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We discuss a simple model, based on the gauge group SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞR, where the
Nelson-Barr solution to the strong CP problem is implemented. This model automatically provides a high
quality solution to the strong CP puzzle. Weak CP violation in the lepton sector arises in the same fashion
as in the quark sector. We derive explicit expressions for the flavor changing couplings of the electroweak
and Higgs bosons. These expressions are more general than the particular model considered. Constraints
from finite naturalness are briefly discussed. We also briefly discuss related models based on the gauge
group B-L.
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I. INTRODUCTION

In the standard model (SM) the CP symmetry is
explicitly broken by the QCD vacuum angle and by the
interactions of the left-handed quarks with the W-gauge
bosons. The QCD vacuum angle, θQCD, appears in the
CP-violating term

LQCD ⊃
αsθQCD
16π

Ga
μνϵ

μνρσGa
ρσ; ð1Þ

where a ¼ 1…8, αs is the strong coupling, and Ga
μν is the

field strength tensor for gluons. The basis invariant param-
eter that enters in the neutron electric dipole moment is
given by

θ̄QCD ¼ θQCD þ argfDetðMuMdÞg; ð2Þ

where the last term is the contribution from CP-violating
phases in the quark mass matrices. The vacuum angle
θ̄QCD must be very small, θ̄QCD < 10−10 [1], to satisfy the
experimental bounds on the neutron electric dipole
moment. The second term in Eq. (2) is related to the large
CP-violating phase in the Cabibbo-Kobayaski-Maskawa
(CKM) matrix, and an awkward cancellation between it
and θQCD is required for θ̄QCD to be very small. This is the
strong CP problem.

There are two well-studied solutions to the strong
CP-problem: the Peccei-Quinn (PQ) mechanism [2,3]
and the Nelson-Barr (NB) mechanism [4–6]. In the case
of the PQ mechanism one postulates the existence of an
anomalous global Uð1ÞPQ symmetry that is spontaneous
broken and gives rise to the existence of the axion [7–12], a
possible dark matter candidate [13–15]. When the Peccei-
Quinn symmetry is an automatic consequence of a sponta-
neously broken gauge symmetry, it is difficult to get a small
enough value of θ̄QCD since operators of very high
dimension must also preserve the symmetry [16]. The
degree to which higher dimension operators preserve the
smallness of θ̄QCD is called the quality of the solution.
In the case of the Nelson-Barr mechanism CP is

spontaneously broken and new quarks are added in such
way that the argfDetðMuMdÞg vanishes at tree level.1

Nonetheless, a large CP-violating CKM phase is permitted.
See Bento, Branco, and Parada in Ref. [19] for a discussion
of the CKM matrix. The quality of the solution is easier to
ensure in NB models because forbidding dimension five
operators can be sufficient.
Gauge extensions of the SM that implement the NB

mechanism have been constructed. For previous studies see
Refs. [20–23]. The spontaneous breaking of CP gives rise
to domain walls, which will dominate the energy density of
the universe unless inflation [24–26] (or whatever solves
the horizon problem) occurs after the spontaneous breaking
of CP [27,28]. As the authors of Ref. [23] pointed out, a
new gauge symmetry can help increase the quality of thePublished by the American Physical Society under the terms of
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1For a related mechanism that predates Nelson-Barr see
Ref. [17]. An implementation of this idea is given in Ref. [18].
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NB mechanism by forbidding the lowest higher dimen-
sional CP-violating operators. Assuming that CP invari-
ance is restored at high temperatures, this relaxes the upper
bound on the CP breaking scale, which otherwise would be
in tension with the simplest models of inflation. Note that
there are cases where CP is not restored at high temper-
atures [29].
In this article, we discuss simple gauge theories based on

the gauge group GSM ⊗ Uð1ÞR (see, for example, [30]),
where GSM is the SM gauge group. In these models the NB
mechanism is an automatic consequence of the gauge
theory and matter content. The gauge symmetry increases
the quality of the NB mechanism, forbidding dimension-
five operators that can spoil it. This relieves tension
between solving the strong CP problem and cosmology.
In this model, CP violation in the lepton sector arises in the
same fashion as in the quark sector. We also briefly discuss
models based on GSM ⊗ Uð1ÞB−L.
This article is organized as follows: In Sec. II, we discuss

the gauge theories for spontaneous CP violation that we
study. In Sec. III, we discuss the implementation of the
Nelson-Barr mechanism and also the quality of the solution
to the strong CP problem. In Sec. IV, we review how to
obtain a realistic CKM and Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrices. Flavor-violating interactions are
discussed in Sec. V, while the bounds from finite natural-
ness are discussed in Sec. VI. We summarize our main
findings in Sec. VII.

