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The SuperKamiokande experiment tightly bounds the lifetimes of the baryon number-violating proton
decays. The decay widths for the nucleon to an antilepton and a photon are not so well-bounded
experimentally as lπ modes. Using an effective Lagrangian approach, we relate the decay widths of
N → lγ to the decay widths of N → lπ. Our result points out a factor of 103 suppression of the decay
widths Γðp → lþγÞ and Γðn → ν̄γÞ compared to the decay widths Γðp → lþπ0Þ and Γðn → ν̄π0Þ,
respectively. This result is independent of the model of new physics. Then, we investigate the dynamics of
N → lπ and N → lγ amplitudes at the tree and loop level in which scalar leptoquarks are mediators of a
new interaction. At the tree level, leptoquarks probe the physics beyond the Standard Model at a scale of
1016 GeV, while at the loop level, such decay can occur at a scale of 107 GeV.

DOI: 10.1103/PhysRevD.108.015011

I. INTRODUCTION

In the Standard Model (SM), the baryon number is
conserved due to an accidental symmetry, contrary to many
beyond SM (BSM) approaches that violate the baryon
number. Conservation of the baryon number is experimen-
tally tested in many decay modes, and it was found that the
proton is stable up to 1034 years [1]. The lifetime of the
decay p → eþπ0 is the most constrained among all decay
modes [2]. On the theory side, this decay mode was
investigated in detail within a variety of approaches (see
e.g., [3–9]). The authors of Refs. [3–6] used the effective
Lagrangian approach without specifying a particular
beyond SM (BSM) theory. The dimension-six operators
can generate the nucleon decays to pseudoscalar mesons
and leptons, as in [3–6]. However, they can be generated by
the higher-dimension operators or the dimension-six oper-
ators resulting from the loop diagrams [9,10].
The same operators inducing nucleon to antilepton and

pion decays are responsible for the radiative decay mode.
The first studies of proton radiative decays were done a
long time ago [11,12]. Recently the authors of Ref. [13]

reconsidered p → lþγ using light cone QCD sum rules.
The lattice QCD greatly improved the calculation of the
matrix elements for the nucleon to pion transitions [14].
They also provide the matrix elements of the relevant
dimension-six operators between nucleon and vacuum
state. The dimension-six operators with the flavor structure
ðuudlÞ and ðuddlÞ are present in both transitions. Namely,
we can use the lattice QCD knowledge of the form factors
present in N → π transition and the annihilation amplitude
N → l, and therefore reconsider radiative decays N → lγ
and relate their decay widths to the amplitudes for N → lπ.
Moreover, the authors of Refs. [15–17] suggested

explaining the difference in the neutron lifetime, measured
in the beam and bottle experiment, known as neutron decay
anomaly. They analyzed the neutron transition to a dark
fermion by mixing the neutron and the dark fermion. We
extend this approach to the transition of a proton to a
charged lepton or a neutron to an antineutrino. In Table I,
we list experimental bounds on the transitions we consider
in this paper. First, we consider the transition of the nucleon
to a lepton and a photon, in a general framework, based
on the transition of the nucleon to a lepton, due to the
dimension-six Lagrangian, which generates baryon number
violation. Then we consider specific examples of the
baryon number-violating models. The simplest extensions
of the SM are those with scalar leptoquarks. Scalar
leptoquarks can be easily incorporated in ultraviolet com-
plete frameworks (see, e.g., [18]). On the other hand, vector
leptoquarks can be treated as gauge bosons, and a complete
theoretical framework should be known if the loop
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diagrams are considered. In Sec. II, we present the
theoretical framework of our calculations. Section III con-
tains the leptoquark contribution analysis to N → lπ and
N → lγ decay amplitudes at tree-level and loop-level
transitions. Numerical results are presented in Sec. IV,
while Sec. V contains a summary of our results.

II. FRAMEWORK

First, we consider the effective Lagrangian approach as a
framework to describe the nucleon decay N → lπ and
N → lγ and then collect the inputs from the lattice QCD,
which enables us to relate the decay widths of the radiative
decays N → lγ to the decay widths of N → lπ.

