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We revisit a cosmological scenario based on the classically conformal Uð1ÞB−L extension of the
Standard Model. Our focus is on the mechanism of reheating after inflation and the constraints on the
model parameters. In this scenario, the inflationary dynamics is driven by the Uð1ÞB−L Higgs field that is
nonminimally coupled to gravity and breaks the Uð1ÞB−L symmetry spontaneously as it acquires a vacuum
expectation value through the Coleman-Weinberg mechanism. It is found that the reheating process
proceeds stepwise, and as the decay channels of the Uð1ÞB−L Higgs field are known, the reheating
temperature is evaluated. The relation between the e-folding number of inflation and the reheating
temperature provides a strong consistency condition on the model parameters, and we find that the recent
cosmological data give an upper bound on the Uð1ÞB−L breaking scale vBL ≲ 1012 GeV. The lower bound
is vBL ≳ 106 GeV, obtained as the condition for successful reheating in this model. The prediction for the
cosmic microwave background (CMB) spectrum of this model fits extremely well with today’s
cosmological data. The model can be tested and is falsifiable by near future CMB observations, including
the LiteBIRD and CMB-S4.
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I. INTRODUCTION

The Standard Model of particle physics may be regarded
as an outcome of gauging the global symmetries that were
initially introduced for the classification of particles. The
Uð1ÞY hypercharge originates from the work of Nakano,
Nishijima [1,2], and Gell-Mann [3], while the SUð2ÞL
symmetry dates back to the work of Heisenberg [4] who
introduced the concept of isospin. The SUð3Þc quantum
numbers were introduced in the 1960s for the analysis of
hyperons [5,6] (see also [7]). This view may be useful for
investigating a theory beyond the Standard Model. Indeed,
there exists a Uð1ÞB−L (baryon number minus lepton
number) global symmetry in the Standard Model, which
is usually considered accidental. Gauging theUð1ÞB−L, one
obtains a theory beyond the Standard Model, that is, the
Uð1ÞB−L gauge extended Standard Model. It is endowed
with a new Uð1ÞB−L gauge boson Z0. The breaking of this
gauge symmetry at low energy is accomplished by a new

complex scalar field Φ, which plays the role of the Higgs
boson for the Uð1ÞB−L symmetry. Furthermore, theoretical
consistency requires three chiral fermions (right-handed
neutrinos) for anomaly cancellation. The minimal matter
contents of the Uð1ÞB−L extended Standard Model are thus
the Standard Model particles, plus three right-handed neu-
trinos NR and the Uð1ÞB−L Higgs boson Φ, as listed in
Table I.
The Standard Model is known to have several issues, and

interestingly, many of them find natural solutions in the
Uð1ÞB−L extension. The small but nonvanishing (left-
handed) neutrino masses indicated by neutrino oscillations,
for example, are naturally generated through the seesaw
mechanism as the right-handed neutrinos acquire Majorana
masses when the Uð1ÞB−L symmetry is spontaneously
broken. Lepton asymmetry can also be generated by the
decay of the right-handed neutrinos, which may later be
converted into the baryon asymmetry of the Universe in the
so-called baryogenesis via leptogenesis scenario. Cosmic
inflation may also be explained in the framework of the
Uð1ÞB−L-extended Standard Model, as the Uð1ÞB−L Higgs
fieldΦ can play the role of the inflaton, the field responsible
for the dynamics of inflation. A simple, observationally
viable, and phenomenologically well-motivated model of
cosmic inflation is constructed by allowing the Φ field to
nonminimally couple to gravity. The model has been a
subject of much attention and has been studied actively from
various aspects [8–13].
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In this article, we examine the Uð1ÞB−L Higgs inflation
model focusing on the reheating process after inflation. In
inflationary cosmology, it is common to use the number of
e-folds, Nk, as a parameter that quantifies the expansion
of the Universe during inflation or, more specifically,
between the horizon exit of the scale of the cosmic
microwave background (CMB) and the end of inflation.
The typical range of Nk is between 50 to 70; some
uncertainty is usually assumed due to the model-
dependent specifics of the reheating process. Once the
scenario of particle cosmology is specified, however, this
Nk is calculable in principle. The purpose of the paper is to
carry out the computation of Nk in the case of the Uð1ÞB−L
Higgs inflation model. The structure of the model is that
the inflationary dynamics is controlled by two parameters,
the breaking scale of the Uð1ÞB−L symmetry vBL and the
Uð1ÞB−L gauge coupling gI at low energy. We will find the
relation between the e-folding number and those two
parameters of the Uð1ÞB−L-extended Standard Model, and
show, by solving the renormalization group equations and
eliminating the uncertainties associated with the reheating
process, that the prediction for the CMB spectrum is
determined by vBL and gI. At present, those parameters are
largely unconstrained, either by collider experiments or by
CMB observations. We argue that these parameters will be
severely constrained by near future precision measure-
ments of the CMB spectrum, or the Uð1ÞB−L Higgs
inflation scenario will be ruled out entirely.
The rest of the paper is organized as follows. We review

the Uð1ÞB−L Higgs inflation model in the next section and
examine the reheating process of this model in Sec. III. In
Sec. IV we discuss the ranges of the model parameters vBL
and gI that are of interest to us. We solve the cosmological
evolution together with the renormalization group (RG)
equations in Sec. V to find the prediction of the inflationary
scenario. We conclude in Sec. VI with brief comments. The
appendixes contain supplementary mathematical details
and technical notes.