II. THEORETICAL FRAMEWORK

A gauge theory for spontaneous CP violation (SCPV)
that implements automatically the Nelson-Barr mechanism
can be constructed using the gauge symmetry group:

GR ¼ SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞR: ð3Þ

The SM fermion content (plus three right-handed neutri-
nos) with the right-handed fields carrying a charge r,

qL ∼ ð3; 2; 1=6; 0Þ; lL ∼ ð1; 2;−1=2; 0Þ;
uR ∼ ð3; 1; 2=3; rÞ; eR ∼ ð1; 1;−1;−rÞ;
dR ∼ ð3; 1;−1=3;−rÞ; νR ∼ ð1; 1; 0; rÞ; ð4Þ

is anomaly free under GR. The SM Higgs, H∼ð1;2;1=2;rÞ,
is also charged under Uð1ÞR to give mass to the fermions
through the usual Yukawa interactions,

−L ⊃ Yuq̄LH̃uR þ Ydq̄LHdR

þ Yνl̄LH̃νR þ Yel̄LHeR þ H:c:; ð5Þ

where H̃ ¼ iσ2H�. To implement the NB mechanism,
let us consider extra vectorlike fermions that under GR
transform as2

UR ∼ ð3; 1; 2=3;−RÞ; UL ∼ ð3; 1; 2=3; LÞ;
DR ∼ ð3; 1;−1=3; RÞ; DL ∼ ð3; 1;−1=3;−LÞ;
ER ∼ ð1; 1;−1; RÞ; EL ∼ ð1; 1;−1;−LÞ;
NR ∼ ð1; 1; 0;−RÞ; NL ∼ ð1; 1; 0; LÞ: ð6Þ
This set of vectorlike under the SM3 fermions is anomaly-
free for any value of the charges L and R. The new fermions
get mass through the spontaneous breaking of Uð1ÞR by
the vacuum expectation value (VEV) of the scalar
S ∼ ð1; 1; 0; Lþ RÞ, via the following interactions:

−L ⊃ ðλUŪLUR þ λNN̄LNRÞS
þ ðλDD̄LDR þ λEĒLERÞS� þ H:c:; ð7Þ

where we have assumed L ≠ −R. For generic Uð1ÞR
charges, all the fermions (including the neutrinos) have
Dirac masses, and baryon and lepton numbers are con-
served at the renormalizable level.
At this point the vectorlike fermions are stable. To

implement the NB mechanism [4,5] and allow the vector-
like fermions to decay, new scalar fields are needed. These
scalars trigger SCPV through a complex VEV. There
are two complex scalar fields Xa ∼ ð1; 1; 0; L − rÞ with
a ¼ 1, 2. The Uð1ÞR charge of Xa fields allows the
following interaction terms in the Lagrangian:

−L ⊃ ŪLuiR

�X2
a¼1

λiu;aXa

�
þ D̄LdiR

�X2
a¼1

λid;aX
�
a

�

þ N̄Lν
i
R

�X2
a¼1

λiν;aXa

�
þ ĒLeiR

�X2
a¼1

λie;aX�
a

�

þ H:c: ð8Þ
Note that r ≠ R; otherwise, the Higgs doublet can couple to
the right-handed new fermions, spoiling the Nelson-Barr
mechanism.
Because the Higgs boson is charged under Uð1ÞR in this

model, there is a tree-level mixing between the electroweak
neutral gauge boson, Z, and the Abelian generator of
Uð1ÞR, ZR, in the broken phase:

L ⊃
1

2
ðZμ Zμ

R Þ

0
B@ M2

Z − 2gRrM2
Zffiffiffiffiffiffiffiffiffi

g2
1
þg2

2

p

− 2gRrM2
Zffiffiffiffiffiffiffiffiffi

g2
1
þg2

2

p M2
ZR

1
CA� Zμ

ZRμ

�
: ð9Þ

2We call this new Abelian gauge symmetry Uð1ÞR because that
is what it is acting on the SM fermions. For the new vectorlike
fermions the left-handed fields also have the Uð1ÞR charge.