A. Effective Lagrangian for ΔB= 1 transitions

The operators describing ΔB ¼ 1 transitions appear at
mass dimension six. Making their flavor structure explicit,
these operators for the first generation of quarks and leptons
can be written as

Ld¼6 ¼
C1

Λ2
ϵαβγϵilϵjkðQ̄C

i;αQj;βÞðQ̄C
k;γLlÞ

þ C2

Λ2
ϵαβγðQ̄C

i;αϵijQj;βÞðūCγ lÞ

þ C3

Λ2
ϵαβγðd̄CαuβÞðQ̄C

i;γϵijLjÞ

þ C4

Λ2
ϵαβγðd̄CαuβÞðūCγ lÞ þ H:c:; ð1Þ

where α, β, γ denote the color, i, j, k, l the SUð2ÞL indices,
[3,23–26]. The letters u, d, and l denote the right-handed
up-quark, down-quark, and lepton fields, whileQ and L are
the left-handed quark and lepton doublets, respectively. The
Λ parameter denotes a mass scale of mediators while Cj

couplings have zero dimension. Such a dimension-six
operator might arise from the tree-level or loop-level
interaction. The effective Lagrangian in Eq. (1) describes
both transitions N → lγ and N → lπ.

B. N → lπ decays

We briefly summarize basic results on p → lþπ0

(n → ν̄π0) decay amplitudes coming from Lagrangian in

Eq. (1) and their decay widths. To calculate the transition
amplitude, one must first determine the matrix elements of
the operators between the nucleon and pion. These inputs
are delivered by the lattice QCD. The standard lattice QCD
parametrization for the nucleon to pion transition is [14,27]

hPjOΓΓ0 jNi ¼
�
WΓΓ0

0 ðq2Þ − i=q
mN

WΓΓ0
1 ðq2Þ

�
PΓ0uN; ð2Þ

where

OΓΓ0 ¼ ðq̄CPΓqÞPΓ0q and Γ;Γ0 ¼ R; L: ð3Þ

In Eq. (2) uN is the nucleon spinor,N ¼ p, n. The operators
OΓΓ0

represent one of the operators in Eq. (1), Γ;Γ0 denotes
the handedness of the operators, as usual L;R ¼
1=2ð1 ∓ γ5Þ. In the proton decay amplitude, the form
factor WΓΓ0

1 ðq2Þ is small compared to WΓΓ0
0 ðq2Þ and is thus

neglected [14]. The decay width p → lþπ0 comes from the
first operator in (1).

Γðp → lþπ0Þ ¼ 1

32π

����C
p
1

Λ2

����
2

ðWLL
0 ð0ÞÞ2ðm2

p −m2
π þm2

lÞ

×
λ1=2ðm2

p;m2
l; m

2
πÞ

m3
p

: ð4Þ

As usual λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ cbÞ is
the Källén function. The appropriate replacements should
be done for the chiralities different from ΓΓ0 ¼ LL, as
introduced in Eq. (3).

C. Radiative decays p → l+ γ and n → ν̄γ

To approach nucleon decays to a lepton and photon, we
extend the procedure suggested in Ref. [17] for the radiative
decay amplitude calculation and write a general effective
Lagrangian for the nucleon radiative transitions. First, we
write down the effective interaction of proton and γ

Lpγp ¼ ep̄

�
=Aþ ap

4mp
σαβFαβ

�
p; ð5Þ

where ap is related to the proton’s anomalous magnetic
moment ap ¼ 1.793. For the neutron it is

Lnγn ¼ en̄

�
an
4mn

σαβFαβ

�
n; ð6Þ

with an ¼ −1.913. We allow the proton—positron (neutron
—antineutrino) mixing as suggested in Ref. [17]

Lpl
mix ¼ εpðp̄lþ l̄pÞ; Lnν

mix ¼ εnðn̄νþ ν̄nÞ: ð7Þ

with εp, εn being mixing parameters with a dimension of
mass. After the diagonalization of the mass matrices, in the

TABLE I. Experimental lower bounds on nucleon’s partial
mean lifetime.

