4
TeV10 ϵμνρσðq̄σμνqÞðq̄0σρσq0Þ − ϵμνρσðQ̄Lσ

μνH̃uR þ H:c:ÞðQ̄0
Lσ

ρσH̃u0R þ H:c:Þ

(Table continued)

PRIMARY OBSERVABLES FOR TOP QUARK COLLIDER … PHYS. REV. D 108, 015019 (2023)

015019-15



TABLE XII. (Continued)

i Oq̄qq̄0q0
i;S=A CP dOi

SMEFT Operator c Unitarity Bound

11 ðq̄γμqÞðiq̄0D↔μq0Þ þ

7

ðQ̄Lγ
μQL þ ūRγμuRÞðiQ̄0

LH̃D
↔

μu0R þ H:c:Þ

0.4
E3
TeV

; 1.2
E4
TeV

12 ðq̄γμqÞðq̄0γ5D
↔

μq0Þ − ðQ̄Lγ
μQL þ ūRγμuRÞðQ̄0

LH̃D
↔

μu0R þ H:c:Þ
13 ðq̄γμγ5qÞðiq̄0D

↔

μq0Þ þ ðQ̄Lγ
μQL − ūRγμuRÞðiQ̄0

LH̃D
↔

μu0R þ H:c:Þ
14 ðq̄γμγ5qÞðq̄0γ5D

↔

μq0Þ − ðQ̄Lγ
μQL − ūRγμuRÞðQ̄0

LH̃D
↔

μu0R þ H:c:Þ
15 ðiq̄D↔μ

qÞðq̄0γμq0Þ þ ðiQ̄LH̃D
↔μ

uR þ H:c:ÞðQ̄0
LγμQ

0
L þ ū0Rγμu

0
RÞ

16 ðq̄γ5D
↔μ

qÞðq̄0γμq0Þ − ðQ̄LH̃D
↔μ

uR þ H:c:ÞðQ̄0
LγμQ

0
L þ ū0Rγμu

0
RÞ

17 ðiq̄D↔μ
qÞðq̄0γμγ5q0Þ þ ðiQ̄LH̃D

↔μ
uR þ H:c:ÞðQ̄0

LγμQ
0
L − ū0Rγμu

0
RÞ

18 ðq̄γ5D
↔μ

qÞðq̄0γμγ5q0Þ − ðQ̄LH̃D
↔μ

uR þ H:c:ÞðQ̄0
LγμQ

0
L − ū0Rγμu

0
RÞ

TABLE XIII. Primary operators for qqq̄q̄ interactions with two indistinguishable quarks, for the specific case of uut̄c̄ interactions
(Hermitian conjugate yields tcū ū and down-type interactions can be found by exchange for down quarks.). The SUð3Þ contractions are
determined by SðAÞ to be symmetric (antisymmetric) in the uu indices. We’ve defined a back-forth derivativeD

↔u
μ, which only acts on the

u fields, and similarly D
↔u;Q1

μ which acts on uR and Q1L. For descendant operators, one adds contracted derivatives to get arbitrary
Mandelstam factors that respect the exchange symmetry, i.e., s; ðt − uÞ2. At dimension 8, sO3 and sO4 become redundant, while at
dimension 10, sO27 and sO28 become redundant. Thus one only needs to consider O3;4;27;28 descendants with arbitrary factors of
ðt − uÞ2.

i Ouut̄ c̄
i dOi

SUð3Þ SMEFT Operator c Unitarity Bound

1 ðt̄uÞðc̄uÞ
6 A

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞðQ̄2LH̃uR þ c̄RH̃†Q1LÞ
1.5
E2
TeV

; 15
E4
TeV

2 ðt̄iγ5uÞðc̄uÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞðQ̄2LH̃uR þ c̄RH̃†Q1LÞ
3 ðt̄uÞðc̄iγ5uÞ ðQ̄3LH̃uR þ t̄RH̃†Q1LÞðiQ̄2LH̃uR − ic̄RH̃†Q1LÞ
4 ðt̄iγ5uÞðc̄iγ5uÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞðiQ̄2LH̃uR þ ic̄RH̃†Q1LÞ
5 ðt̄uÞðc̄uÞ

6 S

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞðQ̄2LH̃uR þ c̄RH̃†Q1LÞ
1.5
E2
TeV

