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1Dipartimento di Fisica dell’Università di Pisa and INFN Largo Pontecorvo 3, I-56127 Pisa, Italy
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3Dipartimento di Fisica dell’Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy

(Received 4 May 2023; accepted 7 July 2023; published 26 July 2023)

We investigate some general properties of linear gauge fixings and gauge-field correlators in lattice
models with noncompact U(1) gauge symmetry. In particular, we show that, even in the presence of a gauge
fixing, some gauge-field observables (like the photon-mass operator) are not well defined, depending on
the specific gauge fixing adopted and on its implementation. Numerical tests carried out in the three-
dimensional noncompact lattice Abelian-Higgs model fully support the analytical results and provide
further insights. Apparently, only the hard Lorenz-gauge fixing provides a consistent definition of
non-gauge-invariant quantities in three dimensions.
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I. INTRODUCTION

Some nonperturbative features of quantum field theories
(QFTs) can be studied from first principles by using the
lattice discretization. In this formulation the Euclidean
version of the theory is regularized on a space-time lattice,
and the QFT problem is mapped to a statistical-mechanics
one. Continuum physics emerges as the correlation length
of the statistical system diverges, i.e., close to a continuous
phase transition (critical point) of the lattice system. For
this strategy to be feasible, there should exist a stable fixed
point of the QFT renormalization group (RG) flow, which
encodes the universal properties of the critical point of the
statistical system.
This approach has been extensively used to investigate

for example four-dimensional non-Abelian gauge theories
and QCD in particular [1,2], and the ϕ4 QFTs associated
with classical and quantum phase transitions in lower-
dimensional systems [3–5]. Only in a few cases is it
possible to carry out this strategy with full analytical
control [6,7], so that one has to rely on numerical
simulations of the discretized theory.
Four-dimensional non-Abelian gauge theories are pecu-

liar, since the existence of a fixed point of theRG flow can be
shown analytically by using one-loop perturbation theory
[8–10]. For typical three-dimensional QFTs this is not the
case, and the fixed point, if present, is generically in the
strongly coupled regime. To analytically investigate its

existence and extract universal information, nonperturbative
approaches are required, like the expansion in the number
of components [11] or the continuation in the number
of dimensions obtained by resumming the ϵ-expansion
series [3,12].
Three-dimensional gauge theories coupled to matter fields

have features in common both with four-dimensional non-
Abelian gauge theories and with three-dimensional scalar
models. On the one hand, the gauge coupling of three-
dimensional gauge theories has positive mass dimension (the
theory is super-renormalizable); thus the energy scaling of
the coupling is dictated by dimensional analysis, and asymp-
totic freedom is clear already at tree level. On the other hand,
there is also the possibility that nontrivial fixed points exist,
at which the gauge coupling does not vanish, and which are
usually referred to as charged fixed points. While the
asymptotically free fixed points of three-dimensional
Abelian and non-Abelian gauge theories have been thor-
oughly investigated by numerical simulations (see, e.g.,
Refs. [13–18]), the case of the charged fixed points has
attracted less attention until quite recently, when the existence
of strongly coupled charged fixed points has been suggested
to explain some peculiar critical phenomena [19–23].
The existence of these charged fixed points, and their

critical properties, can be investigated using several com-
plementary techniques: the ϵ expansion close to four
dimensions [24–33], the expansion in the number of
components [3,11,34], and numerical simulation of lattice
models. Numerical studies have recently addressed this
issue in the Abelian-Higgs (AH) model, i.e., in scalar
quantum electrodynamics with N-component scalar fields,
and there is by now compelling evidence that some lattice
models undergo a continuous transition related to the AH
QFT charged fixed point. This has been observed forN ≳ 7
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using the noncompact discretization [35,36] and the
higher-charge compact discretization [37,38], while only
first-order phase transitions have been found in other cases
[39–42] and for smallerN values [35,37,43,44]. ForN ¼ 2,
continuous transitions were observed [39,41], where gauge
fields play no role. Topological excitations likely play an
important role for the existence of the charged fixed point;
however, this point is not yet fully understood [45–49].
Analytical and numerical results thus support the fact

