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Perturbative S-matrix unitarity and higher-order Lorentz violation
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We investigate the preservation of unitarity in a Lorentz and CPT-violating QED model containing

higher-order operators. In particular, we consider modifications in the fermion sector with dimension-five

operators. The higher-order operators lead to an indefinite metric and a pseudo-unitarity relation for the

S-matrix. However, we show that the pseudo-unitarity condition can be promoted to a genuine unitarity
relation by (i) restricting the energies to the effective region far below the Planck mass and (ii) considering
stable particles to have a positive metric. In the context of the optical theorem, we focus on the one-loop
Bhabha and Compton scattering processes. We show that no ghost states get propagated through the cuts,
thus satisfying the unitarity condition. Further, we show that discontinuities of propagators are equivalent to
replacing physical Dirac functionals in the cutting equation. The physical Dirac functionals are defined to
select only mode solutions of stable particles. The provided extension of the Cutkosky rule may be helpful
for analyzing perturbative unitarity in higher-order diagrams.
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I. INTRODUCTION

Over the past two decades, significant progress has been
made in studying the possible breakdown of CPT and
Lorentz invariance in extension to quantum field theories
(QFT) and gravity. The combined efforts of theory, phe-
nomenology, and ultrahigh precision experiments have
allowed one to shape a robust effective framework known
as the Standard-Model Extension (SME) [1,2]. The SME is
an effective framework that accommodates the most general
parametrizations of CPT, local Lorentz, and diffeomor-
phism symmetry violations, extending both the standard
model of particles and gravity. The SME has established
stringent limits on Lorentz violations and has identified the
most promising sectors for detecting low-energy signatures
of quantum gravity [3].

Extensions in QFT are typically achieved by introducing
a privileged tensor that couples to both derivatives and
fields. The effective terms are kept small by a high degree
of suppression of the Planck scale. On the other hand, in
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gravity, the breaking of local Lorentz symmetry and
diffeomorphism has been searched more with the mecha-
nism of spontaneous symmetry breaking. In the case of
spontaneous symmetry breaking, the background fields
acquire dynamics and introduce extra ingredients, such as
massless excitations or Nambu-Goldstone modes [4,5].
The two mechanisms have been called explicit and
spontaneous symmetry breaking, respectively. In both
cases, a background field with or without dynamics
may arise by a nontrivial vacuum in a more fundamental
theory such as strings [6,7].

The effective field theories of the SME can be classified
according to the mass dimensions of the operators intro-
duced to describe Lorentz symmetry breaking. Specifically,
they can be divided into a minimal sector with operators of
mass dimensions up to four, and a nonminimal sector with
higher-order operators. Higher-order dimension operators
have been a natural extension to include effects at higher
energies in the effective framework. The exploration with
nonrenormalizable operators are given in several sectors of
the nonminimal SME: photons [8], fermions [9], and
neutrinos [10], and also in linearized gravity [11]. Several
works study radiative corrections [12-14], vacuum
Cherenkov radiation [15,16], and explicit diffeomorphism
breaking in gravity [17-19] to mention some.

A potential drawback of higher-order operators is that
they may lead to the nonconservation of probability and to
the loss of unitarity of the S-matrix [20]. However, it has
been shown that there is no inherent contradiction in
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having unitarity conserved, as certain prescriptions intro-
duced by Lee and Wick can be followed [21,22]. The basic
idea of the Lee-Wick prescription is to restrict the
asymptotic indefinite complex vector space, so as to
consider only positive metric particles to be stable. In this
work, we discuss the main ingredients and the principal
assumption under which an indefinite metric arises and how
it leads to the modification of the unitarity equation for the
S-matrix, sometimes called the pseudo-unitarity relation. In
recent years, many approaches have been developed to deal
with the issue of unitarity conservation in Lorentz and CPT
violating theories [23-25]. Using similar cutting techniques
it has been possible to factorize amplitudes for hadronic
processes; see [26]. The connection between the preserva-
tion of unitarity and Lorentz violation has been around for
many years. A few years after the works of Lee and Wick,
Nakanishi pointed out that a modification in the contour of
integration in Feynman diagrams may lead to the loss of
covariance [27,28]. This may result since momentum
remains real, while in some regimes, the energy can become
complex. Some further discussions on this context can be
found in [29].

Recently the C-even part of the Myers and Pospelov
model [30] has been studied for testing perturbative
unitarity at tree level [31]. Considering the Compton
scattering process at tree level, it was shown that unitarity
is preserved. Here we extend the analysis to include the
next natural step, which is to study perturbative unitarity at
one-loop order. To implement the generalization, we focus
on two diagrams contributing to the one-loop Bhabha and
Compton scattering processes. We take advantage and use
several expressions that have been derived, including the
dispersion relation, their mode, and eigenspinor solutions
in [31].

The organization of this work is as follows. In Sec. II, we
obtain the Myers-Pospelov timelike model starting from the
generalized mass dimension fermion model of the SME. In
Sec. III, we recall the dispersion relation, their mode, and
spinor solutions that we have found previously in [31]. We
discuss the interaction term and use it to compute the matrix
elements of the S-matrix. Further, we provide a closed
formula for the pseudo-unitarity relation in the presence of
an indefinite metric. In Sec. IV, we focus on the one-loop
Compton and Bhabha scattering diagrams to study the
preservation of unitarity. We use the perturbative tool of the
optical theorem and check that no ghost degrees of freedom
are propagated through the cuts of amplitude diagrams.
Section V contains some further comments and a summary
of our results.

