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At the HL-LHC and future high energy colliders, a sample of a billion top quarks will be produced,
allowing precision searches for new physics in top quark decay and production. To aid in this endeavor, we
characterize the independent three and four point on-shell amplitudes involving top quarks, under the
assumption of SU(3).x U(1),,, invariance. The four point amplitudes factorize into primary and
descendent amplitudes, where descendants are primaries multiplied by Mandelstam variables. By
enumerating the allowed amplitudes, we can check for amplitude redundancies to find the number of
independent terms and convert those into a Lagrangian which parametrizes these amplitudes. These results
are then cross checked by utilizing the Hilbert series to count the number of independent Lagrangian
operators. Interestingly, we find situations where the Hilbert series has cancellations which, if naively
interpreted, would lead to the incorrect conclusion that there are no primary operators at a given mass
dimension. We characterize the four fermion (fff f) and two fermion, two gauge boson (f fVV) operators
respectively up to dimension 12 and 13. Finally, by combining unitarity bounds on the coupling strengths
and simple estimates of the branching ratio sensitivities, we highlight interesting amplitudes for top quark
decay that should be studied more closely at the HL-LHC. Of those highlighted, there are both new charge

current and flavor changing neutral current decays that occur at dimension 8 and 10 in SMEFT.
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I. INTRODUCTION

The search for new physics beyond the Standard Model,
at the LHC and beyond, has been led by the well
established methods of effective field theory (EFT). To
parametrize the indirect effects of new physics there are the
two main paradigms of SMEFT [1,2] and HEFT [3]. These
two approaches have differing assumptions about the
physics at high energy scales and the relative importance
of different effects.

There are however a variety of issues that can obfuscate
the connection between EFTs and experimental signals.
There is the large number of allowed interactions and also
the complication of redundant (or incomplete) bases from
equivalences due to equations of motion and integration by
parts. These issues have motivated work to understand the
direct connection between dimension 6 SMEFT terms and
the physical observables they parametrize [4-7].

These redundancies on the Lagrangian side do not affect
the predictions of physical amplitudes where external
particles are on-shell. Since these amplitudes are the direct
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observables accessible to experiment, they provide a useful
intermediary between theory and experiment. Recent work
in the study of amplitudes has allowed greater insight into
the independent amplitudes for a given process. In par-
ticular, the general structure of beyond the Standard Model
amplitudes, given just SU(3). x U(1),,, invariance, has
been analyzed, using both spinor helicity variables [8§—12]
as well as standard variables [13].

Reference [13] was able to characterize the structure of
on-shell 3 and 4 point amplitudes involving the Higgs. To
complete this procedure, a set of potential on-shell ampli-
tudes was constructed out of Lorentz invariant combina-
tions of momenta and polarizations. By studying their
Taylor expansion in the kinematic variables, a set of
independent amplitudes was determined. These could then
be converted into a basis of Lagrangian operators. As a
cross check, the number of independent operators at each
mass dimension could be determined using the Hilbert
Series approach [14-20]. For the four point couplings, this
lead to a number of primary amplitudes/operators whose
multiplication by Mandelstam variables gave descendant
amplitudes/operators. If these new interactions are medi-
ated by the exchange of a massive particle, the lowest order
primary amplitude would be a first approximation to the
relevant phenomenology. Finally, by requiring unitarity up
to an energy E,,,, one can place upper bounds on their
coupling strength. These results, when combined with
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simple estimates, suggested that there are new amplitudes
in Higgs decays into Zf f, Wff,yff, and Zyy that could be
searched for at the HL-LHC.

In this paper, we extend this study to amplitudes
involving the top quark. At the HL-LHC and future TeV
colliders, over a billion top quarks will be produced,
allowing the study for rare decays as well as new produc-
tion mechanisms. This requires understanding the general
structure of four fermion operators and two fermion
operators with two gauge bosons, which can result in
primaries up to dimension 11. This vector space of
amplitudes is spanned by these primary and descendant
amplitudes, which in a model agnostic analysis can be
taken to be independent [21]. Interestingly, in this classi-
fication, we find interactions (e.g., yyff) whose Hilbert
series numerator has a complete cancellation in the coef-
ficient for one of the terms, where a naive inspection
incorrectly concludes that there are no primary operators at
a certain mass dimension. In our analysis, we have also
checked that the primary and descendant structure up to at
least dimension 12, going beyond the existing dimension 8§
results using spinor-helicity variables [11,12]. As an initial
look at the phenomenology of these operators, we give
simple estimates that top quark decays for which FCNC
modes [e.g., t = c(£¢, hy, hg. Zy, Zg.yy.yg)] and charged
current decay modes could be interesting to search for at the
HL-LHC. These simple estimates indicate that there are
some decay modes that appear at dimension 8 and 10 in
SMEFT that are worth studying in more detail.

The rest of this paper is organized as follows: Sec. II
describes what amplitudes we will explore and how to
determine independent amplitudes. Section III discusses
the Hilbert series results for our top quark operators. In
Sec. IV, we discuss some relevant phenomenological
issues, such as unitarity bounds on coupling strengths
and also rough estimates for top quark decays at the HL-
LHC. Section V is the main body of results, where we list
the operators for the primary amplitudes. In Sec. VI, we
estimate which top decay amplitudes are interesting for
exploration at HL-LHC. Finally in Sec. VII, we conclude.

I1. FINDING INDEPENDENT AMPLITUDES/
COUPLINGS FOR TOP QUARKS

The general on-shell amplitudes needed for top quark
phenomenology are invariant under SU(3), x U(1),,, and

Lorentz symmetry. For 3 and 4 point interactions, imposing
SU(3), and Lorentz symmetry gives the following list:

3pt: qqV.qqh.
pt: qq¢¢.qqq¢, 3939, 3qhh,qqhV.qqvv (1)
where ¢ is a quark, ¢ is a lepton (charged or neutral),

h is a Higgs boson, and V is any gauge boson. To fully
characterize these 4 point interactions, we also need

additional 3 point interactions for exchange diagrams,
which add

3pt additional: VVV,hVV, hhh,£€h,€€V.  (2)

Of these couplings, the three point couplings and gghh, gghV
have been fully characterized (e.g [13]), so in this paper this
leaves the following four point couplings to determine:

qqvv: WWagq,WZ24qq',22qq.Zyqq, Z93q, Wyqq',
Woaq'. 9vaq.vraq. 9949. (3)

Four fermion: gq¢?¢,qq'ev, qqqt, 4qqq. 4)

When there are identical particles involved, the form of the
amplitude must respect the relevant exchange symmetry and
for these, there are no amplitudes with three or more identical
particles (note that, if we were characterizing down quark
interactions, we would have to consider ddde).

In [13], a general approach for finding independent
amplitudes for 3 and 4 point on-shell amplitudes was
presented. Here, we give a brief overview of the process
and refer to that paper for further details, but will also note
where changes in that approach need to be made. To
characterize four point on-shell amplitudes, we form
Lorentz invariants out of particle momenta, fermion wave
functions, and gauge boson polarizations. For massless
gauge bosons, we use the field strength contribution
€,Py — €,py» O that the amplitude is manifestly gauge
invariant. Three point interactions with a covariant deriva-
tive can also give a four point contact interaction with a
gauge boson; for our cases, the only one that will be relevant
is go,,q'WH, which generates a gq'Wy interaction. This
results in a set of amplitudes M, giving a linear para-
metrization of the general amplitudes M = )", C, M. For
each on-shell amplitude M,, we can associate a local
Lagrangian operator, which we choose to have the lowest
mass dimension possible, Lfﬁ O,, where we have normal-
ized its coefficient with factors of the Higgs vev to give a
dimensionless coupling c¢,, resulting in a Lagrangian which
parametrizes the on-shell amplitudes

Ca
‘Camp = Z W O,. (5)

By connecting these amplitudes to Lagrangian operators,
we can work in increasing mass dimension of the corre-
sponding operators. For example, ggWW starts at dimen-
sion 5, since the lowest local operator needs two fermions
and two gauge bosons, while ggyy will start at dimension 7.
At a given mass dimension, we write out all of the
amplitudes for the allowed particle helicities. In cases
where there are two particles that are identical, we
symmetrize and antisymmetrize with respect to those
two particles. After finding the allowed primary amplitudes
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for the distinguishable case, we can achieve the indistin-
guishable case by imposing the Bose/Fermi symmetry.
We’ll have more to say on that later, when we have the
Hilbert series results.

For our four point amplitudes, we consider 1+ 2 —
3 4+ 4 scattering in the center of mass frame, where
P1= (El ,0,0,p,’), Pr= (EZ’O’Ov_pi)’ pP3= (E?a?()’pfSine’
prcost), py = (E4,0,—pssind, pycosd). On-shell these
have the constraints

2

2 2 2 2 2
_Ecom+m]_m2 _Ecom+m2_ml

E, = , E, = ,
! 2E com : 2E com

£ :Egom—i—m%—mi £ :Egom—ﬁ—mi—m% (6)
} 2E‘COI‘H ' * 2Ecom

A general kinematic configuration is determined by the
two continuous parameters E.,, and cos@ as well as the
choice of helicities. However, treating p;, ps, and sin€ as
independent is advantageous for finding amplitude redundan-
cies. On-shell, one can replace even powers of these variables

(Egom_(ml +m2)2)(Egom_(ml —1112)2)
4Egnm ’

as sin’0 = (1 — cos?0), p? =
2 __ (Egom_(m,?+m4)2)(E§0m_(m3_m4)2)

pj - 4E§om

in detail in [13], the Taylor series coefficients of the amplitudes

expansion in Eyn, p;, p s, cos 6, sin @ must all vanish if there

is an amplitude redundancy. Schematically, if there are Taylor
act
for random numerical values for the particle masses, and
numerically evaluate its singular value decomposition. The
number of nonzero values in that decomposition is the number
of independent amplitudes and one can find the independent
ones by removing C,’s one at a time.

There are a few modifications to [13] needed to
address the amplitudes of this paper. First of all, for four
fermion amplitudes, we are required to have fermions in the
final state. Similar to that paper, we can choose a mass
configuration, either m3; =0, my #0 or ms = my, to
constrain the variable dependence of the kinematic varia-
bles in the fermion wave functions. We have checked that
this mass assumption doesn’t affect the basis of indepen-
dent amplitudes. Having final state fermions also results in

dependence on cosZ, sin %’, which can be treated by replac-

2 ’
ing cos = 20052%'— 1 and sinf = 2cos§
cosg and sing as our variables. Another complication is that
the allowed SU(3) gauge invariant contractions are more
diverse than before. This issue interplays with the Bose/
Fermi symmetries of the amplitudes. As an example, for
qqgg, interchange of the gluons must result in the same
amplitude. If the gluons are contracted with an f,pc then
the amplitude must also be odd under exchange of the
momenta and polarizations of the gluons. On the other
hand, if the gluons are contracted with a d,p- then the
amplitude must also be even under exchange of the
momenta and polarizations of the gluons.

. After doing this, as shown

evaluate it

series coefficients B, we then form the matrix

. 9 .
sin3 and using

III. HILBERT SERIES

The Hilbert series gives a systematic way to count the
number of gauge invariant independent operators, up to
equation of motion and integration by part redundan-
cies [14-20], which provides a useful cross check on
our amplitude counting. It gives a function, whose
Taylor series expansion in a parameter g gives the number
of independent operators at each mass dimension [22]. In
Eq. (7), we list the Hilbert series for each of the four point
operators that we will characterize. The three point and the
other four point operator results can be found in [13].