3Henceforth we will just use vectorlike to refer to these
fermions.
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In the following we neglect the mixing angle between Z
and ZR, given by 2gRrM2

Z=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
M2

ZR
Þ, since MZR

>
MZ and gR ≪ 1 to ensure an acceptably small correction to
the Z mass and small enough flavor changing neutral
currents.
Although this paper focuses on Uð1ÞR, it is worth noting

that one could change the new gauge group from Uð1ÞR to
Uð1ÞX, as long as the SM fermions are anomaly-free under
the new gauge symmetry, with L and R now interpreted as
X charges. For example, X could be B − L. For the
Uð1ÞB−L case, the Xi’s cannot simultaneously couple to
quarks and leptons because they have different B − L
charges. This will lead to charged stable relics4 except
for the case when L ¼ 1=3. In this case, Xi ∼ ð1; 1; 0; 2=3Þ
couple to both the charged leptons and the down-type
quarks, while the vectorlike up-type quarks are connected
to the SM through the mass term ŪLuR. The lepton number
is violated by the interaction NT

LCNLX�
i . The vectorlike

neutrino, however, is stable and therefore could be a
candidate for cold dark matter [31].

III. SCPV AND THE STRONG CP PROBLEM

Working in the basis where the VEVof S is made real via
a Uð1ÞR transformation, one can generate a vacuum
expectation value with a nonzero phase for at least one
of the Xi fields using the scalar potential,

V ⊃ −μ2XðX†
1X2Þ þ λXðX†

1X2Þ2 þ H:c: ð10Þ

Defining the VEVs as hXai ¼ eiθavXa
=
ffiffiffi
2

p
, one finds

V ⊃ −μ2XvX1
vX2

cos θX þ λX
v2X1

v2X2

2
cos 2θX; ð11Þ

with θX ¼ θ2 − θ1. Here, μX is an “effective mass” con-
taining all possible contributions to the term X†

1X2 (e.g.,
X†
1X1). The minimization condition, ∂V=∂θX ¼ 0, gives us

cos θX ¼ μ2X
2λXvX1

vX2

: ð12Þ

Even in the limit of large VEVs, cos θX can still be order
one as long as μX ∼ vX. Only the combination of phases θX
is determined by the scalar potential. To determine the
remaining free phase, particular values of the charges are
required that allow for additional terms.5 For example,
2L ¼ 3rþ R allows S�XiXjXk terms. Note that adding
these terms will modify Eq. (12). These terms explicitly

break the Uð1ÞX1−X2
global symmetry that otherwise would

lead to a Nambu-Goldstone boson.
In the broken phase, the fermion masses are given by

−L ⊃ f̄L0AMAB
f f0R

B þ H:c:; ð13Þ

with the mass matrices at tree level given by

MAB
f ¼ 1ffiffiffi

2
p
 

Yij
f vH 0i4P

2
a¼1 λ

j
f;avXa

e�iθa λFvS

!
; ð14Þ

where hSi ¼ vS=
ffiffiffi
2

p
. In our convention, capital letters

A;B;… ¼ 1, 2, 3, 4, roman letters i; j;… ¼ 1, 2, 3 run
over the indices of the light quarks, and 4 will refer to the
new vectorlike fermions. In the above matrix when A goes
over 1,2,3, it is represented by i, and when B goes over
1,2,3, it is represented by j. Above, the primes are used for
the weak eigenstates. In Eq. (14), � takes þ (−) for U and
N (E and D) fermions.
We have used the Uð1ÞR gauge symmetry to set the phase

of hSi to be zero. However, if we had not done that, this
phase cancels out in argfDetðMuMdÞg because S gives
mass to U’s while S� gives mass to D’s.
Both a CKM phase in the quark sector and a PMNS

phase in the lepton sector are generated from the same
phase θX.
In this model θQCD ¼ 0 by CP invariance and the

argument of the determinant of the mass matrices can be
seen to be zero by expanding these determinants in minors
about the last column. Hence in this model the renormaliz-
able couplings give θ̄QCD ¼ 0 at tree level.