II. MODIFIED FERMION SECTOR

Our starting point is the Lagrangian density of the
fermion sector of the SME [9,10]

Lsve = (i7", — M)y, (1)

where all possible minimal and nonminimal contributions
that break CPT and Lorentz symmetry can be expanded in
terms of the 16 Dirac matrices

N ~ PPN 1.

[ =yt + %y + d"ysy, + e + if"ys +§9”"6m (2a)
and

o I TH I L g 2
M =m+m+ imsys + a'y, + 7/57/,44'51‘1 o, (2b)

where the effective derivative operators ¢, a* , m, nis, H"
are CPT even, while &* f* % G#, b" are CPT odd.

We are interested in making the connection with the
Myers and Pospelov (MP) model [30], which contain
dimension-five operators. Hence, we turn off several
effective terms and retain

™= 7, (3a)
M =m+a®my, + b Mysy,, (3b)
with
~ m
G = o 0)2n*, (3¢)
PO =2y 0)*n*. (3d)
Mpy

Considering the operators (3a) and (3b) and replacing in
Eq. (1), we arrive at the fermion MP Lagrangian density

Laip = (i — m)y + mi (nf + maghys) (n - 0V, (4)

where n# is a preferred four-vector responsible to break
Lorentz symmetry, myp, is the Planck mass, and 7, , are
coupling constants. Also one can show that #; is charge
conjugation odd and #, charge conjugation even.

The free equation of motion is

(ia—m+mim<m¢+nms><a-n>2)w<x>=o. (5)

Using the plane wave ansatz y(x) = [ d®ky(k)e=** the
dispersion relation becomes

(p* =m*=2g,(n-p)* +n*(gi —g3)(n- p)*)?
—4g3(n- p)*D(n, p) =0, (6)
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where we define g :=-1-, g,:=-2 and D(n,p):=

mp, P
(n-p)* = p*n’.
In this work we utilize the chiral representation for Dirac
matrices, 1i.e.,

0 UM —Hz O
= 20 ) 5= o o) (7)
2

with ¢# = (1,,6), 6# = (1,,—-06), and 1, the 2 x 2 identity
matrix. For the metric signature in Minkowski spacetime
we employ the mostly minus sign convention (+, —, —, —).

III. THE TIMELIKE MODEL

In this section, we provide the basic properties of the
fermion timelike MP model. We take advantage of the
dispersion relations, their modes’ solutions, and the eigens-
pinors presented in [31]. We additionally discuss the
interaction term in our modified QED model and present
a detailed derivation of the unitary equation satisfied by the
S-matrix in an indefinite metric theory.

A. Dispersion relation and spinors

We set the background four-vector in the pure timelike
direction n* = (1,0,0,0) and turn off the charge conju-
gation odd sector with #; = 0. With these choices, the
Lagrangian (4) takes the form

L v = y(ig — m)y + g0yoysw. (8)

C-even

The dispersion relation can be found from Eq. (6) to be

(p5 = PP = m* = g3p5)* — 4g5pp| PP = 0. (9)

Let us introduce the quantities

A% (p)=:p3 — |p|* = m* — $3p —2g,P3|P|.  (10a)

AZ(p)=p§ —|P|* —m? — pi + 29:03|P|.  (10b)

In terms of these quantities the dispersion relation can be
written as
N (p)AX(p) = (P -

|BI? = m* = g5p§)* — 495051 PI*.

(11)
The solutions of the equation A% (p) = 0 are
1= 20p| = /(1 = 20ulP|)? - 43
W = 5 s
29,
1=201B| + /(1 - 22| BI)? — 4633
W, = 5 , (12a)
29

and the solutions of the equation A% (p) = 0 are

L+ 205/pl = /(1 + 20| PI)? - 43E3
1+ 22| pl + /(1 + 205P])? - 4633
W, = P . (12b)
92

We also have the negative mode solutions —w;, —W,

@y, —W,, where E, = +/|p|*+m*. In [31], we have
shown that modes =W , correspond to heavy ghost modes
while £, can be associated with perturbative modes of
standard particles.

In Sec. IV, we study the unitarity of the model and will
need to examine the modes in the complex py-plane. The
poles w; and W, exhibit a peculiar momentum-dependent
behavior. As the magnitude of spatial momenta |p|
increases, w; moves in the positive direction of the real
axis, while W; moves in the opposite direction. The two
modes coincide at

1 — 4g3m?

: 13
10, (13)

> J—
|p|max -

where they both take the value zigz /1 +4g3m?, and for

higher momenta, they start to have an imaginary compo-
nent. For complex @w; and W/, the first solution moves
downward in the imaginary axis, while the latter heavy
mode W; moves upward (see Fig. 2). The solutions @, and
W, remain real for all momentum values. The negative
modes behave similarly, with the only difference being that
when they become complex, the solution —@; moves
upward, while —W; moves downward.
We can write the dispersion relation (11) as

AL (P)AZ(p) = 65(pg — @) (p5 — W) (PG — @3)
x (pg—W3) =0. (14)

The positive-energy eigenspinors for A% (p) = 0 are

9217(2) 17 ) (15)
p Po=w

ul(p) = (
vV Po+ 9205 + Ip &)

U (p) = < V' Po— 9205 — |PIET) Ii ) ’ (15b)
V' po+ 9205+ [BIET(B)
and for A2(p) =0 are
0= %05 + |PlET (=P)

, 16
)(_ﬁ)>in2 ( a)

@(p) = ( p
po + 9203 — |BIEC
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UO(p) = ( V'Po =925 + |€|§(‘)(—1j)> . (16b)
VPo+ 005 = PIET(=P) ) poew,