4¢° +12¢° + 164" +64° —24°
(1-¢%)? ’
2¢° +64°+ 129" +64% +64° +64'° — 24"
(1-¢*)(1-¢%) ’

Hyypr =Hzgpr =Hwypp = Hwgpp

445+ 124" +84% +(2-2)g°

B (1-¢%) ’

. 6q7+ 8¢%+(4-2)¢°
arff — (1 _ 6]2)2 ’

Hywir=Hyzpp =

Hyzpp=

4(]7+2q8+4q9+6q10+(2—2)q“

H -, = ’
oans (l—qz)(l—q“)
H, = 10g" +10¢° 4 (14=2)¢" 4+ 14¢'"° 4 (6 = 4)4"!
99ff — (l—qz)(l—q“) 7
10¢° +84" —24°
Hc'm?f =Hgyeo = Hy 4,0, :W,
H _44°+64"+(6-2)¢° +-2¢°
qqq9'¢ — (1_q2)(1_q4) s
~2(10¢° 484" —24°)
Hagqq = (1 _q2)2 ,
H--y =H-. ,= 10¢% +8¢7 + (10—2)q® +8¢° —2¢'°
e (1-¢*)(1-4") ’
8¢5 +4q" + (8—2)¢" +4¢° —2¢"°
Hi3qq = (7)

(I-¢*)(1-4*

These fractional forms are interpretable in the following
way: the numerator counts the number of primary operators
and the denominator allows for the dressing of these
operators with Mandelstam factors.

_10¢°+8¢" 248
¢ (1=¢°) >
numerator says that there are 10 dimension 6 primary
operators and 8 dimension 7 primary operators. Ignore for
now the —2¢8%, which we’ll see denotes two constraints that
appear at dimension 8. The denominator of 1/(1 — ¢*)? has
an expansion of (1 + ¢ + ¢* + - - -)> which is just count-
ing the number of operators from multiplying the primaries
by Mandelstam factors of s, ¢ (u is redundant to the on-shell

For example, looking at Hq the
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condition). As we will see when we analyze the amplitudes
of this interaction, two primary amplitudes at dimension 6,
say M,, M, (with respective operators O,, O,), when
multiplied by a factor of s are redundant to a linear
combination of other amplitudes, so are no longer inde-
pendent at dimension 8. This explains the —2¢® since
treating this as the loss of the two related operators sO, and
sO,, and all of their descendants gives the correct counting
of the number of independent terms. Such negative coef-
ficients in the Hilbert series often occur when the particles
have nonzero spin [14-20], as identities relate operators of
different tensor structures when combined with derivatives.
For four point functions, there is an argument from
counting conformal correlators that the number of primary
operators is equal to the product of the spin degrees of
freedom of the participating particles [18,23,24]. In our
results, this is correct for all cases except g g gq, if one
includes the negative coefficients and takes into account
possible SU(3),. contractions. For example, for §g£¢, the
sum of the numerator coefficients 10 + 8 — 2 = 16 is equal
to the spin counting of 2%. On the other hand, the case of
q q qq has further constraints from the crossing symmetry
of the g and ¢, resulting in fewer operators.

We also note that for some denominators, the factors are
(1 = ¢*)(1 = g*). This results for situations where there are
two identical particles in the amplitude. Assuming the two
initial state particles are the identical pair, s and (¢ — u)? are
the Mandelstam factors that have the correct exchange
symmetry between the two particles, so we are allowed to
multiply the primary by an arbitrary set of s and (¢ — u)?
factors (note that the primary already has a factor of +/—
when exchanging bosons/fermions).

As you’ll notice in the Hilbert series list, some of the
numerator coefficients are written in an unusual way, for
example the (14 —2)g° and (6 — 4)q'" in H,,7,. When we
evaluated the Hilbert series, these would of course have
been 12¢° and 2¢''. However, when examining the number
of independent amplitudes at dimension 9, we found 14
new primaries and 2 redundancies when 2 of the dimension
7 amplitudes were multiplied by s. In this way, the Hilbert
series must be interpreted with care, as there can be hidden
cancellations. In some case, there is even a complete
cancellation like the (2 —2)g'" term for yyff, where a
naive interpretation would have missed the new primaries
at dimension 11.

The Hilbert series also allows for understanding of the
constraints of Bose/Fermi symmetry. For example, for
ggff there are two symmetric contractions for the gluon
SU(3) indices (5,5, dspc) and one antisymmetric contrac-
tion (fapc), then swapping the kinematic variables of the
two gluons would result respectively in a + sign for the first
two and a — sign for the last one. Now, if we calculated the
Hilbert series assuming photons were odd under inter-
asym __ 2q’+6¢%+(6-2)¢°+2¢'0+24"!

v ff - =49 . One can

change, then H

then check that H 7, = 2H,, 7, + H :;yfr; as expected from

the behavior under kinematic variable exchange and the
allowed SU(3) contractions.

Note that unlike in [13], due to complications of
enumerating all of the terms, we do not claim to have
examined the full, allowed tensor structures of the ampli-
tudes. Instead, we have checked that we agree with the
Hilbert series up to dimension 13 for ggV'V amplitudes and
dimension 12 for four fermion amplitudes. Up to those
dimensions, the numerator of these Hilbert series do not
have any additional cancellations. As the Hilbert series
shows, the redundancies that appear at higher dimension
appear in pairs so it seems unlikely there are more, but still
we cannot guarantee that others do not appear at higher
dimension.

IV. PHENOMENOLOGY
A. Unitarity

As in [13], we utilize unitarity to constrain the coupling
strengths of these operators. Since these are new couplings
beyond the Standard Model, they violate unitarity at high
energies. Requiring the amplitudes to satisfy perturbative
unitarity up to a scale E,,,, gives an upper bound on the
couplings. The technique follows the work [25-28], where
the unitarity bounds due to high multiplicity scattering was
developed (see also [29-33]).

To stand in for a more detailed calculation of each
amplitude, we utilize a SMEFT operator realization of the
amplitude to act as a proxy. As an example, consider the
case of £gqWW. This is realized by the dimension 3
SMEFT operator 1 (Q; Hug +H.c.)|D*H|* [34]. Since
we are only looking for an approximate bound, we ignore
O(1) factors like /2, g, ¢, sinfy,cosfy and only take
into account factors of ». Under this approximation,
¢~ v*/A*. The SMEFT operator has many contact inter-
actions that violate unitarity, but we find that either the
lowest and highest multiplicity give the best bound as a
function of E_,, so we will calculate these for all
interactions and include them in our tables. For this
example, the lowest multiplicity amplitude is for two
quarks and two Goldstones, with a matrix element that

WE?nax
A4
the fermion bilinear and the other two come from the two
derivatives acting on the Goldstones. This is bounded by
phase space factors M,_,, < 8z [25], which translates into
¢ < (87)1? /Ej %= where Erey = Epy/TeV. The

TeV
highest multiplicity amplitude is for two quarks and 3

. 3 )
Goldstones, with M,_; = Ex\zx < %2;1 ’
max

again depends on the phase space. This gives the bound
c < (322t Eby ~ El4—2 As this example illustrates, we
TeV

goesas M,_, = , where one factor of E,,, comes from

where the bound

generally find that the low multiplicity constraint is
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stronger for E,,, < 4zv and the high multiplicity one is
stronger for energies above that.

B. Top quark decays

The HL-LHC will produce about 5 billion top quarks,
allowing searches for rare decays as well as new production
modes. Here we will consider decay modifications due to
our amplitudes. The on-shell 2 and 3 body decay modes of
the top quark allowed by the Standard Model quantum
numbers are

t— dW,u(Z,h),d(ev,du, WZ, Wy, Wg),
u(¢¢,.qq9, WW,Zy.Zg.v7.79. 99) (8)

along with changes in flavors of quarks and leptons.

Searches for the flavor changing two body decays are
actively being pursued at the LHC (e.g., [35-41]), where
theoretical analyses are often performed in SMEFT
(e.g., [42-45]). Some of the three body decays are higher
order decays that exist in the Standard Model at tree level
(e.g., dW(Z,y,g),uWW), while the others require flavor
changing neutral current interactions which should be
suppressed in the Standard Model. Searches for new decay
modes can be triggered by requiring one of the tops decays
in the standard leptonic channel and then looking for the
new decay mode for the other top quark.

For this simple analysis of the phenomenology, we will
approximate top decay amplitudes as a constant, assuming
the top quark mass is the only relevant mass scale

do—4
Cc -3 m o _
M@(f—’2)ﬁv ;9_ m{© ‘zco(—t) m,Rco2* 0 m,,

©)

do—4
c _ m,\ o
Mop(t - 3) ~ 9 mPo xco (—') R 22 dol?,
v v

(10)

where we have approximated v~ /2m,. Note that this
ignores O(1) enhancements of the form (m,/my ) that can
come from longitudinal polarizations, but is sufficient for
our estimates.

Let us first consider non-FCNC top decays that are
not suppressed in the Standard Model, such as ¢ —
b(W,¢v, Wy, Wg). In such cases, one has at least the
Standard Model top background to contend with. For new
amplitudes which are CP even, they will interfere with the
Standard Model amplitude and have enhanced sensitivities
(unless one designs CP violating observables). In this case,
we want to compare the number of new decays to the
fluctuation in the Standard Model top background. Under
our approximation the branching ratios in the Standard
Model and the modification due to interference are

Br(t — 2)gy ~ IM(1 = 2)gml* (11)

16zm,T,

oBr(t—2)~ |IM(t—2)sm M (1= 2)ggml- (12)

16z2m,I,

To estimate sensitivity, we require that the new top decays
must be as large as a one sigma deviation in the Standard
Model top background, which for a sample of N, top
quarks gives N,6Br(t — 2) = /N,Br(t = 2)gy. Such a
calculation gives for two and three body decays the
constraints

109 1/2
2 Body Decays: ¢ 25 x 107 (V) 2do/?,

1

10° 1/2
3 Body Decays: ¢ = 6x 107> — | 2d0/2 (13)
N

t

where we have normalized to a total sample of a billion top
quarks.

For FCNC decays, such as t — ¢(Z,y,9, WW, Zy, Zg,
Y7-79, 99), the branching ratios predicted in the Standard
Model (1072 to 107'7) are too small to occur at the
HL-LHC (e.g., [46-50]). Thus, for these decays we can
ignore interference and give an estimate that works for both
CP even and odd interactions. If we make an optimistic
assumption that other backgrounds can be neglected, this
requires that the new branching ratios Brggy; give a few
events at the HL-LHC or N,Brggy 2 1. Under our approxi-
mation, this gives the same bounds as Eq. (13).

To get some sense of how well this approximation
works, we have checked in a few existing FCNC searches,
whether the background free assumption works at the O(1)
level. As one might expect, one finds that for final states
with a single gluon or photon, where hadronic backgrounds
and fakes are relevant, that this is a poor assumption and
gives a branching ratio bound that is too strong by two and
three orders of magnitude for photon and gluon decays,
respectively. Thus, estimates for these final states should be
viewed as very optimistic. However, we found that the
searches with a Higgs decaying into two photons agree
roughly with our bounds. Similarly, the final states with e,
w1’s give bounds that are correct to a factor of 2-3 as long as
one takes into account tagging efficiencies for b (~0.5),
e/ (~0.8) and, when relevant, Z and W leptonic branching
ratios (~0.06 and 0.2). Thus, as long as one take these
factors into account, these final states should be more
reliable. Later, when combined with our upper bounds from
perturbative unitarity, these calculations will enable us to
give a simple estimate of which decay amplitudes that are
worth exploring further at the HL-LHC.
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V. INDEPENDENT AMPLITUDES FOR TOP
QUARK PHYSICS

In the following subsections, we will list operators
corresponding to the primary amplitudes for ffVV and
ffff interactions involving the top quark. We will make
comparisons to the Hilbert series to show consistency with
the number of independent operators, including discussions
of redundancies that occur at certain mass dimensions. We
will also give CP properties of the operators and unitarity
bounds on the coupling constants for these interactions.