that gauge-invariant correlators are well defined beyond
perturbation theory in the Abelian-Higgs QFT, if a large
enough number of scalar flavors is present. It is then natural
to ask if gauge-dependent correlators, which play a
fundamental role in the usual perturbative treatment of
gauge QFTs, can be given a similar nonperturbative status.
This may be important for several reasons: First of all in the
gauge fixed continuum QFT formulation it is possible to
obtain relations, valid to all orders of the perturbative
expansion, which fix the anomalous dimension of the
gauge field if a charged fixed point exists. If the gauge-
field correlator is well defined in the nonperturbative
setting, the QFT prediction provides a clear-cut test for
the connection of the critical behavior observed in [35,36]
with a charged fixed point. A second reason is that non-
gauge-invariant observables defined by means of specific
gauge-fixing procedures correspond in fact to quite
involved (and generally nonlocal) gauge-invariant observ-
ables. The use of gauge fixings can thus be seen as a
convenient tool for the investigation of some nonlocal
aspects of the theory in a computationally simpler setting.
Finally, gauge fixing can also be seen as a (very specific)
form of explicit breaking of the gauge symmetry, and the
investigation of gauge fixed models could be relevant to
understand the continuous phase transitions in models with
explicit gauge symmetry breaking [50,51].
In this work we aim to clarify how the large-distance

behavior of the gauge-field correlators depends on the
gauge-fixing procedure adopted. For this purpose, we study
gauge correlations in the noncompact formulation of
Abelian gauge models. The relations that will be derived
are independent of the matter content of the theory.
Moreover, they are valid in the whole phase diagram of
the model, and not only on the critical lines associated with
charged fixed points. In the present paper, we also add a
numerical study of the behavior of the gauge-field corre-
lations in generic points of the phase diagram of the three-
dimensional Abelian-Higgs model, which provides further
insights into the role of the different gauge fixings.
A detailed analysis of the critical behavior is left to [52].
To make gauge correlation functions well defined, it is

necessary to introduce a gauge-fixing term that completely
breaks the gauge invariance of the model. In noncompact
discretizations, the gauge fixing plays a crucial role, since,
only in the presence of a gauge fixing, the partition function
and the average values of non-gauge-invariant quantities

are finite. This is at variance with what happens in compact
formulations, in which a gauge fixing is not necessary. Also
in the absence of it, the partition function is well defined
and so are average values of non-gauge-invariant quantities.
In particular, correlations of non-gauge-invariant quantities
are either trivial or equivalent to gauge-invariant observ-
ables obtained by averaging the non-gauge-invariant
quantity over the whole (compact) group of gauge trans-
formations [53–55]. The latter equivalence does not hold in
noncompact formulations, since the group of gauge trans-
formations is not compact and therefore, averages over all
gauge transformations are not defined.
Once a gauge fixing is introduced, the first point to be

investigated is whether and how the results for non-gauge-
invariant quantities depend on it. Here we consider two
widely used gauge fixings, the axial and the Lorenz one.
We derive general results and perform a complementary
numerical study in the AH model. They both indicate that
gauge correlations depend somehow on the gauge choice
made. In particular, we show that the photon-mass oper-
ator is well defined only in what we call the hard Lorenz
gauge (see Sec. II). Unphysical results are obtained when
using the axial gauge and the soft Lorenz gauge. The
conclusions of this work should be independent of the type
of matter fields considered (fermions or bosons) as they
only rely on some specific features of the gauge-fixing
functions.
The paper is organized as follows. In Sec. II we introduce

the lattice model, define the gauge fixings and the gauge
observable that we will focus on. In Sec. III we derive
general relations, which are independent of the nature of the
matter fields, between the gauge-field correlation functions
in the presence of different gauge fixings. In Sec. IV we
present numerical results obtained in the scalar AH model,
with the purpose of determining the behavior of gauge-field
correlation functions in the different phases present in the
model. In Sec. V we review some field-theory results for
the gauge dependence of the gauge-field correlation func-
tions. Finally, in Sec. VI we draw our conclusions. In
Appendix A, we summarize some analytic results for the
pure gauge model, while in Appendix B we derive some
general relations for the gauge-dependent part of the gauge
correlation functions.