The negative-energy eigenspinors for A% (p) = 0 are
V' Po+ 905+ 1PIED (-p
M(p) = ( Po 921702 |PJ€ ( Pj ) . (17a)
—V/Po= 9005 1PIE(=P) ) pyea,
I (=) ) . (17b)

~v/Po= 9205~ 1PIET(=D) ) ow,
and for A2(p) =0 are

Vpo + 905~ 17l
o D(p) = < Po+ 9205 — |plET) } (18a)
~V'po = 9205 + 1PIE(B) ) o,

\/ 2 1 plE)

V' po + 920§ — | pIED)
@ (p) = ( po+ 9205 — |PIE 3 > (18b)
~v/Po =05+ |PIEH (P)
Above we have introduced the bispinors &+ ( ), given by

_ 1 Pl +p

£ :—< ) 19
= A i)
R 1 p' —ip?

5(—) = < R > 20
T T AN R A

which satisfies the properties

(P 3EX () = b€ ().
(P 3)EH(=p) = ~|pIEH (D), (21)
and the orthogonality relations
EDN(p)eH (p) = £ (B)E (B) = 1.,
[(p)eD(=p) = £ (=p)eH)(B) =0,  (22)
together with
- N G-p
(+) Hipy==(1 ], 23
3 =5 (14550). @)
. . G-p
E (=)@ (=) ==-[1= . 24
e P -m =5 (1-50). e
The modified propagator is found to be
_iF(p)
$r(p) =57 25)

where
F(p) = M(p)N(p)N(p). (26)
D, = NX(p + ie)A2(p + ie), (27)

with

M = p—m— g,p¥vors. (28a)
M = p+m— g,p3rovs. (28b)
N = g+ m+ gprors. (28¢)
N = g —m+ gp3rors. (28d)

By taking into consideration the ie prescription in (10a)
and (10b) the pole structure is described by

NL(p +i€e) = =g5(po + @y — ie)(po — w; + i)

X (po+ Wy —ie)(po— Wy +ie),  (29a)
AZ(p +ie) = =g (po + wy — ie)(po — w, + ie)

X (po+ Wy —ig)(py— W, +ig).  (29b)

Note that negative and positive solutions are placed above
and below the real axis, respectively, in the complex p-
plane. We also have the identities

2(p* = = G318) e, =~ (@7 = @3) (@7 = W3), (30a)
2(p2 - m2 - g%pg)po:wz = ( - wl)( ) (3Ob)
In Sec. IV we use the expressions
_ F(wy.p)
uM(p)ah(p) = ! : (31a)
g0} —3)(W3 - o)
_ F(@,. p)
u®(p)a® (p) =~ : . (31b)
(0] = 3) (Wi = o))
- F(_w ’ _1_5)
v (p)aW(p) = - 1 . (3l¢)
% (0] —a3)(W3 - o)
F— -
V@ (p)p@(p) = (02 =p) (31d)

gz(a’l - a’z)(Wz )

The demonstration of the above relations are not difficult;
however, we proceed to prove the first one with the other
ones following similarly. From (28c) and (28d) we find

NN = p?> —m* = 3p§ + 2003 pir'vors.  (32)

and evaluated in the mode w;
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piy 707/5)' (33)

(NR), o = 2g:03]F) (1 +2hs

From (23) we have

(NN) -, = 40207 PIED (P)EH(B). (34)

On the other hand, working directly with the eigenspinors,
we can prove that

u (p)a) (p) = (M), §(B)ED(B).  (35)

and hence replacing (34) above and using (p? —m? —

FBPG) po=w, = 20207|P| and (30a), we have the relation

MNN), _
D) (p) = e (3
ulV(p)ut(p .
(@] = 3)(W3 - o)
A detailed derivation of the previous expressions,
including the eigenspinors, the propagator, and the con-
sistency of the pole prescription can be found in [31].

B. The QED model

Consider the higher-order Lorentz-violating QED that
arises by performing the minimal coupling substitution in
the modified MP fermion Lagrangian (4) and coupling to
the Maxwell Lagrangian

Lopp = (i —m)y + m%lv'/(mﬂ + mafhys)(D - n)*y

1

--F
4

Pl (37)
where D, = 0, + ieA, and F,,, = 9,A, — J,A,, is the usual
field strength tensor. The local gauge invariance of the
Lagrangian (37) can be checked by using the gauge
transformations of the fields

A, (x) = A,(x) + 9,A(x), (38a)

—iel(x) (3 Sb)

W(x) = ey (x).

and the induced transformations for the derivative terms

Dy’ = e‘iMD#lp, (38¢)

DDy = e “*D,D,y. (384)
We can always choose to work in the axial gauge where the
gauge field is imposed to fulfill the relation A - n = 0. This
choice is advantageous, since we arrive at the usual QED
interaction, and so is the one we use throughout this work.

Considering the restricted C-even part and timelike fermion
sector produces the modified QED Lagrangian

. _ L1 )
'C,QED:W<l¢+eA_m)w+92W7075W_ZFﬂuF”' (39)

C. Indefinite metric theories

Here we briefly discuss the general aspects of the unitarity
of theories that have regular and indefinite metric 7.

Consider a complex vector space F with vector basis
{la)} € B and metric

Nap = (). (40)

We assume the metric not to be positive definite, so in
principle each element 7,; may have a positive or neg-
ative value.