II. HIGGS INFLATION IN THE Uð1ÞB−L-
EXTENDED STANDARD MODEL

We consider the minimal Uð1ÞB−L extension of the
Standard Model, with the gauge group SUð3Þc × SUð2ÞL×
Uð1ÞY ×Uð1ÞB−L. The particle contents are the Standard
Model particles supplemented by three generations of singlet
leptons (the right-handed neutrinos) and a complex scalar
with the Uð1ÞB−L charge 2, as listed in Table I. We consider
the classically conformalmodel; that is, the scalar potential is
given by

V ¼ λΦðΦ�ΦÞ2 þ λHðH†HÞ2 − λ̃ðΦ�ΦÞðH†HÞ; ð1Þ

where λΦ, λH, and λ̃ are dimensionless couplings.We assume
the mixing is small, 0 < λ̃ ≪ 1, so that the dynamics of Φ
andH are separate during inflation. We may decompose the
complex scalar Φ into two real scalars ϕ and χ as

Φ ¼ 1ffiffiffi
2

p ðϕþ iχÞ: ð2Þ

The real componentϕ is assumed to have a large initial value
and drive inflation; that is, it plays the role of the inflaton. The
χ field does not play any significant role below. Including the
nonminimal coupling ofΦ to gravity, the Jordan frame action
for the inflaton sector is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P þ ξϕ2

2
R −

1

2
ð∂ϕÞ2 − Veff

�
; ð3Þ

whereMP ¼ 2.435 × 1018 GeV is the reduced Planck mass,
ξ is a dimensionless parameter, and

Veff ¼
λðμÞ
4

ϕ4 þ V0 ð4Þ

is the RG-improved effective action [14,15]. The running
quartic coupling λðμÞ is the coupling λΦ in (1) evaluated at the
RG scale μ, and the second term

V0 ≡ −
λðμÞ
4

����
ϕ¼vBL

v4BL ð5Þ

is a constant that ensures the potential vanishes at the
symmetry breaking global minimum ϕ ¼ vBL (discussed
more below).
The model is analyzed conveniently in the Einstein

frame where the scalar field is minimally coupled to
gravity, upon rescaling of the metric gμν → ΩðϕÞgμν with

ΩðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

ϕ2

M2
P

s
: ð6Þ

The canonically normalized scalar field σ in the Einstein
frame is related to ϕ by

TABLE I. Representations and charges of the particle contents
in the Uð1ÞB−L-extended Standard Model. The subscripts L=R
are the chiralities, and the index i ¼ 1; 2; 3 indicates the gen-
erations of the fermions.

SUð3Þc SUð2ÞL Uð1ÞY Uð1ÞB−L
qiL 3 2 1

6
1
3

uiR 3 1 2
3

1
3

diR 3 1 − 1
3

1
3

li
L 1 2 − 1

2
−1

eiR 1 1 −1 −1
Ni

R 1 1 0 −1
H 1 2 1

2
0

Φ 1 1 0 2
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dσ ¼ dϕ
ΩðϕÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 6ξÞξ ϕ2

M2
P

s
: ð7Þ

The scalar potential in the Einstein frame is

VE ¼ Veff

ΩðϕÞ4 ¼
λðμÞ

4ΩðϕÞ4 ϕ
4 þ V0

ΩðϕÞ4 ; ð8Þ

in terms of which the slow roll parameters are defined as

ϵV ¼ M2
P

2

�
VE;σ

VE

�
2

¼ M2
P

2

�
VE;ϕ

σ;ϕVE

�
2

; ð9Þ

ηV ¼ M2
P
VE;σσ

VE
¼

�
MP

σ;ϕ

�
2
�
VE;ϕϕ

VE
−
σ;ϕϕVE;ϕ

σ;ϕVE

�
: ð10Þ

Under the slow roll approximation, the amplitude of the
curvature perturbation at comoving scale k is

PR ¼ VE

24π2M4
PϵV

����
k
; ð11Þ

which is to be compared with the measurement value1 As at
the pivot scale k. The scalar spectral index and the tensor-to-
scalar ratio are expressed using the slow roll parameters as

ns ¼ 1 − 6ϵV þ 2ηV; r ¼ 16ϵV: ð12Þ

The coupling λðμÞ is subject to the RG flow. We focus on
the regime where the effects of the Yukawa couplings yiM
and the running of the nonminimal coupling ξ are negli-
gible. Then the RG equations for the self-coupling λ and the
Uð1ÞB−L gauge coupling g are, at one-loop order,

βλ ≡ dλ
d ln μ

¼ 20λ2 þ 96g4 − 48λg2

16π2
; ð13Þ

βg ≡ dg
d ln μ

¼ 12g3

16π2
: ð14Þ

We interpret the quantum corrections in the presence of
nonminimal coupling as follows [17]. The renormalization
scale of the Jordan frame, in which the theory is defined, is
given by the field ϕ. The renormalization scale (of mass
dimension one) is then appropriately rescaled in the
Einstein frame, in which measurements are made. Thus
the renormalization scale μ that appears in the effective
potential in the Einstein frame (8) takes the form [18]

μ ¼ ϕ

ΩðϕÞ ¼
MPϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
P þ ξϕ2

p : ð15Þ

This is also the renormalization scale μ used in the RG
equations (13) and (14). Note that the scale μ asymptote to a
constant value μ → MP=

ffiffiffi
ξ

p
at large ϕ; thus the RG running

slows down and stops at high energy. This behavior is in
accord with the presumed UV finiteness of the theory near
the Planck scale; there the metric and hence the length scale
are blurred by the quantum gravity effects, and above
certain energy the concept of scale loses its meaning.
At low energy, the Uð1ÞB−L gauge symmetry is broken

by the Coleman-Weinberg mechanism. The symmetry
breaking vacuum ϕ ¼ vBL (where we live) satisfies the
stationarity condition

dVE

dϕ

����
ϕ¼vBL

¼ 0: ð16Þ

We suppose that the symmetry breaking scale is much
lower than the inflationary scale (vBL ≪ MP=

ffiffiffi
ξ

p
). Then the

renormalization scale is μ ≈ ϕ near ϕ ¼ vBL [see (15)], and
thus the distinction between the Einstein frame and the
Jordan frame is unimportant at low energy. The condition
(16) gives a relation between λ and g,