II. THE LATTICE MODEL

We consider a noncompact Abelian gauge theory on a
d-dimensional cubiclike lattice of size L, with fermionic
and bosonic matter fields that we collectively indicate with
Ψ andΦ, respectively. The gauge interaction is mediated by
real fields Ax;μ ∈ R defined on the lattice links, each link
being labeled by a lattice site x and a positive lattice
direction μ̂ (μ ¼ 1;…; d). The action is given by

S ¼ SmatterðΨ;Φ; AÞ þ SgaugeðAÞ; ð1Þ
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where Smatter is the action for the matter fermionic and
bosonic fields, and SgaugeðAÞ is the action for the gauge
fields, which is given by

SgaugeðAÞ ¼
κ

2

X
x;μ>ν

ðΔμAx;ν − ΔνAx;μÞ2: ð2Þ

Here κ is the inverse lattice gauge coupling, Δμ is a discrete
derivative defined byΔμfx ¼ fxþμ̂ − fx, and we have taken
the lattice spacing equal to 1. We assume that the action is
invariant under local gauge transformations, which act on
the gauge field as

Ax;μ → A0
x;μ ¼ Ax;μ − Δμϕx: ð3Þ

Matter fields do not couple with Ax;μ directly, but rather
through λx;μ ¼ expðiAx;μÞ. This implies that, in a finite
system with periodic boundary conditions, the action S is
also invariant under the transformation Ax;μ→Ax;μþ2πnμ,
where nμ ∈ Z depends on the direction μ but not on the
point x. This transformation makes the averages of some
gauge-invariant quantities (for instance, of Polyakov loops,
which, in noncompact formulations, are defined as the sum
of the gauge fields along paths that wrap around the lattice),
ill defined. To make the averages of all gauge-invariant
observables well defined on a finite lattice, we adopt C�
boundary conditions [35,56,57] that correspond to consid-
ering antiperiodic boundary conditions for the gauge fields,
i.e., to

AxþLν̂;μ ¼ −Ax;μ; ð4Þ

for all lattice directions ν. When using C� boundary
conditions, the local U(1) gauge symmetry is preserved
by using antiperiodic gauge transformations ϕx in Eq. (3).
To study correlation functions of the gauge fields, it is

necessary to add a gauge fixing. We consider gauge fixings
that are linear in the fields and that are translation invariant.
We introduce a gauge-fixing function

FxðAÞ ¼
X
yμ

Mx−y;μAy;μ; ð5Þ

where Mx;μ is a field-independent vector, and define the
partition function as

Zhard ¼
Z

½dΦdΦ̄�½dΨdΨ̄�½dA�
�Y

x

δ½FxðAÞ�
�
e−S; ð6Þ

where the product extends to all lattice sites. Note that the
insertion of the gauge-fixing term does not change the
expectation values of gauge-invariant quantities. In pertur-
bation theory, one usually replaces the partition function (6)
with a different one (see, e.g., Refs. [1,3,58]) defined by
adding a term of the form

SGFðAÞ ¼
1

2ζ

X
x

½FxðAÞ�2 ð7Þ

to the action. In this case one considers the partition
function

Zsoft ¼
Z

½dΦdΦ̄�½dΨdΨ̄�½dA� e−S−SGFðAÞ: ð8Þ

Since the gauge-fixing function is linear in the gauge fields,
no field-dependent Jacobian should be considered in the
gauge-fixed model and, therefore, no Faddeev-Popov term
should be added. The partition function Zsoft depends on
the parameter ζ. For ζ → 0, the model with partition
function (8) is equivalent to the one with partition function
(6). We will call the gauge fixings appearing in Eqs. (6) and
(8) hard- and soft-gauge fixing, respectively.
In this work we will mainly focus on two widely