A representation of the identity operator is

1= la)ng(pl. (41)

a,peB

The matrix elements of an arbitrary linear operator U are
defined as U, := (a|U/|f3), and the unitarity condition for /

is the requirement that the linear transformation leaves the
inner product invariant, i.e.,

(alB) = UalUp) = (ald'U|B). (42)

or in terms of the matrix elements written as [21,22]

71{1/)’ = Z<0‘|u”a/>’7;}y <ﬂ/|u|ﬁ>
ad . p

_ it -1 77
- Z Uaa’ na’,lﬂ’ U/’"/} ’ (43)
a/ ’ﬂ/

where we have used (41). In matrix notation, we have the
expression

ﬁTn_lf] = (44)

for the pseudo-unitarity condition in the presence of an
indefinite metric #. For a theory with an indefinite metric
we should expect to have an evolution operator U to have
this property. However, the inner product cannot be
interpreted as a probability amplitude, as it can only have
a meaningful interpretation in the positive metric sector.
Then, if ¢/ stands for the time evolution, we can write

U=T+iT, (45)

or in terms of matrix elements, by projecting the previous
equation on (a| and |f3)

015012-5
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Uaﬂ = Nap + ii(lﬁ ’ (46)

where the 7 is the transition matrix (or S matrix) for a
dynamically evolving state. So, the condition of the
invariance of the inner product becomes, in terms of matrix
elements,

—i(T =T = Ty 17 (47)
The diagonal part of this matrix equation can be written as

20m(T),, = (T'7'T)

o (48)
which is the pseudo-unitarity version of the optical
theorem.

Now, let us write all in terms of a basis buildup of
physical particles and ghost states, where any state of the
basis is of the form

|a> = |plvrl> ® |p2,72> ® ® |pN’rN>
® |91.51) ® |92.52) @ -+ ® [quss Sm)» (49)

where p;, r; are momentum and other quantum numbers of
physical particles and g;, s; are momentum and other
quantum numbers of ghost. Impose one-particle and ghost
states being orthogonal,

<Pi7 ri|pj7 rj> = Ni53(l’i - Pj)ér,-r,’ (50)
(g si|6jv Sj> = —Ni(SS@i - ’6?,‘)5s,.s,., (51)

and
<Pi, ri|5j’sj> =0, (52)

with N; and \V; positive normalization constants. From this
basis, it is easy to build up the matrix elements of #. The
choice of N; = N; = 1 simplifies the expressions because
in this case we have that 77, = &1 and then, ! = 7. In the
rest of this section, we use this choice for simplicity.

Following the Lee-Wick prescription, only states with
particles will be considered as asymptotic states. So, it is
convenient to split the space of states, F, in two orthogonal
subspaces,

F=VreV.
The first one, the sector spanned by the physical particle

states, which we call the physical sector, V7, is generated
by the basis BT,

B ={[p1,r1) ® |p2.72) ® -+ ® |pw- rN>}p,-,rl-,M? (53)

and the unphysical space, V7, its orthogonal complement,
which is spanned by 7, is given by ghost particle states.

The interpretation of probability amplitudes of the inner
product is meaningful only for the physical sector V. So,
pseudo-unitarity of time evolution is compatible with
probability conservation if restricted to the physical sector
where one has the standard unitarity relation

2Im((phys — phys)) = |(phys — any phys)[>.  (54)

Our pseudo-unitarity condition, however, restricted to
physical state @ € V' is

ZIm(Ta—m) = Z |Ta—>ﬂ|2 + Zrlylea—y

peBt yeB”

2. (55)

which is just the standard optical theorem if the last term
vanishes. So the conclusion is that probability is conserved if
and only if the transitions between physical states and
nonphysical states always vanish. In this case, the proba-
bility is well defined and unitarity can be realized in the
theory.

IV. ONE-LOOP DIAGRAMS

As demonstrated in the previous section, the physical
S-matrix evolves unitarily if the last term in Eq. (55) is
zero. In the following section, we investigate whether this
condition can be satisfied in our modified QED (39). We
focus on the two relevant 2 — 2 scattering processes being
the one-loop Bhabha and Compton reactions. In particular,
we focus on the diagrams depicted in Figs. 1 and 3. It is
worth noting that in the forward scattering processes under
consideration, the corresponding diagrams in the #-channel
have zero imaginary part. This is because the virtual
momenta involved are proportional to the difference
between incoming and outgoing momenta, which is zero
in our forward scattering case. As a result, there is no
branch cut singularity in the spatial integral. A similar
result can be obtained in the self-interacting A¢* model in
the u and ¢ channels [32].

It is important to note, however, that there are additional
contributions to the optical theorem from diagrams involv-
ing more photons and fermions internal lines in both the
Bhabha and the Compton processes. For the present

€+(p2,7’) (=h2=q-p7) €+(p277.)
p
—
e” (p1,s) (k1 = q,9) e (p1,5)
FIG. 1. The one-loop Bhabha scattering process e"e™ — e™e™

and the cut diagram of the right-hand side of Eq. (55) indicated
with the vertical segmented line.
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analysis, we will not consider these contributions and leave
them for future work.

A. One-loop Bhabha scattering

We start with the electron and positron forward scattering
reaction e (py,s) + e (p2, r) = e (p1,s) + et (py, 1)
(see Fig. 1).