λI ≃ −
1

4

96

16π2
g4I ; ð17Þ

where we have used the fact that in the perturbative regime
the 96g4 term dominates the right-hand side of (13). The
subscript I (for IR) denotes values at the potential minimum
ϕ ¼ vBL. Note that λI is negative, as it should be in the
symmetry breaking minimum. The mass of the Z0 boson
and that of the inflaton are

mZ0 ¼ 2gIvBL; ð18Þ

mϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
d2VE

dϕ2

s ����
ϕ¼vBL

≃
ffiffiffi
6

p

π
g2I vBL ¼

ffiffiffi
3

2

r
gImZ0

π
: ð19Þ

The masses of the right-handed neutrinos are given by the
Majorana Yukawa coupling yiM as

mNi
R
¼ yiMffiffiffi

2
p vBL: ð20Þ

The offset term of the potential (5) is now written as

V0 ¼
3

8π2
g4I v

4
BL ¼ 3

128π2
m4

Z0 : ð21Þ

The symmetry breaking scale vBL, the gauge coupling gI ,
and the Yukawa coupling yiM at the potential minimum

1We use the Planck 2018 TT, TE, EEþ lowEþ lensing central
value [16] lnð1010AsÞ ¼ 3.044 at k ¼ 0.05 Mpc−1 in the numeri-
cal computation.
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ϕ ¼ vBL are treated as input parameters of the model. In
particular, vBL and gI control the inflationary dynamics. Let
the renormalization scale at the potential minimum
μI ≡ μðϕ ¼ vBLÞ ≈ vBL. From there the RG equation (14)
for the gauge coupling is solved as

gðμÞ ¼ gIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3g2I

2π2
ln μ

μI

q ; ð22Þ

up to the scaleμ relevant for the inflationary dynamics.Using
(22), the RG equation for the self-coupling (13) can be
numerically integrated so that the effective potential of the
inflaton (8) can be evaluated. The slow roll parameters are
then given by (9) and (10) as functions of ϕ. To find the field
value ϕ ¼ ϕe at which inflation ends, we use the condition
that one of the slow roll parameters becomes unity,
ϵVðϕeÞ ¼ 1. The horizon exit of the CMB scale takes place
at a larger value of the inflaton field ϕ ¼ ϕk, and there the
amplitude of the curvature perturbation (11) at the pivot scale
k is normalized by the observational value [16]. This
normalization fixes the nonminimal coupling ξ. The number
of e-folds for the cosmic expansion between the horizon exit
of the CMB scale and the end of inflation is

Nk ¼
1

MP

Z
ϕk

ϕe

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵVðϕÞ

p
�
dσ
dϕ

�
: ð23Þ

In the standard slow roll paradigmof inflationary cosmology,
it is a common practice to consider this e-folding numberNk
as a free parameter reflecting the uncertainty of the reheating
process. In the next section we examine the concrete
reheating process of the inflationary model based on
the Uð1ÞB−L-extended Standard Model and evaluate the
e-folding number.

III. REHEATING AFTER CLASSICALLY
CONFORMAL Uð1ÞB−L HIGGS INFLATION

A salient feature of this cosmological model based on the
classically conformal potential (1) is that the quartic term
dominates the potential at high energy, as the mass term is
generated by the Coleman-Weinberg mechanism only at the
scale where the Uð1ÞB−L symmetry is broken. Thus, at
the end of inflation when the amplitude of ϕ is still large,
the potential is essentially quartic. The symmetry breaking
mass term becomes important as the oscillating amplitude
of ϕ becomes small due to redshift. The reheating process
thus proceeds stepwise: after inflation, the inflaton oscil-
lates in the potential that is approximately quartic, and as
the amplitude of the oscillations is damped by the redshift,
the inflaton starts to feel the presence of the mass term (19),
and then starts to oscillate in the approximately quadratic
potential about the symmetry breaking minimum ϕ ¼ vBL.
Eventually, as the Hubble expansion rate H becomes
comparable to the decay rate Γ of the inflaton, the energy

deposited in the inflaton is converted into the radiation of
relativistic Standard Model particles and the Universe
becomes thermalized.
The transition from the oscillations in the quarticlike

potential to the oscillations in the quadraticlike potential is
important, since the expansion rate of the Universe changes
there and the prediction of the inflationary model is
affected. At the transition, the inflaton that was swinging
with a large amplitude fails to go over the central maximum
of the double well potential. This situation is characterized
by the condition that the kinetic term of the inflaton
becomes comparable to the potential height at the central
maximum VEðϕ ¼ 0Þ ¼ V0. Thus the inflaton energy
density at this moment is approximately

ρ⋆ ≃ V0 ¼
3

128π2
m4

Z0 : ð24Þ

We assume that the decay of the inflaton and the ensuing
thermalization of the Universe takes place after this quartic-
quadratic transition. This condition is written

Γ≲H⋆; ð25Þ

with H⋆ the Hubble expansion rate at the transition from
the quartic oscillation regime to the quadratic oscillation
regime. If the decay rate Γ is larger than H⋆, the inflaton
will decay immediately after the transition and thus
corresponds to the case when the condition (25) is
saturated. One may also consider possible decay of the
inflaton condensate into radiation during the oscillations in
the quartic potential [19]. We discuss this effect in
Appendix B. It is found that this effect is negligible if a
condition slightly weaker than (25) is satisfied.
Using the Friedman equation and (24), the condition (25)

is rewritten, up to a factor of Oð1Þ, as

Γ≲ m2
Z0

8πMP
: ð26Þ

We will see how this condition constrains the model
parameters in Sec. IV.