Decay mode Γ−1=1030 yr

p → eþπ0 16000 [19]
p → μþπ0 7700 [19]
n → νπ0 1100 [20]
p → eþγ 670 [21]
p → μþγ 478 [21]
n → νγ 550 [22]
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limit εp ≪ ðmp −mlÞ or εn ≪ mn such interaction leads to
the contributions [17]

Leff
p→lγ ¼ −

ape

4mp

εp
mp −ml

l̄σαβFαβpþ H:c: ð8Þ

In the case of n → ν̄γ decay, ap should be replaced by an,
as well as masses of proton and charged lepton by masses
of neutron and zero mass of the antineutrino

Leff
n→ν̄γ ¼ −

aneεn
4m2

n
ν̄σαβFαβnþ H:c: ð9Þ

The numerical calculations of radiative decay amplitudes
rely on the lattice QCD calculation of the matrix elements
[14,27,28]

h0jðudÞRuLjpi ¼ αpPLup; h0jðudÞLuRjpi ¼ −αpPRup;

h0jðudÞLuLjpi ¼ βpPLup; h0jðudÞRuRjpi ¼ −βpPRup;

ð10Þ

where color indices are not explicitly specified. From the
Lagrangian (1) we can calculate εN . To specify which
Wilson coefficient Ci in Eq. (1) generates the mixing
parameter, we use a more precise notation εN → εNi , where
εNi ¼ αNðβNÞCi=Λ2.1 The chirality of the operators in (10)
determines if αN or βN are present. The advantage of this
approach is that the radiative decay amplitude contains the
matrix element of a nucleon annihilation to a lepton. The
decay width for the radiative decays can be written as

Γðp→ lþγÞ ¼ e2a2p
32π

����C
p
1

Λ2

����
2

β2p
mp

ðmp −mlÞ2
�
1−

�
ml

mp

�
2
�

3

:

ð11Þ

For n → ν̄γ appropriate replacement of masses, ml → 0
and ap ↔ an should be done in the above equation. βNðαNÞ
is present if we have C1 or C4 (C2 or C3). One can
immediately express the decay width of p → lþγ using the
relation for the decay width of p → lþπ0

Γðp → lþγÞ ¼ CγlΓðp → lþπ0Þ; ð12Þ

with

Cγl ¼ e2a2p
β2p

WLL
0 ð0Þ2 Fðmp;ml; mπÞ; ð13Þ

and

Fðmp;ml; mπÞ

¼
m4

pð1 − ðml
mp
Þ2Þ3

ðmp −mlÞ2λ1=2ðm2
p;m2

lm
2
πÞðm2

p þm2
l −m2

πÞ
: ð14Þ

For the neutron decays, one should replace masses
mp → mn and ml → 0. Note that the proportionality factor
Cγl contains the ratio of the two lattice results, the constant
αNðβNÞ and the form factor for the matrix element of the
operators creating the nucleon-pion transition. The impor-
tant result of our study is that by using the effective
nucleon-lepton mixing approach [17], one can relate the
decay widths of the radiative mode to ΓðN → lπÞ, inde-
pendently on the model of new physics.

III. SCALAR LEPTOQUARKS
IN N → lπ AND N → lγ

Leptoquark, scalar or vector, mediates the interaction of
a quark and a lepton. The fermion number F ¼ 3Bþ L (B
is the quark baryon number, and L stands for the lepton
number) is useful in classifying leptoquarks. The lepto-
quark multiplets that couple to the quark-lepton (antiquark-
lepton) pairs have the fermion number jFj ¼ 2 ðF ¼ 0Þ (for
details see [18]). Leptoquarks having F ¼ −2 can mediate
proton decay at the tree level if diquark couplings are not
forbidden. We consider nucleon decays induced by the
scalar leptoquarks at the tree and loop levels. To include
vector leptoquarks in the analysis, it is necessary to know
the full ultraviolet theory containing them. That is behind
the scope of our analysis. The quantum numbers of lepto-
quarks regarding the SM color, weak-isospin and electro-
magnetic charges are specified in Table II. When the ΔB ¼
1 transition occurs at the tree level, only S1=31 and S1=33 can
generate amplitudes. The box diagram can be generated
with S4=33 ¼ ð3̄; 3; 4=3Þ, S−2=33 ¼ ð3̄; 3;−2=3Þ, and S̃1 ¼
ð3̄; 1; 4=3Þ accompanied by W gauge bosons mediating
interactions. The triple-leptoquark interactions generate
a special case of loop diagrams, which can generate decays
of nucleons to three leptons at tree level, as discussed

