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We have analyzed the vacuum structure of the Dirac scotogenic model, whose scalar sector consists of
two complex Higgs doublets and a real singlet field. In this model, the standard model like the Higgs
doublet acquires the nonzero vacuum expectation value (VEV), whereas, the other two fields acquire zero
VEVs. This pattern of VEVs constitutes a minimum, which is the desired vacuum of the model. After
analyzing the scalar potential of this model, we have found that other vacua are also possible in this model.
We have shown that plenty of parameter space exists where the desired vacuum of this model is the global
minimum. We have studied the implications of the scalar sector of this model on the observable quantity of
signal strength of Higgs to diphoton decay. After evaluating this quantity, we have found that the current
experimental values of this quantity can be fitted in this model. Lastly, we have studied on the possibility of
making any of the additional scalar fields of this model as a candidate for dark matter.
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I. INTRODUCTION

With the discovery of Higgs boson at the LHC [1,2], the
spontaneous breaking of electroweak symmetry has been
verified. In the standard model (SM), the breaking of this
symmetry is explained by postulating a single scalar Higgs
doublet [3–7], which acquires the nonzero vacuum expect-
ation value (VEV) at the minimum of the scalar potential.
A consequence of this breaking mechanism is the existence
of the Higgs boson, which is found in the LHC. As of now,
the properties of the Higgs boson, which are measured at
the LHC, agrees with the SM predictions [8]. However,
more work is to be done in order to precisely measure
the couplings of Higgs boson to all the SM particles. On the
other hand, several reasons exist for the extension of the
SM [9,10]. As a result of this, it is worth exploring theories
by proposing additional Higgs doublets. A minimal exten-
sion to the SM, in this aspect, is the two Higgs doublet
model (2HDM) [11], where the field content is the same as
that of the SM apart from an extra scalar Higgs doublet.
In the SM, at the minimum of the scalar potential, the

VEV of the scalar doublet breaks only the electroweak
symmetry. In contrast to this, in the 2HDM, both the Higgs
doublets can acquire VEVs in such a way that, in addition
to the electroweak symmetry, CP and charge symmetries
can also be broken spontaneously [12,13]. Different forms

of VEVs to the Higgs doublets are possible in the 2HDM,
due to the parameter choice of the model. As a result of this,
in the 2HDM, the possible vacua are categorized as
follows [12,13]: (i) neutral minimum, (ii) CP-violating
minimum, and (iii) charge-breaking minimum. Here, neu-
tral minimum breaks only the electroweak symmetry.
Whereas, CP- and charge-breaking minima break the
respective symmetries, in addition to the electroweak
symmetry. CP-violating minimum is phenomenologically
acceptable, however, charge-breaking minimum should be
avoided since violation of charge symmetry is not found in
experiments. Theoretically it is demonstrated that, in the
2HDM, a neutral minimum do not coexist with either CP-
or charge-breaking minima [12–15]. In other words, it is
possible to choose a parameter region of the scalar potential
of the 2HDM in such a way that the minimum breaks only
the electroweak symmetry spontaneously, and moreover,
this can be the global minimum. This result is appealing,
and it makes the 2HDM as a viable candidate for the
extension of the SM.
The result mentioned above is valid in any model where

the scalar sector contains only two Higgs doublets. Several
models are proposed with only the two Higgs doublets, in
order to explain the limitations of the SM [9,10]. One among
these is the scotogenic model [16], whose motivation is to
explain the smallness of neutrinomasses and the existence of
dark matter. This model contains an additional and exact
discrete symmetryZ2, whose purpose is to generate neutrino
masses at 1-loop level and also to accommodate a candidate
for dark matter. In order to achieve the motivation of this
model, one of the two Higgs doublets of this model should
acquire nonzero VEVand the other one should acquire zero
VEV. We can consider this pattern of VEVs to the Higgs
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doublets as the desired vacuum of the scotogenic model.
However, byminimizing the scalar potential of thismodel, it
is possible for both the Higgs doublets to acquire different
patterns of VEVs, and thus generate different possible
vacua. Topics on this subject are discussed in [17,18],
and it is shown that it is possible to make the desired
vacuum of the scotogenic model as the global minimum by
restricting the parameter space of the model. See
Refs. [19,20] for alternative proposals on scotogenicmecha-
nism in composite Higgs models.
In the scotogenic model [16], neutrinos are Majorana

particles. Since there is no indication from experiments on
the Majorana nature of neutrinos, a priori, it is worth it to
construct models based on the Dirac nature of neutrinos. It
is for this reason the scotogenic model has been modified
into the Dirac scotogenic model [21], where the neutrinos
are purely Dirac particles. In this later model, three copies
of Weyl singlet fermions νcα, Nk, Nc

k are introduced. Here,
α ¼ e, μ, τ, which is the generation index of the lepton
family and k ¼ 1; 2; 3. Nk and Nc

k combine to give massive
Dirac fermions ND

k . Whereas, νcα combine with left-handed
neutrinos of the lepton doublets to form Dirac neutrinos νDα .
To forbid Majorana masses for the above Weyl fermions
and to conserve the lepton number, an additional and
exact symmetry Uð1ÞB−L is proposed. In the scalar sector
of this model, there exist two complex Higgs doublets
(Φ, η) and a real scalar singlet (χ). Here, Φ is the SM-like
Higgs doublet. This model has an additional symmetry

ZðAÞ
2 × ZðBÞ

2 , which prevents masses to Dirac neutrinos
at tree level and generates them at 1-loop level [21].

The construction of the model is such that the ZðAÞ
2

symmetry is softly broken but ZðBÞ
2 is exact symmetry.

Hence, the lightest charged particle under ZðBÞ
2 can be a

viable candidate for dark matter.
Like in the case of the scotogenic model, in the Dirac

scotogenic model as well, the scalar fields should acquire
VEVs in a specific pattern in order to generate masses for
neutrinos at 1-loop level in a consistent way. This pattern is
such that only Φ acquires nonzero VEV, whereas, η and χ
acquire zero VEVs [21]. We expect this pattern of VEVs to
constitute a minimum of the model in some parameter
region of it. On the other hand, with the description we have
given for the cases of the 2HDM and scotogenic model, one
can expect other possible minima for the Dirac scotogenic
model, apart from the desired minimum which is men-
tioned above. A noteworthy point is that the scalar content
of the Dirac scotogenic model is different from that of the
2HDM. Hence, the results we described above for the case
of the 2HDM need not be applicable to the Dirac scoto-
genic model. More specifically, we may expect some
charge-breaking minima to coexist with the desired mini-
mum of this model. As a result of this, we need to know if
the desired minimum of this model can be made as the
global minimum.

In this work, after analyzing the scalar potential, we
describe all possible inequivalent vacua of the Dirac scoto-
genic model. We have found that, including the desired
minimum of this model, there can exist 11 different vacua,
which includes three charge-breaking minima. As part of our
investigation on global minimum, we have studied if the
desired minimum of this model can coexist with other
possible vacua of the model. In our numerical analysis, we
have found that the desired minimum of this model does not
coexist with charge-breaking minima in the viable parameter
space of this model. We have justified this result by giving an
analytical proof to it. On the other hand, the desiredminimum
of this model is found to coexist with certain other minima of
themodel. In the case that the desiredminimum of this model
coexists with otherminima, we have given the conditions that
need to be satisfied in order to make the desired minimum of
this model as the global minimum.We have shown that there
exists plenty of parameter space where the desired minimum
of this model is the global minimum.
The study on global minimum of the Dirac scotogenic

model will have implications on the scalar sector of this
model since the analysis is mainly concerned with the
parameters of the scalar potential. One of the phenomeno-
logical implications of the scalar sector of this model is on
the signal strength of the Higgs to diphoton decay H → γγ.
The signal strength ofH → γγ, Rγγ is measured in the LHC
experiment, and its value is around 1 [8]. The additional
contribution to the decay H → γγ in the Dirac scotogenic
model [21] is due to the trilinear coupling of the Higgs with
the charged component of η field. As a result of this, the
contribution to Rγγ is determined by the above trilinear
coupling and also by the masses of components of η field.
Since the couplings and masses of scalar fields are affected
by the above described analysis of global minimum, we
have studied its implications on Rγγ. In our analysis, we
have found that the experimental value of Rγγ can be fitted
in this model, irrespective of the fact that the desired
minimum of this model coexists with other minima or not.
The fitted value to Rγγ in this model is found to be either
less or greater than 1, depending on the parameter choice.
Another implication of the scalar sector of the Dirac

scotogenic model is on the dark matter phenomenology [8].
As described above, in this model, ZðBÞ

2 is an exact
symmetry. Hence, the lightest particle charged under the

ZðBÞ
2 can be a candidate for dark matter. We have studied on

the possibility of making any of the additional scalar fields
of this model as a candidate for thermal cold dark matter.
The paper is organized as follows. In the next section, we

give a brief description on the Dirac scotogenic model. In
Sec. III, we describe all different possible minima of this
model. In Secs. IV and V, we discuss making the desired
minimum of this model as the global minimum. In Sec. VI,
we present our study on the signal strength of Higgs to
diphoton decay. In Sec. VII, we discuss the possibility of a
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scalar dark matter candidate in this model. In Sec. VIII, we
have compared the phenomenology of the Dirac scotogenic
model with that of the scotogenic model. We present the
conclusions of our work in Sec. IX. In the Appendix, we
describe analytical arguments in order to justify some of the
numerical results of Sec. V.

II. DIRAC SCOTOGENIC MODEL

We have given a brief introduction to the Dirac scoto-
genic model [21] in Sec. I. In this work, we follow the
original model of this, which is proposed in [21]. Apart
from this, other models are also proposed which have the
idea of scotogenic masses to Dirac neutrinos [22–28]. In
the Dirac scotogenic model [21], additional scalars and
fermionic fields are introduced along with the additional
symmetry Uð1ÞB−L × ZðAÞ

2 × ZðBÞ
2 . The field content of this

model, which is relevant to the lepton sector, and their
charge assignments are given in Table I. Here, the sym-
metry Uð1ÞB−L can be either global or gauged [21]. In this
work, we have taken this to be global, and it is an exact
symmetry. With the charge assignments of Table I, the
allowed interaction terms in the Lagrangian are

−L ¼ yαβðναϕþ� þ lαϕ
0� Þlc

β þ fαkðναη0 − lαη
þÞNc

k

þ hkαNkν
c
αχ þmNk

NkNc
k þ H:c: ð1Þ

Here, mNk
is the Dirac mass for ND

k ¼ ðNk;Nc
kÞ. The

couplings yαβ in Eq. (1) generate masses to charged leptons
after the electroweak symmetry breaking, whereΦ acquires
nonzero VEV. On the other hand, the terms of Eq. (1) do
not generate masses to light neutrinos at tree level since η
and χ acquire zero VEVs, which is due to the fact that both

these fields are charged under the exact symmetry ZðBÞ
2 .