The amplitude is given by

My = (_1)(?(’)2)(_’.67’”)“‘?(171))<p;ij7rﬂ;€>

x / (621716)14 Tr[(—iey”)Sr(q — p)(—iey*)Sr(q)]

_inﬂﬂ =8 —iev°)v"
< ()@ e o). G0

In terms of the propagator in (25), and the currents

Jill(pl7p2) = T]r(pZ)yﬂus(pl)v (578‘)
J5(p1.p2) = (p)y*v"(p2) = [T (p1. p2)]*.  (57b)
we write
MY = i o ()
F _(p2+i€)2 1 P1,P2 2 P1,P2
g Flg—p) Flg)
dqgyT —y,—|. (58
x/(zﬂ)47£(]) 90 r[y,, Dq—p Yu Dq ( )

The poles in the complex g,-plane are dominated by the
quantities

1 1 1
Dq B 93 s=1,2 [(Clo + o, - 56)(% — 0, + i€)

1
v mowa

and

1 1 H{ 1
q-p 935:1.2 (QO—Po+55—i€)<%—190—5s+i€)

D

1
X — — bl
(g0 — po + W —i€)(qo— po— W, + ie)}
(59b)

where we introduce the notation ¥ = x(g — p). Let us focus
on the last integral in (58)

1
1) = f dqoTr[y,F(q = p)r,F(q)]
c D

q-r—49q

(60)

To compute the integral we close the contour of integration

in the lower half-plane with the curve C!!) enclosing the
eight poles

g, = w; — i€,

g =Wy — e,
gz = W, — i€,
qs = Wy — i€, (61)
and the displaced ones
qs = po + @y — i€,
46 = po + W, —ie,
47 = po + @ — i€,
qs = po + Wy —ie, (62)

as indicated in Fig. 2.
The integral is

8
1) =271y Tl Flqg—p)r,F(q)l, _,Res(q;).  (63)
i=1

- ~~.
- ~
S

~~.

1

1 —

! _—(po+Wh) —(po +@2) \

(po +Wa) —(po+@1) (

i o8 oe 0 ° |
v W e e . ARe(qo)

< Ll 1 Ll »
«< > — >

? w2 w1 Wy Wy .'

\ e o e 0 oo ___ie o

! po +Waipo +T1 P0+W1P0+VVZII'