used gauge-fixing functions. We consider the axial-gauge
fixing with

FA;xðAÞ ¼ Ax;d; ð9Þ

and the Lorenz-gauge fixing with

FL;xðAÞ ¼
Xd
μ¼1

ðAx;μ − Ax−μ̂;μÞ: ð10Þ

Note that in a finite system with C� boundary conditions,
both gauge fixings completely fix the gauge (they are
complete gauge fixings). Indeed, there are no distinct
configurations Ax;μ and A0

x;μ related by a gauge trans-
formation such that FxðAÞ ¼ FxðA0Þ ¼ 0 for all lattice
points x.
We consider correlation functions of the gauge fields. We

define the Fourier transform of the field as1

ÃμðpÞ ¼ eipμ=2
X
x

Ax;μeip·x: ð11Þ

Under C� boundary conditions, Ax;μ is antiperiodic, so
that the allowed momenta for ÃμðpÞ are p¼ð2n1þ
1;…;2ndþ1Þπ=L (ni ¼ 0;…L − 1). In particular, p ¼ 0
is not an allowed momentum. The corresponding momen-
tum-space two-point function is

G̃μνðpÞ ¼
1

Ld hÃμðpÞÃνð−pÞi: ð12Þ

1The added factor eipμ=2 is needed to guarantee that
ÃμðpÞ is odd under reflections in momentum space, p →
ðp1;…;−pμ;…; pdÞ. Intuitively, it can be understood by noting
that Ax;μ is associated with a lattice link and thus it would be more
naturally considered as a function of the link midpoint; i.e., we
should write it as Axþμ̂=2;μ.
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We assume that the matter action is invariant under charge
conjugation. As this property is preserved by the C�
boundary conditions and by linear gauge fixings, the full
theory is also invariant under charge conjugation, which
guarantees hAx;μi ¼ 0.
We also consider the composite operator

Bx ¼
X
μ

A2
x;μ; ð13Þ

which, in perturbative approaches, is included in the action
to provide a mass to the photon and therefore an infrared
regulator to the theory (see, e.g., Ref. [3]). We define its
Fourier transform

B̃ðpÞ ¼
X
x

Bxeip·x; ð14Þ

where p ¼ ð2n1;…; 2ndÞπ=L (Bx is periodic) and the
correlation function

G̃BðpÞ ¼
1

Ld ½hB̃ðpÞB̃ð−pÞi − hB̃ðpÞihB̃ð−pÞi�: ð15Þ

The long-distance properties of the correlators G̃μνðpÞ
and G̃BðpÞ can be determined by studying the gauge
susceptibilities

χμν ¼ G̃μνðpaÞ; χB ¼ G̃Bð0Þ; ð16Þ

where the momentum pa is defined by

pa ¼ ðpmin;…; pminÞ; pmin ¼
π

L
: ð17Þ

Note that, since Ax;μ is antiperiodic, each component of the
momentum can only take the values ð2nþ 1Þpmin and thus
pa is one of the acceptable momenta for which jpj is as
small as possible.

III. CORRELATION FUNCTIONS
IN DIFFERENT GAUGES

In this section we derive relations among correlation
functions in different gauges. These relations will help us to
understand the nonperturbative behavior of correlation
functions that will be discussed in Sec. IV. We focus on
the axial and Lorenz gauge, but it is easy to generalize the
discussion to any arbitrary gauge-fixing function that is
linear in the gauge field. Moreover, all results concerning
the gauge-field two-point correlation functions can in
principle be generalized to any correlation function of
the gauge fields. Finally, note that all results are indepen-
dent of the nature of the matter fields.

