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Many collider searches have attempted to detect the Higgs boson decaying to a photon and an invisible
massless dark photon. For the branching ratio to this channel to be realistically observable at the LHC, there
must exist new mediators that interact with both the standard model and the dark photon. In this paper, we
study experimental and theoretical constraints on an extensive set of mediator models. We show that these
constraints limit the Higgs branching ratio to a photon and a dark photon to be far smaller than the current
sensitivity of collider searches.
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I. INTRODUCTION

The dark photon is a hypothetical Abelian gauge boson
that can mix with the photon [1] and has been extensively
studied both experimentally and theoretically. It could, for
example, act as a portal to a dark sector or introduce dark
matter self-interactions that can potentially solve the small-
scale structure problems [2] and the XENON1T anomaly
[3,4]. Depending on its decoupling temperature during the
evolution of the Universe, the dark photon can affect the big
bang nucleosynthesis by altering the effective number of
thermally excited neutrino degrees of freedom [5,6]. The
dark photon may also modify the stellar energy transport
mechanism and thus the cooling of, for example, neutron
stars [7].
A potential discovery channel of the dark photon that has

received considerable attention is the decay of the Higgs
boson to a photon and a massless dark photon. The interest
in this channel stems in large part from early phenomeno-
logical studies [8–12], which indicated that a corresponding
branching ratio as large as 5% was at the time compatible
with experimental constraints [8]. This has motivated
several collider searches for the Higgs boson decaying
to a photon and a dark photon [13–16]. Presently, the most
precise collider bound on this branching ratio comes from
Ref. [15] by ATLAS, which uses 139 fb−1 of integrated
luminosity at a center-of-mass energy of 13 TeV. This study

has obtained an upper limit of 1.8% at 95% confidence
level (CL).
For the Higgs boson to be able to decay to a photon and a

dark photon, there must exist some mechanism that allows
interactions between the dark photon and standard model
(SM) particles. In principle, SM particles themselves could
interact at tree level with the dark photon. For example, this
could be because of kinematic mixing between the weak
hypercharge and the gauge boson of a new Uð1Þ0 gauge
group. The problem with this scenario, however, is that the
branching ratio of the Higgs boson to photons is small and
that interactions between SM particles and a new light
gauge boson are constrained to be very small (see, e.g.,
[17–22]) or can sometimes outright be rotated away [23].
The branching ratio of the Higgs boson to a photon and a
dark photon would therefore be far smaller than what could
realistically be observed at the LHC. A potentially discov-
erable branching ratio of the Higgs boson to a photon and a
dark photon then requires the introduction of new particles
that can mediate interactions between the SM sector and the
dark photon. Therefore, an observation of this channel
would not only verify the existence of the dark photon, but
also provide indirect evidence of more new particles.
In this paper, we study constraints on mediators that

enable the Higgs boson to decay to a photon and a massless
invisible dark photon. Crucially, we demonstrate that these
constraints restrict this branching ratio to values consid-
erably lower than current collider limits. To do this, we
consider constraints from the Higgs signal strengths,
electroweak precision tests, the electric dipole moment
(EDM) of the electron, and unitarity. This paper is an
extended and more detailed version of Ref. [24].
Despite previous claims, it is not practically possible to

obtain a bound on the branching ratio of the Higgs boson to
a photon and a dark photon that is completely model
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independent. Certain crucial constraints like the Higgs
signal strengths are too elaborate and can be affected by
too many factors for a bound to be strictly universal. To
counteract this, we will consider an extensive and repre-
sentative set of mediator models. They constitute the
complete set of possible models that respect some very
minimal assumptions, which we will present below. These
models are, of course, ultimately only benchmarks, but they
will clearly illustrate the reasons why, given the above-
mentioned constraints, building models that lead to a large
branching ratio of the Higgs boson to a photon and a dark
photon would be extremely challenging.
We find the following results. In all models considered, the

branching ratio of the Higgs boson to a photon and a dark
photon is constrained to be below ∼0.4%. Furthermore, for
many models, this number is only technically allowed
because of the absence of collider searches for certain
hard-to-miss signatures and would be considerably lower
given the existence of such searches. For certain mediators,
the constraints are even considerably stronger than 0.4%.1

This paper is organized as follows. In Sec. II, we
introduce our assumptions and the models they allow.
Sections III and IV present the constraints and results for
the fermion and scalar mediators, respectively. Concluding
remarks are presented in Sec. V, including a discussion on
the effects of relaxing our assumptions.

II. ASSUMPTIONS AND MODELS

We begin by presenting our assumptions on how the dark
photon and the SM can communicate. Of course, there
would be ways to violate them and we discuss the
implications of this in the Conclusion. The models they
admit are presented here in a schematic way. The dark
photon is referred to as A0, the photon as A, and the Higgs
boson as h.
Assume a new Uð1Þ0 gauge group whose gauge boson is

A0 and that all SM particles are neutral under this group.
Assume a set of mediators charged under both SM gauge
groups and the Uð1Þ0. Then, the conditions that we require
our mediator models to satisfy are as follows:
(1) The Lagrangian is renormalizable and preserves all

the gauge symmetries.
(2) The Higgs decay to AA0 can occur at one loop.
(3) The mediators are neutral under QCD.
(4) The mediators are either complex scalars or vector-

like fermions.
(5) There are no more than two new fields.
(6) There are no mediators that have a nonzero expect-

ation value or mix with SM fields.
Several comments are in order:

(i) Assumption 1 is a standard requirement of beyond
the standard model (BSM) physics. In addition, a
nonrenormalizable Lagrangian would allow for tree-
level decay of the Higgs boson to AA0, which would
render the analysis trivial but leave unclear whether
a reasonable UV completion is possible.

(ii) Assumption 2 is required such that BRðh → AA0Þ be
sufficiently large to observe. If this decay were to
take place at an even higher loop level, the branching
ratio would generally simply be too small. In
principle, a large BRðh → AA0Þ could be obtained
without this assumption being satisfied in the pres-
ence of a new nonperturbative sector, but the
complicated nature of this would make the analysis
less definite and we do not consider it further. This
decay is forbidden by gauge invariance to take place
at tree level for a renormalizable Lagrangian.

(iii) Assumption 3 is made for two reasons. First, a
mediator charged under QCD would be forced to
have a mass at the TeV scale, which would make it
difficult to obtain a large BRðh → AA0Þ. Second,
even if a large BRðh → AA0Þ could somehow be
obtained, it would unavoidably imply a large modi-
fication of the Higgs interactions with the gluons.
This would be in tension with experimental mea-
surements, especially considering the gluon-fusion
cross section is known at Oð10%Þ precision.

(iv) Assumption 4 is made since there are not many
well-motivated BSM models containing mediators
with spin higher than 1=2 that lead to a sizable
BRðh → AA0Þ.

(v) Assumptions 4–6 are not, in principle, mandatory,
but are introduced to keep the number of possible
models at a manageable level.

The most important consequence of these assumptions is
that they require the Lagrangian to contain a term coupling
the Higgs doublet to mediators at tree level. There are only
five generic forms such a term can take while respecting our
assumptions. Each class of mediator models then corre-
sponds to a different form of the Higgs coupling to
mediators. The classes consist of a single fermion class
and four scalar classes. The possibilities for these inter-
action terms are in a schematic form.

Fermion∶

ψ̄1ðALPL þARPRÞψ2HþH:c:;

Scalar∶

I∶ μϕ†
1ϕ2HþH:c:; II∶ λH†Hϕ†ϕ;

III∶ λH†Hϕ†
1ϕ2 þH:c:; IV∶ λHHϕ†

1ϕ2 þH:c:; ð1Þ

where H is the Higgs doublet, and the different ψ’s are
vectorlike fermions and ϕ scalars. All indices are sup-
pressed and the details will be explained in Secs. III and IV.