A. ffVV amplitudes

Tables I and II list the primary operators for ggWWwW
interactions. Note that for the primary operators, covariant
derivatives are with respect to SU(3), x U(1),,, and thus
only involve the photon and gluon. From the Hilbert series,
we expect that there should be 4 operators at dimension 5,
12 operators at dimension 6, 16 operators at dimension 7, 6
operators at dimension 8, and at least two redundancies at
dimension 9. This is precisely what we find, with the 38
listed operators and at dimension 9, sO,¢ and sO,;, where
s = (p, + pq)z, become redundant to other operators. To
be concrete, one can replace these two operators with an
operator of the following form

TABLE L.

Z (ci+ ciss + Cigt + €158 + €8t + ¢417) O (14)
=14

+ Z (citcigstei )0+ z (ci+ciit)O;,
i=5...25.28..32 i=26,27

(15)

where the coefficients c¢;’s only depend on the particle
masses and predict the same on-shell amplitudes as sO,
and sO,;. To generate an independent set of operators, one
needs to add descendants of the primaries, which involve
multiplying by arbitrary powers of s and . However,
because of the redundancies at dimension 9 for sOyg
and 5sO,;, one only needs the descendants "O,s and

"D,y for O,¢ and O,;. Note that this explains the %

part of the Hilbert series for Hy,y 7, since operators of the
form 51" Oy and s"t" O0,; (with n > 1) are redundant, so
one needs this term in the Hilbert series to correct the
counting of independent operators. We have also listed the
lowest dimensional SMEFT-like operator (that we could
find) which realizes each operator, where the covariant
derivatives are with respect to SU(3), x SU(2), x U(1)y.
We also list the unitarity bounds for each SMEFT operator,
assuming the lowest and highest particle multiplicity.

Primary 5- and 6-dimension operators for ggW* W™ interactions. As outlined in the text, these operators can be modified to

yield the operators for g¢'WZ interactions. Under the assumption that g and g are each other’s antiparticles, the operators are Hermitian
and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to create a CP

<> >
even and a CP odd operator. To simplify the expressions, we use the shorthand D,, = D, D,, and similarly, D,, = D,D,. To get the
descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, t.

i on CP  do, SMEFT Operator ¢ Unitarity Bound
1 (gq)(Wiw=*) + (QLHug +H.c)(|D*H|?)
2 (igysq) (Wi W) - 5 _ (iQ Hug +H.c)(|D"HJ?) 04 12
3 (30" q)(iW,Wy) + (06" Hug + H.c.)(i[D,H]'[D,H] + H.c.) Ejyy Fhy
4 (igo™ysq)(iW S Wy) - (iQr0"ysHug + H.c.)(i[D,H]'[D,H] + H.c.)
5 _ - . _ . <
(@r*q)(iW D, Wy) + (0170 + figy*ug) (i[D*H]"D, [D,H] + H.c.)
6 _ S ~ _ . <
(quYSq)(lW+HDuWy) + (QL;’DQL - MRQ/DMR)(I[D”H]TDD [D”H] + H'C')
7 e _ A T
(igr'D,g)(WW; +He) (iQ17*D, Q1. + ifigy* D, ug) (D" H]'[D,H] + H.c.)
8 . hig _ . < - PN
(lquySDﬂq)(W+”Wb + HC) + (lQL_yUD;tQL - luRbe;tuR)([DﬂH]T[DDH] + HC)
9 (gr'q)(iWw*D,W; +H.c.) + (Q1r"Qy + ugy*ug)(i[D*H|'[D,,H] + H.c.)
10 (qrrsq)iW™*D,W, +H.c.) + 6 (0170, — ugy*ug)(i[D*H]'[D,,H] + H.c.) 0.09
11 E;

(igy"D,q)(iW W™ 4 H.c.)

12 (igr*ysD,q)(iW,; W= +H.c.)
13 (ar'q)(WD,W; + H.c.) -
14 (gr'ysq) (WD, W7 +H.c.) -

15 =V A w—o
Cupe(qr*q) (W'D W™7)

16 _ TR
€ﬂbﬂﬂ(q}/bySQ)(W+pD w 0')

+ +

(i017"D,Q; + ifigy" D, ug)(ilD,H)T[DYH] + H.c.)
(i017D,Q;, ~ gy D,u) (ilD, H]'[D'H] + Hec.)
(QLV”QL + iigy*ug)([D*H]'[D,, H] + H.c.)
(OLr* QL — gy ug)([D*H]'[D,, H] + H.c.)

€po QL7 Or + gy ug

€;w/)o'(QLyD QL - ﬁRyyuR

TeV

(IDH)'D'[D°H] + H.c.)
(ID*H|"D"[D°H] + H.c.)

)
)
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TABLE II.  Primary 7- and 8-dimension operators for ggW* W~ interactions, where W ”W,W/’” As outlined in the text, these
operators can be modified to yield the operators for g¢’'WZ interactions. Under the assumptlon that g and g are each other’s antiparticles,
the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which

<> <>
can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D, = D,,D,, and similarly,
D,, = D,D,. To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, 7. At
dimension 9, sO,¢ and sO,; become redundant to other operators and thus one only needs their descendants "O,4 and ' O,, for an

independent set of operators.

i O?qu_ CP do, SMEFT Operator ¢ Unitarity Bound
17 -3 —v A F v
(@D, q) (W W) + (QLD,, Hug + H.e.)([D"H]'[D'H] + H.c.)
18 . <> _ — L= <~ ~
(iqrsDyuq)(WHW™) (101D, Hug +H.c.)([D*H]'[D*H] + H.c.)
19 (igD,q)(WD,W + Hc) - (i0, D, Hug + H.c.)([D,H)'[DH] + H.c.)
0 (@D wrp, Wt He) Tt (QuD, Hug +H.e.)([D,H] [D*H] + He.)
21 (igD,q)(iWD,W™ + H.c.) + (i0.D,Hug + H.c.)(i[D,H]'[D""H] + H.c.)
22 _ 2 . _ - 2=
(quDﬂq)(lW+DD W™+ H.c.) 7 (OLD,Hug +H.c.)(i[D,H]|'[D*H] + H.c.) 002 007
g >y ES
23 W(qu q)(w+ﬂD W) + ng(zQLD Hug +H.e)([D’H)'D’[D°H] + H.c.) Fio Py
#o e asD WD W) T €upo (01D Hu + He.) (D7 H] D' [D°H) + H.c.)
25 (ige*D,q)(iW,;D,W= + H.c.) (i0,0"D,Hug + H.c.)(i[D,H]'D,[D’H] + H.c.)
26 (Gowq)ilD,WiD,W7 +He) (010 Hug + H.c.)(i[D,,H]' D,[D’H] + H..)
27 (i7" 159) (D, W, 1D, W + H.e) (i0, 0" Hug + H.c.)(i[D,, H]' D, [D’H] + H.c.)
B (GomysD,q)(iWiD,W +He) T (016" D, Hug + H.c.)(i[D,H]'D,[D’H] + H.c.)
29 (aq) (W W,,) + (1 Hug +H.e) (W™ Wy,)
30 (iC_IVs‘I)(W”D})VW) - 4 . (l;QLHMR + H~C-)(W~WWZv) 04 12
31 (@q) (W Wy,) - (QuHug +H.c.) (W W, +H.c.) Erew " Erey
32 (igrsq) (W Wy,) + (10 Hug + He) (W WS, + He)
33 N T
(gr"D,,q)(iW*D,W=7) * (Orr prL + figy DypuR)(l[D H|'D,[D’H] + H.c.)
34 _ <> . <> _ <>
(@r'vsD.,q)(iW**'D, W) + (QLY”DW;QL MR}"‘D ug)(i[D*H]'D,[D’H] + H.c.)
35 (iE]y”D,,q)(iW*”DﬂD,,W’p +H.c.) 3 (lQL}/"D 0, + mR;/"D uR)(l[D,,H]TD,,[D"”H] +H.c.) 0.006
<> <> 6
35 (igy*ysD,q)(iW**D,D, W + H.c.) (i0,7"D, 0y, — igy* D,ug)(i[D,H]'D,[D*H] + H.c.) Fhow
37 _ _ , L
(@*9) (1D, W 1D, D" W) * (Qur*Qy + iy ug) (i[D,,H]' D, [D" H] + H.c.)
38 ) 1 = U N
@@r'rsop, WD, w>) (Qur"Q1 — gy ug) (1D, H)' D, [D" H] + H.c.)

These operators can also be reworked to account for g¢g'WZ
amplitudes provided we take ¢ — ¢’ and W — Z. Here, we
use ¢’ to denote a different quark flavor of the correct
charge.

In Tables III and IV, we list the primary operators for
qqZZ7 interactions. Reading off from the Hilbert series, we
expect to see 2 operators at dimension 5, 6 operators at
dimension 6, 12 operators at dimension 7, 6 operators
at dimensions 8, 9, and 10, and at least 2 constraints at
dimension 11. We do indeed find that there are 38 primary
operators, as well as two redundancies at dimension 11, for
sO3; and sOs,. To generate an independent set of oper-
ators, one needs to add descendants of the primaries, which
involve multiplying by arbitrary powers of s and (t — u)?

(note that (¢ — u)? respects the exchange symmetry of the
Z’s). However because of the redundancies at dimension
11, for Oz; and Os;,, one only needs their descendants
(l - M)2n031 and (t — M>2n032.

We have listed all of the primary operators for gqZy
interactions in Table V. The Hilbert series tells us to expect
4 operators at dimension 6, 12 new operators at dimension
7, 8 operators at dimension §, and 2 new operators and 2
new redundancies at dimension 9. We note that a naive
interpretation of the Hilbert series would have missed the 2
new primary operators that appear at dimension 9. We find
that there are 26 primary operators, in agreement with the
Hilbert series, as well as two constraints at dimension
9—s0; and sOg. Thus for those two operators, one only
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TABLE IIL

Primary 5-, 6-, and 7-dimension operators for ggZZ interactions. Under the assumption that g and ¢ are each other’s

antiparticles, the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian
conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

<~

Mandelstam factors of s, (£ — u)>.