TABLE II. List of scalar leptoquarks. The hypercharge Y
normalization is defined through Q̂ ¼ I3 þ Y, where Q̂ is the
electric charge operator, and I3 is the third component of the weak
isospin. The weak doublets R2 and R̃2 can be part of the triple-
leptoquarks coupling.

ðSUð3Þ; SUð2Þ; Uð1ÞÞ Symbol ΔB ¼ 1 nucleon decays

ð3̄; 3; 1=3Þ S1=33
Tree

ð3̄; 3; 1=3Þ S−2=33
Loop

ð3̄; 3; 1=3Þ S4=33
Loop

ð3̄; 1; 4=3Þ S̃1 Loop
ð3̄; 1; 1=3Þ S1 Tree
ð3̄; 1;−2=3Þ S̄1 Tree, to non-SM lepton

1A change between αN and βN will not change our numerical
results since jαN j ¼ jβN j.
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in [6,29]. The weak singlets S̄1 with the electric charge
−2=3 can produce baryon decay amplitudes at tree level.
However, the final state has quantum numbers of right-
handed neutrinos, and their decays were considered in
[30,31]. Two leptoquark weak doublets, R2 ¼ ð3; 2; 7=6Þ
and R̃2 ¼ ð3; 2; 1=6Þ with the fermion number F ¼ 0, do
not have diquark couplings and therefore do not lead to the
nucleon decay at tree level. However, R2 and R̃2 contribute
to triple leptoquarks couplings. In the following examples,
we add a new superscript to εNi to denote which leptoquark
is the mediator. By assuming Λ ≃MLQ, εNi → εN;LQ

i ¼
αNðβNÞCi=M2

LQ.

A. Scalar leptoquarks S1 and S3
in nucleon decays at tree level

The S1 leptoquark, as a weak singlet, can couple to left-
and right-handed fermions. Without specifying color indi-
ces, the interaction reads [18]

LS1 ¼ −ðyLL1 UÞijd̄CiL S1ν
j
L þ ðVTyLL1 ÞijūC i

L S1e
j
L

þ yRR1ij ū
C i
R S1e

j
R þ yRR1ij d̄

C i
R S1ν

j
R

þ ðVTzLL1 ÞijūC i
L S�1d

j
L − ðzLL1 V†Þijd̄C i

L S�1u
j
L

þ zRR1ij ū
C i
R S�1d

j
R þ H:c:; ð15Þ

where U represents a Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) unitary mixing matrix and V is a Cabibbo-
Kobayashi-Maskawa (CKM) mixing matrix. The S3 scalar
leptoquark is a weak triplet that only allows its coupling to
left-handed fermions. This leptoquark has three compo-
nents S−2=33 , S1=33 , and S4=33 . The interacting Lagrangian with
the matter fields is [18]

LS3 ¼ −ðyLL3 UÞijd̄C i
L S1=33 νjL −

ffiffiffi
2

p
yLL3ij d̄

C i
L S4=33 ejL

þ
ffiffiffi
2

p
ðVTyLL3 UÞijūC i

L S−2=33 νjL − ðVTyLL3 ÞijūC i
L S1=33 ejL

− ðzLL3 V†Þijd̄C i
L S1=3 �3 ujL −

ffiffiffi
2

p
zLL3ij d̄

C i
L S−2=3 �3 djL

þ
ffiffiffi
2

p
ðVTzLL3 V†ÞijūC i

L S4=3�3 ujL

− ðVTzLL3 ÞijūC i
L S1=3�3 djL þ H:c: ð16Þ

The N → lπ and N → lγ decay amplitudes can be
generated at tree level by the exchanges of either S1=31 or