1Reference [25] contains conclusions similar to ours, though
the authors did not analyze constraints as extensively and as such
did not obtain limits quite as strong.
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For each class, the fields can take different quantum
numbers and this is why we say that they are classes of
models. These models could, of course, be combined, but
we will always consider one model at a time for the sake of
definiteness and manageability. In the rest of this paper, we
will elaborate on each model and study how large of a
BRðh → AA0Þ they can potentially lead to.

III. FERMION MEDIATORS

We present in this section the only class of fermion
mediator models that respect the assumptions listed
in Sec. II. The different constraints and the allowed
BRðh → AA0Þ are also discussed.

A. Field content, Lagrangian, and mass eigenstates

We begin by introducing the relevant fields and
Lagrangian. Consider a vectorlike fermion ψ1 that trans-
forms under a representation of SUð2ÞL of dimension
p ¼ n� 1, has a weak hypercharge of Yp ¼ Yn þ 1=2,
and a charge Q0 under Uð1Þ0. Consider another vectorlike
fermion ψ2 that transforms under a representation of
SUð2ÞL of dimension n, has a weak hypercharge of Yn,
and a charge Q0 under Uð1Þ0. The Lagrangian that deter-
mines the masses of the fermions is

Lm ¼ −
�X
a;b;c

d̂pnabcψ̄
a
1ðALPL þ ARPRÞψb

2H
c þ H:c:

�

− μ1ψ̄1ψ1 − μ2ψ̄2ψ2; ð2Þ

where a, b, and c are SUð2ÞL indices and are summed from 1
(corresponding to the highest weight state) to the size of the
corresponding multiplet. We will write explicitly SUð2ÞL
indices and sums when they are nontrivial. The SUð2ÞL
tensor d̂pnabc is uniquely fixed by gauge invariance and given
by the Clebsch-Gordan coefficient

d̂pnabc ¼ CJM
j1m1j2m2

¼ hj1j2m1m2jJMi; ð3Þ

where

J ¼ p− 1

2
; j1 ¼

n− 1

2
; j2 ¼

1

2
;

M ¼ pþ 1− 2a
2

; m1 ¼
nþ 1− 2b

2
; m2 ¼

3− 2c
2

:

ð4Þ

We will assume throughout this paper that, as is most
commonly the case, the phase convention of the Clebsch-
Gordan coefficients is chosen such that they are always real.
Wewill further assume that the Clebsch-Gordan coefficients
that correspond to nonphysical spin combinations are
zero. These two assumptions will lighten the notation.

The parameters AL and AR can be complex, and it is easy
to verify that there is a complex phase that cannot generally
be reabsorbed via field redefinition. Such a physical complex
phase will lead to CP-violating interactions. Once the Higgs
field obtains a vacuum expectation value (VEV), the
Lagrangian Lm will contain the mass terms

Lm ⊃ −
�X

a;b

ALvffiffiffi
2

p d̂pnab2ψ̄
a
1PLψ

b
2 þ

X
a;b

A�
Rvffiffiffi
2

p d̂pnba2ψ̄
a
2PLψ

b
1

þ μ1ψ̄1PLψ1 þ μ2ψ̄2PLψ2 þ H:c:

�
; ð5Þ

where v ≈ 246 GeV is the VEVof the Higgs field. Introduce
the convenient notation

ψ̂ ¼
�
ψ1

ψ2

�
ð6Þ

and

dpnab ¼
�
d̂pnaðb−pÞ2; if a ∈ ½1; p� and b ∈ ½pþ 1;pþ n�;
0; otherwise:

ð7Þ

The mass Lagrangian can be written more succinctly as

Lm ⊃ −
X
a;b

Mab
¯̂ψaPLψ̂

b þ H:c:; ð8Þ

where the mass matrix is

M ¼
�
μ11p×p 0p×n

0n×p μ21n×n

�
þ ALvffiffiffi

2
p dpn þ A�

Rvffiffiffi
2

p dpnT: ð9Þ

Themass matrix can then be diagonalized by introducing the
fields ψ̃a via

PLψ̂ ¼ RLPLψ̃ ; PRψ̂ ¼ RRPRψ̃ ; ð10Þ

whereRL andRR are unitary matrices that diagonalizeM†M
and MM†, respectively. Of course, these matrices only mix
particles of identical electric charges and all entries that
correspond to mixing of particles of different charges are
zero. The fields ψ̃a are the mass eigenstates of massma, and
there are pþ n of them.
Finally, the interactions of the Higgs boson with the mass

eigenstates ψ̃a are controlled by the terms

Lm ⊃ −
X
a;b

Ωabh ¯̃ψaPLψ̃
b þ H:c:; ð11Þ
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where Ω is generally neither Hermitian nor diagonal and
given by

Ω ¼ ALffiffiffi
2

p R†
Rd

pnRL þ A�
Rffiffiffi
2

p R†
Rd

pnTRL: ð12Þ

B. Gauge interactions

We now discuss all relevant gauge interactions of the
mass eigenstates ψ̃a. The interactions of the A=A0 with ψ̃a

are controlled by

Lg ⊃ −eAμ
¯̃ψγμQ̃ ψ̃ −Q0e0A0

μ
¯̃ψγμψ̃ ; ð13Þ

where e0 is the gauge coupling constant of Uð1Þ0 and Q̃ is
the diagonal charge matrix

Q̃ ¼ R†
LQ̂RL ¼ R†

RQ̂RR; ð14Þ

as QED is a vectorlike interaction, where

Q̂ ¼
�
Yp þ Tp

3 0p×n

0n×p Yn þ Tn
3

�
; ð15Þ

with ðTp
3 Þab ¼ ðpþ 1 − 2aÞδab=2 and similarly for Tn

3.
In practice, Q̃ is identical to Q̂ except for a potential
reordering of the diagonal elements.
The interactions between the Z boson and ψ̃a is con-

trolled by the terms

Lg ⊃ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
Zμ

¯̃ψγμðBLPL þ BRPRÞψ̃ ; ð16Þ

where BL and BR are, in general, nondiagonal but
Hermitian and given by

BL ¼ R†
L

 
−s2WYp þ c2WT

p
3 0p×n

0n×p −s2WYn þ c2WT
n
3

!
RL;

BR ¼ R†
R

 
−s2WYp þ c2WT

p
3 0p×n

0n×p −s2WYn þ c2WT
n
3

!
RR; ð17Þ

with g (g0) denoting the SUð2ÞL [Uð1ÞY] gauge coupling
constant and sW (cW) the sine (cosine) of the weak angle.
The interactions between the W boson and ψ̃a is

controlled by the terms

Lg ⊃ −
gffiffiffi
2

p ¯̃ψγμðÂLPLWþ
μ þ ÂRPRWþ

μ Þψ̃ þ H:c:; ð18Þ

where

ÂL ¼R†
L

�
Tp
þ 0p×n

0n×p Tnþ

�
RL; ÂR¼R†

R

�
Tp
þ 0p×n

0n×p Tnþ

�
RR;

ð19Þ

with ðTp
þÞab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðp − aÞp

δa;b−1 and similarly for Tnþ.