> <
D,, = D,D,, and similarly, d,, = d,d,. To get the descendant operators, once can add contracted derivatives to get arbitrary

i (’)?"ZZ Cp do, SMEFT Operator ¢ Unitarity Bound
1 (g9)(2*Z,) + 5 (Q_LF{”R + H-C-)|DyH‘2 04 12
2 (girsq)(2'Z,) - (iQ Hug +H.c.)|D,HJ? Etey Erey
3 2 . < o PAN

(igy*D,q)(2'2,) T (i0,7*D, 01, + iftgy*D,ug)([D*H)'[D,H)] + H.c.)
4 o <« = b<—> - D<—> +

(igr'ysD,q)(2'Z,) * 6 (iQ1y"D,Qy — iigy" Dug)([D"H]'[D,H] + H.c.) 000
5 (le’q)(zl‘aﬂzy) - (QLVDQL + ﬁRyDuR)([D”H]T[D;wH] + H'C') h
6 (‘_]}/075(]) (ZMG”ZU) - (QLYDQL - ﬁRybqu[DﬂH]T[D/wH] + H'C')
7 (ar'9)(Z,,2°) + 6 (017" Qy + iigy*ug)(B,,H'D°H + H.c.) 04 12
P 7 4 ) v = U R o 3 Er

8 (qy }/SQ)(ZDGZ ) + (QLy QL — URY MR)(BVGHTD H+ H'C') Erev " Brey
9 (29)(Z,,2") + (QLHug +H.c.)(B“B,,)
10 (iC_]YSCI)(Z”jZﬂv) - 7 (i_QLfI”R + H~C~)(B’w~ ) 04 12
11 (29)(2"Z,,) - (QrHug +H.c.)(B*B,,) Eie " Bt
12 (iqrsq)(2*Z,,) + (iQ Hug +H.c.)(B*B,,)
13 (igo,,D,q)(2'9Z") + (1010, D, Hug + H.c.)([D*H]' (D" H] + H.c.)
14 (qa,,bysD,,q)(Z"a”Z”) B (QLG;prH“R +H.c.)([D*H]'[D*H] + H.c.)
15 -3 v + A1 A v

(qDWq)(Z”Z ) 7 (QLDWH”R +H.c. )([D”H} [DYH] +H.c.) 0.0 2_607
16 (175D, q)(2'2") - (iQ, D, Hug + H.e.)([D“H' [D*H] + H.c.) Ere” Fey
17 L ’ _ e o

(igh,q)(2"9,2") (iQ1D,Hug +H.c.)([D*H]'[D4H] + H.c.)
18 (qrsD,q)(2"0,Z") - (01D, Hug + H.c.)([D*H]'[DYH] 4+ H.c.)
19 D" g)(Z, 7° + 10, D" Hug + He)(B, H'D°H + H

(igD q)(Z,,2°) 7 (i0L ug +Hc.)(B,y + H.c.) 0.09 1296.9
20 (@rsD'q)(Z,,2°) - (0D Hug +H.c.)(B,,H'D°H + H.c.) Frev” Frey

needs their descendant operators "7 and #"Og. These
operators can also be adapted to account for g¢'Wy, gqZg,
and gg'Wg where we use a prime to denote a different
quark flavor. To get ggZg operators, one replaces
F" — G"™, to get gq'Wy operators, one should make
the replacement ¢ — ¢’ and Z - W, and to get g¢g'Wg
operators one needs to make the replacements g — ¢,
F* — G", and Z - W.

Table VI lists the primary operators for gggy inter-
actions. Reading the appropriate Hilbert series, we expect
to find 6 dimension 7 operators, 8 dimension § operators,
and 4 dimension 9 operators, as well as 2 operators that
become redundant at dimension 9, so the analysis again
finds 2 additional dimension 9 primary operators that a
quick interpretation of the Hilbert series would have
missed. We indeed find the 18 operators we expect from
the Hilbert series analysis, as well as two operators that
become redundant at dimension 9—sOs and sOg. Thus, for
those two operators, we can just add their descendants " Os
and " Og.

We list the primary operators for ggyy interactions in
Table VII. From the Hilbert series, we expect that there
should be 4 operators at dimension 7, 2 operators at
dimension 8, 4 operators at dimension 9, 6 operators at
dimension 10, and 2 operators at dimension 11, giving 18
total primary operators in agreement with the Hilbert series.
We also find that there are two new redundancies at
dimension 11 for sO; and sOg. This gives rise to a
complete cancellation in the Hilbert series at dimension
11 between the two new operators 0,7, O3 and the two
redundancies for sO, and sOg. Given the redundancies,
for O; and Og, we only need the descendant operators
(t - M)2n07 and ([ — M)2n08.

In Tables VIII and IX, we list all of the primary operators
for gqgg interactions. The Hilbert series says that we
should expect 10 operators at dimension 7, 10 operators
at dimension 8, 14 operators at dimension 9, 14 operators
at dimension 10, and 6 operators at dimension 11.
Additionally, we find that there are 2 redundancies at
dimension 9—sOy and sO;p—and 4 redundancies at
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TABLE IV. Primary 8-, 9-, and 10-dimension operators for ggZZ interactions. Under the assumption that g and ¢ are each other’s
antiparticles, the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian
conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

<~

D,, = D,D,, and similarly, 9,
Mandelstam factors of s, (t — u)?
only their (f — u)?"O3; and (¢ — u)*' O3, descendants.

=0,0,. To get the descendant operators, once can add contracted derivatives to get arbitrary
. At dimension 11, sO3; and sOs3, become redundant to other operators. Thus, for these two, we need

i 01 CP  do SMEFT Operator ¢ Unitarity Bound
21 e
(iarD,q)(0,2002,) (107D, 01 + mRyDD ug) ((DEHY [D4H) + Hee.)
2 e
(iarvsD,g) (0,200 2") (10171 D,Q, — ifigy*D,u) ((DLH]'[DLH] + Hee.)
23 e _
(quDM)CI)(Z ’Z ) 8 (QLV DW)QL + MR]/ DﬂpuR)([D”HP [DPH] + H‘C‘) 0.006
24 - "y - B
(QV YSDW)q)(Z”a/ v) (QLY DprL - MRY Dﬂp”R)([D”H] [DI)H} + H'C') !
25 P hig .= <~ o <~
i3y D,q)(Z,0"'Z,) * (017D, 0y + iitgy* D yug) (1D, H|"[DL H] + H.c.)
26 e , A e .
(lqy ySqu)(Zﬂa/ﬂZu) + (lQL]/ DpQL — LURY DpuR)([DﬂH] [Dﬁ”H] + H'C‘)
27 (aD,0q)(2,02") * (01D, oHug + H.c.)([D,H'[D%H] + H.c.)
B Gabugzerz) T 9 (101D lug + He.)([D, H)'[D™H] + H.c.) Ft
29 e ;
(lqg;w}/S /mq)([allZﬂ]aﬁzl/) i (lQLG;pro’HuR + HC)([DW)H} I [DGDH] + HC)
30 (G6"D ) (Z,,0°2") - (0,6 D, Hug +H.c.)(B,, H' D”H + H.c.)
3 (igewD,g) (0,2, 0077y T 9 (i0,0" D, Hug + H.c.)([0,B,,JH DH + H.c.) Os g5
32 (igo"D,q)([0,Z.)0°Z7) T (i0,0" D, Hug + H.c.)([9,B,,)H D" H + H.c.)
33 TR V] o - ) P = n v 0aYs
(qy”Duaq)([aupZ }a Zﬂ) (QLyﬂDanL + uRy”DDO'uR)([DMﬂH] [D /)H} + H'C')
(@ De)(0,200727) T 10 (109D, 0, + ity Dyur) (D, HY DV H) + Hec)
35 . < . - o e .
(iar'rsD,q) (0,207 2z7) T+ (lQLyﬂDaQL — iligy" Dyutg)([D,,y H|' [D7”H]| + H.c.)
36 o
3 (q},aD /)’q)(Z;tpaﬂ Z ) * (QLY /}QL + ”R}/ D /)‘MR)(BM)HTD ﬁH+ H. C)
7 o .
(ar*ysD /f‘l)( 0" Zy) * 10 (QL}’ /jQL — Uy “D /}MR)(B H'D’H +H. c.) (1)5(7;?\,1 %gof
38

. i a -
(lq)/p}/5D aﬂq) (Zupaﬂz )

(iQLV D QL —

mRy”D /)’auR)(BW)H 'D¥H +H.c.)

dimension 11—s0,;, sOs,, sOy;, and sO,4. As noted in
Sec. III, there are three ways we can contract the SU(3)
indices, two symmetric and one antisymmetric. For exam-
ple, O, and O, in Table VIII should be read as
(36459)(GY*Gp,) and  dupc(qT"q)(GPGy,), respec-
tively, where 74 are the generators of SU(3). Oy in
Table VIII should be ready as fapc(gT"q)(GP*GS,).
Thus, for Og 921222324, We only need to add their

descendants with factors of (¢ — u)2.

B. ffff amplitudes

In Table X, we have listed the primary operators for
Gqf¢ interactions. As the numerators of the Hilbert series
suggests, there should be 10 primaries at dimension 6, 8
primaries at dimension 7, and at least two redundancies at
dimension 8. This is precisely what we find with the listed
18 operators, where at dimension 8, sOy and sO, are
redundant to the other operators, where s = (p, + p;)*.

Thus, for those two operators, one only needs their
descendants Oy and "O,o. We have listed a potential
SMEFT operator to realize this interaction. In some cases, a
linear combination of the amplitudes may have a lower
dimension SMEFT operator. For example, gqf¢ —
Giysqliys¢ can be realized by the SMEFT operator
(€ QugL;peg +H.c.). This would affect the unitarity
bound by removing the higher multiplicity bound of
15/E%.y. We can also convert these operators to account
for baryon-lepton interactions between uu'de and udd'v.
The primes indicate different flavors and thus, we do not
need to consider any issues with indistinguishable particles.
For example, fcde interactions can be found by replacing
q— F,q —>c,f > e, ¢ > d where ¢ and e° are the
charge conjugated 4-component spinor for the top quark
and the electron and the SU(3) indices are contracted with
an epsilon tensor. For the baryon-neutrino coupling, the
number of operators would depend on whether the neutrino
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TABLE V. Primary operators for gqZy interactions. As outlined in the text, these operators can be modified to yield the operators for
qq9Zg, qq¢'Wy, and gq'W g interactions. Under the assumption that g and g are each other’s antiparticles, the operators are Hermitian and
have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to create a CP even

and a CP odd operator. To simplify the expressions, we use the shorthand D,

= D,D,, and similarly, D,, = D,D,. To get the

descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, 7. At dimension 9, sO; and sOg
become redundant to other operators. For these two, one only needs their "0 and 'Oy descendants.

i ol CP do, SMEFT Operator ¢ Unitarity Bound
1 (@r'q)(F,z") - (OLy*Qy + iigy*ug)(B,,H'D'H + H.c.)

2 ((_Z}’”}’SCI)EF z") - 6 (QL}’ Q, — iigy“ug)(B,,H D'H + H.c.) 04 12
3 (ar"q)(FyZ) + (017*Qu + ) (B DFH 4 Hec) Frev
4 (@r'75q)(F.oZ°) + (Orr*Qr — figy*ug)(B,,H'D°H + H.c.)

5 (q9)(Fu,2") + (O Hug +H.c.)(B, B"”)

6 (iﬂ_]J’squ;wZ} ) - 7 (iQrHug +H.c.)(B,B") 04 12
7 (aq)(F wZ'") (O Hug +H.e. )(B”UB v) Erey " Prev
8 (iqysq)(Fu2™) + (iQ Hug + H.c.)(B*B,,)

? (igD,q)(F*Z,) - (i0, D, Hug + H.c.)(B#H'D,H + H.c.)

10 (aD,7sq)(F*Z,) + (0,D, Hug + H.e.)(B#H'D,H + H.c.)

1 (iG0,,D,q)(F*Z) + (016, D, Hug +H.c.)(B*H'D'H + H.c.)

12 (Go,. )(F!‘/’@/)ZV) - 7 (010, I:I”R +H.c.)(BYH'DyH + Hee.) 0.09 0.9
13 (go uJ/stCI)(F"”Z”) B (010, ,D ,Hup +H.c.)(B”H'D'H + H.c.) Fror Fl
14 (igo,,ysq)(F*°0,Z") + (i0 LGWHMR + H.c.)(B*H'DYH + H.c.)

15 (igD' q)(F,,2°) + (iQLB"HuR +He)(B,,H'D°H +Hc.)

10 (arsD"9)(F,,2%) - (0,1 Fug + H.e.) (B, H'D?H + H.c)

7 @ralarz,) - (007 Qs + g ur) (0,BB,) "
18 (@r'rsa)([0.F*]Z,,) - (QLy"Qr — igy*ug)([0,B"1B,,) Erev
1 GarDya)(0.Fm1z,) (iQ17*D,Qy, + iftgy* D yur) ([9,B*H'D,H + H.c.)