A. The number of e-folds

We now evaluate the number of e-folds based on this
picture, assuming otherwise the standard thermal history of
the Universe. We denote the comoving wave number of the
CMB scale by k. Then the scale factor ak and the Hubble
parameter Hk at the horizon exit of the CMB scale are
related by k ¼ akHk. We write the scale factor at the end of
inflation as ae, at the quartic-quadratic transition as a⋆, at
the thermalization of the Universe (end of reheating) as ath,
at the matter-radiation equality as aeq, and the scale factor
today as a0. Then one obtains an obvious relation
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k
a0H0

¼ akHk

a0H0

¼ ak
ae

ae
a⋆

a⋆
ath

ath
aeq

aeq
a0

Hk

H0

; ð27Þ

where H0 ¼ 100h km s−1Mpc−1 with h ¼ 0.674 [20] is
the Hubble parameter today. The logarithm of the first
factor Nk ≡ lnðak=aeÞ is the e-folding number of inflation
that we wish to evaluate. From the end of inflation to the
quartic-quadratic transition, we may write ae=a⋆ ¼
ðρ⋆=ρeÞ1=4, where ρ⋆ is (24) and ρe is the energy density
at the end of inflation, which is roughly twice the potential
energy, ρe ≃ 2Ve. We used the fact that when a scalar field
oscillates in a quartic potential, the Universe undergoes a
radiation-dominant-like expansion. Likewise, from the
quartic-quadratic transition to the thermalization of the
Universe we may write a⋆=ath ¼ ðρth=ρ⋆Þ1=3, where ρth is
the energydensity at thermalization andwehave used the fact
that when a scalar field oscillates in a quadratic potential the
Universe undergoes a matter-dominant-like expansion. The
evaluation of the remaining factors is standard, e.g., [21,22].
From the thermalization to the matter-radiation equality,
entropy conservation and the Stefan-Boltzmann law give
ath=aeq ¼ ðρeq=ρthÞ1=4ðgeq� =gth� Þ1=12, where ρeq is the energy
density at thematter-radiation equality and gth� and geq� are the
numbers of relativistic degrees of freedom at the thermal-
ization and the matter-radiation equality, respectively. The
factor aeq=a0 ¼ 1=ð1þ zeqÞ is the redshift of the matter-
radiation equality.We use the slow roll Friedman equation to
write the Hubble parameter at the time of the horizon exit of
the wave number k in terms of the potential Vk, as
Hk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vk=ð3M2

PÞ
p

. Assembling all those pieces we find
the e-folding number Nk between the horizon exit of the
comoving wave number k and the end of inflation,

Nk ≡ ln
ae
ak

¼ 66.5 − ln h − ln
k

a0H0

þ 1

12
ln
ρth
ρ⋆

þ 1

4
ln

Vk

2Ve
þ 1

4
ln

Vk

M4
P
þ 1

12
ðln geq� − ln gth� Þ: ð28Þ

Apart from the uncertainty of the reheating temperature TR

hidden in ρth ¼ π2gth� T4
R=30, the e-folding number is deter-

mined by the potential (8) and can be evaluated once the
dynamics of theUð1ÞB−L Higgs field is known.2 To evaluate
the reheating temperature we need to consider the decay
modes of the inflaton.

B. Decay of the inflaton

Equation (19) shows that the Z0 mass is heavier than the
inflaton mass in the perturbative regime (g≲ 1). Thus the
decay of the inflaton into the Z0 boson is kinematically

forbidden.3 Also, the inflaton is a Standard Model singlet,
and it cannot decay through the Standard Model gauge
interactions. Thus the dominant decay channel of the
inflaton is through the Standard Model Higgs field.
Let us use the unitary gauge

H ¼
�

0

h=
ffiffiffi
2

p
�

ð29Þ

and rewrite the scalar potential (1) as

V ¼ λðμÞ
4

ϕ4 þ λH
4
h4 −

λ̃

4
ϕ2h2 þ V0: ð30Þ

We may neglect4 quantum corrections for λH and λ̃. The
stationarity conditions ∂V=∂h ¼ 0 and ∂V=∂ϕ ¼ 0 at the
Uð1ÞB−L symmetry breaking vacuum h ¼ vH ¼ 246 GeV
and ϕ ¼ vBL yield

λ̃ ¼ 2λH

�
vH
vBL

�
2

; ð31Þ

βλ þ 4λ − 2λ̃

�
vH
vBL

�
2

¼ 0: ð32Þ

Using (31), the last term of (32) is shown to be negligible,
justifying the relation (17) that we used as the boundary
conditions for the inflationary model. We also find

m2
h ¼

∂
2V
∂h2

����
ϕ¼vBL
h¼vH

¼ 2λHv2H ¼ λ̃v2BL; ð33Þ

m̃2 ¼ ∂
2V

∂h∂ϕ

����
ϕ¼vBL
h¼vH

¼ −λ̃vHvBL ¼ −m2
h
vH
vBL

; ð34Þ

m2
ϕ ¼ ∂

2V
∂ϕ2

����
ϕ¼vBL
h¼vH

≃
3g2

2π2
m2

Z0 : ð35Þ

The Higgs mass is mh ¼ 125.25 GeV [24]. Now we may
think of two separate cases: (i) when the inflaton mass is
heavier than twice the Higgs massmϕ > 2mh, and (ii) when
the inflaton mass is lighter than twice the Higgs mass
mϕ < 2mh. Let us discuss those two cases in turn. Below in

2Evaluation of Vk requires the value of Nk (23) which needs to
match (28). This can be done consistently in numerics.