C. Relevant Higgs decays

The interactions of the mediators ψ̃a lead to contribu-
tions to the amplitude of the Higgs decay to AA0, but also to
those of the experimentally constrained decays to AA and
A0A0. The relevant diagrams are shown in Fig. 1(a).
Irrespective of the mediators, gauge invariance forces the
amplitudes to take the forms

Mh→AA ¼ Sh→AAðp1 · p2gμν − p1μp2νÞϵνp1
ϵμp2

þ iS̃h→AAϵμναβpα
1p

β
2ϵ

ν
p1
ϵμp2

;

Mh→AA0 ¼ Sh→AA0 ðp1 · p2gμν − p1μp2νÞϵνp1
ϵμp2

þ iS̃h→AA0
ϵμναβpα

1p
β
2ϵ

ν
p1
ϵμp2

;

Mh→A0A0 ¼ Sh→A0A0 ðp1 · p2gμν − p1μp2νÞϵνp1
ϵμp2

þ iS̃h→A0A0
ϵμναβpα

1p
β
2ϵ

ν
p1
ϵμp2

; ð20Þ

FIG. 1. (a) Higgs decay to two A=A0. (b) Higgs decay to a Z
boson and A=A0. Diagrams with the flow of the mediators
inverted also exist.
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where p1 and p2 are the momenta of the two gauge bosons.
The S coefficients are CP conserving, while the S̃ coef-
ficients are CP violating. For the fermion mediators, the
coefficients are given at one loop by

Sh→AA ¼ e2
X
a

ReðΩaaÞQ̃2
aaSa þ Sh→AA

SM ;

Sh→AA0 ¼ ee0
X
a

ReðΩaaÞQ̃aaQ0Sa;

Sh→A0A0 ¼ e02
X
a

ReðΩaaÞQ02Sa;

S̃h→AA ¼ e2
X
a

ImðΩaaÞQ̃2
aaS̃a þ S̃h→AA

SM ;

S̃h→AA0 ¼ ee0
X
a

ImðΩaaÞQ̃aaQ0S̃a;

S̃h→A0A0 ¼ e02
X
a

ImðΩaaÞQ02S̃a; ð21Þ

where Sh→AA
SM ≈ 3.3 × 10−5 and S̃h→AA

SM ≈ 0 GeV−1 are the
SM contributions to their respective coefficients and

Sa ¼
−ma

2π2m2
h

½2þ ð4m2
a −m2

hÞC0ð0; 0; m2
h;ma;ma;maÞ�;

S̃a ¼ −i
ma

2π2
C0ð0; 0; m2

h;ma;ma;maÞ; ð22Þ

with C0ðs1; s12; s2;m0; m1; m2Þ being the scalar three-point
Passarino-Veltman function [26].2 The decay widths are
then given by

Γh→AA ¼ jSh→AAj2 þ jS̃h→AAj2
64π

m3
h;

Γh→AA0 ¼ jSh→AA0 j2 þ jS̃h→AA0 j2
32π

m3
h;

Γh→A0A0 ¼ jSh→A0A0 j2 þ jS̃h→A0A0 j2
64π

m3
h; ð23Þ

where a symmetry factor of 1=2 has been included for the
AA and A0A0 final states. The decay of the Higgs boson to a
Z boson and either A or A0 is shown in Fig. 1(b) and has an
amplitude similar in form to Eq. (21), albeit with much
more complicated coefficients Sh→ZA, S̃h→ZA, Sh→ZA0

, and
S̃h→ZA0

due to the possibility of two different mediators
running in the loop.
There are several crucial results of this section that need

to be discussed. First, the presence of the Levi-Civita tensor
in the amplitudes is due to the γ5 Dirac matrix in the Higgs
to two mediators vertex. There will be no such term for the
scalar cases.

Second, the amplitudes of Eq. (20) are all highly
correlated. Because of this, a large BRðh → AA0Þ will
generally lead to either a large branching ratio of the
Higgs boson to invisible particles, a large modification of
the coupling of the Higgs to photons, or both. The Higgs
signal strengths will therefore impose strong constraints
on BRðh → AA0Þ.
Third, the decay width into two photons will, in general,

contain terms that come from the interference between the
SM amplitudes and the mediator amplitudes. When present,
these cross terms typically dominate the modifications of the
decay width. The presence of cross terms could, in principle,
be avoided in two ways. The first way would be for the
mediators to only provide a purely imaginary contribution to
Sh→AA. Since the SM contribution to Sh→AA is almost purely
real, therewould be essentially no interference.However, this
turns out to be impossible for the fermionmediators. As seen
in Eq. (21), all constants appearing in the Sh→AA are real. In
addition, the kinematic function Sa must be purely real, as
bounds from the Large Electron-Positron collider (LEP)
prevent charged mediators from being sufficiently light to be
able to “cut” the diagram [28,29]. The second way to avoid
interference terms would be for the mediators to only
contribute to S̃h→AA. This can indeed be done for fermion
mediators and the signal strength constraints can therefore
mostly be evaded.However, a largeBRðh → AA0Þwill in this
case lead to a large EDM for the electron. The limits on the
EDMwill force the complex phase to be small andwill close
this loophole.
Fourth, it is possible at this point to perform a naive

estimate of the upper limit on BRðh → AA0Þ allowed by the
Higgs signal strengths. A sufficiently large BRðh → AA0Þ
will imply large Yukawa couplings. This will generally split
the masses of the different ψ̃a and lead to a single mediator
dominating the amplitude. Assume as justified above that
ImðΩiiÞ ¼ ImðSaÞ ¼ 0. Call ΔBRðh → AAÞ the deviation
of BRðh → AAÞ from its SM value and assume that it is
small. Then, the following approximate relation holds:

BRðh → AA0Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BRðh → A0A0ÞBRðh → AAÞ

p
×

����ΔBRðh → AAÞ
BRðh → AAÞ

����: ð24Þ

The branching ratio BRðh → AAÞ is about 0.23% and can at
most deviate by Oð25%Þ from this value. The branching
ratio of the Higgs to invisible particles BRðh → A0A0Þ is at
most Oð10%Þ. This means that BRðh → AA0Þ is at most
Oð0.4%Þ. We will see that this approximation holds well,
though other constraints will often force BRðh → AA0Þ to be
even smaller. Of course, Eq. (24) assumes that the amplitude
is dominated by a single mediator, which may not be a good
approximation in more complicated models. Deviations
will be observed when multiple mediators contribute

2All loop calculations in this paper are performed with the help
of Package-X [27].
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comparably to BRðh → AA0Þ, but the limits will remain of
the same order of magnitude barring large fine-tuning or
elaborate model building.

D. Higgs signal strengths

The constraints associated with the Higgs signal
strengths are taken into account by using the κ formalism
[30]. Assume a production mechanism i with cross section
σi or a decay process i with width Γi. The parameter κi is
defined such that

κ2i ¼
σi
σSMi

or κ2i ¼
Γi

ΓSM
i

; ð25Þ

where σSMi and ΓSM
i are the corresponding SM quantities.

The only two Higgs couplings that are affected at leading
order are those associated with AA and AZ. The corre-
sponding κ’s are

κ2AA ¼ jSh→AAj2 þ jS̃h→AAj2
jSh→AA

SM j2 þ jS̃h→AA
SM j2 ;

κ2ZA ¼ jSh→ZAj2 þ jS̃h→ZAj2
jSh→ZA

SM j2 þ jS̃h→ZA
SM j2 : ð26Þ

The invisible (A0A0) and semi-invisible (A0A andA0Z) decays
of the Higgs boson are taken into account by properly
rescaling the signal strengths. The resulting global reduction
of the Higgs signal strengths renders constraints from
searches for the Higgs decay to invisible particles mostly
superfluous andwe do not impose them [31]. Constraints are
then applied by using the Higgs signal strength measure-
ments of Ref. [32] by CMS, which uses 137 fb−1 of
integrated luminosity at 13 TeV center-of-mass energy,
and Ref. [33] by ATLAS, which uses 139 fb−1 of integrated
luminosity at also 13 TeV. These studies conveniently
provide all the information necessary (measurements, uncer-
tainties, and correlations) to produce our own χ2 fit. The two
searches are assumed to be uncorrelated. As we will be
interested in two-dimensional scans, a point of parameter
spacewill be considered excluded at 95%CL if its χ2 satisfies
χ2 − χ2min > 5.99, where χ2min is the best fit of the model.3

E. Electron EDM

As explained in Sec. III C, most constraints from the
Higgs signal strengths can be evaded by having almost
purely imaginary Ωaa couplings. This is, however, constrained by the fact that they would contribute to the

EDM of the electron through Barr-Zee diagrams, which can
easily be computed by adapting results from the literature.
First, the Barr-Zee diagram involving the photon and the
Higgs boson of Fig. 2(a) can be computed by adapting the
results of Ref. [34]. This diagram and its variations lead to a
contribution of

FIG. 2. Different examples of diagrams contributing to the
EDM of the electron. (a) hA exchange, (b) hZ exchange, and
(c) WW exchange.