2 ligrysD)(0,F7)z,) T (i017D,Qy, - iy Dyug)([0,B*|H'D,H + He.)

2 D, o 0,2) T g (0urD,Qu + ity Do) (BHIDH A He)
22 (igy” }'sD q)(F"9,Z,) * (107D, Q1. — ifigy* Dyug) (B H'D,,H + H.c.) Fror B
= (@1,D,4)(P7") - (007, Dup Qi+t Dyyitg) (B HYDH + Hc)
@bz T (017,Dy Q1 — iy, D,pitg) (BWHDH + H.c.)

2 (@D, q)(F*9,2") o (Q1.Dy Hug + H.e.)(BYH'DyH + H.c.) bo06 005
26 (iqysD,,q)(F*9,2") (iQ, D, Hug + H.c.)(B*H DLH + Hec.) R

is Majorana or Dirac, where the Dirac case has twice the
operators, since one can use either 7 or °.

In Table XI, we have listed the primary operators for
uude interactions, where all SU(3) indices are contracted
by an epsilon tensor. As the Hilbert series suggests, there
should be 4 primaries at dimension 6, 6 primaries at
dimension 7, 6 primaries with 2 redundancies at dimension
8, and 2 primaries at dimension 9. The table shows the
stated number of independent primaries and we find that at
dimension 8, sO; and sO, are redundant to the other
operators, where s = (p, + pz)?. Thus, for those two, one

only needs their descendants (# — u)>"O3 and (¢ — u)**O,.
To account for uddy interactions, one replaces u — d,
d® = u, e - /1, where again the case of Dirac neu-
trinos allows twice as many operators.

In Table XII, we have listed the primary operators for
Gqq ¢’ interactions. Notably the Hilbert series for this has a
numerator that is twice the g7 ¢ Hilbert series. This factor of
two is simply for the two allowed SU(3) contractions, one
where the g4’ are either in the 6 or 3 representation, leading to
the symmetric (S) and antisymmetric (A) operators. Again, at
dimension 8, sOy and sO;, are redundant to the other
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TABLE VI.

Primary operators for gggy interactions. Under the assumption that g and ¢ are each other’s antiparticles, the operators are

Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to

create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D,

» = D,D,. To get the descendant

operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, 7. At dimension 9, sOs and sOg become
redundant to other operators. For these two, one only needs their #"Os and "Og descendants.

i o9 CP do, SMEFT Operator ¢ Unitarity Bound
1 (q9)(F"G,,) + (QrHug + He.)(B“G,,)
2 (igrsq)(F*G,,) - (0, Hup +H.e.)(B*G,,)
3 (‘_16/41/‘1) (FWGZ) - 7 (QLGWHMR +H.c. )(BWGZ) 04 12
4 (igo,,rsq) (F*Gp) + (i0,6,,7sHug + H.c. )(BW’G”) i " Elw
3 (39)(F*G,) - (OrHug +He)(BG,,)
6 (igysq)(F*Gy) + (OrHug +He.)(B*G,,)
7 (qr*q)([9,F*]G,,) - (QLVDQL + gyt ug)([9,8]G,,)
8 (@r'rsq)([0,F*)G,,) - (QLY”QL - ﬁRY”MR)([a B’”’]Gﬂp)
9 =
(127 Dya)(FG,) * (107D, Q1 + ifigy* Dyug) (B¥G,)
10
(lq}/ }/SDuq)(FW)Gu/)) + (lQLy D QL IMR]/ D uR)(BM)GDp) 0.09
11 8 L ;
<zqyﬂqu><FWGﬂﬂ> * (iQ17*D, Q1 + ifigy* D) (B, G*) Fle
12 S e
(ia7*75D,4)(F,,,.G*) * (017D, ;. — iiigy* Dyug)(B,,G*)
13 I - e e
(lq}/Dqu)(F/wGlp) (ZQL}’DDpQL + luRyDDpuR)(B,qu”p)
14 - - e
lC]}/ Vle,q)( ;wGﬂp) (ZQLbepQL - luRbepuR)(B/wGﬂﬂ)
15 _ _ o L
(aD,,4)(F* GY) - (01 Dy + He) (B Gy)
16 .z el - Tal%
(zqy;DﬂDq)(F”/ GY) 9 (lQLD;wH”R + H.c.)(B"Gy) 002 007
'S ) E6
17 (igo,, Daq)(F”ﬂD G*) + (i016,, D, Hug + H.c.)(BD,G*) Erey " Fiew
18 -

(q uYSDpQ)(F’wD GW))

(QLoWDpuR +H.c.)(B*D,G")

operators, where s = (p, + pq)z. Thus one only needs to
add their descendants "Oq and " Oy,.

In Table XIII, we have listed the primary operators for
gqqq interactions when two of the quarks are identical for
the specific case of uufc. There are again two allowed
SU(3) contractions, specified by whether the uu are in
symmetric (§) or antisymmetric (A) combination. Since
we’re suppressing the SU(3) indices, this makes some of
the expressions look identical, which occurs in the
blocks (1-4) and (5-8), (11-12) and (17-18), (19-22)
and (25-28), and (29-30) and (31-32). At dimension 8§,
sO5 and sO, become redundant and at dimension 10, sOy;
and sO,g become redundant, where s = (p, + pz)>. Thus
one only needs to add descendants for O3 4 57,3 With factors
of (t—u)?. These four redundancies explain the two —2
terms in the Hilbert series numerator.

In Table XIV, we have listed the primary operators for
gqqq interactions when the two quarks are identical and the
two antiquarks are identical, for the specific case of uuf1z.
There are again two allowed SU(3) contractions, specified
by whether the uu are in symmetric (S) or antisymmetric
(A) combination. Since we’re suppressing the SU(3)
indices, this makes some of the expressions look identical,

with (1-3) and (4-6) being the same, as well as (13—15) and
(18-20). At dimension 8, sO, and sO3 become redundant
and at dimension 10, sO;9 and sO,; become redundant.
Thus one only needs the descendants of O, 39,9 With
factors of (# — u)?. These four redundancies explain the two
—2 terms in the Hilbert series.

VL. INTERESTING TOP DECAY AMPLITUDES
FOR THE HL-LHC

Now that we have all of the results, we can compare our
unitarity upper bounds on the coupling strengths with our
estimate of the couplings needed for HL-LHC sensitivity to
the new top quark decays in Eq. (13), to highlight which top
decay amplitudes are worth studying in more detail at the
HL-LHC. In the following, we will assume we have top
quark pair production, where one top quark decays into a b
quark and a leptonic W, with a b-tagging efficiency of 0.5, a
lepton tagging efficiency of 0.8, and a W leptonic branch-
ing ratio of 0.2. For the Higgs modes, we will assume it
decays to photons with a branching ratio of ~2 x 1073,

First, let us consider two body decays of the top quark.
For the charged current decays, we have r - W(b,s,d),
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TABLE VII.

Primary operators for gqyy interactions. Under the assumption that g and ¢ are each other’s antiparticles, the operators

are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to

<>
create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D,
get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (f — u)?

= DD, and similarly, 9,,, = 9,0, To
. At dimension 11,

5Oy and sOg become redundant to other operators. For these two, one only needs their (1 — u)?"O; and (1 — u)*"Oyg descendants.

i o CP do, SMEFT Operator ¢ Unitarity Bound
1 ( )(F DF;w) + (QLFIMR + H C. )(BHDB;w)
2 (EI )(F”DFMD) - 7 (lQLHMR +H.c. )(BWB;M/) 04 12
3 (g )(F””FW) - (OpHug +H.c.)(B* ”,,) Efey Erey
4 ( )(F#DF;W) + (iQLHuR + H.c. )(B/“’ /41/)
5 2 + = 2 2
(igy"D,q)(F*'F,,) g (iQ1D,y*Qy + itigD,y"ug)(B* B,,,) %09
6 P U A D .2 1 v . 2 v D Te
(iGy"ysD,q)(F*F,,) * (iQLD,y*Qr — ifigD,;y" ug)(B*’B,,) -
! (i‘_](;;wD/Jq) (FlwaﬂFlt;) + (iQLa/wD/}HMR + HC)(Bﬂ”aﬂBZ)
8 q D o - () N 4 v
(qayv}/SDpQ)(F” dﬂF’é) 9 (QLO'/prHuR =+ H'C')(B” 00B6) 03()2 2_607
’ (aD,,) (F*Fy) ’ (1D, Hug +Hee) (BVB))
10 .3 v - ‘AP v
(iGysD,,q)(F"F}) (101D, Hug + H.c.)(B* By)
11 P = ue P F ) y(_) = I./(_) o
(127 D) (0,51 F,v) * (i017°D, 0y + ifigy* D,yug)([0,B"|0° B,
2 Garnba)(oroE,) T (107D, 01 = ity D) (9,81 B,)
13 v FHP - N u(_) = u(_) D
4 (qy DMJQ)( HagFl/p) 10 (QLy D;wQL + ury D;qu)(Bm aJB ) (),(b)&
1 - e Efe
(q}/ YSD/AO'(Z)(FW]aaFup) QL7 D/mQL MR}/DD MR)(BW’agBu/)) e
15 = p(_) T oca oo
(47" Dapq)(F e F*) * Oy DaﬂQL + digy Duﬂ”R)(B o'B™)
16 - S, o
(qYDYSDaﬂq)(FboéyF a) + Ly Da/iQL - uR}/ DaﬂuR)(BmaﬁB a)
17 - A Vo - _ N B Vo
(§0,uDsaq)(F** o5 F*7) 11 (104D Hug + H.c.)(B"d;B*) 0001 0.004
¥ (goursDua)(Fragr) (1010, Do Flug + He.) (B0 B) et

which have left and right handed vector and tensor
couplings, which can be distinguished by the lepton
angular distributions [51]. In addition, the tensor opera-
tors can be constrained by top quark production [52].
For flavor changing neutral current decays, we have
t = (u,c)(h,Z,y,g), which are all actively being searched
for at the LHC [35-41]. For all of these two body decays,
there is a dimension 6 SMEFT operator that realizes the
coupling, which explains why they are actively being
studied. Our constraints on the coupling strengths agree
that these are interesting and could potentially probe
unitarity violating scales up to several tens of TeV.