3It has been pointed out in [23] that for λ≳ 3 × 10−4, violent
preheating into the longitudinal mode of the gauge boson may
take place in the first few oscillations of the inflaton, due to
spikelike features of the conformal factor Ω. This potentially
leads to an issue of unitarity as the decay products have extremely
high momenta ∼

ffiffiffi
λ

p
MP. In our model this unitarity bound

corresponds to gI ≲ 0.13, which is somewhat stronger than the
bound from perturbativity [see (45) and Fig. 1 below].

4For example, λH ≃ 0.1 and its quantum corrections are
Oðg42=16π2Þ, which is negligible.
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this section we consider the fields shifted about the
minimum h → hþ vH, ϕ → ϕþ vBL.

1. mϕ > 2mh

In this case the inflaton may decay into two Higgs
through the direct coupling in (30),

λ̃

2
vBLϕh2 ⊂

λ̃

4
ðϕþ vBLÞ2ðhþ vHÞ2 ⊂ V: ð36Þ

The decay rate is

Γϕ ¼ 4
ð1
2
λ̃vBLÞ2
8πmϕ

¼ m4
h

8πmϕv2BL
; ð37Þ

where the factor of 4 is to take into account the effects of
mass mixing [25–28]. According to the standard perturba-
tive picture of reheating,5 the inflaton starts to decay when
the Hubble parameter becomes smaller than the decay rate
Γϕ. Assuming that the thermalization is instantaneous,6 we
have Γϕ ≃Hth and ρth in (28) is evaluated as

ρth ¼ 3M2
PΓ2

ϕ: ð38Þ

The reheating temperature is then found to be

TR ≃
�

90

π2g�

�1
4 ffiffiffiffiffiffiffiffiffiffiffiffi

MPΓϕ

p
: ð39Þ

2. mϕ < 2mh

In the second case, when the inflaton is lighter than 2mh,
the process ϕ → hh is kinematically forbidden. If the mass
range is mh < mϕ < 2mh, the process ϕϕ → hh is pos-
sible, but reheating through this process is not possible as
the decay rate Γðϕϕ → hhÞ redshifts faster than the Hubble
expansion rate. When mϕ < 2mh, the inflaton may instead
decay through the mixing with the Higgs boson. The mass
matrix of the scalars

�m2
h m̃2

m̃2 m2
ϕ

�
ð40Þ

is diagonalized by rotating the fields

�
h

ϕ

�
¼

�
cos θ sin θ

− sin θ cos θ

��
h̃

ϕ̃

�
: ð41Þ

The rotation angle is

tan 2θ ¼ 2m̃2

m2
ϕ −m2

h

¼ 2m2
h

m2
h −m2

ϕ

vH
vBL

; ð42Þ

which is small in general, apart from the accidental narrow
region of mϕ ≃mh. Thus the field h̃ is almost h, and ϕ̃ is
almost ϕ in generic cases. This almost-inflaton ϕ̃ couple to
the bb̄, cc̄, ττ̄ of the Standard Model with the Yukawa
couplings yb sin θ=

ffiffiffi
2

p
, yc sin θ=

ffiffiffi
2

p
, yτ sin θ=

ffiffiffi
2

p
, respec-

tively, where yb, yc, yτ are the Standard Model Yukawa
couplings for b, c, and τ. The decay rate of ϕ̃ into the
Standard Model particles is then

Γϕ̃ ¼ mϕ

8π

�
3
m2

b

v2H
þ 3

m2
c

v2H
þm2

τ

v2H

�
sin2θ

≃ 4.0 × 10−5mϕsin2θ; ð43Þ

where we have used mb ¼ 4.2 GeV, mc ¼ 1.3 GeV, and
mτ ¼ 1.8 GeV. Thus, using 2 sin2 θ ¼ 1 − 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 2θ

p
and (42) the decay rate is determined by mϕ and vBL. The
condition for the decay is Γϕ̃ ≃Hth. Thus the Friedman
equation gives ρth ≃ 3M2

PΓ2
ϕ̃
and the reheating temperature

is similar to (39), with Γϕ now replaced by Γϕ̃.

IV. CONSTRAINTS ON THE PARAMETERS

Before discussing the cosmological prediction of the
inflationary model in the next section, let us summarize the
constraints on the two parameters vBL and gI.
First of all, we assume that perturbative quantum field

theory is valid up to the scale of inflation. As the condition
of perturbativity we demand that the gauge coupling is
perturbative up to the Planck scale7

gðμ ¼ MPÞ < 1: ð44Þ

Using the solution (22) of the RG equation this condition is
written, with μI ¼ μðϕ ¼ vBLÞ ≃ vBL,

gI <
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3
2π2

lnMP
μI

q : ð45Þ

Other conditions concern the decay of the inflaton, so let
us consider the two separate cases as we did in the previous
section.

5We ignore possible nonlinear effects [29–32] for the sake of
concreteness. There are recent studies that suggest the perturba-
tive picture is sufficient for typical examples [19].

6Although the completion of thermalization and the start of
radiation dominance are not exactly the same, the distinction is
insignificant in our evaluation of (28).

7It may be somewhat more natural to consider α≡ g2=4π < 1
at μ → MP=

ffiffiffi
ξ

p
as the criterion of perturbativity. We, however,

use the slightly tighter condition (44) for the sake of practical
convenience, as it is ξ-independent and leaves some margin from
the singular regions that are numerically difficult to handle.

SHINSUKE KAWAI and NOBUCHIKA OKADA PHYS. REV. D 108, 015013 (2023)

015013-6



(1) mϕ > 2mh Using (19), the condition mϕ > 2mh is
written

gI ≳
�

2πmhffiffiffi
6

p
vBL

�1
2

: ð46Þ

The condition (25) that the inflaton decay after the
quartic-quadratic transition is written using (37) as

gI ≳
�
πMPm4

h

4
ffiffiffi
6

p
v5BL

�1
4

: ð47Þ

It can be checked that (46) is a stronger constraint
than (47) when vBL > 1.23 × 107 GeV.