S1=33 , as shown in [10]. Note that S4=33 and S−2=33 cannot
contribute to the proton (neutron) decay at the tree level
since the diquark couplings must be antisymmetric in
flavor space.
We determine the Wilson coefficients in the Lagrangian

(1). After integrating out the S1 contribution, setting the
scale Λ to be equal mS1 , the corresponding Wilson
coefficients are

Cp;S1
1 ¼ ðVTzLL1 Þ11ðVTyLL1 Þ11;

Cp;S1
2 ¼ ðVTzLL1 Þ11ðyRR1 Þ11;

Cp;S1
3 ¼ ðVTyLL1 Þ11ðzRR1 Þ11;

Cp;S1
4 ¼ ðzRR1 Þ11ðyRR1 Þ11: ð17Þ

Due to the neutrino in the final state, only Cn;S1
1 and Cn;S1

3

are nonzero

Cn;S1
1 ¼ ðzRR1 Þ11ðVTyLL1 Þ11: ð18Þ

These processes are illustrated in Fig. 1. The mixing
parameters are then

εp;S11 ¼ Cp
1βp
m2

S1

; εp;S12 ¼ −
Cp
2αp
m2

S1

; εp;S13 ¼ Cp
3αp
m2

S1

;

εp;S14 ¼ −
Cp
4βp
m2

S1

; εn;S11 ¼ −
Cn
1βn
m2

S1

: ð19Þ

When the S1=33 leptoquark mediates these processes, only
C1 Wilson coefficient contribute with

Cp;S3
1 ¼ ðVTyLL3 Þ11ðVTzLL3 Þ11;

Cn;S3
1 ¼ ðyLL3 UÞ11ðVTzLL3 Þ11: ð20Þ

The mixing parameters become

εp;S31 ¼ Cp;S3
1 βp
m2

S3

; εn;S31 ¼ −
Cn;S3
1 βn
m2

S3

: ð21Þ

B. Loop diagrams in ΔB= 1 transitions

In Ref. [10] we considered loop induced proton (neu-
tron) decay diagrams in the case of S̃1 ¼ ð3̄; 1; 4=3Þ,
illustrated in Fig. 2 left (right).
The S̃1 leptoquark has couplings to a charged lepton and

diquark coupling of the two up-type quarks from two
different generations

Lp
S̃1
¼−ðỹ1Þijd̄CiS̃1PRljþðz̃1ÞijūCiS̃�1PRuj:þH:c: ð22Þ

FIG. 1. S1 mediating proton decays into eþ and γ. The photon
line should be attached to each charged particle.
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The contribution of the diagram in Fig. 2 (left) is

Cp;S̃1
2 ¼ −

GF

4π2
X
j;k

ỹ11kz̃11jmujmdkVj1V�
k1xS̃1JðxS̃1 ; xuj ; xdkÞ:

ð23Þ

In the case of a neutron ΔB ¼ 1 decay, shown in Fig. 2
(right), the contribution is

Cn;S̃1
2 ¼ −

GF

4π2
X
j;i

ỹ1 1iz̃1 1jmujVj1mlixS̃1JðxS̃1 ; xuj ; xliÞ;

ð24Þ

with xn ≡m2
n=m2

W and Jðx; y; zÞ. The mass dependence,
apart from helicity-flip factors is encoded in the function
Jðx; y; zÞ as

Jðx; y; zÞ ¼ ðy − 4Þy log y
ðy − 1Þðy − xÞðy − zÞ þ

ðz − 4Þz log z
ðz − 1Þðz − yÞðz − xÞ

þ ðx − 4Þx log x
ðx − 1Þðx − yÞðx − zÞ : ð25Þ

The mixing coefficients are εp;S̃12 ¼ Cp;S̃1
2 αp=m2

S̃1
and

εn;S̃12 ¼ Cn;S̃1
2 αn=m2

S̃1
.