A. Nonrenormalizable operators and loops

Nonrenormalizable operators and radiative corrections
can give rise to CP-violating corrections to the mass
matrices (see Refs. [19,23]), δMq, giving rise to the
following correction to θ̄QCD:

Δθ̄QCD ≃ ImfTrfM−1
q δMqgg: ð15Þ

Assuming an order one CP-violating phase, the one-loop
diagrams in Fig. 1 give

Δθ̄QCD ∼
λ

16π2

�
M̃U

mX

�
2

ln

�
m2

X

m2
t

�
; ð16Þ

where λ is the H†HX�
i Xj quartic coupling and M̃U is the

mass of the up-type new vectorlike quark. One way for this
to be consistent with the experimental bounds is to have
mX ∼ M̃U and λ very small (which does not require fine-
tuning). Another way is to have λ of order one and
M̃U ≪ mX. For example, if mX ∼ 1011 GeV and the mass

4Stable relics are not necessarily a problem if inflation occurs
at a scale lower than their mass.

5We thank Lisa Randall for pointing this out to us.
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of the new vectorlike fermions is MU ∼ 5 TeV, λ is not
constrained by the neutron electric dipole moment.
Contributions to the vectorlike fermion mass terms from

higher dimension operators can spoil the NB solution to the
strong CP puzzle. For example,

1

Λ2
EFT

ŪLURSX1X�
2 þ

1

Λ2
EFT

q̄LH̃uRX1X�
2 þ � � � : ð17Þ

Note that if the vectorlike fermion has a bare mass term,
then there would be dimension-five operators that spoil the
NB mechanism, which might be problematic given cos-
mological constraints on completely stable domain walls
arising from SCP [28]. Such a mass term is forbidden if
L ≠ R. According to Eq. (A5), the higher dimensional
operators explicitly displayed in Eq. (17) shift the θ̄QCD as
follows:

Δθ̄QCD ∼
1

λF

v2X
Λ2
EFT

þ 1

Yu

v2X
Λ2
EFT

; ð18Þ

where we assumed order one CP-violating phases. This
leads to the following condition:

vX ≲ 1014 GeV

�
ΛEFT

MPl

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

λF
þ 1

Yu

s
: ð19Þ

Note that the upper bound above cannot surpass vX ≲
1011 GeV since Yu ∼mu=vH. This is high enough for
inflation to have occurred after the spontaneous breaking
of CP, but too low for the gravitational waves from
inflation [32–35] to be observable in the B modes of the
CMB [36–39].

IV. THE CKM AND PMNS MATRICES

We start by discussing how the CKM and PMNS phases
arise in Nelson-Barr models. The 4 × 4 fermion mass
matrix in Eq. (14) is generic to those models when there
is only one generation of new vectorlike fermions. Let us
redefine the fermions as follows:

f0L ¼ OFLf00L and f0R ¼ OFRf00R; ð20Þ
where OFL;R is an orthogonal matrix,

OAB
FL;R ¼

0
BBB@

0

oijFL;R 0

0

0 0 0 1

1
CCCA; ð21Þ

that diagonalizes the light quark masses 3 × 3 block,6

ðoTFLYfoFRÞ
vHffiffiffi
2

p ¼ diagðm1; m2; m3Þ: ð22Þ

Thus,

−L ¼ f̄00LO
T
FLMfOFRf00R þ H:c:

¼ f̄00L

0
BBB@

m1 0 0 0

0 m2 0 0

0 0 m3 0

μ1 μ2 μ3 MF

1
CCCAf00R þ H:c:; ð23Þ

where

μj ¼
X
k

X2
a¼1

λkf;avXa
e�iθaokjFR: ð24Þ

Further transformations on the left-handed and right-
handed fields are required to fully diagonalize the fermion
mass matrix.
Diagonalizing the Hermitian matrix MfM