3Technically speaking, it is possible for the mediator contri-
butions to Sh→AA to be about −2Sh→AA

SM . This would mostly avoid
the bounds from the Higgs signal strengths and could, in
principle, lead to a larger BRðh → AA0Þ. It, however, requires
very exotic circumstances and a very large amount of fine-tuning.
As such, we will not consider such cases.
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dAhe
e

¼ −
X
a

αQ̃2
aamame

16π3m2
hv

ImðΩaaÞ

×
Z

1

0

dx
1

xð1 − xÞ j
�
0;

m2
a

xð1 − xÞm2
h

�
; ð27Þ

where

jðr; sÞ ¼ 1

r − s

�
r ln r
r − 1

−
s ln s
s − 1

�
: ð28Þ

Second, the contribution from the diagrams involving a
Z boson and a Higgs boson like that of Fig. 2(b) can also be
computed using Ref. [34] and lead to

dZhe
e

¼
X
a;b

Q̃bb

32π4m2
h

gVeegSeeðmaC1
abf1ðma;mbÞ

þmbC2
abf2ðma;mbÞÞ; ð29Þ

where

C1
ab ¼ ReðigSbagAab − gPbag

V
abÞ;

C2
ab ¼ −ReðigSbagAab þ gPbag

V
abÞ; ð30Þ

with

gSee ¼ −
me

v
; gVee ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
2

�
−
1

2
þ 2s2W

�
;

gSab ¼ −
ðΩba þΩ�

abÞ
2

; gPab ¼ −i
ðΩba −Ω�

abÞ
2

;

gVab ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
2

ðBRba þ BLbaÞ;

gAab ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
2

ðBRba − BLbaÞ; ð31Þ

and

f1ðma;mbÞ ¼
Z

1

0

dxj

�
m2

Z

m2
h

;
Δ̃ab

m2
h

�
;

f2ðma;mbÞ ¼
Z

1

0

dxj

�
m2

Z

m2
h

;
Δ̃ab

m2
h

�
1 − x
x

; ð32Þ

with

Δ̃ab ¼
xm2

a þ ð1 − xÞm2
b

xð1 − xÞ : ð33Þ

Third, the contribution from the diagrams involving two
W bosons like in Fig. 2(c) can be computed by adapting the
results of Ref. [35]. The only subtlety is that the fermions
can potentially flow in both directions in the fermion loop.

This was not the case in Ref. [35]. Thankfully, both
diagrams can easily be related and the sum of the two
diagrams is

dWW
e

e
¼ −

α2me

8π2s4Wm
2
W

X
a;b

mamb

m2
W

ImðÂLbaÂ
�
RbaÞ

× ½Q̃bbGðra; rb; 0Þ þ Q̃aaGðrb; ra; 0Þ�; ð34Þ

where ra ¼ m2
a=m2

W , rb ¼ m2
b=m

2
W , and

Gðra; rb;rcÞ ¼
Z

1

0

dγ
γ

Z
1

0

dyy

�ðR−3KabÞRþ 2ðKabþRÞy
4RðKab −RÞ2

þKabðKab− 2yÞ
2ðKab −RÞ3 ln

Kab

R

�
; ð35Þ

with

R ¼ yþ ð1 − yÞrc; Kab ¼
ra

1 − γ
þ rb

γ
: ð36Þ

The total EDM is then the sum of Eqs. (27), (29), and (34).
In practice, the contribution from Eq. (27) generally
overwhelmingly dominates when BRðh → AA0Þ is close
to its maximally allowed value. In this case, the diagram of
Fig. 2(b) is suppressed by the fact that gVee is small due
to an accidental partial cancellation and the diagram of
Fig. 2(c) is suppressed because the Yukawa couplings AL
and AR are simply much larger than g. The upper limit on
the electron EDM that we use is jdej < 4.1 × 10−30 e cm
at 90% CL [36].4

Finally, when BRðh → AA0Þ is close to the upper limit
that we find, the electron EDM generally constrains AL and
AR to have a phase difference very close to 0 (or π). This
makes it essentially redundant to consider any other CP-
violating observable.

F. Oblique parameters

A sizable BRðh → AA0Þ requires some of the Yukawa
couplings AL and AR to be large. These couplings, however,
have the side effect of causing mixing between fields that
are part of different representations of the electroweak
gauge groups. This means that a large BRðh → AA0Þ is at
risk of generating large contributions to the oblique
parameters [38]. The parameters S and T are computed
by using the general results for fermions of Refs. [39–44].
They are given by

4This limit is updated with respect to Ref. [24] which used
Ref. [37], as the result of Ref. [36] was not available yet. The
impact of this new result on our limits is negligible.
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S ¼ 1

2π

X
a;b

fðjÂLabj2 þ jÂRabj2Þψþðya; ybÞ þ 2ReðÂLabÂ
�
RabÞψ−ðya; ybÞ

−
1

2
½ðjXabj2 þ jXRabj2Þχþðya; ybÞ þ 2ReðXLabX�

RabÞχ−ðya; ybÞ�g;

T ¼ 1

16πs2Wc
2
W

X
a;b

fðjÂLabj2 þ jÂRabj2Þθþðya; ybÞ þ 2ReðÂLabÂ
�
RabÞθ−ðya; ybÞ

−
1

2
½ðjXLabj2 þ jXRabj2Þθþðya; ybÞ þ 2ReðXLabX�

RabÞθ−ðya; ybÞ�g; ð37Þ

where ya ¼ m2
a=m2

Z, XL=R ¼ −2BL=R þ 2Q̃s2W , and

ψþðy1; y2Þ ¼
1

3
−
1

9
ln
y1
y2

;

ψ−ðy1; y2Þ ¼ −
y1 þ y2
6
ffiffiffiffiffiffiffiffiffi
y1y2

p ;

χþðy1; y2Þ ¼
5ðy21 þ y22Þ − 22y1y2

9ðy1 − y2Þ2
þ 3y1y2ðy1 þ y2Þ − y31 − y32

3ðy1 − y2Þ3
ln
y1
y2

;

χ−ðy1; y2Þ ¼ −
ffiffiffiffiffiffiffiffiffi
y1y2

p �
y1 þ y2
6y1y2

−
y1 þ y2

ðy1 − y2Þ2
þ 2y1y2
ðy1 − y2Þ3

ln
y1
y2

�
;

θþðy1; y2Þ ¼ y1 þ y2 −
2y1y2
y1 − y2

ln
y1
y2

;

θ−ðy1; y2Þ ¼ 2
ffiffiffiffiffiffiffiffiffi
y1y2

p �
y1 þ y2
y1 − y2

ln
y1
y2

− 2

�
: ð38Þ

We use the measurements of the oblique parameters of Ref. [45] given by

S ¼ 0.00� 0.07; T ¼ 0.05� 0.06; ð39Þ

with a correlation of 0.92. We keep points whose χ2 differ by less than 5.99 from the best fit, which corresponds to 95% CL
limits.