Now, let us consider three body decays. We do not
consider all hadronic decays of the top quark since those
suffer from large combinatorial backgrounds at the LHC
and our estimates would be entirely too optimistic. The
charged current contact interaction ¢t — (b,s,d)(e, i, 7)v
has a different lepton pair invariant mass, which could be
interesting to look for in terms of the quark-charged lepton
invariant mass distribution. Here our estimates say that all
of the dimension 6CP even amplitudes could be interesting,

even with unitarity violation occurring around 5 TeV, while
the dimension 7CP even amplitudes are interesting if
unitarity violation occurs at about ~3 TeV. Thus, these
are worth exploring as there is room to increase the
coupling for lower scales of unitarity violation. The other
three body decays with a charged current interaction are

— (b,s,d)W(y, g), which are generated at higher order in
the Standard Model (we do not consider t — dWZ since
this is so close to being kinematically closed and thus, our
assumptions about the phase space and matrix element
would be wrong.). Contact amplitudes, unlike the Standard
Model processes, are not enhanced in the collinear/soft
limits so these might be distinguishable. Here, we find that
of the operators in Table V the operators 3—4, 5 and 8 could
be interesting for unitarity violation occurring at ~6 TeV,
operators 10 and 14-15 need unitarity violation by
~3 TeV, and operators 19-22 and 25 need unitarity
violation just above a TeV. However, since we should
interpret our estimates carefully for these photon and gluon
decays, the lowest dimension operators are probably the
most realistic to explore.
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TABLE VIII. Primary 7-, 8-, and 9-dimension operators for gqgg interactions. There are three allowed SU(3) contractions, 2
symmetric ones—6,; and dygc—and one antisymmetric one—f,pc. For example, O = (g6,5q)(G**GE,)).
08" = dype(qTq)(GPGS,), and O = f45c(§T46,,)(GP*G ). Under the assumption that g and g are each other’s

antiparticles, the operators are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian

conjugate, which can be used to create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand

<> <>
D,, = D,D,. To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (7 — u)?. At
dimension 9, sOy and sO,, become redundant to other operators and at dimension 11, sO,;, sOy,, sO,3, and sO,, become redundant to
other operators. For the Og 1921222324 Operators, one only needs descendants with factors of (7 — u)?.

i 0499 CP  dp, SU(3) SMEFT Operator ¢ Unitarity Bound
1,2 (29)(G"G,,) + (O, Hug +H.c.)(G*G,,)
3, 4 (im/SQ) (G”DGW) - (iQLI:IuR + H~C~)(G”DG;41/) 0.4 12
5,6 (_ GHI/G — 7 5AB! dABC o I:] H G’WG E’{ ’E‘{
’ CIC])( ’i”) (Q_L ~MR + C)( ~/u/) TeV  TTeV
7,8 (iquq)(GMDGﬂb) + (iQLH“R + H~C-)(GWG/4D)
9 (g0,,q)(G*GY) + 7 7 (QLoy Hug +H.c.)(GGY) 04 12
o R . (1010, Hu + He) (GGY) B Ey
11, 12 e , AT e )
(qu Dﬂq)(GW GW’) * 8 5AB dABC (lQLy D;lQL + 1ugy DyuR)(GW Gl/p) 0.09
<> ’ — <> <~ 4
B4 igpnbg)erG,) T (i017°D, 0,  ifigy D, ug)(G# G, ) P
15 (qybq)([DbGW}Gﬂp) + (QL}'DQL + IZRVD“R)([DUGW]GW)
16 (quysq)([DbGﬂﬂ}Gﬂp) + (QL}'DQL - ﬁRyu”R)([D GW)]Gﬂp)
17 f— l/e 2 - 2
(igy*D,q)(G*G,,) (iQry D Q1 + iRy D;MR)(GWG ) 000
18 (iqr*rsD,q)(G*G,,) - 5 Fanc (IQLJ/”D 0 — iigy* D,ug) (G G,,) Elev
19 =g up P A wé
(i37"D,9)(G*G,,) N (017D, + ity D) (G G
20 . hig ~ - < - PN
(igr'rsD,9)(G*G,) (i017"D,q — iiigy" D) (G*G,)
L2 (g6, D,q) (G DGY) + (i016,, D, Hug + H.e.)(G¥D°GY)
23,24 (6] uVSD(rCI)(GWDGGD) B (Q oy D H“R + H.c. )(GW)DHGD) 0.02 007
25, 26 ) + 9 Oap dasc - ) Er By
(unDQ)(G”pGp) (Q DMDHMR +H.c. )(GWG )
27 28 (iqrsD,wq)(G* Gy) - (101D, Hug + H.c.)(G*GY)
29 (4D,q)(G*D’G,,) * o) B Hug +He.)(G*D'G,,)
30 (iarsD,q)(G*D’G,,) (10D, Hug + He)(G#D'G,,)
31 (E;qu)(G””DPGW) - (QLB,,FI ug + He) (GwDrG,,) -
32 pas - + 9 fABC _ < ES ’E%’
(igysD,q)(G**'D’G,,) (lQLDpH ug +He)(G*D’G,,) e
33 (i§0,uD,q)(G"D,G*)  ~ (iQL%DﬂuR +He)(G¥D,G")
34 = = 0 Vo ) Vo
(40,u75D,9)(G*D,G*) " (016, Dyutx + Hee.)(G#D,G*)

Flavor changing decays are highly suppressed in the
Standard Model, so these are very promising to search
for. To start with, four fermion contact terms ¢ —
(c,u)(e,u,7)(e, p,7) are being searched for at the LHC
in the lepton flavor violating modes to ey [53]. Here our
estimates say that dimension 6CP even and odd amplitudes
are interesting for unitarity violation above 9 TeV, while
dimension 7CP even and odd amplitudes require unitarity
violation by ~4 TeV. The existing CMS search probes the
dimension 6 amplitudes [53], but does not look for the

dimension 7 amplitudes since they appear at dimension 8§ in
SMEFT. We can also consider flavor changing neutral
current decays involving gauge bosons, including ¢ —
(c,u)(hy,hg,Zy,Zg,vy,v9,9g9), but not t— (c,u)WW
since it is also nearly kinematically closed. Again, our
estimates are too optimistic for the decay modes that are
completely hadronic, so we will focus on the other cases. For
the decays with a Higgs and a photon or gluon, using the
amplitudes and unitarity bounds in Table 3 of [13] and
assuming the diphoton Higgs decay, we find that the
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TABLE IX. Primary 10- and 11-dimension operators for §ggg interactions. There are three allowed SU(3) contractions, 2 symmetric
ones—d,p and d4p-—and one antisymmetric one—f 4 5. Under the assumption that g and g are each other’s antiparticles, the operators
are Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to

<> <> <
create a CP even and a CP odd operator. To simplify the expressions, we use the shorthand D,, = D, D,, and similarly D,, = D,D,.
To get the descendant operators, once can add contracted derivatives to get arbitrary Mandelstam factors of s, (£ — u)?.

i 0499 CP do SU(3) SMEFT Operator ¢ Unitarity Bound
35, 36 . DH GM, G + ) b<—> o D<—> GHP1D°G
(iqr"D,q)(ID,G*]D?G,,) (i01r"D,Q; + iligy* Doug)([D,G1D°G),,)

37, 38 (i‘_]yDYSDaCI)([ GIW}D”GW)) + (iQLbe(;QL - ilzRbeauR)([DDGHP]DgGﬂ/))
39, 40 - DG - oS % )

(qy D/mQ) (GH)D ) 10 645, dupe (QLV D;wQL + ugy DﬂuR)(GWD Gbp) 0.006

<~ _ > _ <~ < 6

41, 42 ((_]}/bySDﬂ q)(GupDrrG ) (QL]/UD;MQL ﬁR},DD MR)(G/WD(;GW) Erey
B @ DeaGrpG,) T (017 Do Qi+ it Dyt (G D7)
45, 46 (quYSDﬂ(Fq) (GW}DUG ) + (QL}/ D/}(;QL - MRY”D/)O'MR)(GW)DGG/JD)
47 R o + ) = 4

(q}/VDH(,q) (GW)D Gl//’) 10 fABC (QLyDD/wQL + MRJ/HD/MMR)(GM)D Gbp) 0.006
48 P 3 p O ) l/e = l/(_) o Eﬁcv

(q}/ YSD;wq)(GWD Gup) + (QL?/ D;wQL — URY D auR)(GﬂﬂD Gup) !
49, 50

(g0, mq)(GWDaGW) T, (0L, D(,,,HuR +H.c.)(G"D;G*) 0.001 0.004
1,52 17 we D Gre + A TABC | up N (Grve E%ev ' Efy

(lqauy75Daaq)(G D/JG ) (ZQL Do—aHuR +H.c. )(G DpG )

53 2 p =+ = ~ <

(igDyu09) (G DGy 11 Fane (iQLDyHug +H.c.)(GD°Gy) 0001 0904
>4 (quDMWQ)(GM)DGGZ) a (QLD/H/O'HMR =+ H'C')(GW)DGG;) TLV ETEV

TABLE X. Primary operators for gqZ¢ interactions (As described in the text, these operators can be modified to yield the operators for
baryon-lepton interactions uu'de and udd'v.). Under the assumption the g, g and Z, ¢ are each other’s antiparticles, the operators are
Hermitian and have the listed CP properties. If they are not, each of these operators has a Hermitian conjugate, which can be used to create a
CP even and a CP odd operator. To get the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors of s,
t. At dimension 8, sOy and 5O, become redundant and thus, one only needs to consider Oy and O,y with arbitrary factors of 7.

i O?q?f CP do, SMEFT Operator ¢ Unitarity Bound
I (34)(Z2) + (01 g + Hee)(Ly Hey + He)
2 (Girsq)(¢7) - 6 (iQrHug +Hc.)(L Heg +H.c.) 15 15
3 (Gq)(Ziys?) - (QrHug +H.c.)(iL Heg +H.c.) Erey " By
4 (giysq)(Ziyst) + (iQ Hug +H.c.)(iL Heg + H.c.)
5 @7"‘1)(2@5) + (QLY”QL + ﬁRV”MR)(I} Lvulr + egyuer)
6 (‘?Y”YSQZ(fVﬂf) + 6 (QLV”QL — gy ug)( Lyl + ERYueR) 15
7 (@r"q)(r,rst) + (Qur"Qr + gy ug)(Lry, Ly = @ryuer) Ery
8 (@r'ysa)(€yurst) + (Qry*Qy — iigy*ug)(Lyy, Ly — egyuer)
9 (G0 q)(¢0,,¢) + 6 (Qro*Hug +H.c.)(Ly o, Heg + He.) 15 s
10 €0 (30" q V(€6 ) - 6,“,,,(,(QL6 YHug +H.c )(LLJ”"HeR +H.c.) Ete’ Ete
11 _ -3 _
(gr'q)(ifD,¢) * (0101 + MRY”MR)(ILLHD eg +H.c.)
12 _ - < _ _
(@r*q)(€ysD,t) (OLr*Qr + ”RV””R)(LLHD eg +Hc.)
13 _ -
(@r'vsa)(i¢D,f) N (0110 — MRY”MR)(ILLHD eg +H.c.)
14 _ 5 - ~
(QVHYSQ)(KYSDuf) 7 (Q YOr — ”RYHMR)( LHDﬂeR +H.ec. ) 04 12
15 LK - _ B B B,
(igD q)(¢y,0) + (lQLHD ug +H.c)(Lry, Ly + egyuer) B
16 = - _
(grsD q)(€y,¢) (QLHD ug +He.)(Lyy, Ly + egy,ex)
17 N . _
(igD Q)(f?’u?’sf) + (lQLHD ug + H~C-)(LL7/4LL - eRVyeR)
18 _ o 2n = — ] _ ~
(quD q)(f}/”]@f) (QLHD ug + H'C')(LL}/ﬂLL - eR}/;teR)
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TABLE XI. Primary operators for uude interactions, where d“ and e“ are the charge conjugated down-type quark and charged lepton
4-component spinor and SU(3) indices are contracted with an epsilon tensor (These operators can be modified to yield the operators for uddv

interactions by simply taking u — d, d® — u®, ¢ — v/1°.). To simplify the expressions, we have defined a back-forth derivative Dz, which

- Qw0 —.
only acts on the u fields, and similarly D, ~ which acts on uy and Q; (butnot Q7 ). To get the descendant operators, one can add contracted
derivatives to get arbitrary Mandelstam factors that respect the exchange symmetry between the two up-type quarks, i.e., s, (£ — u)?. At
dimension 8, sO5 and sO, become redundant and thus, one only needs to consider O; and O, descendants with arbitrary factors of (# — u)?.

i Qude do, SMEFT Operator ¢ Unitarity Bound
! (@) () (031101 + 0 Hue) (3 0y + L Hit)
2 (diysu)(eu) 6 (i dfeH O - lQLH”R)(eRH Qp + LjHug) L5 15
3 (du)(eCiysu) (dYHQ; + Q% Hug)(ieGH' O — iL§ Hug) Etey” Eny
4 (diysu)(e‘iysu) (idgH'Q; — iQ§ Hug)(iegH' Q; — iL{ Hug)
5 Lﬁy”u)(ecDﬂu) (0$y* QL + dfey"uR)('CD HQ; + I:iHD”uR)
6 (dr*u)(e‘iysD,u) (057 Qyr + diy*ug)(iegD,H' Q) — iL{ HD,ug)
7 (dcyﬂ}'Su)(e Dﬂ”) 7 (_QLYMQL _dfeyﬂuR)(eRD HTQL +L2HD;4”R) 04 12
8 (dcy"y5u)(e_iy5D,,u) (077" Qy, — dzy'ug)(iegD, HQ, - lLiHDMuR) Ete Etey
O (@Du)er) (5D, H' 0, + Q5 HD ) (L 101 + Zir'ue)
10 (diysDju)(ey u) (idxD,H'Q; —iQi HD,ug)(Liy*Q; + exy*ug)
— __©u -~ _ <>Q.u ~ - “<>Q.u
o (e By (ds 'y + 0 Hug)(ID'e§]D, " H'Q, + DL HID,, " ug)
12 Jjc 1 “Jc 171 IaYs Sc SQu Iyt TC SQu
(d°iysu)([DFe }D u) ] (idzH Oy —lQLH”R)([D”eR]D H'Q, + [D'L§ H}D ug) 0 09

13 (du )([D”eC]IYSDﬂM) (EﬁéiﬁQLJrQZHMR)(l[D"eR}D " QL—I[D"LCH}D MR) P Bl
14 < .