The triplet leptoquarks S4=33 and S−2=33 can generate the
loop-induced nucleon decay as S̃1. Due to the chirality
difference of the operators in the amplitude, we calculate
the loop contribution using the ξ ¼ 1 gauge and find a
negligible contribution of the ghost field. In the case of the
S−2=33 leptoquark, the diquark coupling is between different
generations of the two down-type quarks. However, the
amplitude is the same as in the case of S4=33 ,

Cp;S3
1 ¼ 1

4π2
GFm2

S3ffiffiffi
2

p
X

D¼d;s;b

yLL3 1D
X
U¼c;t

ðVTzLL3 V†Þ1U

× V�
uDVUd½J̃ðxU; xD; xS3Þ

þ J̃ðxD; xU; xS3Þ þ J̃ðxS3xU; xDÞ�: ð26Þ

We determine the box function J̃ðx; y; zÞ ¼ x2 log x=
ððx − 1Þðx − yÞðx − zÞÞ. In the case of neutron decay, the

replacement is
P

D¼d;s;b y
LL
3 1D

P
U¼c;tðVTzLL3 V†Þ1UV�

uD ×
VUd →

P
l¼e;μ;τ y

LL
3 1l

P
U¼c;tðVTzLL3 V†Þ1UVUd.

C. Triple-leptoquark couplings

Recently in Ref. [29], we considered triple-leptoquark
interactions for proton decay modes that arise at the tree-
and one-loop levels. Despite the usual loop-suppression
factor, we found that the one-loop level decay amplitudes
are much more relevant than the tree-level ones for the
proton decay signatures. In this study, it is essential that
diquark coupling with the leptoquark can be generated by
the penguin operator, as presented in Fig. 3. We consider
three leptoquark-mass eigenstates SQ, SQ

0
, and SQ

00
, where

the superscripts denote the electric charges of each state,
which satisfy QþQ0 þQ00 ¼ 0,

Lscalar ¼ λvϵαβγSQα S
Q0
β SQ

00
γ þ H:c. ð27Þ

The coupling λ can be easily identified for each scenario as
presented in Table 2.1 of Ref. [29]. The fermion numbers of
the leptoquarks SQ and SQ

0
are F ¼ 0 and F ¼ 2, respec-

tively with the general Yukawa interactions

Lyuk ¼ q̄ðyRPR þ yLPLÞlSQ
þ ¯q0Cðy0RPR þ y0LPLÞlSQ0� þ H:c:; ð28Þ

in addition to the Yukawa couplings of SQ
00
. In the above

equations l is a generic lepton, and q and q0 stand for
two distinct quarks, with electric charges satisfying Q ¼
Qq −Ql and Q0 ¼ −Qq0 −Ql. The color and flavor
indices are not explicitly written in Eq. (28).
The loop diagram corresponds to a loop-induced diquark

coupling of the SQ
00
leptoquark,

Lqq0 ¼ ϵαβγqCα ðyLqq0PL þ yLqq0PRÞq0βSQ
00

γ þ H:c:; ð29Þ

where yLqq0 and yRqq0 are explained in detail in Ref. [29]

yLqq0 ¼
λv

16π2m2
S
ðmly0Ly

�
RÞ; yRqq0 ¼

λv
16π2m2

S
ðmly0Ry

�
LÞ:

ð30Þ

FIG. 2. p → lþπ0 (left) and n → ν̄γ (right) mediated by one
leptoquark, LQ ¼ S̃1, S

4=3
3 , or S−2=33 , and W in the box.

FIG. 3. The annihilation diagram uud → eþ, induced by the
triple-leptoquark couplings.
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In these expressions, leptoquark masses are assumed to be
degenerate, i.e., mSQ ¼ mSQ

0 ¼ mSQ
00 ≡mS. The terms

proportional to ml appear due to a chirality-flip in the
internal lepton contribution. We do not write terms propor-
tional to masses of u, d quarks on the external legs in the
case under consideration. Using these results, it is easy to
determine the annihilation contribution of the nucleon to
lepton. Table III presents contributions from the triple
leptoquarks couplings.
As an example we consider following interaction

λH†iτ2ðτ⃗ · S⃗3Þ�ðτ⃗ · S⃗3Þ�iτ2R2 which leads after vacuum
condensation to the Lagrangian