(2) mϕ < 2mh In this case the condition mϕ < 2mh is
written

gI ≲
�

2πmhffiffiffi
6

p
vBL

�1
2

; ð48Þ

and the condition that the inflaton decays after the
transition (25) reads

Γϕ̃ ≲ m2
Z0

8πMP
; ð49Þ

where Γϕ̃ is evaluated using (42) and (43).
Figure 1 shows the constraints on the symmetry breaking

scale vBL and the gauge coupling at low energy gI as
described above. The green region is excluded by the

perturbativity condition (45) and the blue region is
excluded by the requirement that the decay of the inflaton
takes place after the quartic-quadratic transition, Eq. (47)
for the left panel and Eq. (49) for the right panel.
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H <Γ m <2mh Nonperturbative
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–6
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0g
I

m <2mh case

H <Γ m >2mh Nonperturbative

FIG. 1. The constraints on the parameters ðvBL; gIÞ, by the conditions that (i) the inflaton decays after it starts to oscillate about the
minimum ϕ ¼ vBL, (ii) the inflaton is heavier (left panel) or lighter (right panel) than 2mh, and (iii) the Uð1ÞB−L gauge coupling is
perturbative up until the scale of inflation. The blank regions are unconstrained.

5 10 50 100

0.005

0.010

0.050

0.100

0.500

vBL [TeV]

g I

FIG. 2. Constraints from the ATLAS experiments [33] at Run 2
of the Large Hadron Collider (the center-of-mass energy

ffiffiffi
s

p ¼
13 TeV and integrated luminosity 139 fb−1), recast into bounds
on the parameters vBL and gI of the Uð1ÞB−L-extended Standard
Model. The region lower left to the red curve is excluded. The
green and orange lines are, respectively, the perturbativity limit
and the mϕ ¼ 2mh line as in Fig. 1.
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The orange region is excluded by the condition on the
inflaton mass, mϕ > 2mh for the left panel and mϕ < 2mh

for the right panel. Light inflatonmϕ ≲ 106 TeV is excluded
in both cases, and there are both upper and lower bounds for
gI in themϕ > 2mh case, whereas in themϕ < 2mh case gI is
only bounded from above.
Let us also comment on the bounds that come from the

collider experiments. Figure 2 shows the bounds on vBL
and gI obtained from the search for high-mass dilepton
resonance by the ATLAS detector in the Large Hadron
Collier [33] (139 fb−1 proton-proton collisions at a center-
of-mass energy

ffiffiffi
s

p ¼ 13 TeV). The lower left region to the
red curve is excluded. Also shown are the green and orange
lines that are the perturbativity bound and the mϕ ¼ 2mh

line as in Fig. 1. Comparing Figs. 1 and 2, the bounds from
the ATLAS experiments are seen to provide no further
constraints on the parameter space of the inflationary model
as the region is already excluded by the conditionH⋆ < Γϕ

(in the case of mϕ > 2mh) or H⋆ < Γϕ̃ (in the case
of mϕ < 2mh).

V. CMB SPECTRUM OF THE Uð1ÞB−L
HIGGS INFLATION MODEL

Let us now discuss the prediction of the cosmologi-
cal model.

A. Numerical method

To determine the set of parameters that meet the
consistency requirements and to calculate the resulting
spectrum of the CMB, we employ the following procedure

to solve the slow roll equation of motion and the RG
equations. For a specified value of the symmetry breaking
scale vBL, we choose a set of parameters NðtestÞ

k and gI so
that ðvBL; gIÞ is within the allowed parameter region
discussed in Sec. IV. Then the slow roll equation and
the RG equations can be numerically integrated, using

NðtestÞ
k as the e-folding number of (23) to identify the field

value ϕk at the horizon exit of the CMB scale. The value of
the nonminimal coupling ξ is adjusted so the amplitude of
the curvature perturbation PR matches the Planck normali-
zation value [16] at the pivot scale. Then the cosmological
evolution is determined by the set of three parameters

ðvBL; NðtestÞ
k ; gIÞ, and we may evaluate the e-folding number

defined by the formula (28), which, in general, differs from

the value of NðtestÞ
k . We then make a scan of the parameter gI

(but vBL and NðtestÞ
k kept fixed) to see if Nk of (28) can be

adjusted to be the same value asNðtestÞ
k . If gI satisfying Nk ¼

NðtestÞ
k is found in the range of Sec. IV, then the solutionmeets

all consistency requirements. If this procedure fails, then that
means there is no cosmological solution compatible with the
reheating consistency requirement.
We carried out the parameter scan within the allowed

regions of Fig. 1, and have found solutions satisfying these
requirements. In the case ofmϕ > 2mh, for vBL ≳ 106 GeV
there exist consistent cosmological solutions between the
upper and lower bounds of gI . In contrast, whenmϕ < 2mh

we only found consistent solutions in narrow vicinities of
mϕ ¼ mh, where the mixing angle between ϕ and h
becomes θ ¼ π=4. While this situation may be of some
phenomenological interest, it is outside of our initial

P+BK18
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FIG. 3. The prediction of the Uð1ÞB−L Higgs inflation model, with the requirement of the reheating consistency taken into account.
This is the mϕ > 2mh case of Fig. 1. The value of vBL is varied as 106, 107, 108, 109, 1010, 1011, 1012 GeV. The left panel shows the
scalar spectral index ns and the tensor-to-scalar ratio r. The right panel shows ns and the Uð1ÞB−L coupling g at the symmetry breaking
minimum ϕ ¼ vBL. The end points marked with black circle correspond to the lower bound of gI , limited by themϕ > 2mh condition or
the Γ < H⋆ condition. The end points mark with white circle correspond to the upper bound of gI given by the perturbativity condition.
The background contours are the 68% and 95% confidence level Planckþ BICEP=Keck 2018 results [34] (blue), and the LiteBIRD [35]
(green) and CMB-S4 [36] (red) 1- and 2-σ prospects for a fiducial model with r ¼ 0.
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assumption that the inflaton dynamics is independent of the
Standard Model Higgs field during inflation, and we thus
will not examine this case further.