G. Unitarity

As a final constraint, the parameters AR and AL are bounded by unitarity. Consider a given scattering between mediators
via Higgs exchange and its amplitude M. The latter can be expanded in partial waves as

M ¼ 16π
X
l

ð2lþ 1ÞalPlðcos θÞ; ð40Þ

where Plðcos θÞ are the Legendre polynomials.
In the high energy limit, we can work directly with ψ1 and ψ2. It is then simply a question of computing the a0 factor of

every possible scattering ψ̄a
1ψ

b
2 → ψ̄c

1ψ
d
2 for every possible helicity combination. Consider the basis of ψ̄a

1ψ
b
2 pairs given by

ψ̄1
1ψ

1
2; ψ̄

1
1ψ

2
2;…; ψ̄1

1ψ
n
2; ψ̄

2
1ψ

1
2; ψ̄

2
1ψ

2
2;…; ψ̄2

1ψ
n
2;…; ψ̄p

1ψ
1
2; ψ̄

p
1ψ

2
2;…; ψ̄p

1ψ
n
2: ð41Þ

Then the matrix of a0 for the scattering ψ̄a
1ψ

b
2 → ψ̄c

1ψ
d
2 in the basis of Eq. (41) is
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amat
0 ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

F11
11 F12

11 … F1n
11 F21

11 F22
11 … F2n

11 … Fp1
11 Fp2

11 … Fpn
11

F11
12 F12

12 … F1n
12 F21

12 F22
12 … F2n

12 … Fp1
12 Fp2

12 … Fpn
12

… … … … … … … … … … … … …

F11
1n F12

1n … F1n
1n F21

1n F22
1n … F2n

1n … Fp1
1n Fp2

1n … Fpn
1n

F11
21 F12

21 … F1n
21 F21

21 F22
21 … F2n

21 … Fp1
21 Fp2

21 … Fpn
21

F11
22 F12

22 … F1n
22 F21

22 F22
22 … F2n

22 … Fp1
22 Fp2

22 … Fpn
22

… … … … … … … … … … … … …

F11
2n F12

2n … F1n
2n F21

2n F22
2n … F2n

2n … Fp1
2n Fp2

2n … Fpn
2n

… … … … … … … … … … … … …

F11
p1 F12

p1 … F1n
p1 F21

p1 F22
p1 … F2n

p1 … Fp1
p1 Fp2

p1 … Fpn
p1

F11
p2 F12

p2 … F1n
p2 F21

p2 F22
p2 … F2n

p2 … Fp1
p2 Fp2

p2 … Fpn
p2

… … … … … … … … … … … … …

F11
pn F12

pn … F1n
pn F21

pn F22
pn … F2n

pn … Fp1
pn Fp2

pn … Fpn
pn

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ð42Þ

where each row corresponds to the same incoming ψ̄a
1ψ

b
2

pair, each column to the same outgoing ψ̄a
1ψ

b
2 pair, and F

cd
ab

is a block given by

Fcd
ab ¼

dpnab2d
pn
cd2

32π

�
−jARj2 ARA�

L

ALA�
R −jALj2

�
ð43Þ

and corresponds to a0 for different combinations of helicity
in the basis of ð↑↑;↓↓Þ. Call aeig0 the set of eigenvalues of
amat
0 . Unitarity then imposes

maxðjReðaeig0 ÞjÞ < 1

2
: ð44Þ

This can be verified to reduce to the surprisingly simple
requirement that

jARj2 þ jALj2 <
32π

p
: ð45Þ

H. Results

Having explained how the different constraints are
imposed, we now present the limits on BRðh → AA0Þ for
the fermion case. The parameter space is sampled using a
Markov chain with the Metropolis-Hastings algorithm. As
the results are only dependent on Q0 and e0 via the product
Q0e0, the limits on BRðh → AA0Þ are independent of the
choice of Q0 and we require jQ0e0j < ffiffiffiffiffiffi

4π
p

. To maximize
the number of points near the limits and thus reduce the
necessary number of simulations, a prior proportional to
BRðh → AA0Þ2 is assumed. We have verified that the

results are independent of the sampling algorithm (and
prior), assuming it covers all of the relevant parameter
space and sufficient statistics.
The limits on BRðh → AA0Þ are shown in Fig. 3 for

different p, n, and Yn as a function of the mass of the
lightest electrically charged mediator of mass mmin

c . As can
be seen, there is an upper bound of about 0.4% that is never
crossed. This limit comes from the Higgs signal strengths
and is consistent with the estimate of Sec. III C. For many
mediators, the limit on BRðh → AA0Þ suddenly starts to
drop from its maximal value above a certain threshold in
mmin

c . This is simply where the constraints from the oblique
parameters or unitarity become more powerful than those

FIG. 3. Upper bounds on BRðh → AA0Þ for different examples
of fermion mediators. The plot does not go below 100 GeV, as
LEP bounds prohibit such masses [28,29]. Taken and expanded
from Ref. [24].
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of the Higgs signal strengths. This is because increasing the
masses of the mediators requires larger couplings to
maintain a large BRðh → AA0Þ, which conflicts with these
constraints. Some mediators are also sufficiently con-
strained by other bounds that the lower mass plateau is
never reached. Obtaining a large BRðh → AA0Þ requires
jQ0e0j to be considerably larger than the jQ̃aaej of a
mediator ψ̃a. This is difficult for mediators with large
electric charges, as jQ0e0j has an upper limit, and is why
models with mediators of large electric charges are very
constrained. Without the constraints from the electron
EDM, the limits on BRðh → AA0Þ would be far less
stringent as interference terms with the SM contributions
could be avoided in the decay of the Higgs to two photons.
As explained in Sec. III C, the electron EDM forces the
complex phase to be close to 0 (or π), which imposes the
presence of interference terms.
An important point to mention is that the limits on

BRðh → AA0Þ depend on the mass of the mediators. In
theory, there should be a lower limit on the mass of the
charged mediators coming from collider searches. If this
mass were higher than the threshold in mmin

c , the bound on
BRðh → AA0Þ would be tightened. In principle, the medi-
ators could decay to exotic channels that have not been
probed yet. It is therefore technically impossible to deter-
mine a model-independent bound on their masses.
However, it would be very difficult for a charged particle
of less than a few hundred GeV not to have been observed
at the LHC by now. As such, obtaining a large BRðh →
AA0Þ requires a charged light particle that somehow would
have avoided detection.

IV. SCALAR MEDIATORS

We now proceed to analyze the four scalar cases of
Sec. II. With a few exceptions, the treatment is similar to
the fermion case up to minor technical details.

A. Field content, Lagrangian, and mass eigenstates

We begin by introducing in more detail the four scalar
models. To each model will correspond a series of masses
ma, a rotation matrix R, and a matrix of Higgs couplingsΩ.
The results of the subsequent sections will be expressed in
terms of these quantities.

1. Scalar case I

Consider a complex scalar ϕ1 that transforms under a
representation of SUð2ÞL of dimension p ¼ n� 1 and has
a weak hypercharge Yp ¼ Yn þ 1=2 and a charge under
Uð1Þ0 of Q0. Consider another complex scalar ϕ2 that
transforms under a representation of SUð2ÞL of dimension
n and has a weak hypercharge of Yn and a charge under
Uð1Þ0 ofQ0. The Lagrangian that controls the masses of the
scalars is

L1
m ¼ −

�X
a;b;c

μd̂pnabcϕ
a†
1 ϕb

2H
c þ H:c:

�
− μ21jϕ1j2 − μ22jϕ2j2:

ð46Þ

The SUð2ÞL tensor d̂pnabc is given by

d̂pnabc ¼ CJM
j1m1j2m2

; ð47Þ

where

J ¼ p− 1

2
; j1 ¼

n− 1

2
; j2 ¼

1

2
;

M ¼ pþ 1− 2a
2

; m1 ¼
nþ 1− 2b

2
; m2 ¼

3− 2c
2

:

ð48Þ

The parameter μ can be made real by a field redefinition.
Once the Higgs field obtains a VEV, the Lagrangian L1

m
will contain the mass terms

L1
m ¼ −

�X
a;b

μvffiffiffi
2

p d̂pnab2ϕ
a†
1 ϕb

2 þ H:c:

�
− μ21jϕ1j2 − μ22jϕ2j2:

ð49Þ

Let us introduce the notation

ϕ̂ ¼
�
ϕ1

ϕ2

�
ð50Þ

and

dpnab ¼
�
d̂pnaðb−pÞ2; if a ∈ ½1; p� and b ∈ ½pþ 1; nþp�;
0; otherwise:

ð51Þ

The mass Lagrangian can be written as

L1
m ⊃ −

X
a;b

M2
abϕ̂

a†ϕ̂b; ð52Þ

where the mass matrix is

M2 ¼
�
μ211p×p 0p×n

0n×p μ221n×n

�
þ μvffiffiffi

2
p dpn þ μvffiffiffi

2
p dpnT: ð53Þ

The mass matrix can be diagonalized by introducing

ϕ̂ ¼ Rϕ̃: ð54Þ

The fields ϕ̃a are the mass eigenstates, and there are pþ n
of them. Their interactions with the Higgs boson are then
described by
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L1
m ⊃ −

X
a;b

Ωabhϕ̃
a†ϕ̃b; ð55Þ

where Ω is a Hermitian matrix given by

Ω ¼ μffiffiffi
2

p R†dpnRþ μffiffiffi
2

p R†dpnTR: ð56Þ

2. Scalar case II

Consider a complex scalar ϕ that transforms under a
representation of SUð2ÞL of dimension n and has a weak
hypercharge Yn and a charge under Uð1Þ0 of Q0. The
Lagrangian that controls the masses of the scalars is

L2
m ¼ −

X
r∈fn−1;nþ1g

X
a;b;c;d

λrd̂nrabcdHa†Hbϕc†ϕd − μ2jϕj2:

ð57Þ

The SUð2ÞL tensor d̂nrabcd is given by

d̂nrabcd ¼
X
M

CJM
j1m1j2m2

CJM
j3m3j4m4

; ð58Þ

where M is summed over f−J;−J þ 1;−J þ 2;…;þJg
and

j1 ¼
1

2
; j2 ¼

n − 1

2
; j3 ¼

1

2
;

m1 ¼
3 − 2a

2
; m2 ¼

nþ 1 − 2c
2

; m3 ¼
3 − 2b

2
;

j4 ¼
n − 1

2
; J ¼ r − 1

2
;

m4 ¼
nþ 1 − 2d

2
: ð59Þ

There are generally two possible ways to contract the
SUð2ÞL indices, and each possible contraction is taken into
account by its own coefficient λr. The only exception to this
is when ϕ is a singlet, in which case only the r ¼ nþ 1

term leads to a nonzero d̂nrabcd tensor. The parameters λr are
always real. Once the Higgs obtains a VEV, the Lagrangian
L2
m will contain the mass terms

L2
m ⊃ −

X
r∈fn−1;nþ1g

X
c;d

λrv2

2
d̂nr22cdϕc†ϕd − μ2jϕj2: ð60Þ

With the notation

dnrab ¼ d̂nr22ab; ð61Þ

the mass Lagrangian can be written as

L2
m ⊃ −

X
a;b

M2
abϕ

a†ϕb; ð62Þ

where the mass matrix is

M2 ¼ μ2 þ
X

r∈fn−1;nþ1g

λrv2

2
dnr: ð63Þ

The mass matrix can be diagonalized by introducing

ϕ ¼ Rϕ̃: ð64Þ

The fields ϕ̃a are the mass eigenstates, and there are n of
them. Their interactions with the Higgs boson are then
described by

L2
m ⊃ −

X
a;b

Ωabhϕ̃
a†ϕ̃b; ð65Þ

where Ω is a real diagonal matrix given by

Ω ¼
X

r∈fn−1;nþ1g
λrvR†dnrR: ð66Þ

We note that the mixing matrix could simply be taken as the
identity in this case, as there are never multiple states with
the same electric charge. We keep R to maintain a uniform
notation and order the particles by mass.

3. Scalar case III

Consider a complex scalar ϕ1 that transforms under a
representation of SUð2ÞL of dimension p∈ fn−2;n;nþ2g
and has a weak hypercharge Yp ¼ Yn and a charge under
Uð1Þ0 of Q0. Consider another complex scalar ϕ2 that
transforms under a representation of SUð2ÞL of dimension
n and has aweak hyperchargeYn and a charge underUð1Þ0 of
Q0. The Lagrangian that controls the masses of the scalars is

L3
m ¼ −

�X
r∈R

X
a;b;c;d

λrd̂pnrabcdH
a†Hbϕc†

1 ϕd
2 þ H:c:

�

− μ21jϕ1j2 − μ22jϕ2j2; ð67Þ

where R ¼ fn − 1; nþ 1g ∩ fp − 1; pþ 1g. The SUð2ÞL
tensor d̂pnrabcd is given by

d̂pnrabcd ¼
X
M

CJM
j1m1j2m2

CJM
j3m3j4m4

; ð68Þ

where M is summed over f−J;−J þ 1;−J þ 2;…;þJg
and
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j1 ¼
1

2
; j2 ¼

p − 1

2
; j3 ¼

1

2
;

m1 ¼
3 − 2a

2
; m2 ¼

pþ 1 − 2c
2

; m3 ¼
3 − 2b

2
;

j4 ¼
n − 1

2
; J ¼ r − 1

2
;

m4 ¼
nþ 1 − 2d

2
: ð69Þ

If p ¼ n, there are two possible contractions of the SUð2ÞL
indices, the only exception being if ϕ1 and ϕ2 are both
singlets, in which case only the r ¼ pþ 1 term leads to a
nonzero d̂pnrabcd. When p and q differ by 2, only one term is
allowed. One λr can be made real by field redefinition.
Therefore, there will be a complex phase that cannot
generally be reabsorbed when p ¼ n, but not otherwise.
Once the Higgs field obtains a VEV, the Lagrangian L3

m will
contain the mass terms

L3
m ⊃ −

�X
r∈R

X
c;d

λrv2

2
d̂pnr22cdϕ

c†
1 ϕd

2 þ H:c:

�

− μ21jϕ1j2 − μ22jϕ2j2: ð70Þ

Introduce the notation

ϕ̂ ¼
�
ϕ1

ϕ2

�
ð71Þ

and

dpnrab ¼
�
d̂pnr
22aðb−pÞ; if a ∈ ½1; p� and b ∈ ½pþ 1; nþp�;

0; otherwise:

ð72Þ

The mass Lagrangian can be written as

L3
m ⊃ −

X
a;b

M2
abϕ̂

a†ϕ̂b; ð73Þ

where the mass matrix is

M2 ¼
�
μ211p×p 0p×n

0n×p μ221n×n

�
þ
X
r∈R

�
λrv2

2
dpnrþ λr�v2

2
dpnrT

�
:

ð74Þ

The mass matrix can be diagonalized by introducing

ϕ̂ ¼ Rϕ̃: ð75Þ

The fields ϕ̃a are themass eigenstates, and there arepþ n of
them. Their interactions with the Higgs boson are then
described by

L3
m ⊃ −

X
a;b

Ωabhϕ̃
a†ϕ̃b; ð76Þ

where Ω is a Hermitian matrix given by

Ω ¼
X
r∈R

½λrvR†dpnrRþ λr�vR†dpnrTR�: ð77Þ

4. Scalar case IV

Consider a complex scalar ϕ1 that transforms under a
representation of SUð2ÞL of dimension p∈fn−2;n;nþ2g
and has a weak hypercharge Yp ¼ Yn þ 1 and a charge
underUð1Þ0 ofQ0. Consider another complex scalar ϕ2 that
transforms under a representation of SUð2ÞL of dimension
n and has a weak hypercharge Yn and a charge under Uð1Þ0
of Q0. Assume that n and p are not both 1. The Lagrangian
that controls the masses of the scalars is