LðS3S3R�
2Þ

¼ λv
ffiffiffi
2

p
ϵαβγð

ffiffiffi
2

p
S−1=33α S−4=33β R5=3

2γ − S−4=33α S2=33β R2=3
2γ Þ: ð31Þ

Starting with the penguinlike diagram [29] we reduce the
problem on the effective dimension-six Lagrangian. After
integrating leptoquarks, we obtain the effective Lagrangian
and assume that masses of S3, R2 equal Λ. At the scale
Λ ¼ mS, for the τ lepton in the loop, when neglecting the
contributions of the ordermu;d=mτ the Wilson coefficient is

Cp;3LQ
1 ¼

ffiffiffi
2

p
λ

8π2
vmτ

m2
S
ðV�yLS3ÞyLS3ðVyRR2

Þ�: ð32Þ

Obviously, the mixing parameter in this case is εp;3LQ1 ¼
Cp;3LQ
1 βp=m2

S.

IV. NUMERICAL RESULTS

We use the recent lattice QCD results to calculate the
decay widths of p → lþπ0 to p → lþγ (l ¼ e; μ). In
Ref. [14] the authors calculate αN ¼−0.0144ð3Þð21ÞGeV3

and βN ¼ 0.0144ð3Þð21Þ GeV3, for N ¼ p, n. The form
factors are WRL

0 ¼ 0.130 GeV2 for the matrix element
hπ0jðudÞRuLjpi and WLL

0 ¼ 0.134ð5Þð16Þ GeV2 for
hπ0jðudÞLuLjpi (WLL

0 ¼ WRR
0 ).

In Fig. 4, we present constraints on the product of the
Yukawas in Eq. (17) and the mass of a scalar leptoquark.
We assume that the product of Yukawas is not larger than
the perturbativity limit. As discussed in Sec. II, the bounds
for Yukawas and the mass of leptoquarks are much weaker
for the radiative mode. The flavor physics might constrain
some of the product Yukawas as shown in [18]. In flavor
physics, for the “pure leptoquark couplings”, the masses of
leptoquarks are in the TeV region. By allowing diquark

TABLE III. List of all nontrivial LQ1-LQ2-LQ3-ðHÞ contrac-
tions and schematic representation of the associated d ¼ 9
effective operators generating the proton annihilation to a charged
lepton.

Contractions Process

R̃2 − R̃2 − S�1 n → νγ

R2 − R̃2 − S̃�1 n → ν̄γ
S1 − S3 − R�

2 −H p → lþγ, n → ν̄γ
S3 − S3 − R�

2 −H p → lþγ, n → ν̄γ
S1 − S̃1 − R�

2 −H� p → lþγ, n → ν̄γ

S3 − S̃1 − R�
2 −H� p → lþγ, n → ν̄γ

S1 − S3 − R̃�
2 −H� p → lþγ, n → ν̄γ

S3 − S3 − R̃�
2 −H� p → lþγ, n → ν̄γ

FIG. 4. Allowed parameter space for the products of two
Yukawa couplings and mass of a scalar leptoquark S1 or S3
for the tree-level ΔB ¼ 1 transition. We use the experimental
bounds on Γðp → eþπ0Þ. For comparison, we showmuch weaker
bounds from Γðp → eþγÞ.

FIG. 5. Allowed parameter space for the product of triple
leptoquark coupling λ with two Yukawa couplings and mass of a
scalar leptoquark, assuming mS−4=3

3

¼ mS2=3
3

¼ mR2=3
2

coming from

Γðp → eþπ0Þ. We show much weaker bounds from Γðp → eþγÞ
for comparison. The label λy211y11 stands for λðV�yLS3ÞyLS3ðVyRR2

Þ�
in Eq. (32).
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couplings, or triple leptoquark couplings, the scale has to be
several orders of magnitude larger, or a product of Yukawa
couplings should be extremely small. However, all con-
straints depend strongly on the assumptions used for the
texture of the Yukawa matrices. There are no general fits for
all Yukawa matrices for the leptoquarks used in this study.
All studies use some assumptions on the texture [32–36].
The experimental bounds on the nucleon radiative decay

widths are poor compared to the decay widths of N → lπ
modes. The same statement holds for the box diagrams
with S̃1, S