A. Hard Lorenz and axial gauges

To relate Lorenz-gauge and axial-gauge results, we first
determine a gauge transformation that maps the Lorenz-
gauge fixing onto the axial one. More precisely, given a
field configuration fAx;μg we want to determine a gauge
transformation (3), i.e. a function ϕx, such that

A0
x;d ¼

X
μ

ðAx;μ − Ax−μ̂;μÞ: ð18Þ

Working in Fourier space, this corresponds to choosing

ϕ̃ðpÞ ¼ i
p̂d

�
ieipd=2

X
μ

p̂μÃμðpÞ þ ÃdðpÞ
�
; ð19Þ

where p̂μ ¼ 2 sinðpμ=2Þ. This transformation is well
defined on a finite lattice with C� boundary conditions
as p̂d never vanishes. It maps the action with a soft Lorenz-
gauge fixing onto the axial-gauge action with the same
parameter ζ. If we take the limit ζ → 0, it allows us to relate
the two hard-gauge-fixed models.
To relate correlation functions we interpret the gauge

transformation with gauge function (19) as a change of
variables. Since the transformation is linear in the fields, the
Jacobian is independent of the fields and plays no role.
Therefore, if OðAx;μÞ is a gauge-dependent operator,
we have

hOðAx;μÞiA;ζ ¼ hOðAx;μ − ΔμϕxÞiL;ζ ð20Þ

where ϕx is the anti-Fourier transform of Eq. (19) and the
two average values refer to the models with axial (A) and
Lorenz (L) soft-gauge fixing, respectively, with the same
parameter ζ.
We can use Eq. (20) to relate G̃ðAÞ

μν ðpÞ and G̃ðLÞ
μν ðpÞ (axial

and Lorenz gauge, respectively). Considering only the hard

case (ζ ¼ 0), using
P

μ p̂μG̃
ðLÞ
μν ðpÞ ¼ 0 (see Appendix B),

we can express G̃ðLÞ
dμ ðpÞ in terms of the components of the

Lorenz function G̃ðLÞ
μν ðpÞwith μ; ν ≤ ðd − 1Þ. This allows us

to prove the relation (1 ≤ μ; ν ≤ d − 1),

G̃ðAÞ
μν ðpÞ ¼ G̃ðLÞ

μν ðpÞ þ p̂μp̂ν

p̂4
d

X
αβ

p̂αp̂βG̃
ðLÞ
αβ ðpÞ

þ p̂μ

p̂2
d

X
α

p̂αG̃
ðLÞ
αν ðpÞ þ p̂ν

p̂2
d

X
α

p̂αG̃
ðLÞ
αμ ðpÞ; ð21Þ

where α and β run from 1 to (d − 1) only. Obviously, as we

are considering the hard-gauge fixing, G̃ðAÞ
μν ðpÞ ¼ 0, if μ or

ν are equal to d. We can use Eq. (21) to relate χðAÞμν with χðLÞμν .
Because of the cubic symmetry of the lattice and of the
momentum pa [see Eq. (17)], only two components of

G̃ðLÞ
μν ðpaÞ are independent. Therefore, we can write
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χðLÞμν ¼ G̃ðLÞ
μν ðpaÞ ¼ cL1δμν þ cL2ð1 − δμνÞ; ð22Þ

where cL2 ¼ −cL1=ðd − 1Þ because of the Lorenz condi-
tion (see Appendix B). Substituting in Eq. (21), we obtain
(again 1 ≤ μ; ν ≤ d − 1)

χðAÞμν ¼ G̃ðAÞ
μν ðpaÞ ¼ cA1δμν þ cA2ð1 − δμνÞ; ð23Þ

with

cA1 ¼
2d

d − 1
cL1; cA2 ¼ −dcL2: ð24Þ

The simple relations (24) and (21) do not extend, however,
to composite operators. Indeed, the transformation with
function (19) that relates the two gauges is singular in the
limit L → ∞, because of the factor 1=p̂d, which diverges as
L → ∞. This shows up in the presence of singular
coefficients in Eq. (21). As a consequence, as we discuss
in Sec. IV, the average

hBxi ¼
1

V

X
μν

X
p

G̃μνðpÞ ð25Þ

behaves differently in the axial and Lorenz gauges.