However, if there exists a trilinear term among Φ, η, and χ,
then neutrinos acquire masses at 1-loop level in this model.
Shortly below, we explain how such a trilinear term can be
present in this model. We notice from Table I that all the

additional fields of this model are charged under the ZðBÞ
2

symmetry. Since this symmetry is exact, the lightest among

these additional fields can be a candidate for dark matter.
Later in this work, we discuss the possibility of a scalar
dark matter in this model.
As discussed in the previous section, the Dirac scoto-

genic model is motivated from the scotogenic model [16],
where neutrinos are Majorana particles. We notice that
there is an analogy between these two models in terms of
field content. Instead of ðNk; Nc

kÞ, there exists NM
k in the

scotogenic model, which is a Majorana field. The scalar
sector of the scotogenic model is the same as that of the
Dirac scotogenic model, except for the singlet field χ. As a
result of this, the third term of Eq. (1) does not exist in the
Lagrangian of the scotogenic model. Moreover, by replac-
ing ðNk; Nc

kÞ with a Majorana NM
k field in Eq. (1), we get

corresponding terms in the scotogenic model [16]. Later in
this work, we compare the above two models in terms of
neutrino masses and other physically observable quantities.
The scalar potential of the Dirac scotogenic model is [21]

V ¼ μ21Φ†Φþ μ22η
†ηþ 1

2
μ23χ

2 þ 1

2
λ1ðΦ†ΦÞ2 þ 1

2
λ2ðη†ηÞ2

þ λ3ðΦ†ΦÞðη†ηÞ þ λ4ðΦ†ηÞðη†ΦÞ

þ 1

2
½λ5ðΦ†ηÞ2 þ H:c:� þ 1

4
λ6χ

4 þ 1

2
λ7ðΦ†ΦÞχ2

þ 1

2
λ8ðη†ηÞχ2 þ Aχ½Φ†ηþ H:c:�: ð2Þ

Here, we have chosen the parameter A to be real by fixing
the phases in Φ and η. For this particular choice, the
parameter λ5 can, in general, be complex. However, in the
analysis of [21], λ5 is taken to be real for the sake of
simplicity. We discuss λ5 in the context of our work, later in
the next section. The terms of Eq. (2) generate masses to
physical fields of this model, after the electroweak sym-
metry breaking, where Φ acquires nonzero VEVand the η,
χ acquire zero VEVs. The nonzero VEV forΦ can be taken
as hϕ0i ¼ vEW ¼ 174 GeV, which is the electroweak
symmetry breaking scale. We see that, after this symmetry
breaking, ϕþ and imaginary part of ϕ0 become Goldstone
bosons. The real part of ϕ0 is physical, and we identify
Reðϕ0Þ ¼ H as the Higgs boson. The charged component
of η is physical. On the other hand, the neutral component
of η has mixing with χ through the last term of Eq. (2). As a
result of this, we write η0 ¼ ðη0R þ iη0I Þ=

ffiffiffi
2

p
. Now, the mass

spectrum of the physical scalar fields in the Dirac scoto-
genic model is [21]

m2
H ¼ 2λ1v2EW;

m2
ηþ ¼ μ22 þ λ3v2EW;

m2
η0I
≡m2

ζ3
¼ μ22 þ ðλ3 þ λ4 − λ5Þv2EW;

M2
η0R;χ

¼
�
μ22 þ ðλ3 þ λ4 þ λ5Þv2EW

ffiffiffi
2

p
AvEWffiffiffi

2
p

AvEW μ23 þ λ7v2EW

�
: ð3Þ

TABLE I. Fields in the lepton sector of the Dirac scotogenic
model [21] along with their charge assignments. As described in
Sec. I, Φ, η, and χ are scalars. The rest of the fields are fermionic.

Field SUð2ÞL Uð1ÞY Uð1ÞB−L ZðAÞ
2 ZðBÞ

2

Lα ¼ ðνα;lαÞ 2 −1=2 −1 þ þ
lc
α 1 1 1 þ þ

νcα 1 0 1 − þ
ΦT ¼ ðϕþ;ϕ0Þ 2 1=2 0 þ þ
ηT ¼ ðηþ; η0Þ 2 1=2 0 þ −

χ 1 0 0 − −
Nk 1 0 −1 þ −
Nc

k 1 0 1 þ −
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Here, M2
η0R;χ

gives the mixing masses between η0R and χ,

whose mass eigenstates are denoted by ζ1;2. Also here, for
the sake of notational simplicity, we have written η0I ¼ ζ3.
The last term of Eq. (2) breaks the ZðAÞ

2 symmetry softly.
This term is necessary in order to generate masses to
neutrinos at 1-loop level [21], and moreover, this is the
trilinear term that we have discussed above. Now, with the
A-term of Eq. (2) and with the interaction terms of Eq. (1),
neutrinos acquire masses at 1-loop, whose expressions are
given below [21];

ðMνÞαβ ¼ðfΛhÞαβ ¼
X3
K¼1

fαkΛkhkβ;

Λk ¼
sinð2θÞ
32π2

ffiffiffi
2

p mNk

×

�
m2

ζ1

m2
ζ1
−m2

Nk

ln
m2

ζ1

m2
Nk

−
m2

ζ2

m2
ζ2
−m2

Nk

ln
m2

ζ2

m2
Nk

�
: ð4Þ

Here, θ is the mixing angle between η0R and χ. As a result of
this mixing, the diagonal masses for these fields are
denoted by mζ1 and mζ2 . As already described before, this
mixing is arising due to the A-term of Eq. (2). As a result of
this, θ is proportional to the A parameter. Since the A-term

breaks ZðAÞ
2 symmetry softly, the parameter A, and hence,

the θ can be small. The small mass for neutrinos in Eq. (4)
can be explained either through the small mixing angle θ, or
by the large value for mNk

, or by taking degenerate masses
for ζ1;2, apart from the loop suppression factor. It is to be
noted that the masses of ζ1;2 depend on various parameters,
which are given in Eq. (3). It is possible to fine-tune these
parameters in such way that mζ1 and mζ2 are nearly
degenerate, which gives an additional suppression for
neutrino masses in Eq. (4).
Apart from the smallness of neutrino masses, we need to

explain the observed neutrino mixing angles [8] in the
Dirac scotogenic model. In order to explain this, we use the
Casas-Ibarra parametrization [29], and thereby, the Yukawa
couplings in Eq. (4) can be expressed as

f ¼ U
ffiffiffiffiffiffi
mν

p
R

ffiffiffiffi
Λ

p −1; h ¼
ffiffiffiffi
Λ

p −1S†
ffiffiffiffiffiffi
mν

p
V†;

mν ¼ diagðmν1 ; mν2 ; mν3Þ: ð5Þ

Here, mνi , where i ¼ 1; 2; 3, are the neutrino mass eigen-
values. R and S are, in general, complex matrices, which
satisfy RS† ¼ I. After using the above parametrizations for
f and h in Eq. (4), we get U†MνV ¼ mν, which is the
desired relation for diagonalizing the Mν. Here, U ¼
UPMNS is identified as the Pontecorvo-Maki-Nakagawa-
Sakata matrix, which is parametrized in terms of the three
neutrino mixing angles and a CP violating Dirac phase [8].
V is a unitary matrix which rotates the right-handed
neutrino fields from flavor to mass eigenstates. As a result

of the above given description, the neutrino mixing angles
in the Dirac scotogenic model can be explained by para-
metrizing the Yukawa couplings as in Eq. (5). In the
parametrizations of f and h, the neutrino mass eigenvalues
can be chosen either in normal or inverted ordering, in order
to fit the solar and atmospheric mass-square differences of
neutrinos [8].
The expression for neutrino masses in the Dirac scoto-

genic model, which is given in Eq. (4), is similar to the
corresponding expression of the scotogenic model [16]. In
the context of neutrino mass generation, the difference
between the above two models is described below. The
neutrino masses in the Dirac scotogenic model are driven
by two different Yukawa couplings, whereas, in the
scotogenic model these masses are driven by one kind
of Yukawa coupling. The parametrizations of Yukawa
couplings in the Dirac scotogenic model, which are given
in Eq. (5), are similar to that in the scotogenic model, which
can be seen from [30]. In [30], we have worked on the
lepton flavor violating (LFV) decays of Z and Higgs boson
in the scotogenic model, where we have also done
numerical analysis on fitting the neutrino masses and
mixing angles in this model. This numerical analysis can
be analogously worked in the Dirac scotogenic model.
To test the Dirac scotogenic model in collider experi-

ments, such as the LHC, we should take the masses of all
additional fields to be around a few hundred GeV. Now,
using the discussion given before, for mNK

∼ 1 TeV, the
small masses for neutrinos can be explained if either of the
following quantities are taken to be small: θ or mζ1 −mζ2.
In the limit that these quantities are small, we see that Λk of
Eq. (4) becomes small. Hence, from Eq. (5), the Yukawa
couplings f and h can become Oð1Þ in some region of
parameter space. The couplings fαk drive LFV processes in
this model, which can have significant branching ratios,
since fαk are not suppressed and mNK

∼ 1 TeV. Later in
this work, we describe about LFV processes of this model.
As described before, in the Dirac scotogenic model, Φ

acquires nonzero VEVand η, χ should acquire zero VEVs.
This pattern of VEVs can be achieved by minimizing the
potential of Eq. (2) for μ21 < 0. Here we notice that in some
parameter region of the scalar potential the above pattern of
VEVs constitutes a minimum for the model. By choosing
different parameter regions of the scalar potential, it is
possible to find other minima of this model. In the next
section, we argue that the above minimum required for the
Dirac scotogenic model is only one possible minima of
this model.

III. POSSIBLE MINIMA OF THE DIRAC
SCOTOGENIC MODEL

In this section, we describe different possible minima of
the Dirac scotogenic model, after analyzing the scalar
potential of it. The scalar potential of this model is
described in Eq. (2), which consists of the fields Φ, η
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and, χ. At the minimum of the scalar potential, either of
these scalar fields can acquire nonzero VEVs. First, let us
consider the case where hΦi ≠ 0 and hηi ¼ 0. In this case,
using the SUð2Þ transformation, the VEVof Φ can always
be brought into a form where the neutral component of it
acquires nonzero and real VEV. As a result of this, there can
exist two different minima, depending on whether χ
acquires a VEV or not. These possible minima are

N1∶ hΦi¼
�

0

vEW

�
; hηi¼

�
0

0

�
; hχi¼ 0: ð6Þ

N2∶ hΦi¼
�

0

vϕð2Þ

�
hηi¼

�
0

0

�
; hχi¼ vχð2Þ; ð7Þ

where vϕð2Þ and vχð2Þ are some nonzero real variables. Here,
N1; N2 are neutral minima which break only the electro-
weak symmetry. N1 is the desired minimum of the Dirac
scotogenic model, which we have considered to be the true
model of our Universe. Hence, we have equated the VEVof
Φ field to vEW. On the other hand, N2 is one possible
minima of the scalar potential of the Dirac scotogenic
model. But otherwise, this minimum is not consistent with
the model framework. Hence, N2 does not represent the
observable world of our Universe. As a result of this, the
VEVs of Φ and χ in this minimum are some variables and
need not represent the electroweak symmetry breaking
scale. Now, let us consider the case where hΦi ¼ 0 and
hηi ≠ 0. In this case, in analogy to the description given
above, the following two minima are possible:

N3∶ hΦi¼
�
0

0

�
; hηi¼

�
0

vηð3Þ

�
; hχi¼ 0: ð8Þ

N4∶ hΦi¼
�
0

0

�
hηi¼

�
0

vηð4Þ

�
; hχi¼ vχð4Þ: ð9Þ

The nonzero entries in the above equations are real and
arbitrary. The minima N3 and N4 are unphysical since they
do not generate masses to SM fermions of this model.
In the case where hΦi ¼ 0 ¼ hηi, there can exist one

nontrivial minimum, which is given below,

N5∶ hΦi¼
�
0

0

�
hηi¼

�
0

0

�
; hχi¼ vχð5Þ: ð10Þ

Here, the VEV of χ is real and a nonzero variable. The
minimum N5 is clearly unphysical since it does not break
the electroweak symmetry. Finally, in the case where
hΦi ≠ 0 ≠ hηi, the following six minima are possible:

N6∶ hΦi¼
�

0

vϕð6Þ

�
; hηi¼

�
0

vηð6Þ

�
; hχi¼ 0: ð11Þ

N7∶ hΦi¼
�

0

vϕð7Þ

�
; hηi¼

�
0

ivηð7Þ

�
; hχi¼0: ð12Þ

N8∶ hΦi¼
�

0

vϕð8Þ

�
hηi¼

�
0

vηð8Þ

�
; hχi¼vχð8Þ: ð13Þ

C9∶ hΦi¼
�

0

vϕð9Þ

�
; hηi¼

�
cηð9Þ
vηð9Þ

�
; hχi¼ 0: ð14Þ

C10∶ hΦi ¼
�

0

vϕð10Þ

�
hηi ¼

�
cηð10Þ
ivηð10Þ

�
; hχi ¼ 0:

ð15Þ

C11∶ hΦi ¼
�

0

vϕð11Þ

�
hηi ¼

�
cηð11Þ
vηð11Þ

�
; hχi ¼ vχð11Þ:

ð16Þ

Here, C9, C10, and C11 are charge-breaking minima,
where the charged component of η acquires nonzero VEV.
On the other hand, N6, N7, and N8 break only the
electroweak symmetry. In obtaining the forms of VEVs
in Eqs. (11)–(16), we have used the SUð2Þ transforma-
tion [31] on Φ and η. It is to be noticed that the variables of
the form vϕðkÞ; vηðkÞ; cηðkÞ; vχðkÞ in Eqs. (11)–(16) are real
and nonzero. While obtaining that these variables are real,
we have taken the λ5 parameter of Eq. (2) to be real. Shortly
below, we give a demonstration about this. We notice that
the VEVof η in Eqs. (12) and (15) is complex, which tells
something about CP symmetry in the minima of N7 and
C10. As we have taken λ5 to be real, the minimum N7
respect the CP symmetry, since Eqs. (2) and (12) are
invariant under the following CP transformation:
Φ → Φ�; η → −η�; χ → −χ. On the other hand, C10 breaks
the CP symmetry spontaneously, apart from the charge and
electroweak symmetries.
After using the SUð2Þ transformation [31], the general

structure of the VEVs of the scalar fields in the Dirac
scotogenic model can be written as

hΦi ¼
�

0

vϕ

�
hηi ¼

�
cη
vη

�
; hχi ¼ vχ : ð17Þ

In the above equation, vϕ; cη; vχ are real variables, and vη is,
in general, a complex variable. Apart from vη, the other
complex variable in this model is the λ5 parameter of Eq. (2).
As a result of this, we write the forms for λ5 and vη as

λ5 ¼ jλ5jeiθ5 ; vη ¼ jvηjeiθη : ð18Þ

Here, θ5 and θη are phases in λ5 and vη, respectively. After
plugging Eq. (17) into Eq. (2), the relevant part of the
potential is
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hVi¼ jλ5jv2ϕjvηj2 cosðθ5þ2θηÞþ2Avχvϕjvηjcosθη: ð19Þ

In the above equation, we have written only that part of the
potential which contains only the phases θ5 and θη. The
extremum for hViwith respect to these phases is found to be

θ5 ¼ ðm − 2nÞπ; θη ¼ nπ: ð20Þ

Here,m, n are any integers. Using the above relations,we see
that λ5 and vη are real quantities at any extremum of the
potential. To see if the values of Eq. (20) correspond to the
minimum of Eq. (19), we need to evaluate the second-order
derivatives of hViwith respect to θ5 and θη. As a result of this,
we get the following matrix:

MV ¼

0
B@

∂
2hVi
∂θ2

5

∂
2hVi

∂θ5∂θη

∂
2hVi

∂θ5∂θη

∂
2hVi
∂θ2η

1
CA
������
θ5¼ðm−2nÞπ;θη¼nπ

: ð21Þ

After demanding that the eigenvalues ofMV are positive, and
since λ5 and vη are real at the minimum of the potential, we
get the following conditions:

λ5 < 0; Avϕvηvχ < 0: ð22Þ

Using the analysis, which is described in the previous
paragraph, we notice that in the minima of Eqs. (13) and
(16), the quantities vηð8Þ and vηð11Þ should be real.
Moreover, in these minima, λ5 should be a real parameter,
and the conditions of Eq. (22) should be satisfied. Now, in
the analysis of the previous paragraph, let us consider the
case where vχ ¼ 0. In this case, at the minimum of the

potential, the individual phases in λ5 and vη cannot be
determined. However, if we choose λ5 to be real, then vη
can be either real or purely imaginary at the minimum of
the potential. As a result of this, the VEV of the neutral
component of η is taken to be real in Eqs. (11) and (14),
whereas, this quantity is taken to be purely imaginary in
Eqs. (12) and (15). Let us mention here that λ5 can, in
general, be complex in the minima of Eqs. (6)–(10).
However, to simplify our numerical analysis, we have
taken λ5 to be real in the rest of this work.
We have described that the VEV structures given in

Eqs. (6)–(16) as possible minima of the model. In order to
clarify this point, we refer each of these VEV structures as a
stationary point (SP). A SP becomes a minimum if the
following two conditions are satisfied: (1) minimization
conditions of the scalar potential, (2) mass-square eigen-
values of scalar fields, which are not Goldstone bosons,
are positive. The minimization conditions, which should
be satisfied by the SPs of Eqs. (6)–(16), are given in
Table II. Shortly below, we describe how we compute the
mass-square eigenvalues of scalar fields at the SPs of
Eqs. (6)–(16). It is to be noted that, in the Dirac scotogenic
model, the scalar sector consists of nine real degrees of
freedom. Out of these nine, some of them may become
Goldstone bosons since the electroweak and charge sym-
metries are spontaneously broken by some of the SPs of
Eqs. (6)–(16). The SP N5 of Eq. (10) does not break either
of these symmetries, and hence, in this case all the nine
scalar fields become massive.
As stated before, the general structure of VEVs of scalar

fields in the Dirac scotogenic model is given by Eq. (17).
Hence, in order to compute the mass eigenstates, we
parametrize these fields as

TABLE II. Minimization conditions which should be satisfied at the SPs of Eqs. (6)–(16).

N1 μ21 þ λ1v2EW ¼ 0

N2 A ¼ 0, μ21 þ λ1v2ϕð2Þ þ 1
2
λ7v2χð2Þ ¼ 0, μ23 þ λ6v2χð2Þ þ λ7v2ϕð2Þ ¼ 0

N3 μ22 þ λ2v2ηð3Þ ¼ 0

N4 A ¼ 0, μ22 þ λ2v2ηð4Þ þ 1
2
λ8v2χð4Þ ¼ 0, μ23 þ λ6v2χð4Þ þ λ8v2ηð4Þ ¼ 0

N5 μ23 þ λ6v2χð5Þ ¼ 0

N6 A ¼ 0, μ21 þ λ1v2ϕð6Þ þ ðλ3 þ λ4 þ λ5Þv2ηð6Þ ¼ 0, μ22 þ λ2v2ηð6Þ þ ðλ3 þ λ4 þ λ5Þv2ϕð6Þ ¼ 0

N7 μ21 þ λ1v2ϕð7Þ þ ðλ3 þ λ4 − λ5Þv2ηð7Þ ¼ 0, μ22 þ λ2v2ηð7Þ þ ðλ3 þ λ4 − λ5Þv2ϕð7Þ ¼ 0

N8 μ21 þ λ1v2ϕð8Þ þ ðλ3 þ λ4 þ λ5Þv2ηð8Þ þ 1
2
λ7v2χð8Þ þ Avχð8Þvηð8Þ=vϕð8Þ ¼ 0,

μ22 þ λ2v2ηð8Þ þ ðλ3 þ λ4 þ λ5Þv2ϕð8Þ þ 1
2
λ8v2χð8Þ þAvχð8Þvϕð8Þ=vηð8Þ ¼ 0,

μ23 þ λ6v2χð8Þ þ λ7v2ϕð8Þ þ λ8v2ηð8Þ þ 2Avϕð8Þvηð8Þ=vχð8Þ ¼ 0

C9 A ¼ 0, λ4 þ λ5 ¼ 0, μ21 þ λ1v2ϕð9Þ þ λ3ðc2ηð9Þ þ v2ηð9ÞÞ ¼ 0, μ22 þ λ2ðc2ηð9Þ þ v2ηð9ÞÞ þ λ3v2ϕð9Þ ¼ 0

C10 λ4 − λ5 ¼ 0, μ21 þ λ1v2ϕð10Þ þ λ3ðc2ηð10Þ þ v2ηð10ÞÞ ¼ 0, μ22 þ λ2ðc2ηð10Þ þ v2ηð10ÞÞ þ λ3v2ϕð10Þ ¼ 0

C11 Avχð11Þ þ ðλ4 þ λ5Þvηð11Þvϕð11Þ ¼ 0, μ21 þ λ1v2ϕð11Þ þ λ3ðc2ηð10Þ þ v2ηð11ÞÞ þ 1
2
λ7v2χð11Þ ¼ 0,

μ22 þ λ2ðc2ηð11Þ þ v2ηð11ÞÞ þ λ3v2ϕð11Þ þ 1
2
λ8v2χð11Þ ¼ 0,

μ23 þ λ6v2χð11Þ þ λ7v2ϕð11Þ þ λ8ðc2ηð11Þ þ v2ηð11ÞÞ þ 2Avϕð11Þvηð11Þ=vχð11Þ ¼ 0
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Φ ¼
� ðϕ1

R þ iϕ1
I Þ=

ffiffiffi
2

p

vϕ þ ðϕ0
R þ iϕ0

I Þ=
ffiffiffi
2

p
�
;

η ¼
�
cη þ ðη1R þ iη1I Þ=

ffiffiffi
2

p

vη þ ðη0R þ iη0I Þ=
ffiffiffi
2

p
�
;

χ ¼ vχ þ χR: ð23Þ

Now, in the case of Eq. (6), which corresponds to
the desired minimum of the Dirac scotogenic model,
ϕ1
R;ϕ

1
I ;ϕ

0
I become Goldstone bosons. Moreover, for this

minimum, we have vϕ ¼ vEW and cη ¼ vη ¼ vχ ¼ 0. Now,
after identifying ϕ0

R ¼ H as the Higgs boson and
ηþ ¼ ðη1R þ iη1I Þ=

ffiffiffi
2

p
, we see that the mass spectrum of

physical fields in the case of N1 matches with that of
Eq. (3). Similar to what we described above, the mass
spectrum of scalar fields at other SPs of Eqs. (7)–(16) are
computed accordingly. It should be noted here that, even if
any of these SPs become minima, the scalar fields in these
minima are unphysical since these minima do not represent
the physical world of ours. In our analysis, which we will
present later, we have computed the scalar masses at the
SPs of Eqs. (7)–(16) numerically. We have found in our
analysis that each of the SPs given in Eqs. (6)–(16) can
become a minimum in some region of parameter space of
the scalar potential. Since multiple minima can exist for the
scalar potential of the Dirac scotogenic model, we need to
know if N1, which is the desired minimum of this model,
can become the global minimum. The next few sections
discuss this.