(d“iysu)([D"eliysD,u) (idzH"Qp — lQLHuR)(l[D"eR]D “HQ, - Z[D”LLH]DM “uug)
15 - =1, 1" - e el

(dy"u)([D¥ely,D,u) g (077" Qp + diy'ug)([D*Lg ]YﬂD 0L+ [D”eg]nD Ug) 009
16 e, v, C P Ne 7 v Qu E4e

(dy'ysu)([D*e]y,D,u) (Q17"Qr — dgr*ug)([D” LL]V,,DD ‘0, + D eR]?/,, v UR) e
17 —c " —¢ <>Q.u ~ - <Q.u

(dy'u)([D*e ]D D “) 9 (QL?’”QL + dj &r'ug)([D"eg]D, D”HTQL + [D'L{H]D, Du”R) 0.02 0.07

e, <>Q.u ~ _ <Q.u 5 b
18 d°y"u)([D¥e® l}/SD,,D u 05y Q, + dy'ug) (i[DV e DDQ D,H Q; —i[D'LSH DDQ D,ug By Fev

" L R " L "

TABLE XII.  Primary operators for gqg'q’ interactions. There are two allowed SU(3) contractions, the S indicates where ¢, ¢’ form a
symmetric 6 representation under SU (3) while A has the antisymmetric 3 representation. For example, with explicit indices we have

017 = (7'%q,)(@"q ;}) and O10" = (3q,)(7"q))), where q(adp) = qudp + qpde ANd Glady = Gudp — dpda- Under the
assumption the g, ¢ and g', ¢’ are respectively each other’s antiparticles, the operators are Hermitian and have the listed CP properties.
If they are not, each of these operators has a Hermitian conjugate, which can be used to create a CP even and a CP odd operator. To get
the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors of s, . At dimension 8, sOy and 5O
become redundant and thus, one only needs to consider Oy and O,y with arbitrary factors of .

P

i N CP do, SMEFT Operator ¢ Unitarity Bound
1 (99)(@'q) + (QpHuy + H.c. )(Q_/sz{u;e +H.c.)

2 (qirsq)(@'q’) - 6 (i0 Hug +H.c.)(Q  Huy + Hec.) 15 15
3 (q9)(@'irsq") - (QrHug +H.c.)(iQ) Huf + He.) By’ Efey
4 (qirsq)(q'ivsq’) + (10 Hug +H.c.)(iQ; Huy +H.c.)

5 (ar'a)(@'v.q") + (Q oL + uR}'MuR)(QL}'ﬂQL + Ry ty)

6 (@r'rsa)(@'r.q') + 6 (QLr*Qr - iigy*ug)(Q17, Q) + ”R}’u”;e) 1.5

7 (@r"a)(@'r, }’56]) + (QLr*Qp + gy ug) (0L, Q) — igyuy) Ery

8 (@r'rsa)(@'rursd) + (0Lr"Qp — gy ug)(Q 7, Q) — Ugy,itg)

9 (G0 q)(q'0,.q') + 6 (Qro*Hug + H.c. (0} 0, JHuy +H.c.) 15 15
10 €ups(G0"q) (3 0" q") - MDPG(QLG’”HMR +H.c. )(Q/Laf”’HuR +H.c.) 2R

(Table continued)
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TABLE XII. (Continued)

i O?‘éq X CP do, SMEFT Operator ¢ Unitarity Bound
1 (@r9) (i@ D,q') * (017" Q1 + gy ug)(iQ) Dty + H.c.)

12 (@9)(@r5D,d') B (0170 + ity ug) (O} HD ity + H.c.)

13 (517”75Q)(i51/8;4q/) * (017" Qy, — gy ug) (iQ} D Wty +Hee.)

14 (Ezy"ysq)(fi/rsgﬂ) B ; (OLy" 0 — ﬁRVﬂuR)(QLHDﬂuR +H.c.) 04 12

15 (1D 9)(@'7.4) * (1QLAD ug + H.e.)(047,0} + i) Fra

o (arsD"a)(@r,q) B (QLHD g + He.) (07,0} + ey iiy)

i; (iaD"q)(@7,rs4") * (101D ug + H.c.)(0}7, 01 — Wity

e = = = _
(qrsD q)(@'rurs59') (QLHD ug +H.c.)(Q17,Q) — gy tiy)

TABLE XIII. Primary operators for ggggq interactions with two indistinguishable quarks, for the specific case of uufc interactions
(Hermitian conjugate yields tci iz and down-type interactions can be found by exchange for down quarks.). The SU(3) contractions are

determined by S(A) to be symmetric (antisymmetric) in the uu indices. We’ve defined a back-forth derivative DZ, which only acts on the

.. <u,0 . L .
u fields, and similarly D, " which acts on ug and Q;;. For descendant operators, one adds contracted derivatives to get arbitrary
Mandelstam factors that respect the exchange symmetry, i.c., s, (f — u)?. At dimension 8, sO; and sO, become redundant, while at
dimension 10, sO,; and sO,g become redundant. Thus one only needs to consider O; 4,7, descendants with arbitrary factors of
(t—u)>.

i Quure do, SU(3) SMEFT Operator ¢ Unitarity Bound
1 _('?“)(Elf) (O3 Hug + TpH' QlL)(QzLH”R +crH' Q1)
2 (fl}’s’f)’(cu) 6 A (iQ3 Hug — itgH Q1) (Qor Hug + cxH' Q1) 15 15
3 (fu)(ciysu) (QSLI:I“R +tRI_{TQ1L)(lQ_2LHMR lCRH O1L) Etey’ Eny
4 (fiysu)(Ciysu) (i3 Hug — itgH Q1) (02 Hug + ickH' Q1)
5 (fu)(cu) (QSLI?MR JF;RI:{TQIL)(Q_ LHug + ¢l Q1)
6 (”}’5’{)( u) 6 S (i_Q3L~[_]uR —_i?@HTQlL)(_QzLHMR +crH'0y1) 15 15
7 (u)(ciysu) (QspHug + TgH' Q1) (iQop Hug — icpH' Q,L) Etey " Erey
8 (fiysu)(Ciysu) (iQs Hug — itgH' Q1) (02 Hug + ickH' Q1)
9 _(f}’” u)(Cy,u) 6 S (QSLY"QlL + Try ug)(Q 21 Yu Qi + CrY,UR) 15
10 (trtysu)(Ty,u) (307" 011 — tRV”uR)(QZLV/leL + CrYultR) Etey
11 (fr*u)(eD,u) (_Q3L7”Q1L + ?RJ’”MR)(QzLHDMR +¢rD,H Q1)
12 (f_?/””)(E'iVSDﬂ”) (Q_3L7”Q1L + fRY”“R)(i_QzLHDﬂ”R —icgD,H' Q)
13 _(f}’HVSM)(EDu“) 7 A (_Q3LV”Q1L - fRJ’”“R)(QleLNID,MR + ERD;J—INTQIL) 04 12
14 (f?’”?s“)(EiVSD;M) (U iRV”“R)(iQZLHD,uuR - iERDyHTQlL) Etey Etey
15 (ID,u)(cy*u) (O3 HD ug + gD, H Q11 )(Qar 7" Q11 + Cry*ug)
16 (tiysD,u)(ey'u) (iQ3 HDug — itgD,H Q1) (027" Q11 + Crr"ug)
17 _(;7”“)(51)14“) 7 S (_Q3L7/”Q1L + ;RyﬂuR)(Q2LiilDﬂuR + ERDﬂFINTQlL) 04 12
18 (ty*u)(ciysD,u) (Q3.7" Q11 + Try"ug)(iQ2 HDyug — iERDyHTQlL) e Erey
19 B - o oo
(7u)([DH }D u) (O3 Hug + 1A' Q) ([D* Q2 HID, ”R + [D”CR} H'Qy;1)

20 —. .= ~ P - ~ U uQ

(IWSM)([DMC]D/l”) 8 A (lQSLH“R - ltRHTQlL)([D#QZLH]D/A Ug +[ ¢ } '‘H QIL) 0.09 09
2 < N P s e o0 Fio B,

(tu)([D¥eliysD,u) (QspHug + 1rHQ,)(i[D* Q2 HID, ‘ug — i[DE }D IH Qi) R
22 - . Ru L= ~ -~ . -~ <uQ

(tiysu)([D¥cliysD,u) (iQ3 Hug — itgH Q1) (i[D* 0y H]D, lug — l[D“CR}Du HTQ,L)