†
f determines

the CKM matrix (and the PMNS matrix). We will denote
the matrix that diagonalizes MfM

†
f by ṼFL. Starting

from the matrix in Eq. (23), we find that the Hermitian
matrix MfM

†
f in the double primed basis is given by

OT
FLMfM

†
fOFL ¼

0
BBB@

m2
1 0 0 μ�1m1

0 m2
2 0 μ�2m2

0 0 m2
3 μ�3m3

μ1m1 μ2m2 μ3m3 M̃2
F

1
CCCA; ð25Þ

where M̃2
F ¼ M2

F þPi jμij2. The matrix VFL is given
approximately by

FIG. 1. Some one-loop diagrams contributing to the fermion
mass matrices that give a nonzero θ̄QCD.

6We note that mi are not the mass eigenstates of the light
quarks, as the total 4 × 4matrix is not diagonalized yet. However,
as we will show later, they are expected to be of the same order.
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VFL ¼

0
BBBBBB@

1 0 0
m1μ

�
1

M̃2
F

0 1 0
m2μ

�
2

M̃2
F

0 0 1
m3μ

�
3

M̃2
F

− m1μ1
M̃2

F
− m2μ2

M̃2
F

− m3μ3
M̃2

F
1

1
CCCCCCA
: ð26Þ

The nonzero off-diagonal elements are correct up to Oðm2μ2=M̃4
FÞ and V†

FLVFL ¼ I þOðm2μ2=M̃4
FÞ. The matrix in

Eq. (26) approximately diagonalizes Eq. (25), leading to the following matrix:

V†
FLO

T
FLMfM

†
fOFLVFL ¼

0
BBBBBB@

m2
1ð1 − jμ1j2

M̃2
F
Þ −m1m2

μ�
1
μ2

M̃2
F

−m1m3
μ�
1
μ3

M̃2
F

Oðm3μ
M̃2

F
Þ

−m2m1
μ�
2
μ1

M̃2
F

m2
2ð1 − jμ2j2

M̃2
F
Þ −m2m3

μ�
2
μ3

M̃2
F

Oðm3μ
M̃2

F
Þ

−m3m1
μ�
3
μ1

M̃2
F

−m3m2
μ�
3
μ2

M̃2
F

m2
3ð1 − jμ3j2

M̃2
F
Þ Oðm3μ

M̃2
F
Þ

Oðm3μ
M̃2

F
Þ Oðm3μ

M̃2
F
Þ Oðm3μ

M̃2
F
Þ M̃2

F þ 2
P
i
m2

i
jμij2
M̃2

F
þOðm4

M̃4
F
Þ

1
CCCCCCA
: ð27Þ

The off-diagonal elements in the fourth row and column are
very suppressed. Therefore, the CKMmatrix comes mostly
from diagonalizing the 3 × 3 upper-left block. Furthermore,
if μ=M̃F ≪ 1, then the upper-left 3 × 3 block is approx-
imately diagonal and the CKM phase is small, as already
noted in Refs. [40,41].
Since μ=M̃F is not small, the 3 × 3 upper-left block of

the above matrix still needs to be diagonalized. As it is
Hermitian, it will be diagonalized by a unitary (complex)
matrix,

UAB
FL ¼

0
BBB@

0

U
ij
FL 0

0

0 0 0 1

1
CCCA: ð28Þ

The unitary matrix that diagonalizes MfM
†
f is then

ṼFL ¼ OFLVFLUFL; ð29Þ

and therefore the CKM matrix is given by the following
matrix:

Vij
CKM¼

X
k

ðṼ†
ULÞikðṼDLÞkj

¼
X
k;l

ðU†
ULÞikðoTULoDLÞklUlj

DLþO
�

m2μ2

M̃2
UM̃

2
D

�
; ð30Þ

which agrees with the previous literature [42].
In these models, CP violation in the lepton sector

arises in the same fashion as in the quark sector and a
CP-violating phase in the PMNS matrix is expected.