IV. RELATIVE DEPTHS IN POTENTIAL

At the end of the last section, we noted that N1 is one
possible minimum among other minima of the Dirac
scotogenic model. In order to address if N1 is the global
minimum of this model, we need to know if N1 coexists
with other minima. If it coexist with other minima, we
demand that the potential depth at N1 is lower compared to
that at other minima, so that N1 is the global minimum of
this model. In this section, we assume that the minimumN1
coexists with other minima in some region of parameter
space. We then calculate the differences in the depth of
potential at N1 and at other minima. Using these quantities,
we predict the possibility of making N1 the global mini-
mum of this model. The results obtained in this section are
helpful for the next section, where we study the coexistence
of N1 with other minima.
In order to compute the difference between the value of

potential at N1 and at any other SP, we follow the work
of [12,13,32], which is based on a formalism of bilinears.
For some works using the bilinear formalism, see
Refs. [33–37]. Using this formalism, we notice that, except
for the last term of Eq. (2), other terms of the scalar

potential are either quadratic or quartic. As a result of this,
we define the following bilinears:

x1 ¼ Φ†Φ; x2 ¼ η†η; x3 ¼ χ2;

x4 ¼ ReðΦ†ηÞ; x5 ¼ ImðΦ†ηÞ: ð24Þ

Apart from these, we also define the following matrices:

X ¼

0
BBBBBB@

x1
x2
x3
x4
x5

1
CCCCCCA
; M2 ¼

0
BBBBBB@

μ21
μ22
1
2
μ23
0

0

1
CCCCCCA
;

M4 ¼

0
BBBBBB@

λ1 λ3
1
2
λ7 0 0

λ3 λ2
1
2
λ8 0 0

1
2
λ7

1
2
λ8

1
2
λ6 0 0

0 0 0 2ðλ4 þ λ5Þ 0

0 0 0 0 2ðλ4 − λ5Þ

1
CCCCCCA
: ð25Þ

Now, using Eqs. (24) and (25), the scalar potential of
Eq. (2) can be expressed as

V ¼ V2 þ V3 þ V4;

V2 ¼ MT
2X; V3 ¼ 2Aχx4; V4 ¼

1

2
XTM4X: ð26Þ

At any SP of Eqs. (6)–(16), the scalar potential has to
satisfy the minimization conditions. Hence, we get the
following relation [32]:

X
i

φi
∂V
∂φi

����
SP

¼ 0 ⇒ 2ðV2ÞSP þ 3ðV3ÞSP þ 4ðV4ÞSP ¼ 0:

ð27Þ

In the above equation, φi represent any real scalar degree of
freedom of the Dirac scotogenic model. Here, ðViÞSP,
where i ¼ 2; 3; 4, is the value of Vi evaluated at a SP.
Using the above relation, the value of scalar potential
evaluated at a SP is found to be

VSP ¼
1

2
ðV2ÞSP þ

1

4
ðV3ÞSP: ð28Þ

We define XSP as the matrix X evaluated at a SP. We then
define the following quantity at any SP:

V 0
SP ¼ M2 þM4XSP: ð29Þ

Using the above definitions, for the case of N1, we get
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XN1 ¼

0
BBBBBB@

v2EW
0

0

0

0

1
CCCCCCA
; V 0

N1 ¼

0
BBBBBB@

0

m2
ηþ

1
2
ðμ23 þ λ7v2EWÞ

0

0

1
CCCCCCA
: ð30Þ

While obtaining the form of V 0
N1, we have used the

minimization condition for N1, which is given in
Table II. Similarly, for other SPs of Eqs. (7)–(16), we
have obtained XSP and V 0

SP, accordingly. Below we
describe the expression for difference in the value of
potential at N1 and at any other SP. To do this computation,
we first consider the following products: XT

N1V
0
SP and

XT
SPV

0
N1. Now, using the quantities described in the pre-

vious paragraph, these products can be expressed as

XT
N1V

0
SP ¼ 2VN1 −

1

2
ðV3ÞN1 þ XT

N1M4XSP;

XT
SPV

0
N1 ¼ 2VSP −

1

2
ðV3ÞSP þ XT

SPM4XN1: ð31Þ

From the relations in the above equation, we get the
following expression, which gives the relative depth in
potential between a SP and N1,

VSP −VN1 ¼
1

2
ðXT

SPV
0
N1 −XT

N1V
0
SPÞ þ

1

4
ððV3ÞSP − ðV3ÞN1Þ:

ð32Þ
It is to remind here that the above expression is obtained
after using the minimization conditions for the SPs of
Eqs. (6)–(16), but otherwise, these SPs need not be minima.
Using the general expression given in Eq. (32), we have

computed the differences in the value of potential atN1 and
at any other SP of Eqs. (7)–(16). These expressions are
given below,

VN2 − VN1 ¼
v2χð2Þ
4

ðμ23 þ λ7v2EWÞ; ð33Þ

VN3 − VN1 ¼
v2ηð3Þ
2

μ22 −
v2EW
2

μ21; ð34Þ

VN4 − VN1 ¼
v2ηð4Þ
2

μ22 −
v2EW
2

μ21 þ
v2χð4Þ
4

μ23; ð35Þ

VN5 − VN1 ¼
v2χð5Þ
4

μ23 −
v2EW
2

μ21; ð36Þ

VN6 − VN1 ¼
v2ηð6Þ
2

ðμ22 þ ðλ3 þ λ4 þ λ5Þv2EWÞ; ð37Þ

VN7 − VN1 ¼
v2ηð7Þ
2

m2
η0I
; ð38Þ

VN8 − VN1 ¼
v2ηð8Þ
2

ðμ22 þ ðλ3 þ λ4 þ λ5Þv2EWÞ

þ
v2χð8Þ
4

ðμ23 þ λ7v2EWÞ

þ Avχð8Þvηð8Þ
2vϕð8Þ

ðv2EW þ v2ϕð8ÞÞ; ð39Þ

VC9 − VN1 ¼
c2ηð9Þ þ v2ηð9Þ

2
m2

ηþ ; ð40Þ

VC10 − VN1 ¼
c2ηð10Þ þ v2ηð10Þ

2
m2

ηþ ; ð41Þ

VC11 − VN1 ¼
c2ηð11Þ þ v2ηð11Þ

2
m2

ηþ þ
v2χð11Þ
4

ðμ23 þ λ7v2EWÞ

þ 1

2
Avχð11Þvηð11Þvϕð11Þ: ð42Þ

In the above equations, m2
ηþ and m2

η0I
are mass-square

eigenvalues of ηþ and η0I for N1, whose expressions are
given in Eq. (3). Now, in the region where N1 is a
minimum, we should have m2

ηþ > 0 and m2
η0I
> 0. Hence,

in this region, we get VN7 − VN1 > 0, VC9 − VN1 > 0, and
VC10 − VN1 > 0. This means, if the N1 minimum coexist
with either of N7, C9, and C10, then the value of potential
at N1 is always lower than that at N7, C9, and C10. Now,
let us consider a region where the N1 minimum coexists
with either N2 or N6. In this region, we should have A ¼ 0
since this is one of the minimization conditions for N2 and
N6, which can be seen from Table II. Now, using A ¼ 0 in
Eq. (3) and also from the fact that N1 is a minimum, we get
μ22 þ ðλ3 þ λ4 þ λ5Þv2EW > 0 and μ23 þ λ7v2EW > 0. This
implies VN2 − VN1 > 0 and VN6 − VN1 > 0, which means
that the potential depth at N1 is deeper than that at N2
and N6.
We have argued above that the potential value at N1 is

always lower than that at N2, N6, N7, C9, and C10 in a
region where these minima coexist. However, the situation
is different in a region where the N1 minimum coexists
with either of N3, N4, and N5. In each of Eqs. (34)–(36),
there exist both positive and negative terms, and hence, it is
not guaranteed that the potential depth at N1 is deeper than
that at N3, N4, and N5. Now, let us look at Eqs. (39) and
(42), which give the relative potential depths for N8 and
C11 with N1. As described in Sec. III, the minima N8
and C11 should satisfy the conditions of Eq. (22). As a
result of this, the last term of Eqs. (39) and (42) should give
negative contribution. Hence, it is not guaranteed that the
potential depth at N1 is lower than that at N8 and C11.
In Sec. III, we have described that 11 different minima

can exist in the Dirac scotogenic model. If we assume that
N1, which is the desired minimum of this model, coexists
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with other minima of this model, then we have shown that
the potential value atN1 is not guaranteed to be deeper than
that at N3, N4, N5, N8, and C11. But otherwise, we have
argued that N1 minimum is stable against the other vacua
ofN2,N6,N7,C9, andC10. Now, in order to address ifN1
can be made the global minimum of this model, we follow
the below described steps. First, we find a parameter region
of this model where N1 is a minimum. Now in this
parameter region, we check if N1 coexists with either of
the minima ofN3,N4,N5,N8, andC11. IfN1minimum is
found to coexist with the above described minima, then we
demand that the relative potential depths for these minima
against N1, which are given in Eqs. (34), (35), (36), (39),
and (42), should be positive. After this demand, we see that
N1 becomes the global minimum in the region of coex-
istence. In the next section, we present numerical analysis
on the above described steps and give results on the status
of N1 as the global minimum of this model.

V. NUMERICAL RESULTS

As we have described at the end of the last section, we
first find a parameter region where N1 is a minimum and
then check if N1 coexists with the other minima of N3, N4,
N5, N8, and C11 in this region. This parameter region
depends on the dimensionless λ parameters and dimen-
sionful parameters of the scalar potential, which is given in
Eq. (2). While finding the above mentioned parameter
region, we scan over these parameters in such a way that
perturbativity bounds on λ parameters and boundedness
from below conditions on the scalar potential are satisfied.
As a result of this, in our scan over parameters, the below
perturbativity conditions are satisfied on λ parameters,

jλij ≤ 4π: ð43Þ

As for the boundedness from below conditions, they are
determined by the quartic part of the scalar potential. In our
case, the quartic part of the scalar potential is the same as
that considered in [38]. Hence, the allowed region by the
boundedness from below of the scalar potential of the Dirac
scotogenic model is given by [38]

Ω1 ∪Ω2;

Ω1 ¼
�
λ1;2;6 > 0;

ffiffiffiffiffiffiffiffiffiffiffi
2λ1λ6

p
þ λ7 > 0;

ffiffiffiffiffiffiffiffiffiffiffi
2λ2λ6

p
þ λ8 > 0;

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
þ λ3þD> 0;λ7þ

ffiffiffiffiffi
λ1
λ2

s
λ8 ≥ 0

	
;

Ω2 ¼fλ1;2;6 > 0;2λ2λ6 ≥ λ28;
ffiffiffiffiffiffiffiffiffiffiffi
2λ1λ6

p
>−λ7 ≥

ffiffiffiffiffiffiffiffiffiffiffi
2λ2λ6

p
þ λ8;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλ27−2λ1λ6Þðλ28−2λ2λ6Þ
q

> λ7λ8−2ðDþ λ3Þλ6g;
D¼minðλ4− jλ5j;0Þ: ð44Þ

In our numerical analysis, we randomly generate the λ
parameters in such a way that the bounds in Eqs. (43) and
(44) are satisfied. In addition to these λ parameters,
dimensionful parameters are also existent in the scalar
potential of Eq. (2). Among these dimensionful parameters,
we fix μ21 ¼ −λ1v2EW in our numerical analysis. This is due
to the fact that we search for a region where N1 is a
minimum, and the above relation is the minimization
condition for this minimum. The rest of the dimensionful
parameters such as μ22; μ

2
3; A are either fixed to a value or

randomly generated. Here, we notice that the A-parameter
is necessary in order to explain neutrino masses in the Dirac
scotogenic model, which we have discussed in Sec. II. It is

described that this parameter breaks ZðAÞ
2 symmetry softly,

and hence, this parameter should be small. As a result of
this, we have taken this parameter to be small in our
numerical analysis. On the other hand, the parameters μ22;3,
except that for N1, determine the minimization conditions
of all minima, which can be seen from Table II. As a result
of this, either we have fixed these parameters in order to
satisfy minimization conditions of a particular minimum, or
else, we have generated them randomly. We discuss details
on these parameters later.
In the previous paragraph, we have described our meth-

odology in scanning over parameters of the scalar potential.
We notice that these parameters are physical since they can
be measured in future experiments. Apart from these
parameters, in our scanning procedure, we have randomly
varied the nonzero VEVs of Eqs. (7)–(16). It is to remind
here that the minima of Eqs. (7)–(16) are unphysical since
they do not correspond to the vacuum of our physical world.
As a result of this, the nonzero VEVs of Eqs. (7)–(16) are
unknown, and a priori, they can take arbitrary values.
As described previously, we scan over parameters of the

model and find a region where N1 is a minimum. For the
N1 minimum, the mass eigenstates of the scalar fields are
physical since this minimum corresponds to the vacuum
of our physical world. The mass eigenstates of this
minimum are described in Eq. (3). Among these eigen-
states, only the Higgs boson is found in the LHC experi-
ment and rest of the scalar fields are yet to be found. In
order to fit the Higgs boson mass in our analysis, we have
taken mH ¼ 125.25 GeV [8]. This value of Higgs boson
mass also fixes the λ1 parameter in our analysis. Regarding
the additional mass eigenstates of the N1 minimum, they
should satisfy the phenomenological lower bounds on their
masses due to nonobservation of these fields in collider
experiments. As a result of this, we apply the following
bounds on these masses in our analysis:

mηþ > 105 GeV; mζ1;2;3 > 5 GeV: ð45Þ

The lower bound of 105 GeV on mηþ is based on the fact
that no non-SM charged particle is found in the large
electron positron collider.
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Below we present our numerical results in the form of
percentage of chances on the coexistence of N1 minimum
with other minima. To get these results, we have done
multiple scans over the parameter space. In each of these
scans, the percentages are computed after generating a large
number of parametric points (at least 15000), which satisfy
the bounds of Eqs. (43) and (44).
In Table III, we have given numerical results on

coexistence of the N1 and N3 minima. In order to search
for this coexistence, in our scan over parameters of the
scalar potential, we satisfy the minimization conditions
only for N1 and N3. As a result of this, from Table II, we
notice that the relations for μ21 and μ22 are fixed, but μ