4=3
3 , and S−2=33 , but the mass of both leptoquarks is

for a factor of 100 or 10 smaller than in the case of a tree-
level transition.
In the case of triple leptoquarks coupling, by con-

straining the product of the Yukawa couplings to be in
the range 0.001 < λðV�yLS3ÞyLS3ðVyRR2

Þ� < ffiffiffiffiffiffi
4π

p
and setting

masses of leptoquarks to be equal, we present in Fig. 5 the
allowed parameter regions for bounds from p → eþπ0, and
indicate much worse bound from p → eþγ.
Table IV presents the masses of the mediating lepto-

quark, calculated from the best experimental bound
on Γðp → eþπ0Þ, for tree-level, box diagram and triple
leptoquarks coupling, assuming that the product of all
Yukawas is set to be 1. We repeat the procedure for muon
replacing positron in the final state. The experimental
bound on Γðp → μþπ0Þ is used too.

V. SUMMARY

We revisited radiative nucleon decays exploring the
approach of Ref. [17]. This approach relies on the photon

radiation from a hadron and charged lepton, benefiting
from the knowledge of nucleons’ anomalous magnetic
moments. Then we describe an annihilation of a nucleon
to a lepton within this framework and use lattice QCD
results for the hadronic matrix elements. We find that the
radiative decay widths can be related to the decay widths of
a nucleon decaying to a lepton and a pion, independent of
the decay mechanism. These relations hold for any of the
three types of transition, tree, box, and triple-leptoquark
transitions. Our results are

Γðp → eþγÞ ≃ 3.8 × 10−3Γðp → eþπ0Þ;
Γðp → μþγÞ ≃ 4.6 × 10−3Γðp → μþπ0Þ;
Γðn → ν̄γÞ ≃ 3.8 × 10−3Γðn → ν̄π0Þ: ð33Þ

Then, we considered decay amplitudes of N → lπ0 and
N → lγ mediated by scalar leptoquarks. The leptoquark
interaction can occur on the tree- and loop levels. In the
case of loop transitions, there are box-diagram and a
transition via triple-leptoquarks interactions. The box dia-
gram containing S̃1 was known already. We completed the
analysis of these transitions by calculating the box diagram
contributions coming from the S4=33 or S−2=33 leptoquarks.
We can predict the mass range of mediating scalar
leptoquark by using the existing bound on the decay width
of p → lþπ0 (n → ν̄π0). In the case of tree-level transition,
by assuming the products of the leptoquark Yukawa
couplings to be of order 1, the mass of S1=31;3 reaches
1015 GeV. In comparison, the box transition can reduce
it to 1012–1014 GeV, depending on the baryon number-
violating operator. In the case of a triple leptoquark
interaction destabilizing nucleon, the mass scale of the
leptoquark is further reduced to the order of 107 GeV. The
existing experimental bounds for ΓðN → lγÞ are sup-
pressed by a factor of 20 compared to the experimental
bounds for ΓðN → lπÞ. Our calculations give 103 factor
suppression compared to the widths of N → lπ. This can
be useful guidance for further experimental studies of
nucleon radiative decays.
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TABLE IV. The masses of mediating leptoquarks (LQ) at tree-
level, box diagram and penguinlike diagram with the three
leptoquark coupling, which are obtained by satisfying the
experimental bound on Γðp → eþπ0Þ < 1.3 × 10−65 GeV, as-
suming that the products of Yukawa couplings are set to 1.

l Scalar LQ LQ mass [GeV]

e Tree S1=31;3 1.9 × 1015

Box S̃4=31 1.5 × 1012

Box S4=33 , S−2=33 2.7 × 1014

Triple LQ 7.2 × 107

μ Tree S1=31;3 1.4 × 1015

Box S̃4=31 1.1 × 1012

Box S4=33 , S−2=33 2.0 × 1014

Triple LQ 3.7 × 107
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