B. Numerical results

We thus discuss the results for themϕ > 2mh case below.
Figure 3 shows the solutions. The left panel is the
prediction for the CMB spectrum, the primordial tilt ns
against the tensor-to-scalar ratio r for the consistent
solutions as described above. The curves indicate solutions
for fixed values of vBL ¼ 106 GeV to 1012 GeV and the
background contours shaded in blue are the 68% and
95% confidence level constraints of the recent Planckþ
BICEP=Keck 2018 constraints [34]. It is seen that the
prediction of the model comfortably sits inside the 68%
contour, up to vBL ≲ 1012 GeV. The right panel shows the
same set of solutions on the ns − gI plane. In both panels,
the end points marked with a filled/blank circle correspond
to the lower/upper bound of gI shown on the left panel of
Fig. 1. The vBL ¼ 106 GeV solution is seen to be trimmed
by the Γϕ < H⋆ constraint, as one can see by comparing
with Fig. 1, left panel.
In Fig. 3, the prospect constraint contours by the

LiteBIRD and CMB-S4, for a r ¼ 0 fiducial model, are
shown in green and red. The prediction of the cosmological
model studied here is clearly outside the 2-σ contours, and
thus would be strongly disfavored if those projects bring
null results. If, on the other hand, the tensor mode is
detected, the measurements of the CMB spectrum would
give significant constraints on the parameter space of the
Uð1ÞB−L Higgs inflation model.

VI. FINAL REMARKS

We have examined the reheating process of the infla-
tionary scenario based on the Uð1ÞB−L extension of the
Standard Model, and formulated the condition of consis-
tency in terms of the number of e-folds. We then solved the
equation of the inflationary dynamics along with the RG
equations to identify solutions that meet these require-
ments. The results show that the predictions of the CMB
spectrum are in excellent agreement with current observa-
tional constraints. It is also suggested that the proposed
model could be tested by future experiments, such as
LiteBIRD and CMB-S4. Our aim was to address the
previously overlooked aspects of model construction and
to provide a clearer prediction for cosmological observ-
ables by incorporating the consistency condition from the
reheating process.
The primary focus of this paper has been the analysis of a

simple inflationary model, which is characterized by two
key parameters: the Uð1ÞB−L breaking scale (vBL) and the
Uð1ÞB−L gauge coupling (gI) at low energy. The Uð1ÞB−L
extension of the Standard Model is a well-motivated theory
beyond the Standard Model, and this example may be

considered as one of the best candidate cosmological
scenarios based on particle phenomenology. Clearly, our
analysis can be extended to more involved cosmological
models. For instance, the Uð1ÞB−L model can be extended
to the Uð1ÞX model that allows for the mixing of the
Uð1ÞB−L and Uð1ÞY gauge symmetries without violating
the anomaly cancellation condition, as described, for
example, in [13]. Additionally, inflationary models based
on supersymmetric extensions of the Standard Model, such
as those discussed in [37,38], may also be worthy of
exploration. As upcoming observational cosmology proj-
ects are poised to bring new results in the near future,
particularly with regards to the CMB B-model polarization,
it is a promising time to reevaluate the reheating dynamics
of these inflationary scenarios.
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APPENDIX A: EVALUATION OF THE SLOW
ROLL PARAMETERS

In our computation, the slow roll parameters (9) and (10)
are used to identify the field value at the end of inflation, to
find the normalized amplitude of the curvature perturba-
tion, as well as to evaluate the spectrum of the CMB. The
expressions of (9) and (10) involve VE (8) as well as its ϕ
derivatives. The concrete expressions of the first and
second derivatives of VE employed in our analysis are
obtained using the RG equations (13) and (14) and the
relation (15) for μðϕÞ. These are

VE;ϕ ≡ dVE

dϕ
¼ ϕ

ð1þ ξϕ2Þ3
��

λþ βλ
4

�
ϕ2 − 4ξV0

�
; ðA1Þ

VE;ϕϕ≡d2VE

dϕ2

¼ 1

ð1þξϕ2Þ4
�
3λϕ2ð1−ξϕ2Þþβλ

4
ϕ2ð7−3ξϕ2Þ

þλϕ2ð25λ2−90λg2þ156g4Þ
32π4

−4ξV0ð1−5ξϕ2Þ
�
:

ðA2Þ

We have set the reduced Planck mass to unity,MP ¼ 1. It is
then straightforward to find the expressions of the slow roll
parameters (9) and (10) as functions of the field ϕ.
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We also used

σ;ϕ ≡ dσ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ 6ξÞξϕ2

p
1þ ξϕ2

; ðA3Þ

σ;ϕϕ ≡ d2σ
dϕ2

¼ −
ξϕ

ð1þ ξϕ2Þ2
1 − 6ξþ ð1þ 6ξÞξϕ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1þ 6ξÞξϕ2
p : ðA4Þ

APPENDIX B: INFLATON DECAY DURING
OSCILLATIONS IN THE QUARTIC POTENTIAL

In the main text we did not consider the decay of the
inflaton when it is oscillating in the quartic potential. As
discussed, e.g., in [19], the oscillating inflaton may be
interpreted to form a condensate obtaining its mass from
the averaged periodic motions, and decay into radiation
during this regime. Here we discuss this effect, first
evaluating the criteria for which the decay can be efficient,
and then we give an alternative picture of it based on
particle scattering.