(Table continued)
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TABLE XIIL. (Continued)

i Oﬁ‘”if dO, SU(3) SMEFT Operator ¢ Unitarity Bound
23 _ = “<u _ _ ” <>u,Q
(tru)([D¥ely,D,u) 8 A (Q3.7" Q11 + Try*ug)([D Q2L]7MD QlL + [Dexly D, ug) 0.09
24 . o - _ u.0, By
viysu ClyuZyu 3LV i — IRYTUR 2.1V u 1L CRIYVu Ug
(ty'ysu)([D¥ely,D,u) (037" Q11 — Trrug) ((D* Ot ]y, Dy “ 0+ [D¥egly, D, ug) A
25 _ _u — ~ o~ - ~ <u,0 _ <>u,Q; ~
(tu)([D"c]D,u) (O3 Hug +1xH'Q,,)([D* Q2 HID, lug + [D*eg]'D, HO,.)
2% - _eu o w0 w0
(ny5u)([D/‘c]Dﬂu) g S (iQ3pHug — ltRHTQlL)([D”QZLH]DﬂQ ]uR + [D¥eg ]D QIH 0Oi1) 09 ,2,’9
27 - T = ~ o~ . A -, <y Ee, X
(tu)([D*cliysD,u) (O3 Hug +1xH' Q) (i[D* 02, HID, lug — i[Dre ]D IH O1L) e
28 -, i=1s U = o~ o~ . ~ ~_©ouQ
(fiysu)([D*eliysD,u) (iQ3 Hug — itgH Q11 (i[D* 02 HD, ‘ug — l[D”CR}Du HTO,L)
29 _ _<u _ _ _ ~ <uQ _ ou0 ~
(tr'u)([D*e]D,D,u) 9 A (Q307" Q11 + Try*ug)([D* Qo HID, ]D/MR + [D¥2g]D, lDﬂHTQlL) 0.02 007
30 - U=l “<u _ _ - ~_<uQ S y= <u,Q ~ Ese 7Eﬁc
(ty*u)([D*¢liysD,D,u) (Q3.7" Q1 + Try*ug)(i[D* O, HID, lD,MR — i[D"eg|D, ID/JHTQIL) B
31 _ L Su _ _ _ ~ <uQ =AY ~
(r*u)([D*€|D,D,u) (037" Qup + Txr"ug) ([D* Qo  HID, ™ Dyug + [D*2g)D,” D,H' Q)
32 . pa - ; o) IR
(ty*u)([D }WSD D,u) (Qa1Y" Q11 + Try*ug)(ilD* Oy HID, ~ D,up — i[D*Tg]D, ID;;HIQIL)
33 - - _ — ~_<u,Q =AY ~
(s ((DEDDL) g g (O Qu T un) (D Quu 1D Dyt +[DeRlD. DA Q) o g0
34 - v ) 7z Y% 7 R e Y2 .0 ags Esc ,Eﬁe
(ty'ysu)([D C]l?’sDuDy”) (Q31Y" Q11 — TRy ug)(i[D* Qo HID, IDMR — i[D¥¢g]D, lDﬂHJQlL) e
35 - _ <u - ~ _ ~ _ <u,Q _ <u,Q
(tD,u)([D*Cly* Dy u) (O3, HD,ug + tRDyHTQlL)([DyQZL]YﬂDv "0+ [D¥egly, D, I”R)
36 - e - A, L e L w0
(tiysD,u)([D*]y* D, u) (iQs . HD ug — itgD, H Q11 )([D* Qa1 )y,D, ‘0., +[D crlYuD, 'ug)

TABLE XIV. Primary operators for gqqg interactions with two indistinguishable quarks and two indistinguishable antiquarks, for the
specific case of uutz interactions (The Hermitian conjugate yields the s¢izii interactions and the down-type interactions can be found by
exchange for down quarks.). The SU(3) contractions are determined by S to be symmetric in the uu indices and A to be antisymmetric.

. . . . Zu . . .. <u,Q .
To simplify the expressions, we have defined a back-forth derivative D,,, which only acts on the u fields, and similarly D, " which acts
on up and Q; . To get the descendant operators, one can add contracted derivatives to get arbitrary Mandelstam factors that respect the
exchange symmetries, i.e., s, (f — u)z. At dimension 8, sO, and sOz become redundant, while at dimension 10, sO;9 and 5O, become

redundant. Thus, one only needs to consider O,, Oz, 0,9, O, with arbitrary factors of (¢ — u)>.

i Ouutt do, SU(3) SMEFT Operator ¢ Unitarity Bound
1 _(.;’4)(?’4_) (O3 Hug + [RHTQIL)(Q3LHMR + tRHTQlL)
2 _(”75“)_(“4) 6 A (iQ3 Hug — ”RH 011)(Qs Hup ‘HRH Oir) EI%'SVvE]«TtS_V
3 (fiysu)(tiysu) (O3 Hug —1xH Q1) (03, Hug — 1rH Q1)
4 _(;“)(?’4_) (O3 Huy +tRHTQ1L)(Q_ LHug +1:H°Q,;)
5 _(fi?’s“)_(f“) 6 S (iQs Hup — ”RHTQI )(Q5 L Hug + tRHTQlL) EITSV ; E];v
6 (tiysu)(tiysu) (O3 Hug —TRH Q1) (03 Hug — 1rH' Q)
7 _(h’”“)(f}:y”) 6 S (Q307" Qi1 + Trr*ug)(Q317, Q11 + TrY,lR) 15
8 (ty'ysu)(ty,u) (037" Q11 — Trr*ug) (0307, Q11 + TrY,liR) Erey
9 _(f}’”u)_(?DM) (_Q3L7”Q1L + fR?/”MR)(QuI:]D/MR + tRD/JI-{I i)
10 (I_Y””)(tiV_SDu”) 7 A (Q_3L7”Q1L + ;RJ/M”R)(I._QSLI:ID;:”R - ﬁRDyf‘ITQlL) 04 12
11 _(W”Ys”)_(ny“) (_Q3L7”Q1L - fRV”“R)(QﬂHDﬂMR + D, H Q1;) Erev” Brev
12 (tytysu)(tiysD,u) (Qar7" Q11 — TRy ug)(iQ3  HD yug — itgD,H" Q1)
13 _ _©u _ - o~ L= ~ . <uQ _ 2ou0) ~
(fu)([D*7]D,u) (QspHug +1:H"Q,,)([D" 05, H|D, lug + [DHig|D, "HTQ,,)

14 _. “<u = ~ -~ — ~_ <uQ _ .ouQp ~ . X

(Fiysu)(D*AD,u) 8 A (iQs Hug - itgH 0,,)([D* 03, HID, +[DTRlDy ‘H ) I
15 - L. S I, e

(tiysu)([D"1]iysD,u) (iQs Hug — itgH' QlL)(l[D”Q3LH]Dy - l[D”fR] H'Qy;)
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TABLE XIV. (Continued)

i Ouurt do, SU(3) SMEFT Operator ¢ Unitarity Bound
16 _ e “<u _ _ U <u,Q = <>u,Q
(tr'u)([D*1]y, D, u) 8 A (Qarr"Qur + trr*ug)([D¥Qs.ly, Dy Qi + [DYigly, D, ug) 0.09
17 _ U ou B ~ B Su,0 ~ <u,0 S,
(ty”ySM)([Dyt]yﬂDuu) (Q3L7/”Q1L - tRyﬂuR)([DyQ3L]yuDu lQIL + [Dth]y,uDv I“R) !
18 B _ou _ . e AT <u,Q _ L 2u0) o,
(fu)([D1]D,u) (O3 Hug +1xH Q) ([D* Q3 HID, Q]MR + [D'ig]D,, Q]HlQlL)
19 - 2u - — Pl - 1 Re< ~ 0.09 09
(tiysu)([D']D,u) 8 S (iQsp Hug — itgH' Q1) ([D* Q3 HID, ™ ug + [D'ig]D,~ H' Q1) Ely " Eby
20 - o. R = F - . = U0 s 12001
(tiysu)([D"1]iysD,u) (iQs Hug — itgH Q1) (i[D* Q5. H|D, lug — i[D"ig]D,, HY Q)
21 Tl vy g N 7 U 7150 V3 Ko [t
(ty*u)([D*1)D,D,u) (Q3.7" Q11 + Try*ug)([D* Q3 H]ID, lDu”R + [DYig]D, lD;tHinL)
22 _ . “<u _ _ . _ ~_<u,Q . _ cuQ ~
(tyﬂu)([Dbt}WSDﬂDbu) 9 S (QSL}/MQIL + tR}/MuR)(l[DDQSLH]Du IDﬂ“R - Z[Dth]Db ]DﬂHTQlL) 0.02 0.07
23 Eiey " ey

_ _ “<>u
(t}/”J/Su)([DDt}DuDuu)
24 (iyrysu) ((D"T)iysD, D, )

_ _ _ o~ <uQ _ L 2uQ ~
(Q3.7" Q1 — Tgy"ug)([D* Q3. H]D, lD,MR + [D"ig]D, lDﬂHTQIL)
- _ . - ~ uQ . _ .<ouQ ~

(Q3L7" Q1 — Tgy*ug) (i[D* O3 HID, ]D,MR — i[D¥Ig]|D, IDMHTQ]L)

dimension 6, 7, 8 operators require unitarity violation
respectively by ~5, 2, 1 TeV, so the dimension 6 and 7 ones
are the most promising. For the decays into a Z and a photon
or gluon, assuming the Z decays to ee or pu, we find that the
dimension 6, 7, 8, 9 operators in Table V, require unitarity
violation respectively by ~3.5, 2.5, 1.2, 0.8 TeV so the
dimension 6, 7, 8 ones should be explored more closely, but
the dimension 9 operators are likely out of reach. For the
decays with two photons or a photon and gluon, we find that
the dimension 7, 8, 9, 10, 11 operators in Tables VI, VII
require unitarity violation respectively by ~5, 2, 1.3, 1,
0.7 TeV and given that we should be careful with these
estimates (especially for the yg case), the dimension 7 ones
are likely the only relevant ones.

There are also baryon number violating three body decays
mediated by our amplitudes, t — (¢,it)(b,5.d)(e, i1, 7).
These would have combinatorial backgrounds, but have
been searched for in the past by CMS [54]. Again, theory
explorations of these have focused on the dimension 6
SMEFT operators [55,56], so it would be interesting if the
ones parametrized by dimension 8 SMEFT operators give
distinguishable signals.

To conclude, our unitarity bounds combined with our
estimates for the interesting size of couplings for top quark
decays has allowed us a quick survey of which of the decay
amplitudes may be worth pursuing at the HL-LHC. As the
dimension of the amplitude gets larger, these two constraints
become more challenging to satisfy without lowering the
scale of unitarity to the TeV scale. Since the SMEFT operator
realization must be at the same or higher dimension, this
motivates studying in more detail top decays from many
dimension 8 and a few dimension 10 SMEFT operators to
determine their sensitivity at HL-LHC and future colliders.

VII. CONCLUSIONS

In this paper, we have extended an approach [13] to
determine the on-shell 3 and 4 point amplitudes that are

needed for modeling general top quark phenomenology at
colliders. These serve as an intermediary between the
observables searched for by experimental analyses and the
operators in effective field theories for the Standard
Model. This involved characterizing the general ampli-
tudes for processes involving four fermions or two
fermions and two gauge bosons. We were able to
characterize these respectively to dimension 12 and 13,
finding the structure of primary and descendant ampli-
tudes, where descendants are primaries multiplied by
Mandelstam factors. Interestingly, we find two classes
of interactions whose Hilbert series numerator has a
complete cancellation in the numerator. This naively
would suggest that there are no primary operators at a
certain mass dimension, but in actuality there are an equal
number of new primaries and redundancies that appear at
that mass dimension. This illustrates the importance of
using the Hilbert series in conjunction with the ampli-
tudes, as they complement each other in this process. We
also note that our approach is a complementary check to
the existing results up to dimension 8 using spinor-helicity
variables [11,12] and extends the amplitude structure to
higher dimension.

To provide an initial survey of the potential phenomenol-
ogy, we have used perturbative unitarity to place upper
bounds on the coupling strengths of these interactions.
These depend on the scale where unitarity is violated
Etev = Emg/TeV, with more stringent constraints as one
increases Et.y. Given the expected sample of top quarks at
HL-LHC, we have estimated the coupling size needed for the
top quark decays to be seen over irreducible backgrounds.
This allowed us to highlight the that top quark decays into
both FCNC modes, like t — ¢(£¢, hy, hg, Zy, Zg.yy.79),
and non-FCNC modes, like t — b(Wy, Wg), could be
interesting to search for at the HL-LHC. Some of these
highlighted modes occur at dimension 8 and 10 in SMEFT
and thus would be interesting to explore how distinctive these
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new amplitudes are compared to existing searches. We leave
such detailed phenomenology to future work.

To conclude, the high energy program at colliders is
entering the phase of testing whether the Standard Model is
indeed the correct description of physics at the TeV scale.
To do so, we must look for new physics in the most general
way, so that we can find such deviations or constrain them.
On-shell amplitudes are a useful intermediary between
experimental analyses and the parametrization of new
physics by effective field theories. Finally, by determining
the on-shell amplitude structure to high dimension and

writing down a concrete basis for them, we hope this will
allow the field to maximize its efforts to find what exists
beyond the Standard Model.
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