L4
m ¼ −½λd̂pnabcdHaHbϕc†

1 ϕd
2 þ H:c:� − μ21jϕ1j2 − μ22jϕ2j2:

ð78Þ

The SUð2ÞL tensor d̂pnabcd is given by

d̂pnabcd ¼
X
M1

CJ1M1

j1m1j2m2
CJ2M2

J1M1j3m3
; ð79Þ

where M1 is summed over f−1; 0; 1g and

j1 ¼
1

2
; j2 ¼

1

2
; j3 ¼

n − 1

2
;

m1 ¼
3 − 2a

2
; m2 ¼

3 − 2b
2

; m3 ¼
nþ 1 − 2d

2
;

J1 ¼ 1; J2 ¼
p − 1

2
;

M2 ¼
pþ 1 − 2c

2
: ð80Þ

There is only a single possible contraction, as the two Higgs
doublets can only be combined in a single nontrivial way.
This does not occur for cases II and III because they contain
both the Higgs doublet and its conjugate. Because there is
only one coefficient, λ can always be made real by a field
redefinition. Once the Higgs field obtains a VEV, the
Lagrangian L4

m will contain the mass terms

L4
m ⊃ −

�X
c;d

λv2

2
d̂pn22cdϕ

c†
1 ϕd

2 þ H:c:

�
− μ21jϕ1j2 − μ22jϕ2j2:

ð81Þ

Introduce the notation

ϕ̂ ¼
�
ϕ1

ϕ2

�
ð82Þ
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and

dpnab ¼
�
d̂pn
22aðb−pÞ; if a ∈ ½1; p� and b ∈ ½pþ 1; nþp�;

0; otherwise:

ð83Þ

The mass Lagrangian can be written as

L4
m ⊃ −

X
a;b

M2
abϕ̂

a†ϕ̂b; ð84Þ

where the mass matrix is

M2 ¼
�
μ211p×p 0p×n

0n×p μ221n×n

�
þ λv2

2
½dpn þ dpnT �: ð85Þ

The mass matrix can be diagonalized by introducing

ϕ̂ ¼ Rϕ̃: ð86Þ

The fields ϕ̃a are the mass eigenstates, and there are pþ n
of them. Their interactions with the Higgs boson are then
described by

L4
m ⊃ −

X
a;b

Ωabhϕ̃
a†ϕ̃b; ð87Þ

where Ω is a Hermitian matrix given by

Ω ¼ λvR†dpnRþ λvR†dpnTR: ð88Þ

B. Gauge interactions

The interactions of A=A0 with ϕ̃a are controlled by

Lg ⊃ ðieAμ∂
μϕ̃†Q̃ ϕ̃þiQ0e0A0

μ∂
μϕ̃†ϕ̃þ H:c:Þ

þ ðe2AμAμϕ̃†Q̃2ϕ̃þQ02e02A0
μA0μϕ̃†ϕ̃

þ 2Q0e0eA0
μAμϕ̃†Q̃ ϕ̃Þ; ð89Þ

where Q̃ is a diagonal charge matrix given by

Q̃ ¼ R†Q̂R; ð90Þ

and

cases I; III; IV∶ Q̂ ¼
�
Yp þ Tp

3 0p×n

0n×p Yn þ Tn
3

�
;

case II∶ Q̂ ¼ Yn þ Tn
3; ð91Þ

with ðTp
3 Þab ¼ ðpþ 1 − 2aÞδab=2 and similarly for Tn

3.
The interactions between the Z boson and ϕ̃a are

controlled by the terms

Lg ⊃
�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
Zμ∂

μϕ̃†Bϕ̃þ H:c:

�
þ ðg2 þ g02ÞZμZμϕ̃†B2ϕ̃; ð92Þ

where B is Hermitian but, in general, nondiagonal and
given by

cases I; III; IV∶

B ¼ R†
�−s2WYp þ c2WT

p
3 0p×n

0n×p −s2WYn þ c2WT
n
3

�
R;

case II∶

B ¼ R†ð−s2WYn þ c2WT
n
3ÞR: ð93Þ

The interaction among ϕ̃a, a A=A0 boson, and a Z boson
is controlled by the terms

Lg ⊃ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
AμZμϕ̃†Q̃Bϕ̃

þ 2Q0e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
A0
μZμϕ̃†Bϕ̃; ð94Þ

where we note that ½Q̃; B� ¼ 0.
The interactions between the W boson and ϕ̃a is

controlled by the terms

Lg ⊃
igffiffiffi
2

p Wþ
μ ð∂μϕ̃†Â ϕ̃−ϕ̃†Â∂μϕ̃Þ þ H:c:

þ g2

2
ðWþ

μ Wþμϕ̃†Â2ϕ̃þWþ
μ W−μϕ̃†ÂÂ†ϕ̃

þWþ
μ W−μϕ̃†Â†Â ϕ̃þW−

μW−μϕ̃†Â†2ϕ̃Þ; ð95Þ

where

cases I; III; IV∶ Â ¼ R†
�

Tp
þ 0p×n

0n×p Tnþ

�
R;

case II∶ Â ¼ R†TnþR; ð96Þ

with ðTp
þÞab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðp − aÞp

δa;b−1 and similarly for Tnþ.

C. Relevant Higgs decays

The mediators ϕ̃a lead to an amplitude for the Higgs
decaying to AA, AA0, and A0A0. The relevant diagrams are
shown in Figs. 4(a) and 4(b). Labeling the momenta of the
two gauge bosons as p1 and p2, the amplitudes once again
take the form
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Mh→AA ¼ Sh→AAðp1 · p2gμν − p1μp2νÞϵνp1
ϵμp2

þ iS̃h→AAϵμναβpα
1p

β
2ϵ

ν
p1
ϵμp2

;

Mh→AA0 ¼ Sh→AA0 ðp1 · p2gμν − p1μp2νÞϵνp1
ϵμp2

þ iS̃h→AA0
ϵμναβpα

1p
β
2ϵ

ν
p1
ϵμp2

;

Mh→A0A0 ¼ Sh→A0A0 ðp1 · p2gμν − p1μp2νÞϵνp1
ϵμp2

þ iS̃h→A0A0
ϵμναβpα

1p
β
2ϵ

ν
p1
ϵμp2

; ð97Þ

with the coefficients now given at one loop by

Sh→AA ¼ e2
X
a

ΩaaQ̃
2
aaSa þ Sh→AA

SM ;

Sh→AA0 ¼ ee0
X
a

ΩaaQ̃aaQ0Sa;

Sh→A0A0 ¼ e02
X
a

ΩaaQ02Sa;

S̃h→AA ¼ S̃h→AA
SM ; S̃h→AA0 ¼ 0; S̃h→A0A0 ¼ 0; ð98Þ

where Sh→AA
SM and S̃h→AA

SM are the SM contributions to their
respective coefficients and

Sa ¼
1

4π2m2
h

½1þ 2m2
aC0ð0; 0; m2

h;ma;ma;maÞ�: ð99Þ

The decay of the Higgs boson to a Z boson and either
A or A0 is shown in Figs. 4(c) and 4(d) and has a similar

form to Eq. (97), albeit with far more complicated
coefficients.
We reiterate that none of thesemodels contribute to S̃h→AA.

In addition, the contributions to Sh→AA are all forced to be
real. It therefore means that these models will unavoidably
lead to interference terms with the SM contributions. As
such, theywill not be able to circumvent the constraints of the
Higgs signal strengths like the fermion mediators potentially
could have. As such, wewill not study the electron EDM for
the scalar models.

D. Higgs signal strengths

The constraints associated with the Higgs signal strengths
are applied in the same way as for the fermion case.