1

\ /

\ K

\‘ 7

\
N r
\ ’
. /
\ ’
N ’
\\ 4
s e

.
\\\\\\
~~~~~~~

FIG. 2. The poles in the lower half-plane are displaced with
the —ie prescription, while those in the upper half-plane are
displaced with the ie prescription. According to the explanation as
part of Eq. (13) the poles ¢, ¢, and ¢s, g take an imaginary
component beyond the momentum value |p|,. and |§ — P|maxs
respectively. At these values, the poles ¢;, g5 move downwards
and the poles g5, g¢ move upwards parallel to the imaginary axis as
indicated in the zoom region.
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where we denote Res(g;) the residue at g; of the singular < 1 ) H C(wy)
part DD, D . A direct calculation gives D, - 92 2 12 —w; +@,)(po— oy + W)’
1 (66a)
Res(q1) =
2gzwl (a)1 WZ)( - a)%)(a)% - W%)
1 ( 1 ) 1 (W)
x (Dq p) ’ (648') Dq—P 90=9> gg s=1 2( -W+ as)(pO -Wi+ Ws) ’
P77 q0=q
(66b)
Res(g:) 1
es(gr) =
2;W1 (Wi = 07) (W] — 03)(W] — W3) ( | ) 1 ()
- < 1 ) ) (64b) Dy-p q0=45 géz‘Azl 2 (Po = @y + @) (po — @y + W) 7
D’I‘F 90=49> (660)
Res(gq3) = !
B 2 (@] = o) (@3 — W) (0} - W) ( ! ) 1 I1 U _
< 1 ) Dq_P q0=44 g‘Z1 s=1 (Po - W2 + a)?)(po - WZ + Ws)
X , (64c)
D‘I‘P q0=43 (66d)
Res(ay) = 1 with
25W2 (W3 — o) (W3 — ) (W3 — W1)
1 1
: 64d) ()= —
% (Dq_p)qﬂ_q4 (64d) (@, = W) (@, —@,) (@, —W,)(po— x — @, +ic)
L 1
and (Wi =@)) (W) =@,) (W, = W,)(po—x =W, +ie)
1 + 1
Res(gs) = 2080, (@ — W2)(@? — @2)(@° — W2) (@2 =@ ) (@ = W) (@, = W1)(pg — X — @, + i€)
1
1 +-= v — .
x (D_> ’ (65a) (Wy—@)(Wy = W) (Wy—@,)(po—x — Wy + i)
47 qo=qs (67)
R B 1
es(gs) = 2H3W(WF — @) (W3 —@3) (W3 — W3) Let us consider the identity
)
X <— , (65b) /1 ,
Dq G0=4s xtie P(;) + 171'5()(), (68)
1
Res(q7) = 2gim, (@3 — @2) (@2 — W2) (@2 — W3) where P denotes the principal value. The contributions to
: the imaginary part of the scattering amplitude are
X (D_> , (65¢)
47 qo=q7 1 Im( 1 ) __T T |: 5(]90—601 61)
_ D, ,) _ 2, (@3 — W) (@02 —@3) (@07 — W3)
Res = = q-p/ qy= 1 1 2
) 2 W= W - ) (W - W) m
1 + 5(po— w1 =W,)
() (650) W, (W5 —~7) (W3 ~3) (W~ 73)
1o 8(po—w =)
where we have eliminated the ie where it is not relevant. 2w, (@3 — @1 ) (@3 — W) (@3 — W3)
We consider p, to be positive, and hence the last 8(po—w, —W,)

four terms above do not contribute to the amplitude’s

+—= — — —
W3 (W3 —a}) (W3- W) (W3 —a3) |

discontinuity or imaginary part. Decomposing in a partial
fraction the relevant contributions come from

(69a)
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1 5(po—W; -

@)

(o).l o), il
Div) gy 921201 (@1 = W1)(@] —@)) (@ ~W3) Dyp) geg 6 120(@ - W}) (@} —@3) (@] — W3)
+ = 5(p20 VZI Vgl) — i 8(po—Wr—W,)
2W, (Wi —ah) (W3 —a@3) (W} - W) 2W, (W3 —a) (W3 —a2) (W}~ W3)
5 6(120_?/1 __2 ) — n 8(po—Wr—m,)
2, (@, —wy) (03 — W) (@3 - W3) 2w, (@5 — &%) (03 — W3) (@03 — W3)
to== 5(P20 _—VZI —_‘422)_2 ) ] + 8(po =W, =W,)
2Wo (W3 —ap) (W3 — W) (W3 —@3) 2W,(W3—@3) (W3 —=WH (W3 -@3)]
(69b) (69d)
Im< 1 > :_ﬁ{ 8(po— @, —@)) -
Dyp) 4y=as 9 120, (@; - W1) (@] —@3) (@] — W3)
5( _W)) In principle, some contributions depend on deltas involv-
— Po— 2 — ! — ing ghost modes, as seen in (69a)-(69d). However, these
2W1(W a’l)(W —@3) (Wi -W3) contributions demand an energy of the order 1/g,, which
5(po—wy—5) lies far beyond the region of validity of the effective
2w, (@3 — o7) (@3 Wz)(_2 W3) theory. Hence, the deltas involving a W, or W, , mode
5(po— @y —TW,) vanish; in other words, the initial p, = w, + @, cannot
+ — Po 22 22 T ] balance the energetic restriction given by these deltas so
2W,(W3 —@1) (W3 = W1)(W3 - @) we disregard them. In this way, we are left with the
(69c¢) contributions
|
—e* g Trly, F(w) = po, 4 — P)v,.F(w1, q)]
2Am(My) = = Ji(p1 p2)I5(p1. p )/ (27)? { - Y
! FONTh R T (27)* 2g30, (0] = W) (0f — 03) (@] — W3)
3(po — w) — @) 8(po — w0 — )
x ) W2 ) W2 2o (@2 — a2 —z_Wz 2 _ W2
g0\ (@7 — W1)(@; — @3) (@7 3) 26,05 (0; — w7) (@3 D@3 3)
Tr[y, F(wy — po. G — P)r, F (02, G)] ( 8(po — w, — @)
2g50(w3 — o) (@3 = Wi)(@3 — W3) \2g3w, (@] — W) (@] — @3) (@] — W3)
+ 5(]70 — Wy — EZ) >:| (70)
293w, (@3 — 1) (@5 — Wi)(@3 — W3)

We introduce the variables k(l), kg followed by delta functions as follows:

4

e 3 T -®,,4— P ,q
e e T B B
(k°—w1) (K —) Tt[y, F(=@5.4 = P)1,F(@1.q)]
25w, (@7 = W) (@] —@3) (@] = W3)  2g301(wf — W) (0] — @3)(0] — W3)
(ko—wl) (k3 - @) Trly, F(—=®1.4 = P)1,F(@1.G)]
2050, (@3 — @7 ) (@3 = W) (@3 = W3)  2g300; (w3 — w7) (@3 — W) (w3 — W3)
(ko—wz) (ko_w_l) Trly, F(=5.G — p)y,F(®,q)]
25w, (@] = W) (@] —@3) (@] = W3) 230 (3 — }) (w3 — W) (w3 — W3)
(kY = @,)5(k3 — @)
245727 ) - W) @~ ) =