; 15
E4
TeV

6 ðt̄iγ5uÞðc̄uÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞðQ̄2LH̃uR þ c̄RH̃†Q1LÞ
7 ðt̄uÞðc̄iγ5uÞ ðQ̄3LH̃uR þ t̄RH̃†Q1LÞðiQ̄2LH̃uR − ic̄RH̃†Q1LÞ
8 ðt̄iγ5uÞðc̄iγ5uÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞðiQ̄2LH̃uR þ ic̄RH̃†Q1LÞ
9 ðt̄γμuÞðc̄γμuÞ 6 S

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðQ̄2LγμQ1L þ c̄RγμuRÞ 1.5

E2
TeV10 ðt̄γμγ5uÞðc̄γμuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞðQ̄2LγμQ1L þ c̄RγμuRÞ
11 ðt̄γμuÞðc̄DμuÞ

7 A

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðQ̄2LH̃DμuR þ c̄RDμH̃†Q1LÞ

0.4
E3
TeV

; 1.2
E4
TeV

12 ðt̄γμuÞðc̄iγ5DμuÞ ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðiQ̄2LH̃DμuR − ic̄RDμH̃†Q1LÞ

13 ðt̄γμγ5uÞðc̄DμuÞ ðQ̄3Lγ
μQ1L − t̄RγμuRÞðQ̄2LH̃DμuR þ c̄RDμH̃†Q1LÞ

14 ðt̄γμγ5uÞðc̄iγ5DμuÞ ðQ̄3Lγ
μQ1L − t̄RγμuRÞðiQ̄2LH̃DμuR − ic̄RDμH̃†Q1LÞ

15 ðt̄DμuÞðc̄γμuÞ ðQ̄3LH̃DμuR þ t̄RDμH̃†Q1LÞðQ̄2Lγ
μQ1L þ c̄RγμuRÞ

16 ðt̄iγ5DμuÞðc̄γμuÞ ðiQ̄3LH̃DμuR − it̄RDμH̃†Q1LÞðQ̄2Lγ
μQ1L þ c̄RγμuRÞ

17 ðt̄γμuÞðc̄DμuÞ
7 S

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðQ̄2LH̃DμuR þ c̄RDμH̃†Q1LÞ 0.4

E3
TeV

; 1.2
E4
TeV18 ðt̄γμuÞðc̄iγ5DμuÞ ðQ̄3Lγ

μQ1L þ t̄RγμuRÞðiQ̄2LH̃DμuR − ic̄RDμH̃†Q1LÞ
19 ðt̄uÞð½Dμc̄�D↔u

μuÞ

8 A

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞð½DμQ̄2LH̃�D↔u;Q1

μ uR þ ½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
0.09
E4
TeV

; 0.9
E6
TeV

20 ðt̄iγ5uÞð½Dμc̄�D↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞð½DμQ̄2LH̃�D↔u;Q1

μ uR þ ½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
21 ðt̄uÞð½Dμc̄�iγ5D

↔u
μuÞ ðQ̄3LH̃uR þ t̄RH̃†Q1LÞði½DμQ̄2LH̃�D↔u;Q1

μ uR − i½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
22 ðt̄iγ5uÞð½Dμc̄�iγ5D

↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞði½DμQ̄2LH̃�D↔u;Q1

μ uR − i½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
(Table continued)
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TABLE XIII. (Continued)

i Ouut̄ c̄
i dOi

SUð3Þ SMEFT Operator c Unitarity Bound

23 ðt̄γμuÞð½Dνc̄�γμD
↔u

νuÞ 8 A
ðQ̄3Lγ

μQ1L þ t̄RγμuRÞð½DνQ̄2L�γμD
↔u;Q1

ν Q1L þ ½Dνc̄R�γμD
↔u;Q1

ν uRÞ 0.09
E4
TeV24 ðt̄γμγ5uÞð½Dνc̄�γμD

↔u
νuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞð½DνQ̄2L�γμD
↔u;Q1

ν Q1L þ ½Dνc̄R�γμD
↔u;Q1

ν uRÞ
25 ðt̄uÞð½Dμc̄�D↔u

μuÞ

8 S

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞð½DμQ̄2LH̃�D↔u;Q1

μ uR þ ½Dμc̄R�†D
↔u;Q1

μ H̃Q1LÞ
0.09
E4
TeV

; 0.9
E6
TeV

26 ðt̄iγ5uÞð½Dμc̄�D↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞð½DμQ̄2LH̃�D↔u;Q1

μ uR þ ½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
27 ðt̄uÞð½Dμc̄�iγ5D

↔u
μuÞ ðQ̄3LH̃uR þ t̄RH̃†Q1LÞði½DμQ̄2LH̃�D↔u;Q1

μ uR − i½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
28 ðt̄iγ5uÞð½Dμc̄�iγ5D

↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞði½DμQ̄2LH̃�D↔u;Q1

μ uR − i½Dμc̄R�D
↔u;Q1

μ H̃†Q1LÞ
29 ðt̄γμuÞð½Dνc̄�D↔u

νDμuÞ 9 A
ðQ̄3Lγ

μQ1L þ t̄RγμuRÞð½DνQ̄2LH̃�D↔u;Q1

ν DμuR þ ½Dνc̄R�D
↔u;Q1

ν DμH̃†Q1LÞ 0.02
E5
TeV

; 0.07
E6
TeV30 ðt̄γμuÞð½Dνc̄�iγ5D

↔u
νDμuÞ ðQ̄3Lγ

μQ1L þ t̄RγμuRÞði½DνQ̄2LH̃�D↔u;Q1

ν DμuR − i½Dνc̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
31 ðt̄γμuÞð½Dνc̄�D↔u

νDμuÞ

9 S

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞð½DνQ̄2LH̃�D↔u;Q1

ν DμuR þ ½Dνc̄R�D
↔u;Q1

ν DμH̃†Q1LÞ

0.02
E5
TeV

; 0.07
E6
TeV

32 ðt̄γμuÞð½Dνc̄�iγ5D
↔u

νDμuÞ ðQ̄3Lγ
μQ1L þ t̄RγμuRÞði½DνQ̄2LH̃�D↔u;Q1

ν DμuR − i½Dνc̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
33 ðt̄γμγ5uÞð½Dνc̄�D↔u

νDμuÞ ðQ̄3Lγ
μQ1L − t̄RγμuRÞð½DνQ̄2LH̃�D↔u;Q1

ν DμuR þ ½Dνc̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
34 ðt̄γμγ5uÞð½Dνc̄�iγ5D

↔u
νDμuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞði½DνQ̄2LH̃�D↔u;Q1

ν DμuR − i½Dνc̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
35 ðt̄DμuÞð½Dνc̄�γμD↔u

νuÞ ðQ̄3LH̃DμuR þ t̄RDμH̃†Q1LÞð½DνQ̄2L�γμD
↔u;Q1

ν Q1L þ ½Dνc̄R�γμD
↔u;Q1

ν uRÞ
36 ðt̄iγ5DμuÞð½Dνc̄�γμD↔u

νuÞ ðiQ̄3LH̃DμuR − it̄RDμH̃†Q1LÞð½DνQ̄2L�γμD
↔u;Q1

ν Q1L þ ½Dνc̄R�γμD
↔u;Q1

ν uRÞ

TABLE XIV. Primary operators for qqq̄q̄ interactions with two indistinguishable quarks and two indistinguishable antiquarks, for the
specific case of uut̄t̄ interactions (The Hermitian conjugate yields the ttūū interactions and the down-type interactions can be found by
exchange for down quarks.). The SUð3Þ contractions are determined by S to be symmetric in the uu indices and A to be antisymmetric.

To simplify the expressions, we have defined a back-forth derivativeD
↔u

μ, which only acts on the u fields, and similarly D
↔u;Q1

μ which acts
on uR and Q1L. To get the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors that respect the
exchange symmetries, i.e., s; ðt − uÞ2. At dimension 8, sO2 and sO3 become redundant, while at dimension 10, sO19 and sO20 become
redundant. Thus, one only needs to consider O2, O3, O19, O20 with arbitrary factors of ðt − uÞ2.

i Ouut̄ t̄
i dOi

SUð3Þ SMEFT Operator c Unitarity Bound

1 ðt̄uÞðt̄uÞ
6 A

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞðQ̄3LH̃uR þ t̄RH̃†Q1LÞ
1.5
E2
TeV

; 15
E4
TeV

2 ðt̄iγ5uÞðt̄uÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞðQ̄3LH̃uR þ t̄RH̃†Q1LÞ
3 ðt̄iγ5uÞðt̄iγ5uÞ ðQ̄3LH̃uR − t̄RH̃†Q1LÞðQ̄3LH̃uR − t̄RH̃†Q1LÞ
4 ðt̄uÞðt̄uÞ

6 S
ðQ̄3LH̃uR þ t̄RH̃†Q1LÞðQ̄3LH̃uR þ t̄RH̃†Q1LÞ

1.5
E2
TeV

; 15
E4
TeV

5 ðt̄iγ5uÞðt̄uÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞðQ̄3LH̃uR þ t̄RH̃†Q1LÞ
6 ðt̄iγ5uÞðt̄iγ5uÞ ðQ̄3LH̃uR − t̄RH̃†Q1LÞðQ̄3LH̃uR − t̄RH̃†Q1LÞ
7 ðt̄γμuÞðt̄γμuÞ 6 S