E. Oblique parameters

For the scalar models, we have performed the compu-
tation of the oblique parameters and obtained

S ¼ 1

2π

X
a;b

½jBabj2 − ðc2W − s2WÞBabQ̃ab − c2Ws
2
WQ̃

2
ab�F1ðya; ybÞ;

T ¼ 1

16πc2Ws
2
W

�X
a;b

jÂabj2F2ðya; ybÞ −
X
a

½ÂÂ† þ Â†Â�aa F3ðyaÞ − 2
X
a;b

jBabj2F2ðya; ybÞ þ 4
X
a

½B2�aa F3ðyaÞ
�
; ð100Þ

where ya ¼ m2
a=m2

Z and

F1ðy1; y2Þ ¼ −
5y21 − 22y1y2 þ 5y22

9ðy1 − y2Þ2
þ 2ðy21ðy1 − 3y2Þ ln y1 − y22ðy2 − 3y1Þ ln y2Þ

3ðy1 − y2Þ3
;

F2ðy1; y2Þ ¼ 3ðy1 þ y2Þ −
2ðy21 ln y1 − y22 ln y2Þ

y1 − y2
;

F3ðy1Þ ¼ 2y1 − 2y1 ln y1: ð101Þ
The constraints are applied as for the fermion mediators.

F. Unitarity

The unitarity constraints coming from scattering two Higgs bosons to two ϕ’s can be obtained for the fermion mediators,
albeit they are much easier to account for because of the absence of polarization for scalars. Including in a0 a factor of 1=

ffiffiffi
2

p
for identical incoming particles, the constraints are simply given by

case II∶maxðjReðaeig0 ÞjÞ ¼ 1

16
ffiffiffi
2

p
π

�X
i;j

����Xr
λrd̂nr22ij

����2
�1

2

<
1

2
;

case III∶maxðjReðaeig0 ÞjÞ ¼ 1

16
ffiffiffi
2

p
π

�X
i;j

����Xr
λrd̂pnr22ij

����2
�1

2

<
1

2
;

case IV∶maxðjReðaeig0 ÞjÞ ¼ jλj
16

ffiffiffi
2

p
π

�X
i;j
jd̂pn22ijj2

�1
2

<
1

2
: ð102Þ
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Note that, for case IV, since there is a single coefficient, the
constraint can be simplified to

jλj < 8π

ffiffiffiffi
6

p

s
: ð103Þ

No unitarity bound can be generally applied on μ for case I.
Furthermore, a bound can be set on Q0e0 by adapting the
results of Ref. [46]. This gives

jQ0e0j <
ffiffiffiffiffiffi
4π

p

q1=4
; ð104Þ

where q ¼ nþ p for cases I, III, and IV and q ¼ n for
case II.

G. Results

Having introduced the relevant constraints, we now
discuss the limits on BRðh → AA0Þ for the scalar models.
The sampling is performed as for the fermion mediators.
Note that it is sometimes possible for a mediator to obtain a
negative mass square. This would result in the breaking of
Uð1Þ0 and potentially the electromagnetic group. Such
points are discarded because they do not correspond to
the desired massless dark photon scenario and are excluded
if they break electromagnetism.
The plots in Fig. 5 show the upper bounds on BRðh →

AA0Þ for models I–IV for different combinations of their
gauge quantum numbers. Several comments are in order.

(i) As can be seen, BRðh → AA0Þ again often exhibits a
plateau in the low mass regime. In the cases
considered, it is still at best 0.4%. However, the
plateau is sometimes lower because of multiple
particles having similar masses. Since all mediators
have identical Uð1Þ0 charges but not all of them are
always electrically charged, this tends to lead to a
larger Higgs branching ratio to invisible particles for
a given BRðh → AA0Þ.

(ii) Some models are subject to far stronger constraints
because of the oblique parameters or unitarity.

(iii) Case I is similar to the fermion mediators and the
limits are qualitatively similar.

(iv) Case II can potentially avoid contributions to the
oblique parameters by an appropriate choice of
couplings. In practice, this is by only including
δabδcdHa†Hbϕc†ϕd. This scenario, however, leads to
particles of similar masses that all contribute to the
invisible decay of the Higgs boson. It is easy to
verify that degenerate masses would have

BRðh → AA0Þ

≈
1

1þ n2−1
12Y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BRðh → A0A0ÞBRðh → AAÞ

p

×

����ΔBRðh → AAÞ
BRðh → AAÞ

����; ð105Þ

which is ≲0.4%. However, Eq. (105) results in a
limit of 0 when Y ¼ 0. In this case, obtaining a large
BRðh → AA0Þ requires breaking the mass degen-
eracy, which reintroduces the limits from the oblique

FIG. 4. (a),(b) Higgs decay to two A=A0. (c),(d) Higgs decay to
a Z boson and A=A0. Diagrams with the mediator flow inverted
also exist for (a) and (c).
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parameters. For a general Y, it is not trivial whether
degenerate or nondegenerate masses lead to a
larger BRðh → AA0Þ.

(v) Case III is mostly similar to case II. The only
difference is when p ≠ n. In this case, the bounds
from the oblique parameters cannot be evaded and
BRðh → AA0Þ is strongly constrained.

(vi) Case IV is especially constrained because it leads to
a negative contribution to the T parameter. This is
why we only include two examples.

V. CONCLUSION

Many collider searches have been performed in the hope
of observing the Higgs boson decaying to a photon and a
dark photon. For this decay to have a branching ratio
realistically observable at the LHC, there must exist new
mediators that communicate between the SM particles
and the dark photon. In this paper, we have studied the
constraints from the Higgs signal strengths, oblique

parameters, EDM of the electron, and unitarity on a large
set of mediator models. The models are only asked to
satisfy a very minimal set of requirements. We have found
that, for these models, BRðh → AA0Þ is generally con-
strained to be below 0.4%, which is far lower than the
current collider limit of 1.8%. Furthermore, obtaining this
0.4% requires relatively light charged mediators that would
have somehow evaded existing searches. For some models,
the bounds are even more stringent.
In addition to these constraints, a large BRðh → AA0Þ

imposes several requirements on models that might not be
subjectively very pleasing. First, it requires some couplings
to be very large. In hindsight, this is unsurprising. The top
loop contributes relatively little to the h → AA decay width
compared to W loops and BRðh → AAÞ is still only of
Oð0.1%Þ. This is despite the fact that the top has a Yukawa
coupling with the Higgs of ∼1 and a mass of only
∼173 GeV. Therefore, obtaining a large BRðh → AA0Þ
requires large couplings between the Higgs and the
mediators and also a large dark electric charge e0. In the

FIG. 5. Upper bounds on BRðh → AA0Þ for different examples of scalar mediators. The plots do not go below 100 GeV, as LEP
bounds prohibit such masses [28,29]. Taken and expanded from Ref. [24]. (a) Scalar case I, (b) scalar case II, (c) scalar case III,
and (d) scalar case IV.
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case of Yukawa couplings, they can be of an order of a few
or larger. Second, this also leads to the presence of a
Landau pole forUð1Þ0 at low energies, sometimes as low as
the TeV scale.
Because of both these model requirements and the

experimental constraints, we believe it would be very
challenging to observe the Higgs boson decaying to a
photon and a massless dark photon at the LHC.
Nonetheless, there could, in principle, be a few ways to

obtain an observable BRðh → AA0Þ by breaking some of
our assumptions. Namely, it could be possible to have
multiple mediators with different electric charges, Uð1Þ0
charges, or couplings with the Higgs boson. In this case, it
might be possible to have destructive interference in
channels that are particularly constrained, like h → AA

and h → A0A0, but constructive in h → AA0. This could, in
principle, alleviate the signal strength constraints. However,
reaching an unexcluded BRðh → AA0Þ as high as 1.8%
would surely require a considerable amount of fine-tuning.
Whether a channel that requires considerable fine-tuning to
simply be potentially observable is worth dedicated exper-
imental searches is certainly debatable.
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