and then by using

01
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an = | s | G 0B =E - (72)

and defining k1 =g, k2 P — ¢ we write

e &k, [ d*k Tr[y, F(—k, —k, )y, F (K9, k
21m(MY) = = A1 ps(ores) [ S [ a5 (0 -k~ k) tr F(oky —ho)r Pk Ky

2n)*) (@n)? 2g50, (0] — Wi)(@f — @3) (0] — W3)
(27)?5(kY — o01)8(k3 — 51) Trly, F(=K, =k2)7, F (K. k1))
2g3w, (@7 — W1) (@7 — @3) (@7 — W3) 293501 (0) WZ)(CUI - a3)(@ % - W%)
(27)°6(k) — 0,)8(k3 — @,) Trly, F(—k3, —kz)h (K9, k)]
2g5w, (@3 — @) (@5 — W) (@5 = W3) - 2g30: (w3 — @7) (03 — W) (w3 = W3)
(27)*8(k) — @,)8(k — @) Trly, F(—k3, —kz)i’ﬂ (K. k1))
29351 (E% - W%)(E% - 5%)(5% - W%) 293“&(“’ - a’l)( w; — 1)(‘0% %)

(27)*5(k} — wz)5(k° — ) }
2950, (@3 — @) (@3 = Wi)(@3 — W3)

(73)

Now, we will relate the amplitude with the total cross section of the cutting diagram. To archive this connection, we recall
the relations (31a)—(31d) and arrive at
! d*k d*k Trly, ") (k)5 (ky)y, V) (ky)uV) (ky )]
2m(MP) = S 7 (py. pa) T4 (1, /—1/ 5 (2m) ' (p — ks — k : -
m( F ) p4 l(pl p2> 2<p1 p2) (271_)4 ( >4< ) (p 1~ 2) 29%0)1(0)% _ W%)
% (27)*8(k}) — @1)8(k — @) Tr[}’u ) (ky) v (kz)if ulh) (ky )ﬁ(l)(kl)] (27)°6(k) — 0,)8(k3 — @,)
2g3w, (@07 — W?) 2¢30, (0} — W?) 293w, (@5 — W3)

Trly, 0 (ko)0) (ko )y, u®® (k1)@ (k)] (27)28 (K] — 3)3(kS — @)

250 (3 = W3) 2g3@, (@} — W?)
Trfy, v® (k)8 (ko )y, ()5 (k1)) (22)°8(k = w02) (k3 — @)
+ 25w, (w} — W3) 2620, (@2 — W2) ] . (74)

|
4
At this point, it is convenient to define a physical delta 7y ( M ) J “(p1. p2)4(p1s pa)

where we will exclude the ghost frequencies
d*k d*k
/ﬂ);/ 2 (203 (p k= o)

SPhYS) (A2(pg)) = Z T A2 : (75) X [Tr[n T(ka) 0" (ka )y, (y )@ (k)]
physa 5.7=1,2
x (220000 (A3 (1)) 670
A2(K 0(k3)| 77
for s = 1, 2 with the new notation A? = A% and A} = A2 and X (A7(2)00)0(K2) 77)
and where p, are the zeros of the function A2( Po)- In our o
case, we have 2Am(M) = =3 1 (p1. p2)J5(p1. p2)
P
d*k d*k
x / 14/ 2 (2m)*6W (p — ky — ky)
6(po = ;) =8(po + ) @) (2”>
5 (A2 (o)) = pog ) (76) e
20, (WF - o) xS (@ k)7 (k)7 (e k)
5,7=1,2
x (27)260Phys)( AZ(KY ))8Phys)
. Thi.s allows us to write the left-hand side of the cutting x (A2(K 9))6(k ) ( kg)} (78)
quation as
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Finally, we can recognize the scattering amplitude for the
cut diagram using the symmetry of the (u,v) indices

iﬂ(l) _ W(pz)(_ieyﬂ)w(m)] <pjz”;€)

x [ (ky ) (—iey")v" (=ks)]. (79)

This proves the optical theorem and the unitary evolution of
the S-matrix for the one-loop Bhabha scattering diagram

/a’kl dk2

X \M I2(2ﬂ)25("hys> (AZ(K9))5Ph) (AZ(K9))
X O(K)O(KY). (80)

2Im(M 27)*6% (p — ki = k)

B. One-loop Compton scattering

We continue with the one-loop Compton scattering
process e (p,s) +y(k) = e (p,s) + y(k) of Fig. 3.
We have the amplitude

. (1S . iF(p')
M = (Dl 0 () ier) (57
P
d4 iF ’ . )
[ S ey T ey S
(27) Dy_, q- +ie
iF(p' . .
(5 (mier e (p)en (), (81)
p/
By defining the quantities
F(phy°u (p)e,(k
J(p. k)= () D( ) (), (82)
P/
“(l) i’ P E /
F(p.k) = KT WPIEP) (83)
D,
we rewrite as
v(k) q (k)
oy f
/ - rta
e (p,s) e (p, )
FIG. 3. The diagram representing the scattering process
ye~ — ye~ and the cut diagram produced by the vertical

segmented line.

&g
/\/l(z) = —ie*J*(p, k)/(

r"E(p' = a)v,
x [ d —J k 84
[ dan (L k(8

Consider the last integral

F(p' -

72 _/dqoz(p.—q)’ (85)
c (¢* +ie)Dy_,

1
I *‘I
2 - we have

where for the singular part of the fermion propagator

we have eight poles and for the photon part

two more (see Fig. 4).

To compute the integral, we employ the Cauchy residue
theorem and consider the contour of integration C?) that
closes from below, as shown in Fig. 4. The contour encloses
five poles, and we obtain

5
2 = _2gi Z[F(p' @)lg—qRes(qi),  (86)
with
q, = |q| — ie, (87)
4= py+ o — (83)
93 = po+ @y — i€ (89)

A

e Earty
=
+o
=

FIG. 4. The contour C® encloses the poles gy, g2, q3» q4» G5
and at the critical energy the two poles ¢, and ¢, become
complex, as indicated in the figure.
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s = po+ Wi —ie, (90) Res(q3) = 1
q3) = PO S N2 =
_ 2g3an (@ - a3) (Wi — @3)(W3 - @3)
qs = py + Wy —ie (91) 1
“Thrm-arpramra-2e Y
with the residues of the singular panm at x denoted 02 0T
by Res(x).
A calculation gives
Res(gs) = 1
R €S(q4 — =2 =2
es(a1) 1 204, (@ - W) (@3 - W) (W3 - W)
_ 1
T A A |3 ~ Iz o X = - — - —, (95)
26514|(po — 1] + @1)(pg |161| + W) (Pl + Wi =13 (ph+ W, + |G| - 2ie)
X g ~ .
(P = 14|+ @2)(po — || + W2) (o — 4] — @1 + 2ie)
1
T p o : / >~ : 1
(po — 1q] — Wy + 2ie)(py — [q| — @, + 2ie) Res(gs) = s