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðQ̄3LγμQ1L þ t̄RγμuRÞ 1.5

E2
TeV8 ðt̄γμγ5uÞðt̄γμuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞðQ̄3LγμQ1L þ t̄RγμuRÞ
9 ðt̄γμuÞðt̄DμuÞ

7 A

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðQ̄3LH̃DμuR þ t̄RDμH̃†Q1LÞ

0.4
E3
TeV

; 1.2
E4
TeV

10 ðt̄γμuÞðt̄iγ5DμuÞ ðQ̄3Lγ
μQ1L þ t̄RγμuRÞðiQ̄3LH̃DμuR − it̄RDμH̃†Q1LÞ

11 ðt̄γμγ5uÞðt̄DμuÞ ðQ̄3Lγ
μQ1L − t̄RγμuRÞðQ̄3LH̃DμuR þ t̄RDμH̃†Q1LÞ

12 ðt̄γμγ5uÞðt̄iγ5DμuÞ ðQ̄3Lγ
μQ1L − t̄RγμuRÞðiQ̄3LH̃DμuR − it̄RDμH̃†Q1LÞ

13 ðt̄uÞð½Dμt̄�D↔u
μuÞ

8 A

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞð½DμQ̄3LH̃�D↔u;Q1

μ uR þ ½Dμ t̄R�D
↔u;Q1

μ H̃†Q1LÞ
0.09
E4
TeV

; 0.9
E6
TeV

14 ðt̄iγ5uÞð½Dμ t̄�D↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞð½DμQ̄3LH̃�D↔u;Q1

μ uR þ ½Dμt̄R�D
↔u;Q1

μ H̃†Q1LÞ
15 ðt̄iγ5uÞð½Dμt̄�iγ5D

↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞði½DμQ̄3LH̃�D↔u;Q1

μ uR − i½Dμ t̄R�D
↔u;Q1

μ H̃†Q1LÞ
(Table continued)
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dimension 6, 7, 8 operators require unitarity violation
respectively by ∼5, 2, 1 TeV, so the dimension 6 and 7 ones
are the most promising. For the decays into a Z and a photon
or gluon, assuming the Z decays to ee or μμ, we find that the
dimension 6, 7, 8, 9 operators in Table V, require unitarity
violation respectively by ∼3.5, 2.5, 1.2, 0.8 TeV so the
dimension 6, 7, 8 ones should be explored more closely, but
the dimension 9 operators are likely out of reach. For the
decays with two photons or a photon and gluon, we find that
the dimension 7, 8, 9, 10, 11 operators in Tables VI, VII
require unitarity violation respectively by ∼5, 2, 1.3, 1,
0.7 TeV and given that we should be careful with these
estimates (especially for the γg case), the dimension 7 ones
are likely the only relevant ones.
There are also baryon number violating three body decays

mediated by our amplitudes, t → ðc̄; ūÞðb̄; s̄; d̄Þðē; μ̄; τ̄Þ.
These would have combinatorial backgrounds, but have
been searched for in the past by CMS [54]. Again, theory
explorations of these have focused on the dimension 6
SMEFT operators [55,56], so it would be interesting if the
ones parametrized by dimension 8 SMEFT operators give
distinguishable signals.
To conclude, our unitarity bounds combined with our

estimates for the interesting size of couplings for top quark
decays has allowed us a quick survey of which of the decay
amplitudes may be worth pursuing at the HL-LHC. As the
dimension of the amplitude gets larger, these two constraints
become more challenging to satisfy without lowering the
scale of unitarity to the TeV scale. Since the SMEFToperator
realization must be at the same or higher dimension, this
motivates studying in more detail top decays from many
dimension 8 and a few dimension 10 SMEFT operators to
determine their sensitivity at HL-LHC and future colliders.

VII. CONCLUSIONS

In this paper, we have extended an approach [13] to
determine the on-shell 3 and 4 point amplitudes that are

needed for modeling general top quark phenomenology at
colliders. These serve as an intermediary between the
observables searched for by experimental analyses and the
operators in effective field theories for the Standard
Model. This involved characterizing the general ampli-
tudes for processes involving four fermions or two
fermions and two gauge bosons. We were able to
characterize these respectively to dimension 12 and 13,
finding the structure of primary and descendant ampli-
tudes, where descendants are primaries multiplied by
Mandelstam factors. Interestingly, we find two classes
of interactions whose Hilbert series numerator has a
complete cancellation in the numerator. This naïvely
would suggest that there are no primary operators at a
certain mass dimension, but in actuality there are an equal
number of new primaries and redundancies that appear at
that mass dimension. This illustrates the importance of
using the Hilbert series in conjunction with the ampli-
tudes, as they complement each other in this process. We
also note that our approach is a complementary check to
the existing results up to dimension 8 using spinor-helicity
variables [11,12] and extends the amplitude structure to
higher dimension.
To provide an initial survey of the potential phenomenol-