B. Hard and soft axial gauges

Let us now determine how correlation functions vary in
soft axial gauges as the parameter ζ varies. As before, we
consider changes of variables that are gauge transforma-
tions. For the case at hand, we consider the gauge function

ϕ̃ðpÞ ¼
 
1 −

ffiffiffiffiffi
ζ2
ζ1

s !
i
p̂d

ÃdðpÞ ð26Þ

that allows us to map the model with parameter ζ1 onto the
model with parameter ζ2. It is immediate to relate corre-
lation functions. Using Eq. (20) modified for the case at
hand, we obtain (μ; ν ≤ d − 1),

G̃ðAÞ
μν ðp; ζ2Þ ¼ G̃ðAÞ

μν ðp; ζ1Þ þ r2
p̂μp̂ν

p̂2
d

G̃ðAÞ
dd ðp; ζ1Þ

− r
p̂μ

p̂d
G̃ðAÞ

νd ðp; ζ1Þ − r
p̂ν

p̂d
G̃ðAÞ

μd ðp; ζ1Þ;

r ¼
 
1 −

ffiffiffiffiffi
ζ2
ζ1

s !
: ð27Þ

To simplify this expression, we can use the Ward identity
(see Appendix B):

p̂dG̃
ðAÞ
dμ ðp; ζÞ ¼ ζp̂μ: ð28Þ

We end up with (μ; ν ≤ d − 1),

G̃ðAÞ
μν ðp; ζ2Þ ¼ G̃ðAÞ

μν ðp; ζ1Þ þ ðζ2 − ζ1Þ
p̂μp̂ν

p̂2
d

: ð29Þ

Taking the limit ζ1 → 0 this relation allows us to relate the
hard-gauge and soft-gauge susceptibilities. We find

χμν;ζ ¼ χμν;HA þ ζ; ð30Þ

where the χμν;ζ and χμν;HA are computed in the soft gauge
with parameter ζ and in the hard gauge, respectively.

C. Hard and soft Lorenz gauges

The same calculation can be performed in the Lorenz
case. We consider

ϕ̃ðpÞ ¼
 
1 −

ffiffiffiffiffi
ζ2
ζ1

s !
1

p̂2

X
μ

ip̂μÃμðpÞ ð31Þ

that allows us to map the model with parameter ζ1 onto the
model with parameter ζ2. Here p̂2 ¼Pμ p̂

2
μ. The calcu-

lation is analogous to that performed before. If we para-
metrize the susceptibilities as in Eq. (22), we obtain

cL1ðζ2Þ ¼
d − 1

d
½cL1ðζ1Þ − cL2ðζ1Þ�

þ ζ2
dζ1

½cL1ðζ1Þ þ ðd − 1ÞcL2ðζ1Þ�;

cL2ðζ2Þ ¼ −
1

d
½cL1ðζ1Þ − cL2ðζ1Þ�

þ ζ2
dζ1

½cL1ðζ1Þ þ ðd − 1ÞcL2ðζ1Þ�: ð32Þ

To simplify this expression, we use the Ward identity (see
Appendix B)

X
μ

p̂μG̃
ðLÞ
μν ðp; ζÞ ¼ ζ

p̂ν

p̂2
; ð33Þ

which implies

X
μ

G̃ðLÞ
μν ðpa; ζÞ ¼

ζ

dp̂2
min

; ð34Þ

with pmin ¼ π=L. Substituting in Eq. (32) we obtain

cL1ðζ2Þ ¼ cL1ðζ1Þ þ
1

d2p̂2
min

ðζ2 − ζ1Þ;

cL2ðζ2Þ ¼ cL2ðζ1Þ þ
1

d2p̂2
min

ðζ2 − ζ1Þ: ð35Þ
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IV. NUMERICAL RESULTS