However, since it is unconstrained by experiment, in the
lepton sector μ could be much smaller than M̃F.

V. FLAVOR VIOLATION

In this theory we have a new flavor-violating interaction
due to mixing between the SM fermions with the new
heavy fermions.

A. Z boson couplings

Flavor changing neutral currents only enter through the
left-handed fermions and are suppressed by Oðm2μ2=M̃4

FÞ,

L ⊃ −
2eTfL

3

sin 2θW
Zμ

× f̄iLγμ

�X
l;k

ðU†
FLÞik

mkmlμ
�
kμl

M̃4
F

ðUFLÞlj
�
fjL; ð31Þ

where TfL
3 ¼ �1=2 is the weak isospin of the left-handed

fermion fL. Even though Eq. (31) is of Oðm2μ2=M̃4
FÞ,

which is of the same order as the error in the elements of the
matrix in Eq. (26), the interaction above arises from the
product of two entries that are of Oðmμ=M̃2

FÞ. These are
much more suppressed that the flavor changing neutral
currents in Ref. [43]. Equation (31) agrees with the results
of Ref. [44].
The coupling of the heavy vectorlike fermions to the SM

fermions and the Z,

L ⊃
2eTfL

3

sin 2θW
Zμf̄iLγμ

�X
k

ðU†
FLÞik

mkμ
�
k

M̃2
F

�
f4L þ H:c: ð32Þ

Since in this theory the new fermions are heavy, bounds from
flavor-violating processes can be satisfied. For example, let
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us consider the stringent constraint on the μ to e conversion
in nuclei. Given the Feynman rule for the Z boson mediating
flavor-violating interactions with electrons and muons from
Eq. (31), the limit on the conversion of muons to electrons in
gold [45] requires [46,47]

�
ml

M̃E

�
< 5 × 10−4

�
Bðμ → eÞ½Au�
7 × 10−13

�
1=4
�
M̃E=μl

1

�
: ð33Þ

For ml ∼mτ, the above constraint is satisfied if
M̃E > 4 TeV. Projected bounds on this process [48] are
about 4 orders of magnitude stronger and will increase the
bound on M̃E by an order of magnitude. A more compre-
hensive analysis may be warranted.

B. W boson couplings

The couplings of the heavy vectorlike fermions with the
W bosons and the SM fermions are given by

L⊃
g2ffiffiffi
2

p Wþ
μ

X
k;p;l

�
ūiLðU†

ULÞilðOT
ULÞlpðoDLÞpk

mDkμ
�
Dk

M̃2
D

γμd4L

þ ū4L
mUkμUk

M̃2
U

ðoTULÞkpðoDLÞplðUDLÞliγμdiL
�
þH:c: ð34Þ

We specify the involved fermion in the label of m and μ to
note which mass matrix they come from.
The SM fermion couplings with the W boson are given

by the CKM matrix, explicitly given in Eq. (30).
Similar formulas hold for the leptons.

C. SM-Higgs couplings

The couplings of the light fermions to the SM Higgs are
given by the following Yukawa interaction:

−L ⊃
�

h
vH

�
f̄0iLM

ij
f f

0j
R þ H:c:; ð35Þ

where the primes indicate that the fermions are weak
eigenstates. Using the following identity:X

l;k

ðṼ†
FLÞilMlk

f ðṼFRÞkj

¼ ðṼ†
FLMfṼFRÞij −

X
A

ðṼ†
FLÞi4M4A

f ðṼFRÞAj; ð36Þ

where ṼFR diagonalizes M†
fMf, we can rewrite the above

Lagrangian in the mass eigenstate basis as follows:

−L⊃
h
vH

f̄iL

�
m̃iδ

ij−
X
A

ðṼ†
FLÞi4M4A

f ṼAj
FR

�
fjRþH:c: ð37Þ

where m̃i are the physical light fermion masses. The first
part, which corresponds to the diagonal matrix m̃iδ

ij, is the
standard model coupling to the Higgs boson. The second

term will lead to flavor changing interactions that are
CP-violating. We can use the identity ðMfṼFRÞ4j ¼
ðṼFLMdiagÞ4j to rewrite the second term above as