2
3 can

be chosen arbitrarily. Moreover, the quantity vηð3Þ can also
be chosen arbitrarily. In our scan, we have varied vηð3Þ and
μ23 randomly in the ranges of ð−100; 100Þ GeV and
ð−105; 105Þ GeV2, respectively. For these ranges of vηð3Þ
and μ23, we have found that the percentages given in
Table III to be large. In Table III, we have chosen A-
parameter to be suppressed as compared to the electroweak
scale since this parameter should be small, which is
described previously. From this table, we see that there
is nearly a 44% chance in finding the N1 minimum. On the
other hand, there is around a 15% chance in finding a
parametric point for which both N1 and N3 are minima.
From the last column of Table III, we see that around 11%
of the points correspond to the N1 minimum to be deeper
than the N3 minimum, in terms of potential depth. In this
table, the difference of percentages between the second and
third columns, for a particular value of A, is about 29%.
This percentage corresponds to the parametric region in
which N1 is the only minimum. We see here that, out of the
total area of scan, in a significant fraction of it, N1 is the
only minimum. From this table, we see that the numerical
results are not sensitive to the A-parameter. Moreover, by
changing the sign of A, we nearly got the same percentages
that are given in Table III.
After satisfying only the minimization conditions for N1

and N4 in our scanning procedure, we have obtained
numerical results on the coexistence of these minima.
These results are given in Table IV. In a region where
N1 and N4 coexist, the parameters μ22;3 are fixed according

to the relations given in Table II. Here, the quantities vηð4Þ
and vχð4Þ can be chosen arbitrarily. We have varied these
quantities independently in the range ð−100; 100Þ GeV in
order to obtain percentages in Table IV. For this particular
range of values, the percentages given in this table are large.
We notice that the minima N1 and N4 coexist in a region
where A ¼ 0. For this value of A, and from the discussion
given below Eq. (4), the neutrino masses in this model
become zero. Hence, in order to explain nonzero masses to
neutrinos, we should choose A ≠ 0, and thereby, the
coexistence between N1 and N4 can be avoided.
In analogy to the results described for Tables III and IV,

we have searched for the coexistence of the minima N1 and
N5. The results of this coexistence are given in Table V. In
order to get results in this table, we have varied vχð5Þ and μ22
in the ranges ð−100; 100Þ GeV and ð−105; 105Þ GeV2,
respectively. From this table, we see that the percentages
are not sensitive to the value of A. Moreover, we have seen
that these results are not sensitive to the sign of A. After
comparing the results in Tables III and V, we see that the
percentage of coexistence between N1 and N5 is lower as
compared to that between N1 and N3.
In Table VI, we have given the results on the coexistence

of the minima N1 and N8. These results are obtained after

TABLE III. For various values of A, percentages of coexistence
between the minima N1 and N3 are given. In the second column,
percentage of existence of N1 minimum is given. In the third
column, percentage of coexistence of N1 and N3 is given. In the
fourth column, percentage of coexistence of N1 and N3 with
VN1 < VN3 is given.

A
vEW N1 N1 and N3 N1 deeper than N3

0.1 43.3% 15.2% 11.1%
10−3 43.6% 14.7% 10.6%
10−5 43.7% 15.1% 11.0%

TABLE IV. Percentages of coexistence between the minima N1
and N4 are given. The columns in this table are analogous to that
in Table III.

A
vEW N1 N1 and N4 N1 deeper than N4

0 33.5% 18.3% 12.3%

TABLE V. Percentages of coexistence between the minima N1
and N5 are given. The columns in this table are analogous to that
in Table III.

A
vEW N1 N1 and N5 N1 deeper than N5

0.1 36.0% 9.4% 7.8%
10−3 36.0% 9.5% 8.1%
10−5 36.4% 9.3% 8.0%

TABLE VI. Percentages of coexistence between the minimaN1
and N8 are given. The columns in this table are analogous to that
in Table III.

jAj
vEW N1 N1 and N8 N1 deeper than N8

0.1 26.4% 4.8% 4.2%
10−3 21.0% 0.57% 0.56%
10−5 21.4% 0.14% 0.14%
0 21.7% 0% 0%
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satisfying only the minimization conditions of N1 and N8.
Among these conditions, the relation for μ21 gives a
constraint relation. This relation is satisfied by solving
for unknown λ parameters, and later we have checked if
these λ parameters obey the conditions of Eqs. (43) and
(44). While obtaining the results in Table VI, we have
varied each of vϕð8Þ; vηð8Þ; vχð8Þ independently in the range
ð−100; 100Þ GeV, for which the percentages in this table
are found to be large. After comparing the results in this
table with that of Tables III and V, we see that the
percentage of coexistence for N1 and N8 is lower than
that for N1 with either N3 or N5. In Table VI, we have
given the value of jAj since the sign of A is determined by
the sign of vϕð8Þvηð8Þvχð8Þ in our scanning procedure. This is
due to the fact that we have a condition of Eq. (22) for the
minimumN8. We notice that by decreasing the value of jAj,
the percentage for coexistence between the minima N1 and
N8 is getting decreased. We have found that, for A ¼ 0, the
minimum N8 exists in some region of parameter space.
However, N8minimum does not coexist withN1minimum
in the region where A ¼ 0. In the numerical analysis, we
have noticed that N8 becomes a saddle point in the region
where N1 is a minimum, for A ¼ 0.
In our scanning procedure, we have searched for the

coexistence of minima N1 and C11. While satisfying the
minimization conditions of these minima, the relation for
μ21 gives a constraint relation. This is solved in an analogous
way of what we have described for Table VI. We have
varied the quantities vϕð11Þ; cηð11Þ; vηð11Þ; vχð11Þ arbitrarily in
our analysis. Now, we see that the parameter A is
determined by the above quantities through one of the
minimization conditions of C11, which is given in Table II.
As already described before, the parameter A should be
small in order to be consistent with the model framework.
As a result of this, we have demanded jAj

vEW
≤ 0.1 in our

analysis, and thereafter, we have not found a region for the
coexistence of the minima N1 and C11. In the Appendix,
we argue that for A to be a negligibly small variable, C11
becomes a saddle point in the region where N1 is a
minimum. The result shown in this appendix, concurs with
our numerical result that the minima N1 and C11 do not
coexist for A to be a small variable. On the other hand, in
our analysis, for jAj

vEW
> 0.1, we have found a region for the

coexistence of minimaN1 andC11. However, this region is
not viable due to the above mentioned reasons.
In the previous section we have argued that, even if the

minimum N1 coexists with either of the minima N2, N6,
N7, C9, or C10, the potential depth at N1 is always deeper
than that at the other minima mentioned here. For the sake
of completeness, in our numerical analysis, we have
searched if N1 coexists with any of the above mentioned
minima. This search is done in an analogous way of what
we have described for the results of Tables III–VI. In our
analysis, we have not found a region where N1 coexists

with either of the minima N2, N6, N7, C9, or C10. In the
Appendix, we argue that some of these SPs become saddle
points in a region where N1 is a minimum.
From the numerical results presented so far, we have

seen that in the Dirac scotogenic model, the minimum N1
can coexist with either of the minima N3, N4, N5, or N8.
Here, it should be noted that the coexistence of the minima
N1 and N4 happen in a region where A ¼ 0. This region is
not interesting since neutrino masses become zero in this
region of the model. On the other hand, the coexistence of
N1with the other minima ofN3,N5, andN8 can happen in
a region where A ≠ 0, which is an interesting region to us
from the point of neutrino masses. Hence, in this region, we
have searched to see if the N1minimum coexists with more
than one minima of N3, N5 and N8. In Table VII, we have
given results on the coexistence of the minima among N1,
N3, and N5. While obtaining results on this coexistence,
we have satisfied minimization conditions only for these
minima. Also, for these results, we have varied vηð3Þ and
vχð5Þ independently in the range ð−100; 100Þ GeV. We see
that the percentage of coexistence among these minima is
far less than that given in Tables III and V. We have noticed
that the percentages given in Table VII are not sensitive to
the value of A, which is also the case in Tables III and V.
We have also searched for the coexistence of minima

amongN1,N3, andN8 and also amongN1,N5, andN8. In
our analysis, we have found that the above mentioned
coexistences can happen in a region of jAj

vEW
> 0.1. However,

this region is not viable since A should be a small
parameter. Hence, we have demanded jAj

vEW
≤ 0.1 in our

analysis, and thereafter, we have not found a region for the
above mentioned coexistences. This result may be under-
stood in the following way. In Table VI, it is shown that in
the limit that A is small, the percentage of chances forN8 to
coexist with N1 is getting decreased. Hence, for small A, it
is difficult forN8 to coexist withN1 andN3 or withN1 and
N5. Finally, we have found that the minima N1, N3, N5,
and N8 can coexist in a region of jAj

vEW
> 0.1, but otherwise,

we have not found a region for these minima to coexist.
While describing the results of Table III, we have

mentioned that the difference in the percentages of the
second and third columns corresponds to the fraction of
the total scanned region,whereN1 is the onlyminimum.This
statement is true even for Tables IV–VII. In any of these
tables, the difference in the percentages of the second and
third columns, for a particular value of A, is at least 15%.

TABLE VII. Percentages of coexistence among the minimaN1,
N3, and N5 are given. The columns in this table are analogous to
that in Table III.

A
vEW N1 N1, N3 and N5 N1 deeper than N3, N5

0.1 32.9% 0.81% 0.77%
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After comparing percentages in these tables,we notice that in
a significant parameter region of our scanning process,N1 is
the onlyminimum.Moreover, in this region,N1 is obviously
the global minimum of the Dirac scotogenic model. On the
other hand, there exist a certain parameter region where N1
can coexist with other minima, whose percentage of chances
of finding is given by the third column of Tables III–VII. In
the region where N1 coexists with other minima, we have
demanded that the potential depth atN1 is lower than that at
the other minima, so that N1 can be the global minimum of
this model. The fourth column of Tables III–VII gives the
percentage of chances forN1 to be the globalminimum in the
region where it coexists with other minima.