To understand the role that the different gauge fixings
play, we now discuss the behavior of the gauge correlations
in the three-dimensional AH model. This lattice model has
been extensively studied [35,43,44] and we will use it as a
paradigmatic system to investigate how gauge correlations
vary with the gauge fixing adopted.
We consider N-dimensional scalar fields zx, which

are defined on the lattice sites and satisfy the unit-length
constraint z̄ · z ¼ 1. The matter action is

Smatter ¼ −JN
X
x;μ

Reðz̄x · λx;μzxþμ̂Þ; ð36Þ

where the sum extends to all lattice sites and directions
(μ runs from 1 to d ¼ 3), and λx;μ ¼ expðiAx;μÞ.
The phase diagram is reported in Fig. 1. It displays three

different phases characterized by the different behavior of
the gauge field and by the possible breaking of the global
SUðNÞ symmetry. For small J-values the gauge field is
expected to have long-range correlations as it occurs for
J ¼ 0 and the SUðNÞ symmetry is realized in the spectrum
(Coulomb phase). For large J two phases occur: The
SUðNÞ symmetry is broken in both phases, while the
gauge field is expected to be long ranged for small κ
(molecular phase) and short ranged for large κ (Higgs
phase). The properties of the Higgs phase are supposedly
those that are usually associated, in the perturbative setting,
with the spontaneous breaking of the U(1) gauge symmetry.
The transition line separating the Coulomb and the Higgs
phases is the one along which (for N ≳ 7) the continuum
limit associated with the AH QFT emerges.

In this work we consider scalar fields with N ¼ 25
components focusing on the large-size behavior of the
gauge observables in the Higgs and Coulomb phases. We
perform simulations for ðκ; JÞ ¼ ð0.4; 0.2Þ and (0.4,0.4)
that lie in the Coulomb and Higgs phase, respectively [for
κ ¼ 0.4, the transition between the Coulomb and Higgs
phases occurs [50] at J ¼ 0.295515ð4Þ]. We report results
for four different gauge fixings. We consider the hard
Lorenz- and axial-gauge fixings and the corresponding soft
versions with ζ ¼ 1. We show that the long-distance
behavior of the gauge observables defined before depends,
to some extent, on the gauge fixing used. For the Coulomb
case, the results are consistent with the ones that can be
analytically obtained for J ¼ 0, i.e., the noncompact
Abelian lattice gauge theory without matter, which are
summarized in Appendix A.
Simulations have been performed by using the same

combination of Metropolis and microcanonical updates
discussed in Ref. [35], which can be easily extended to the
case of the soft gauges discussed in this paper. Hard axial
simulations have been carried out by fixing Ax;d ¼ 0 and
updating only the d − 1 nonvanishing components of Ax;μ.
To obtain the results in the hard Lorenz gauge, we have
instead performed simulations with no gauge fixing and
implemented the gauge fixing before each measure. Given
the gauge configuration fAx;μg obtained in the simulation,
we have determined a gauge transformation (3) so that the
fields fA0

x;μg satisfy the condition FL;xðA0Þ ¼ 0 for all x
[see Eq. (10)]. Gauge correlations are then computed using
the fields fA0

x;μg. The gauge transformation has been
determined by using a conjugate-gradient solver.

A. Coulomb phase

We start by investigating the behavior of the gauge
model in the Coulomb phase (simulations for J ¼ 0.2). In
the whole Coulomb phase the gauge field is expected to
have long-range correlations, and thus χμν should diverge
as L increases, in all gauges considered. Results for the two
hard gauges are reported in Fig. 2. We observe that χμν
diverges as L2 in both cases, a fact that is consistent with
the analytic results for J ¼ 0 (in which case 1=L2 correc-
tions are expected); see Appendix A. The relation Eq. (24)
is fully confirmed by the data, see Fig. 2, and results in the
soft gauges behave analogously and are in full agreement
with relations (35) and (30).
Let us now consider the average of the photon-mass

operator Bx. Results in the Lorenz gauges are reported in
Fig. 3. In both cases hBxi has a finite infinite-volume limit
with corrections of order 1=L. Again this is in agreement
with the results for J ¼ 0 reported in Appendix A. We have
determined the same quantity in the axial gauges obtaining
a different result. In this case hBxi diverges with the system
size as L increases; see Fig. 4: Bx is not a well-defined
operator in the infinite-volume limit. The different behavior