−L ⊃ −
h
vH

f̄iLðṼ†
FLÞi4ðṼFLMdiagÞ4jfjR þ H:c:; ð38Þ

where Mdiag ¼ diagðm̃1; m̃2; m̃3; M̃FÞ is the diagonal
matrix with the physical masses of the fermions.
Expressing ṼFL as in Eq. (29), exploiting the fact that
ðUFLÞA4 ¼ ðUFLÞ4A ¼ δA4 and ðOFLÞA4 ¼ ðOFLÞ4A ¼ δA4,
and finding that ðVFLÞ4i ¼ −miμi=M̃2

F, we can write the
non-CP conserving light fermion couplings to the standard
model Higgs boson as

−L ⊃ −h
�
m̃j

vH

�
f̄iL
X
l;k

ðU†
FLÞil

mlμ
�
lmkμk
M̃4

F

ðUFLÞkjfjR

þ H:c: ð39Þ

Similarly, we can write the coupling between the new
fermions, the standard model fermions, and the Higgs
boson in the following way:

−L ⊃ f̄iL
X
k

ðU†
FLÞik

μ�k
M̃F

�
mk

vH

�
hf4R þ H:c:; ð40Þ

which will be relevant for the decay rates of the heavy
vectorlike fermions. Note that for μ ∼ M̃F the amplitude for
the interaction that allows f4 to decay to a Higgs and a SM
fermion is not suppressed by M̃F.
Even without a detailed discussion of the couplings of the

X and S scalars and the ZR gauge boson to the fermions,
upper bounds can be derived on the lifetimes of the new
vectorlike fermions. These upper bounds are dominated by
decays through theHiggs bosonvia the couplings inEq. (40),

τF <

�
M̃F

8π

�
μF
M̃F

�
2
�
mf

vH

�
2
�−1

; ð41Þ

where mf is the mass of the heaviest fermion of its kind
(electrons, neutrinos, up-type or down-type quarks).
The measured CKM phase implies μQ ∼ M̃Q, which

fixes the upper bound on the lifetime of the new quarks to
be around 10−21 s (10−26 s) for tera-electron-volt (TeV)
down (up) vectorlike quark masses. On the other hand, the
PMNS phase in the lepton sector is unknown, which
renders more freedom to the hierarchy between μ and
M̃F. Particularly interesting is the case of the vectorlike
neutrino, N, as the upper bound on its lifetime is strongly
suppressed by the SM neutrino masses:

τN < 0.1 s

�
1 TeV

M̃N

��
M̃N=μN

1

�
2
�
0.1 eV
mν

�
2

: ð42Þ
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If the PMNS phase turns out to be of the same magnitude
or bigger than the CKM phase, then μN ∼ M̃N and a TeV
scale vectorlike neutrino would be expected to decay before
big bang nucleosynthesis.

VI. FINITE NATURALNESS

In a renormalizable theory after all divergencies are
canceled, one can check if there are needed cancellations
between different contributions to a physical quantity. To
avoid awkward fine-tuning one can impose bounds on the
masses and couplings of the new fields. This simple criteria
is often called finite naturalness; see Ref. [49] for a detailed
discussion.
The Nelson-Barr mechanism is an attractive solution

to the strong CP problem. Without it, a very precise
cancellation between the strong CP phase θQCD and
argfdetðMuMdÞg is needed to satisfy θ̄QCD < 10−10.
However, generically in Nelson-Barr models, new colored
fermions, vectorlike under the standard model, are required
to implement the aforementioned mechanism. Moreover,
because of the stable domain wall generated from the
spontaneous breaking of a spacetime symmetry as CP, vX
must be large. Given the simultaneous presence of several
scales in the theory, a similar cancellation problem to the
one that Nelson-Barr models succeed to solve may arise in
the effective scalar potential. Therefore, it is reasonable to
explore for which coupling values the theory can remain
free of such cancellations.
The new vectorlike fermions, as long as they carry

standard model quantum numbers, will contribute at three
loops to the Higgs mass, as shown in the upper panel of
Fig. 2. Particularly, for the new quarks [49],