VI. HIGGS TO DIPHOTON DECAY

In the previous section, we have described the status of the
N1minimum as the global minimum of the Dirac scotogenic
model. We have noticed that the analysis of the previous
section is determined by the parameters of the scalar potential.
We now want to study the impact of this analysis on
phenomenological observable quantities. One of the observ-
able quantities is the decay H → γγ upon which the scalar
sector of this model can have an impact. This decay is, in
general, driven by charged particles through a loop induced
process. In the Dirac scotogenic model, this decay gets
additional contribution due to the ηþ field. This decay is
the subject of experimental investigation since it can distin-
guish any new physics signals from that of the SM.As part of
this investigation, in the LHC experiment, the signal strength
ofH → γγ ismeasured, and it is found to be1.1� 0.07 [8]. In
this section, we compute the signal strength of this decay in
the Dirac scotogenic model and study consequences on this
quantity due to analysis of the previous section.
The signal strength ofH → γγ is defined as the ratio of the

observed cross section of pp → H → γγ against to the same
quantity computed in the SM. The observed cross section of
pp → H → γγ in the LHC experiment should match with
that computed in the model of our work, which is the Dirac
scotogenic model. We notice that the production cross
section for the Higgs boson in the Dirac scotogenic model
is nearly the same as that in the SM since the dominant
process for this production is through the gluon fusion. As a
result of this, after using the narrowwidth approximation, the
signal strength of H → γγ in our work is given by

Rγγ ¼
BrðH → γγÞDSM
BrðH → γγÞSM

¼ ΓðH → γγÞDSM
ΓðH → γγÞSM

ΓH
SM

ΓH
DSM

: ð46Þ

Here, the quantities having the suffixes DSM and SM are
the ones computed in the Dirac scotogenic and standard
models, respectively. ΓH

DSM;SM correspond to the total decay
widths of the Higgs boson in the above two models. The
decay widths ofH → γγ, which are required in Eq. (46), are
computed using a general expression for this quantity given
in [39]. For the case of the Dirac scotogenic model, we have

ΓðH→ γγÞDSM¼ α2GFm3
H

128
ffiffiffi
2

p
π3

����Xf
NfQ2

fF1=2ðβfÞþF1ðβWÞ

þλ3v2EW
m2

ηþ
F0ðβηÞ

����2;
βf¼

4m2
f

m2
H
; βW ¼4m2

W

m2
H
; βη¼

4m2
ηþ

m2
H

; ð47Þ

where α and GF are fine-structure and Fermi constants,
respectively. Here, Nf, Qf and mf are color factor, charge,
and mass of SM fermion, respectively. After excluding the
last term in the modulus of the above equation, we get the
expression for ΓðH → γγÞSM. The F-functions in Eq. (47)
are the form factors of spin-1=2, −1, and −0 fields, which
drive the decay H → γγ. These functions are given below:

F1=2ðβÞ ¼ −2β½1þ ð1 − βÞfðβÞ�;
F1ðβÞ ¼ 2þ 3β þ 3βð2 − βÞfðβÞ;
F0ðβÞ ¼ β½1 − βfðβÞ�;

fðβÞ ¼

8>><
>>:



sin−1 1ffiffi

β
p

�
2
; β ≥ 1:

− 1
4

�
ln

1þ
ffiffiffiffiffiffi
1−β

p
1−

ffiffiffiffiffiffi
1−β

p − iπ

�
2

; β < 1

ð48Þ

While computing Rγγ in our analysis, we have taken
the total decay width of Higgs boson in the SM as
ΓH
SM ¼ 4.1 × 10−3 GeV [40]. Now, the total decay width

of Higgs boson in the Dirac scotogenic model, to a leading
order, is given by

ΓH
DSM ¼ ΓH

SM þ ΓðH → ζ1ζ1Þ þ ΓðH → ζ1ζ2Þ
þ ΓðH → ζ2ζ2Þ þ ΓðH → ζ3ζ3Þ
þ ΓðH → ηþη−Þ: ð49Þ

In the above equation, the partial decay widths of Higgs
boson into scalar particles of the Dirac scotogenic model
are computed using tree level couplings of these processes.
These couplings are given below:

CHζ1ζ1 ¼ −i
ffiffiffi
2

p
vEW½ðλ3 þ λ4 þ λ5ÞO2

12 þ λ7O2
22�

− i2AO12O22;

CHζ1ζ2 ¼ −i
ffiffiffi
2

p
vEW½ðλ3 þ λ4 þ λ5ÞO11O12 þ λ7O21O22�

− iAðO12O21 þO11O22Þ;
CHζ2ζ2 ¼ −i

ffiffiffi
2

p
vEW½ðλ3 þ λ4 þ λ5ÞO2

11 þ λ7O2
21�

− i2AO11O21;

CHζ3ζ3 ¼ −i
ffiffiffi
2

p
ðλ3 þ λ4 − λ5ÞvEW;

CHηþη− ¼ −i
ffiffiffi
2

p
λ3vEW: ð50Þ
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Here,Oij, where i; j ¼ 1; 2, is the element of an orthogonal
matrix which diagonalizes the mixing mass matrix of η0R
and χ, which is given in Eq. (3). In our numerical analysis,
we follow the below convention for the diagonalization of
this mixing matrix,

OTM2
η0Rχ

O ¼ diagðmζ2 ; mζ1Þ: ð51Þ

Here we identify mζ1 to be the lightest.
Using the expressions which are described above, we

have computed Rγγ after scanning over parameters of the
scalar potential of the Dirac scotogenic model. We notice
here that while scanning over these parameters, it is
possible that the N1 minimum of this model may coexist
with other minima of the model. In order to see the effect of
this coexistence, we have done the scanning in a way of
what we have described in the previous section. The
difference in the scanning of the previous section and
the current section is that, in the current analysis, we have
taken mζ1 as the lightest among the masses of additional
particles of the Dirac scotogenic model. It is to remind here
that the additional particles of this model are charged under

ZðBÞ
2 symmetry, which is exact. Hence, ζ1 is a possible

candidate for the dark matter. As a result of this, we have
applied the following constraints in the current analysis:

mηþ > 105 GeV; 5 GeV < mζ1 < mζ2;3 ; mηþ : ð52Þ

The results of our analysis, after doing a generic scan over
parameters, are given in Fig. 1.
We see that many points exist in the left-hand side plot as

compared to that in the right-hand side plot of Fig. 1. This
implies that many parametric points in our scan correspond
to the points where N1 is the only minimum. This result is
also described in the numerical analysis of the previous

section. From the plots of Fig. 1, we see that for
mζ1 < mH=2, Rγγ is suppressed. This suppression is due

to the factor
ΓH
SM

ΓH
DSM

in Rγγ . For mζ1 < mH=2, the decay

channel H → ζ1ζ1 opens up, whose decay width is found
to be at least about 0.1 GeV, which gives the necessary
suppression in the above mentioned factor. Also, in Fig. 1,
we have found that the points, for which mζ1 < mH=2, do
not satisfy the constraint due to invisible decay of Higgs
boson. For mζ1 < mH=2, the Higgs boson of this model
decays invisibly, whose branching ratio is constrained to be
BrH→inv < 0.145 [41]. In order to get enhancement of Rγγ

for mζ1 < mH=2, one has to suppress the couplings of
Higgs to scalar particles, whose expressions are given in
Eq. (50). In the scanning process, after including the above
mentioned constraint on BrH→inv, we have seen that the
suppression in couplings is possible, and thereby, Rγγ can
be enhanced to within the experimentally allowed region,
formζ1 < mH=2. On the other hand, formζ1 > mH=2, there

will not be suppression in ΓH
SM

ΓH
DSM

. Hence, a majority of the

points are within the experimentally allowed region,
for mζ1 > mH=2.
In both the plots of Fig. 1, for mζ1 > mH=2, the points

are around the horizontal line, which corresponds to the
lower 3σ allowed value of Rγγ. Moreover, we see that only a
few points give the enhancement of Rγγ > 1. In this regard,
see Refs. [42–47] where enhancement of Rγγ > 1 has been
reported in various models. Below we describe the reasons
for not getting much enhancement in Rγγ in the plots of
Fig. 1. As already explained before, for mζ1 > mH=2, we

get ΓH
SM

ΓH
DSM

¼ 1. Hence, in the region of mζ1 > mH=2, we get

Rγγ > 1 only if λ3 < 0 since βη > 1. The value of λ3 is
constrained by the bounded from below conditions of
Eq. (44). After satisfying these conditions, we have noticed

FIG. 1. The left-hand side plot is for parametric points for whichN1 is the only minimum. Right-hand side plot is for parametric points
where the N1minimum coexists with other minima of the model, and moreover, for these points, the potential depth atN1 is deeper than
that at other minima. In the right-hand side plot, blue, green, red, and yellow are the points where N1 minimum coexists with N3, N5,
N8, and N3þ N5 minima, respectively. The horizontal line in these plots indicates the experimentally allowed lower 3σ value of Rγγ .

In these plots, we have taken jAj
vEW

¼ 0.01.
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that λ3 > −2. Since the negative values of λ3 are restricted
by these conditions, we do not get much enhancement in
Rγγ in our work. On the other hand, in our scanning
procedure, we have seen that by restrictingmηþ to as low as
130 GeV, it is possible for Rγγ to be as high as 1.3.
In the region where N1 minimum coexists with N3

minimum, we do not get Rγγ > 1. This is due to the fact
that, in this region, we have μ22 < 0 because of the
minimization condition of N3. As a result of this, in order
to get m2

ηþ > 0 we should have λ3 > 0, and thereby we get
Rγγ < 1. Similarly, in the region where N1 and N8 minima
coexist, we have found λ3 > 0 in the scanning analysis, and
hence, we get Rγγ < 1. On the other hand, in the region
where N1 and N5 minima coexist, μ22 is a free parameter.
Hence, in this region, we can choose μ22 > 0, and thereby λ3
can be negative, so that Rγγ > 1. Now, it should be clear
that in a region where N1 is the only minimum, we can get
μ22 > 0, and thereby, we get Rγγ > 1. From the above
described results, we see that the future determination of
Rγγ by the LHC experiment can have an impact on the
study of global minimum of this model. It is to be noted that
a precise determination of Rγγ in the LHC experiment can
distinguish the above described vacuum realizations. On
the other hand, if the error bar is large enough so that the
allowed value of Rγγ is around 1, then the above vacuum
realizations may not be distinguished. Finally, from Fig. 1,
we notice that the experimentally allowed values of Rγγ can
be fitted in the Dirac scotogenic model, irrespective of the
fact that the N1 minimum either coexists or not with other
minima of this model.

VII. POSSIBILITY OF A SCALAR
DARK MATTER

It is described in Sec. II that, due to exact symmetry of

ZðBÞ
2 , the lightest among the additional particles of the

Dirac scotogenic model is a candidate for dark matter. We
notice that the lightest among the singlet Dirac fermions
ND

k is a possible candidate for dark matter. In the original
model [21], this possibility has been studied, and it is
shown that ND

1 can consistently explain the dark matter
phenomenology. See Ref. [48], for another work in this
direction. In the present work, since our motivation is to
study the scalar sector of the Dirac scotogenic model,
we study on the possibility of scalar dark matter in
this model.
In the previous section, it is described that, while

obtaining the results of Fig. 1, we have taken ζ1 as the
lightest particle among the additional particles of the Dirac
scotogenic model. From Eq. (3), we notice that ζ1 is an
admixture of η0R and χ. For sufficiently small A, which is the
case in Fig. 1, η0R and χ are nearly equal to the mass
eigenstates of this model. In such a case, ζ1 is dominantly
made of either η0R or χ, depending on the parameter choice

of the model. We see that the scalar dark matter in this
model is either part of an SUð2ÞL doublet or a singlet field.
We first consider the case of ζ1 being dominantly made of χ
and analyze if this case can consistently explain all the dark
matter phenomenology. Later we analyze the case where ζ1
is dominantly made of η0R.
In the phenomenology of dark matter, we need to explain

the relic abundance of dark matter in the present Universe
and also the null results of direct and indirect searches for
dark matter detection. The current relic density of dark
matter is 0.12� 0.0012 [49]. In order to explain this
relic density, we need to compute thermally averaged
pair-annihilation cross section of dark matter times the
relative velocity of these particles, which is denoted by
hσvreli. To a good approximation, for a cold dark matter,
the above mentioned relic density can be fitted if
hσvreli ≈ 3 × 10−26 cm3=s ¼ 1 pb [8]. In the Dirac scoto-
genic model, for the case of dark matter ζ1 ≈ χ, the possible
pair-annihilation processes at tree level are as follows:

ζ1ζ1 → νDi ν̄
D
j ; ð53Þ

ζ1ζ1 → HH; ð54Þ

ζ1ζ1 → H� → ff̄;WþW−; ZZ;HH: ð55Þ

Here, H� is virtual Higgs boson, and f is any SM fermion.
νDi are the mass eigenstates of the neutrino fields of the
Dirac scotogenic model.
The reaction in Eq. (53) is driven by the hkα couplings of

Eq. (1), via a t-channel process mediated by the singlet
fermions ND

k . We can take the mass of ND
k (mNk

) to be
around 1 TeVand the couplings hkα ∼ 1. For these values of
mNk

and hkα, and from the discussion given below Eq. (4),
we see that it is possible to explain small masses to
neutrinos either by suppressing the A-parameter or by
taking degenerate masses to ζ1;2. Now the annihilation
cross section for the process in Eq. (53) is given by

σðζ1ζ1 → νDi ν̄
D
j Þvrel

¼ 1

8π

X
k

jPα;βhkαV
�
αih

�
kβVβjj2

ðm2
ζ1
þm2

Nk
Þ2 ðm2

νi þm2
νjÞ: ð56Þ

Here, Vαi are the elements of V, which diagonalize the
neutrino mass matrix, which is discussed in Sec. II. For
neutrino masses around 0.1 eV, the above pair-annihilation
cross section is suppressed by 14 orders of magnitude as
compared to the required amount. Hence, the process in
Eq. (53) cannot explain the relic density of dark matter.
The processes in Eqs. (54) and (55) are driven due to

quartic and trilinear couplings of ζ1 to the Higgs field,
and these couplings are proportional to λ7, for ζ1 ≈ χ. By
taking mζ1 ¼ 200 GeV and λ7 ¼ 0.1, we have found the
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following pair-annihilation cross sections for the processes
of Eqs. (54) and (55):

σvreljtt̄ ¼ 0.17 pb; σvreljWW ¼ 0.94 pb;

σvreljZZ ¼ 0.44 pb; σvreljHH ¼ 0.51 pb: ð57Þ

We see that the cross section intoWW channel is dominant
among all possible pair-annihilations of ζ1. The above cross
section values decrease with increasing mζ1 . From these
cross section values, we see that, for few hundred GeV of
mass to ζ1 and for λ7 ∼ 0.1, using the processes of Eqs. (54)
and (55), the relic abundance of dark matter can be fitted in
this model. However, in this model, the trilinear coupling of
ζ1 to the Higgs field also drives the process of dark matter
scattering against a nucleus. This process has been searched
in many dark matter experiments [50–52], which use xenon
as the target nucleus. Since no sign of dark matter is found
in these experiments, upper bounds on the cross section of
dark matter against a nucleon have been obtained. In the
Dirac scotogenic model, using [53], we estimate the spin-
independent cross section of ζ1 ≈ χ with xenon nucleus as

σ0 ¼
1

π

�
mζ1mXe

mζ1 þmXe

�
2
���� 54fp þ 77fn

131

����2;
fp
mp

¼
�
0.075þ 2

27
ð1 − 0.075Þ

�
λ7

mζ1m
2
H
;

fn
mn

¼
�
0.078þ 2

27
ð1 − 0.078Þ

�
λ7

mζ1m
2
H
: ð58Þ

Here, mp, mn, and mXe are masses of proton, neutron, and
xenon nucleus, respectively. As stated before, upper bounds
on σ0 have been set due to null results of dark matter
detection in various experiments. Among these, the most
stringent limit is σ0 < 6.5 × 10−48 cm2 [52]. In order to
satisfy this limit, in the Dirac scotogenic model, we get
λ7 < 4.8 × 10−5 for mζ1 ∼ 100 GeV. For this suppressed
value of λ7 and for no fine tuning in the mass ofmζ1 , we see
that the cross sections in the processes of Eqs. (54) and (55)
are highly suppressed, and we cannot fit the relic abun-
dance of dark matter in this model. On the other hand, for a
fine tuned mass of mζ1 ≈mH=2, via the process
ζ1ζ1 → H� → bb̄, the relic abundance of dark matter can
be fitted for λ7 ¼ 1.3 × 10−5, which also satisfies the upper
limit on σ0. However, from the indirect searches of dark
matter, the thermal annihilation cross section of dark matter
into the bb̄ channel has been ruled out for dark matter mass
of up to 300 GeV [54]. As a result of this, we see that the
processes in Eqs. (54) and (55) cannot consistently explain
the dark matter phenomenology, for the case of ζ1 ≈ χ.
Now, we consider the case ζ1 ≈ η0R, where the dark

matter is dominantly made up of a component of SUð2ÞL
doublet. In this case, in order to explain the relic density of
dark matter, pair-annihilation of ζ1 through the processes

given in Eqs. (53)–(55) can be analyzed. It should be noted
that the process of Eq. (53) happens for the case ζ1 ≈ η0R
through the fαk couplings of Eq. (1). As a result of this,
pair-annihilation cross section for this process is analogous
to that of Eq. (56), where hkαV�

αi should be replaced by
f�αkU

�
αi. Now, we see that, due to small masses to neutrinos,

this pair-annihilation cross section is highly suppressed as
compared to the required amount in order to explain the
relic density of dark matter. The processes in Eqs. (54) and
(55) are driven by the quartic and trilinear couplings of ζ1 to
the Higgs field. We see that, for the case ζ1 ≈ η0R, these
couplings are proportional to λ3 þ λ4 þ λ5. As a result of
this, the cross section values of Eq. (57) are also applicable
to the case ζ1 ≈ η0R, where we take mζ1 ¼ 200 GeV and
λ3 þ λ4 þ λ5 ¼ 0.1. Hence, the relic density of dark matter
can be fitted for the case ζ1 ≈ η0R. However, analogous to
what we described above, due to nonobservation of dark
matter in direct detection experiments, the quantity λ3 þ
λ4 þ λ5 should be suppressed to around 10−5. As a result of
this, the processes in Eqs. (54) and (55) cannot consistently
explain the relic density of dark matter, for the case ζ1 ≈ η0R.
Apart from the processes of Eqs. (53)–(55), due to gauge
interactions, the following annihilations are also possible
for the case of ζ1 ≈ η0R,

ζ1ζ1 →WþW−; ζ1ζ1→ZZ; ζ1ζ1→WþW−γγ: ð59Þ

In the above equation, the first two annihilations happen
due to quartic interactions and the third annihilation
happens due to mediation of ηþ field at tree level.
Moreover, for mζ1 < mW;Z, one of the V ¼ W�; Z in the
first two processes of Eq. (59) can be off shell, and thereby,
we get 3- and 4-body final states from the annihilation
products of VV� and V�V�, respectively. A priori, for
mζ1 ≳mW , the first process of Eq. (59) can give the
required amount of thermal annihilation cross section in
order to fit the relic density of dark matter. Moreover,
constraints due to indirect detection of dark matter from
pair-annihilation into gauge bosons are weaker [54].
Nevertheless, the first two processes of Eq. (59) can induce
scattering between ζ1 and a nucleus at 1-loop level. In fact,
there exist other 1-loop processes, which are mediated by
gauge interactions, for the above mentioned scattering.
Although this scattering happens at 1-loop level, given the
strong constraints on this due to direct detection experi-
ments, we may expect it is challenge for ζ1 ≈ η0R to evade
these constraints.

VIII. COMPARISON WITH THE
SCOTOGENIC MODEL

In this section, we compare the phenomenology of the
Dirac scotogenic model with that of the scotogenic
model [16], where neutrinos are Majorana particles. It is
described in Sec. II that there is an analogy between these
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two models in terms of field content and also from the
viewpoint of neutrino masses and mixing. Here, we
describe some more analogies between these two models
in terms of phenomenological observable quantities of dark
matter, LFV, and collider signals.
In the previous section, we have discussed the status of

scalar dark matter in the Dirac scotogenic model. We have
discussed two possibilities, where in one case ζ1 ≈ χ and in
the other case ζ1 ≈ η0R. Now, below we compare the scalar
dark matter phenomenology of this model with that of the
scotogenic model [16]. It is to remind here that in the
scotogenic model, the singlet field χ does not exist. Hence,
a possibility for scalar dark matter in the scotogenic model
is ζ1 ¼ η0R. As a result of this, the phenomenological
discussion we have given in the previous section for the
case of ζ1 ≈ η0R is applicable to the scotogenic model. A
difference in the scotogenic model is that, in addition to the
process of Eq. (53), the following process ζ1ζ1 → νMi ν

M
j

can also happen, which violates the lepton number. Here,
νMi is a neutrino field of the scotogenic model, which is a
Majorana particle. The above process is mediated in the
scotogenic model by the analogous couplings of fαk, which
are given in Eq. (1). As already described below Eq. (1), in
the scotogenic model, there exist NM

k field, instead of
ðNk; Nc

kÞ. The field NM
k is Majorana in the scotogenic

model. As a result of this, the annihilation cross section for
the above process is found to be

σðζ1ζ1 → νMi ν
M
j Þvrel ¼

S
16π

X
k

����X
α;β

fαkUαifβkUβj

����2

×
M2

K

ðM2
k þm2

ζ1
Þ2 : ð60Þ

Here, Mk is the mass of NM
k field of the scotogenic model,

and S is a symmetry factor which is 1(2) for i ≠ jði ¼ jÞ.
For fαk ∼ 1, mζ1 ∼ 100 GeV and Mk ¼ 2.78 TeV, the
above pair-annihilation cross section is around 1 pb, which
is the required amount in order to fit the relic abundance of
dark matter. Moreover, it looks like there exist no con-
straints on the above pair-annihilation cross section from
experiments. On the other hand, see Refs. [55–57] for
indirect searches of dark matter, where an upper limit on the
pair-annihilation cross section of dark matter into νν̄ mode
is set to around 10−24 cm3=s. As a result of the above
description, in the scotogenic model, it is possible to fit the
relic density of dark matter and avoid the indirect detection
bounds on it. However, as already described in the previous
section, the first two processes of Eq. (59) can induce
scattering of ζ1 with a nucleus at 1-loop level. The loop
diagrams for this scattering are driven by gauge couplings
and are mediated by SM fields. Hence, it appears that the
amplitude of these diagrams have only the loop suppression
factor. It may be worth it to compute the cross section for

the above scattering in order to see if it satisfies the direct
detection bound [52] on the dark matter.
As described in Sec. II, there is a region of parameter

space where the couplings fαk can be of order 1 and these
couplings drive LFV processes [8] in the Dirac scotogenic
model. So far none of the LFV processes are observed in
experiments, and upper bounds have been set on the
branching ratios of various LFV decays and also on the
conversion rate of μ to e in a nucleus [8]. Among the LFV
decays, stringent limits exist on the branching ratios of
μ → eγ [58] and μ → 3e [59]. The above mentioned LFV
processes are driven in the Dirac scotogenic model due to
mediation of ηþ and ND

k at 1-loop level. Analyzing LFV
processes is out of the scope of this paper. Nevertheless, in
our work, experimental limits on these processes can be
satisfied by taking the masses of ηþ or ND

k to be sufficiently
high, for fαk ∼ 1. In addition to this, there is also a
possibility of suppressing the couplings fαk in order to
satisfy the above experimental limits.
Below, we compare the Dirac scotogenic and scotogenic

models in terms of LFV processes. As stated before,
Feynman diagrams for LFV processes in the Dirac scoto-
genic model are driven by ηþ and ND

k . Whereas, in the
scotogenic model [16], the corresponding Feynman dia-
grams are driven by ηþ and NM

k , where N
M
k is an additional

Majorana field. In the scotogenic model, LFV processes
have been analyzed in [60]. We see that, in the Feynman
diagrams for LFV processes of scotogenic model, one
should replace the NM

k -propagator with ND
k -propagator in

order to get the corresponding Feynman diagrams of the
Dirac scotogenic model. As a result of this, by interchang-
ing the mass of NM

k with ND
k , we get the same branching

ratio expressions for μ → eγ in both these models.
However, the branching ratio expression for μ → 3e should
be different in these models, which is explained below. The
amplitude for μ → 3e arises from the following contribu-
tions in both these models: γ-penguin, Z-penguin, Higgs-
penguin and box diagrams. The penguin diagrams should
give the same kind of expressions for amplitude in both
these models, due to the above mentioned replacement of
propagators. On the other hand, the box diagrams of the
scotogenic model involve diagrams which are due to the
Dirac and Majorana nature of theNM

k -propagator. Whereas,
these diagrams are driven only due to the Dirac nature of
the ND

k -propagator in the Dirac scotogenic model. As a
result of this, we get additional contribution to box
diagrams in the scotogenic model as compared to that of
the Dirac scotogenic model. Now, we see that the expres-
sion for the conversion rate of μ to e should be the same in
both these models since this conversion happens due to
penguin diagrams.
The additional fields in the Dirac scotogenic model are

ND
k , η

þ and ζi, i ¼ 1; 2; 3. The best way to test this model in
collider experiments is by probing the ηþ field. Note that ηþ
can be produced in the LHC experiment via gauge
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interactions, and it decays as ηþ → lþND
1 or ηþ → Wþζ1.