ogy, we have used perturbative unitarity to place upper
bounds on the coupling strengths of these interactions.
These depend on the scale where unitarity is violated
ETeV ¼ Emax=TeV, with more stringent constraints as one
increases ETeV. Given the expected sample of top quarks at
HL-LHC,we have estimated the coupling size needed for the
top quark decays to be seen over irreducible backgrounds.
This allowed us to highlight the that top quark decays into
both FCNC modes, like t → cðll; hγ; hg; Zγ; Zg; γγ; γgÞ,
and non-FCNC modes, like t → bðWγ;WgÞ, could be
interesting to search for at the HL-LHC. Some of these
highlighted modes occur at dimension 8 and 10 in SMEFT
and thuswould be interesting to explore howdistinctive these

TABLE XIV. (Continued)

i Ouut̄ t̄
i dOi

SUð3Þ SMEFT Operator c Unitarity Bound

16 ðt̄γμuÞð½Dν t̄�γμD
↔u

νuÞ 8 A
ðQ̄3Lγ

μQ1L þ t̄RγμuRÞð½DνQ̄3L�γμD
↔u;Q1

ν Q1L þ ½Dν t̄R�γμD
↔u;Q1

ν uRÞ 0.09
E4
TeV17 ðt̄γμγ5uÞð½Dν t̄�γμD

↔u
νuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞð½DνQ̄3L�γμD
↔u;Q1

ν Q1L þ ½Dν t̄R�γμD
↔u;Q1

ν uRÞ
18 ðt̄uÞð½Dμt̄�D↔u

μuÞ
8 S

ðQ̄3LH̃uR þ t̄RH̃†Q1LÞð½DμQ̄3LH̃�D↔u;Q1

μ uR þ ½Dμ t̄R�D
↔u;Q1

μ H̃†Q1LÞ
0.09
E4
TeV

; 0.9
E6
TeV

19 ðt̄iγ5uÞð½Dμ t̄�D↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞð½DμQ̄3LH̃�D↔u;Q1

μ uR þ ½Dμt̄R�D
↔u;Q1

μ H̃†Q1LÞ
20 ðt̄iγ5uÞð½Dμt̄�iγ5D

↔u
μuÞ ðiQ̄3LH̃uR − it̄RH̃†Q1LÞði½DμQ̄3LH̃�D↔u;Q1

μ uR − i½Dμ t̄R�D
↔u;Q1

μ H̃†Q1LÞ
21 ðt̄γμuÞð½Dν t̄�DμD

↔u
νuÞ

9 S

ðQ̄3Lγ
μQ1L þ t̄RγμuRÞð½DνQ̄3LH̃�D↔u;Q1

ν DμuR þ ½Dν t̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
0.02
E5
TeV

; 0.07
E6
TeV

22 ðt̄γμuÞð½Dν t̄�iγ5DμD
↔u

νuÞ ðQ̄3Lγ
μQ1L þ t̄RγμuRÞði½DνQ̄3LH̃�D↔u;Q1

ν DμuR − i½Dν t̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
23 ðt̄γμγ5uÞð½Dν t̄�DμD

↔u
νuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞð½DνQ̄3LH̃�D↔u;Q1

ν DμuR þ ½Dν t̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
24 ðt̄γμγ5uÞð½Dν t̄�iγ5DμD

↔u
νuÞ ðQ̄3Lγ

μQ1L − t̄RγμuRÞði½DνQ̄3LH̃�D↔u;Q1

ν DμuR − i½Dν t̄R�D
↔u;Q1

ν DμH̃†Q1LÞ
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new amplitudes are compared to existing searches. We leave
such detailed phenomenology to future work.
To conclude, the high energy program at colliders is

entering the phase of testing whether the Standard Model is
indeed the correct description of physics at the TeV scale.
To do so, we must look for new physics in the most general
way, so that we can find such deviations or constrain them.
On-shell amplitudes are a useful intermediary between
experimental analyses and the parametrization of new
physics by effective field theories. Finally, by determining
the on-shell amplitude structure to high dimension and

writing down a concrete basis for them, we hope this will
allow the field to maximize its efforts to find what exists
beyond the Standard Model.
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