1. Efficiency of the energy depletion

We consider the classically conformal effective action (1)
of the Uð1ÞB−L Higgs inflation model

V ¼ λjΦj4 þ λHðH†HÞ2 − λ̃jΦj2ðH†HÞ þ ð1-loopÞ ðB1Þ

and decompose Φ in the unitary gauge into a lowly varying
background field ϕo and the field ϕ on that background,

Φ ¼ 1ffiffiffi
2

p ðϕoðtÞ þ ϕÞ: ðB2Þ

In this regime, the field ϕ has a time-dependent effective
mass

m2
eff ≡ d2V

dϕ2

����
ϕo

¼ 3λϕ2
o; ðB3Þ

and the coupling between ϕ and H†H is given by

Lint ¼ λ̃ϕoϕH†H: ðB4Þ

The decay amplitude for ϕ → H†H is

X
spins

jMj2 ¼ 2λ̃2ϕ2
o; ðB5Þ

and thus the decay width is found to be time dependent,

ΓðtÞ ¼ λ̃2ϕ2
o

8πmeff
¼

ffiffiffi
3

p

24π

λ̃2ffiffiffi
λ

p jϕoðtÞj: ðB6Þ

As the universe expands like radiation dominated a ∝
ffiffi
t

p
in

this regime, the inflaton redshifts as ϕo ∼ ϕe

ffiffiffiffiffiffiffiffi
te=t

p
, where

te and ϕe are the cosmic time and the background inflaton
value at the end of inflation. Using Hðt ¼ teÞ ¼ 1=2te and
the slow roll equation of motion, we find

te ∼
ffiffiffi
3

λ

r
MP

ϕ2
e
: ðB7Þ

The decay width (B6) is then written

ΓðtÞ ¼
ffiffiffi
3

p

24π

λ̃2ffiffiffi
λ

p ϕe

ffiffiffiffi
te
t

r
≡ Γ0

ffiffiffiffi
te
t

r
: ðB8Þ

The energy density of the inflaton ρϕ and that of the
radiation ρrad evolve according to

dρϕ
dt

þ 4Hρϕ þ ΓðtÞρϕ ¼ 0; ðB9Þ

dρrad
dt

þ 4Hρrad − ΓðtÞρϕ ¼ 0; ðB10Þ

where H ¼ 1=2t. The total energy density ρtotal ¼ ρϕ þ
ρrad thus evolves as ρtotal ∝ a−4. Equation (B9) is solved as

ρϕðtÞ ¼ ρϕðteÞ
�
te
t

�
2

exp

�
−2Γ0te

� ffiffiffiffi
t
te

r
− 1

��
: ðB11Þ

The factor ðte=tÞ2 is due to the dilution by the cosmic
expansion, and the exponential factor with

DðtÞ≡ 2Γ0te

� ffiffiffiffi
t
te

r
− 1

�
≃ 2Γ0te

ffiffiffiffi
t
te

r
ðB12Þ

represents the energy transmission into radiation.
Thus the depletion of the inflaton energy by the decay

into radiation is negligible if

Dðt ¼ t⋆Þ≲ 1; ðB13Þ

where t⋆ is the time when the inflaton starts to oscillate in
the quadratic potential. Using (B7) and evaluating ϕo ∼ vBL
at t ¼ t⋆, the condition (B13) is equivalent to

1

4π

λ̃2

λ

MP

vBL
≲ 1: ðB14Þ

Now using (31) and (33) and evaluating λ in our model of
the Coleman-Weinberg symmetry breaking as

λ ≃ λeff ≡ 1

6

d4VE

dϕ4

����
ϕ¼vBL

¼ 11

π2
g4I ; ðB15Þ

the condition (B14) gives a lower bound on gI:
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gI ≳
�
π

44

�1
4

�
mh

vBL

��
MP

vBL

�1
4

: ðB16Þ

This is seen to be a slightly weaker condition than (47).

2. Scattering picture

Instead of the decay ϕ → H†H, one may alternatively
consider the scattering process ϕϕ → H†H. The initial ϕ’s
are assumed to be condensed, at rest with energy ωϕ. The
number density of the inflaton quanta ϕ must then obey the
Boltzmann equation

dnϕ
dt

þ 3Hnϕ ¼ −ðσvrelÞn2ϕ; ðB17Þ

with

σvrel ∼
λ̃2

16πω2
ϕ

: ðB18Þ

The energy of the inflaton quanta ωϕ may be evaluated as

ω2
ϕ ≃m2

eff ¼
d2V
dϕ2

����
ϕo

¼ 3λϕ2
o: ðB19Þ

We shall show that (B17) is equivalent to (B9), up to a
numerical factor.
We first note that nϕ ¼ ρϕ=ωϕ, and that ωϕ redshifts as

ωϕ ∝ ϕo ∝ 1=a, so that

dρϕ
dt

þ 4Hρϕ ¼
�
dnϕ
dt

ωϕ þ 4Hnϕ þ nϕ
d lnωϕ

dt

�

¼ ωϕ

�
dnϕ
dt

þ 3Hnϕ

�
: ðB20Þ

Then (B9) is rewritten as

dnϕ
dt

þ 3Hnϕ þ
ΓðtÞ
nϕ

n2ϕ ¼ 0: ðB21Þ

Now using ωϕ ≃
ffiffiffiffiffi
3λ

p
ϕo, ρϕ ≃ 3

4
λϕ4

o, and the expression
(B6) we find

ΓðtÞ
nϕ

¼ ΓðtÞ
ρϕ

ωϕ ≃
4ΓðtÞ
3λϕ4

o
ωϕ ≃

12λΓðtÞ
ω3
ϕ

≃
1

2π

λ̃2

ω2
ϕ

; ðB22Þ

coinciding with (B18) up to a factor of ∼8 that may be
attributed to the approximations we have used.
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