Here, ND
1 is the lightest among ND

k . The above two decays
give us missing energy plus a charged lepton or a dijet
signal, depending on the decay channel of W. Analyzing
collider signals of this model is out of the scope of this
work. However, see Refs. [61,62] for some collider analysis
on scalar sector in related models. The above described
signal in the Dirac scotogenic model is also possible in the
scotogenic model. The difference between these two
models in terms of field content is the presence of the
singlet scalar field χ in the Dirac scotogenic model. Since
the singlet field does not experience gauge interactions, it is
a challenge to probe the existence of χ field in the Dirac
scotogenic model. Hence, one needs to develop some
techniques to distinguish the above two models in collider
experiments. It is worth it to do a detailed analysis on this
aspect in the future.

IX. CONCLUSIONS

In this work, we have studied on the vacuum structure of
the scalar potential of the Dirac scotogenic model. One of
the motivations of this model is to explain neutrino masses
through a radiative mechanism and also to have Dirac
nature to the neutrinos. The other motivation is to have a
stable dark matter candidate. After analyzing the scalar
potential of this model, we have found that 11 different
minima are possible. Out of these 11, the N1 minimum of
Eq. (6) is the desired minimum of this model. Only with
this minimum, the motivations of this model can be
achieved consistently. As a result of this, we have worked
to see if the N1 minimum can be made as the global
minimum of this model. Through our numerical analysis,
we have shown that plenty of parameter space exists where
N1 is the global minimum. In our numerical analysis, we
have found that the N1 minimum can coexist with certain
other minima in some regions of parameter space.
However, in the viable parameter space of this model,
we have not found the coexistence of theN1minimum with
charge-breaking minima. We have justified this statement
with an analytical demonstration to it in the Appendix.
We have studied the Higgs to diphoton decay in this

model since the scalar sector of this model has an
implication on this decay. After doing a generic scan over
parameters of the scalar potential, we have found that the
signal strength of this decay can be within the experimen-
tally allowed region, but most likely to be around the lower
3σ allowed value of this quantity. With some tuning of the
parameters, the signal strength of this decay is found to be
as high as 1.3. In the numerical analysis, we have found that
the experimentally allowed values of this quantity can be
explained irrespective of the fact that the N1 minimum
coexists with other minima or not.
Finally, we have studied the possibility of making the

lightest among the additional scalar particles of this model,
as a candidate for dark matter. We have found that the

singlet scalar field of this model cannot be a viable
candidate for dark matter. This we have found, due to
the fact that the current bounds from the direct and indirect
detection of dark matter in experiments rule out the
possibility of explaining the relic density of dark matter.
The other possibility for scalar dark matter in this model is
the η0R field, which is a component of the SUð2ÞL doublet.
In this case, we have found that constraints due to direct
detection bounds on the dark matter are difficult to be
satisfied.

APPENDIX: SADDLE POINTS

From the numerical analysis of Sec. V, we have noticed
that certain minima do not coexist with the N1 minimum.
Below we present analytical calculations through which we
justify why some of these minima do not coexist with the
N1 minimum. Our methodology in these calculations is
based on the discussions given in [12,38].
In Sec. V, it is described that, by demanding jAj

vEW
≤ 0.1 in

our numerical analysis, we have not found a region of
coexistence between the minima C11 and N1. Here we
show that, in the limit that A is a negligibly small parameter,
C11 becomes a saddle point in the region where N1 is a
minimum. From the minimization conditions of C11,
which are given in Table II, we notice that A becomes a
small variable if either λ4 þ λ5 or vϕð11Þvηð11Þ=vχð11Þ is
suppressed. As a result of this, we neglect terms involving
the above mentioned variables in comparison to other
terms of the scalar potential. Now, apart from satisfying
the minimization conditions of C11, we need to evaluate
the mass-square eigenvalues of the scalar fields in
order to check if C11 becomes a minimum or not. For
calculating these eigenvalues, we have described the
parametrization of scalar fields of a SP in Eq. (23). We
express these scalar fields in the following basis:
φ ¼ ðϕ1

R;ϕ
1
I ; η

1
R; η

1
I ;ϕ

0
R;ϕ

0
I ; η

0
R; η

0
I ; χRÞ. Now, the general

form of the mixing mass-square matrix among the scalar
fields of a SP is given by

½M2�ij ¼
∂
2V

∂φi∂φj
¼ ∂

2V
∂xl∂xm

∂xl
∂φi

∂xm
∂φj

þ ∂V
∂xl

∂
2xl

∂φi∂φj
: ðA1Þ

Here, i; j ¼ 1;…; 9 and xl, where l ¼ 1;…; 5, are defined
in Eq. (24).
The last term of Eq. (A1) becomes zero for the case of

C11 since after using the minimization conditions we get
∂V
∂xl

¼ 0. As a result of this, for the SP C11, Eq. (A1)

becomes M2
C11 ¼ YTBY. Here, Y and B are matrices of

orders 5 × 9 and 5 × 5, respectively. The elements of these
matrices are given below:

½Y�li ¼
∂xl
∂φi

; ½B�lm ¼ ∂
2V

∂xl∂xm
¼ ½M4�lmþ ∂

2V3

∂xl∂xm
: ðA2Þ
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In the limit that A is a small variable, the matrix B takes the
following form:

B ¼

0
BBBBBBBB@

0 0

B1 0 0

A
vχð11Þ

0

0 0 A
vχð11Þ

2ðλ4 þ λ5Þ 0

0 0 0 0 2ðλ4 − λ5Þ

1
CCCCCCCCA
;

B1 ¼

0
BB@

λ1 λ3
1
2
λ7

λ3 λ2
1
2
λ8

1
2
λ7

1
2
λ8

1
2
λ6

1
CCA: ðA3Þ

Now, as it is argued in [12], it is possible to express the
matrix M2

C11 in the following block form:

M2
C11 ¼

�
0 0

0 Y 0TBY 0

�
: ðA4Þ

Here, Y 0 is a 5 × 5matrix which depends only on the VEVs
of C11. From the above form ofM2

C11, we see that C11 has
four Goldstone bosons. This is expected since the SP C11
breaks the electroweak and charge symmetries, which are
continuous. Also, from the above equation, we see that, if
all the eigenvalues of B are positive (negative), thenM2

C11 is
positive (negative) definite, and thus, C11 is minimum
(maximum). On the other hand, if B has both positive and
negative eigenvalues, then C11 becomes a saddle point.
Now, in the limit that A is a small variable, the first three
eigenvalues of B are determined by that of B1. We see that
TrðB1Þ > 0, due to the conditions of Eq. (44). As a result of
this, B has at least one positive eigenvalue, in the limit that
A is a small variable.
In Eq. (42), we have given the difference in potential

depths at the stationary points C11 and N1. In the limit that
A is a small variable, the last term of Eq. (42) can be
neglected. Moreover, in this limiting process, m2

3 þ λ7v2EW
is nearly equal to one of the eigenvalues of the scalar fields
of the SP N1. Hence, in a region where N1 is a minimum
and in the above limiting process, we get VC11 − VN1 > 0.
To get the expression for VC11 − VN1, we have used the
general expression of Eq. (32). Here, we see that
XT
N1V

0
C11 ¼ 0. Hence, in the limit that A is a small variable,

we get VC11 − VN1 ≈ 1
2
XT
C11V

0
N1. Now, we define X̃C11,

X̃N1, Ṽ 0
N1, and M̃2 as 3-column matrices, whose elements

are the first three elements of XC11, XN1, V 0
N1, and M2,

respectively. With these definitions and in the above
limiting process, we get the following relation:

∂V
∂xl

����
C11

¼ 0 ⇒ X̃C11 ≈ −B−1
1 M̃2: ðA5Þ

After using the above relation, we get

VC11−VN1≈
1

2
XT
C11V

0
N1 ¼

1

2
X̃T
C11Ṽ

0
N1

¼−
1

2
Ṽ 0T
N1B

−1
1 M̃2 ¼−

1

2
Ṽ 0T
N1B

−1
1 ðṼ 0

N1−B1X̃N1Þ

¼−
1

2
Ṽ 0T
N1B

−1
1 Ṽ 0

N1: ðA6Þ

Earlier we have argued that VC11 − VN1 > 0 in a region
where N1 is a minimum. Hence, after using the above
relation, we see that B1 should not be a positive definite
matrix, and thus, one of the eigenvalues ofB1 is negative. As
a result of this, in the limit that A is a small variable, one the
eigenvalues of B is negative. Combing this result with the
earlier result that B has at least one positive eigenvalue, we
see thatC11becomes a saddle point in a regionwhereN1 is a
minimum and also that A is a negligibly small variable.
The above described result on the nature of C11 is valid

even if A ¼ 0. However, for A ¼ 0, we get λ4 þ λ5 ¼ 0, and
thus, the inverse of B does not exist. To circumvent this
problem, we have used B1, which is a submatrix of B, in the
above described analysis.
The above described analysis can be applied to other SPs

of N2, C9, and C10, in order to show that these become
saddle points in the region where N1 is a minimum. The
difference we encounter is that the last term of Eq. (A1)
does not vanish for the above mentioned SPs. As a result of
this, we have explicitly computed the mixing masses for the
scalar fields of the above SPs. For instance, in the case of
C9, we have found that the fields η1R, ϕ

0
R, and η0R mix

together, whose masses are given by

ZTB̃Z; B̃ ¼

0
B@

λ2 λ3 λ2

λ3 λ1 λ3

λ2 λ3 λ2

1
CA;

Z ¼

0
B@

cηð9Þ 0 0

0 vϕð9Þ 0

0 0 vηð9Þ

1
CA: ðA7Þ

Now, using an analogous formalism described for the case
of C11, we can show that the matrix B̃ has one positive and
one negative eigenvalue, apart from a zero eigenvalue. As a
result of this, C9 becomes a saddle point in a region where
N1 is a minimum.
In Sec. V, we have mentioned that the minima N6 and

N7 do not coexist with the N1 minimum. Moreover, we
have also described that the percentage of coexistence
between the minima N8 and N1 is zero for A ¼ 0. All the
above mentioned SPs become saddle points in a region
where N1 is a minimum. We have realized this statement
through our numerical analysis, but otherwise, we do not
have an analytical proof for this.
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