δm2
H ∼

α2s
ð4πÞ4M

2
F ln

�
M2

F

m2
t

�
: ð43Þ

This implies that

MF ≲ 500 TeV

�
0.118
αS

��
δm2

H=m
2
H

100

�
1=2

: ð44Þ

Since inflating the domain walls away demands the VEV
of X to be large, one can assume that all couplings between
the Xi and the SM Higgs are suppressed, avoiding thus
cancellations arising at tree level in the scalar potential. For
example, the coupling of the H†HXiX�

j quartic interaction
at tree level,

λ < 10−14
�
1010 GeV

vX

�
2
�
δm2

H=m
2
H

100

�
: ð45Þ

This is consistent with having a large θX and an acceptably
small contribution to θ̄QCD from loops [see Eq. (16)].
On the other hand, such crossed terms can be generated

by loop effects. For instance, the diagram displayed in the
bottom right panel of Fig. 2 contributes to the SM-Higgs
mass in the following way:

δm2
H ∼

λ2u
ð4πÞ2 v

2
X ln

�
M2

U

m2
t

�
: ð46Þ

Using the fact that λuvX ∼ M̃U, Eq. (46) implies

MU ≲ 6 TeV

�
δm2

H=m
2
H

100

�
1=2

: ð47Þ

Equation (47) suggests that in this model vectorlike
fermions may be accessible to the LHC or future colliders.
To achieve masses at the TeV scale with SCPV at a much
larger scale (which is required by the domain walls) implies
very small couplings.
There are other finite naturalness constraints that we will

not discuss since there may be other physics that makes
tunings in the Higgs effective potential acceptable.

VII. SUMMARY

In this article we have discussed simple gauge theories
where the Nelson-Barr mechanism is realized. Using a
gauge symmetry that is chiral under the new vectorlike
fermions improves the quality of the solution to the strong
CP puzzle.
We studied models that correspond to Uð1ÞR when acting

on the SM fermions. These models have CP violation in
both the quark and thelepton sectors.
We derived explicit expressions for flavor-violating

interactions that apply in Nelson-Barr models which hold
quite generally. These are more suppressed than one may
naively expect, occurring at orderm2=M̃2

F, wherem (M̃F) is
the magnitude of the standard model (new vector-like)
fermion masses. This additional suppression ensures that
they can be consistent with experimental constraints.

FIG. 2. Some contributions to the termsH†H and H†HX�
aXb in

the effective scalar potential.
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If finite naturalness is taken seriously, it suggests that the
new particle content is near the TeV scale. Another way that
new particle content can be at the TeV scale is to have CP
symmetry not restored at high temperature.
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APPENDIX: CORRECTIONS TO θ̄QCD

Nonrenormalizable operators and loops can contribute to
θ̄QCD by adding corrections to the tree-level mass matrix of
the quarks. Then, the total mass matrix of the quarks, M̃q,
can be decomposed into

M̃q ¼ Mq þ δMq; ðA1Þ

where Mq is the tree-level mass matrix of the quarks
[see Eq. (14)] and δMq parametrizes any subleading
contribution.

The determinant of a matrix close to the identity can be
expanded as follows:

DetðM̃qÞ ¼ DetðMqÞDetðI þM−1
q δMqÞ

¼ DetðMqÞð1þ TrfM−1
q δMqgÞ; ðA2Þ

where we have employed the identity DetðeAÞ ¼ eTrfAg.
Since the argument of a complex number is given by
argfzg ¼ −iðln z − ln jzjÞ, and using that

lnDetðM̃qÞ ¼ ln DetðMqÞ þ TrfM−1
q δMqg; ðA3Þ

the following expression is derived:

argfDetðM̃qÞg ¼ argfDetðMqÞg − iTrfM−1
q δMqg

þ i ln j1þ TrfM−1
q δMqgj: ðA4Þ

Using that jzj ¼ ffiffiffiffiffiffiffi
z�z

p
and expanding the logarithm of the

square root up to first order in δMq, the subleading
corrections to the strong CP phase can be written as

Δθ̄QCD ¼ ImfTrfM−1
q δMqgg þOðδM2

qÞ: ðA5Þ
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