1 ©2) 2g3W, (@} — W3) (Wi — W3) (@} — W3)
X ~ ’
(P — 13| = W, + 2ie) < (9
(Po+ W2 —14])(py + W2 + |q] - 2ie)
Res(g,) :
€s(gr) = = — = — =
2 4 W2 _~2 2 _ ~2 W2 2
g (Wi a)1)(w21 o) (Wa—an) Considering that p{ >0 only Res(g;) has poles that
X —— - —., (93 contribute to the discontinuity. We use the partial fraction
(Po+ @1 = 14])(ph + @1 + |q] = 2ie) decomposition for the relevant poles obtaining
|
1 1 1
Res(ql):24ﬁ — — - — .
95141 =15 (Ph = 1| + @:) (= 1G] + W) L@y = @2) (@1 = W) (@1 = W) (p = |G| — @y + 2ie)
1 n 1
(@) — @) (@3 = Wy)(@2 = Wa)(py — |G| — w2+ 2i€) (@1 = W) (@2 = W) (W) = Wa)(pg — || = Wy + 2ie)
1
S N )
(@) = Wa) (@, = Wp) (W) — W) (py — g| — Wy + 2ie)
|
Considering the expression (68) we have modes. This leads us to write the left-hand side of the
optical theorem as follows:
= 5(po— 14| — @)
Im(Res(q,)) = oA\ T
24314 20, (@] — a3 (a’j - W%)(w% - W%) ZIm(Mf))
L oph-lal-@) Fa o1
2 @ — ) @3 — W) (@3 — W3 = A1 (p. ) / n) =
2( (2)( | | )( ) 2) (2”)4 2| |
C] - Wi
+ AR VA HE (@,
_ 2050, (@} )( )( Wz)
_ (~Po—|‘]|—~W2)~ _ ] “F(@ Do — |- )
2W(@% — W3)(@3 - W3) (Wi - W3) P E@p = Dl 015 T, 0
(98) 2g3 (@7 — @3) (@3 — Wi)(@3 — W3)

We introduce the variables £ and k9 followed by the delta

We apply effective theory again to consider the possible
functions as follows:

contributions that involve intermediate states of ghost
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2Am(MP) = 7 (p. k)] / (;’732<2n>22|%

< [ aig [ oy -k -3

[W‘F(wl’p — )y, 5(k) —14])é (k0 o)

292601(60% - @3) (@} — W) (@} — W3)
_PF(@n. P = 910 (k° ~[4)5(k3 — @2)
292‘7)2((01 - w%)( 1)(0’% - W%)

x [J(p, k)], (100)

and then by using the same previous identity (72) and

defining k1 =q, k2 — g we write
|
2m(M;) = ¢l (p. ] (p. b))

2Am(MP) = e*[7(p. K)][T (p. k)]

4 4 4
X/ dk14/ dk24(27i) 54 (p
2n)* ) (27)* 2|k,
[yﬂﬂk&l?z)m(zn)zé(k?—|1?1>6<k3—5)1>
263, (@] — @3) (@7 — Wi) (@] — W3)
|k, )8 (K — @,)
— Wi)(@3 - W3)
(101)

—ky —ky)

yHF(KY, )y, (270)28(K) —

29505 (0} — @33) (@3

Now using the identities (31a) and (31b) we find

d*k, / d*ky (27)*8W (p' — ky — ky)
(2x)*

(27)* 20k
|k, )3(kS — @y)

o [7”“(1)(kz)ﬁ(l)(kz)h@”)zfs(k? -

2g30, (W1 — a7)

7P (k)i (ko) (22)°8(K) = K )5(kS ~ 2)

29%5)2(‘7‘/% - E)%)

Let us recall the physical delta definition and use the
fact that

2 g0y — O = ki)
5(ky)0(ky) = A (103)
and the identity
Z‘E 81/([7 = M- (104)
Pol
We obtain
2Im(M;~2)) = e*[J*(p, k) / d kl d k2
Pol r=1,2
X (277}45 WP — ki —ky)
x [rul) (ky e, (ki &g (ky )i (ky)y"]
x (27)26(k7)6PM) (AZ(K9))
O(k)O(KS)[J (p. k). (105)

Finally, we recognize the amplitude for the cut diagram as

]. (102)

M) = e 1) -ier) (o)

2(p)AL(P')
x [(—iey*)u(p)e,(k)]. (106)

We have the optical theorem satisfied for the one-loop
Compton scattering diagram

2Im(M'?) = / & ul d k2 27)*
PO] r=1,2
x 8W(p' —ky — k2)|/\/l |?
X (27)28(k3) 8PN (AZ(K9))O(KD)O(KS).

(107)

V. CONCLUSIONS

We have studied the unitarity of the S-matrix in a
Lorentz-violating theory of modified QED with higher-
order operators. As is well known, higher-order operators in
the Lagrangian density can lead to a potential loss of
unitarity, especially in loop diagrams. The reason is that
loop diagrams involve several off-shell virtual particles,
which under combination may respect momentum conser-
vation allowing high-energy modes associated with ghost
states to be propagated through the cuts in the perturbative
unitarity equation. This highly contrasts with the situation
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where conservation of momentum selects only particles to
be propagated in tree-level diagrams.

In our particular model, selecting the preferred back-
ground in the pure timelike direction leads to higher time
derivatives and implies a negative metric sector. We have
seen that the effective approach and the Lee-Wick pre-
scription can provide a unitarity theory. The Lee-Wick
prescription is implemented by imposing stable particles
to have a positive metric. A highlight of this work has been
to provide a decoupled unitarity equation restricted to the
positive metric sector. We have proved that the diagrams
under consideration are unitary since no ghost modes are
propagated through the cuts in the unitarity equation. A
generalization of the Cutkosky rule, at the one-loop order
considered, is possible by introducing physical Dirac

deltas defined to select only positive-metric solutions.
This extension can be useful in analyzing unitarity in
higher-order diagrams.
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