FIG. 1. Sketch of the phase diagram of the three-dimensional
lattice AH model with noncompact gauge fields and unit-length
N-component complex scalar fields, for generic N ≥ 2. Three
transition lines can be identified: the Coulomb-to-Higgs (CH)
line between the Coulomb and Higgs phases, the Coulomb-to-
molecular (CM) line, and the molecular-to-Higgs (MH) line. For
κ ¼ 0, the model is equivalent to the CPN−1 model, for κ → ∞ to
the Oð2NÞ vector, and for J → ∞ to the inverted XY or O(2)
model.
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can be understood by noting the completely different role
the two gauge fixings play in infinite volume. In infinite
volume, only the transformations A0

x;μ ¼ Ax;μ þ cμ, where
cμ is a constant, leave the Lorenz-gauge-fixed action
invariant. Indeed, in the Lorenz gauge, a gauge trans-
formation leaves Ax;μ invariant only if

X
μ

½ϕxþμ̂ − 2ϕx þ ϕx−μ̂� ¼ 0 ð37Þ

for all points x. By working in Fourier space, one can show
that all solutions of this equation can be written as
ϕx ¼ aþPμ cμxμ, so that, Δμϕx ¼ cμ. Note that these
gauge transformations are valid only in infinite volume. In a

finite volume with C� boundary conditions, the gauge
fixing is complete and cμ necessarily vanishes.
On the other hand, in the axial gauge, any gauge trans-

formation with function ϕx ¼ ϕðx; y; zÞ that only depends
on x and y leaves the action invariant. Thus, the axial-gauge
action is invariant under a large set of space-dependent
transformations and this causes the divergence of hBxi. This
result can also be understood by looking at the relation
between the axial and Lorenz correlation functions; see
Eq. (21). While the Lorenz correlation function is expected
to be singular only forp ¼ 0 (due to the presence of the zero
modes discussed above), the axial correlation function is
singular for pd ¼ 0, irrespective of the value of the other
components of the momentum, i.e., on a (d − 1)-dimen-
sional momentum surface. These singularities make the sum
appearing in Eq. (25) diverge as L → ∞.
It is well known that perturbation theory in the axial

gauges is problematic [3,59]. The results presented here
show that the difficulties one encounters using axial gauges
are not simply technical ones due to the infrared problems
of the perturbative expansion. Also nonperturbatively, axial
gauges do not allow a proper definition of some gauge-
dependent quantities, for instance, the photon-mass oper-
ator, in the infinite-volume limit.
We have also determined the behavior of the suscep-

tibility χB, obtaining results that are analogous to those that
hold for J ¼ 0. We find χB ∼ L in Lorenz gauges and
χB ∼ L3 in axial gauges.
Finally, let us make a few comments on the apparently

equivalent Lorenz-gauge fixing

FL0;xðAÞ ¼
Xd
μ¼1

ðAxþμ̂;μ − Ax;μÞ; ð38Þ

which differs from the one reported in Eq. (10) in the choice
of the lattice derivative (forward instead of backward).

FIG. 2. Coulomb phase: estimates of cgfχ11=L2 versus 1=L2 in
the hard Lorenz and hard axial gauge, where cgf is a gauge-
fixing-dependent constant. We use cgf ¼ 3 for the Lorenz-gauge
fixing and cgf ¼ 1 for the axial one. Lorenz-gauge data have been
slightly shifted toward the right to improve readability. Results in
the Coulomb phase, for J ¼ 0.2.

FIG. 3. Coulomb phase: estimates of hBxi versus 1=L in the
hard Lorenz (top) and soft Lorenz gauge with ζ ¼ 1 (bottom). For
L → ∞hBxi ≈ 1.1328 and 1.3857 in the two cases, respectively.
Results in the Coulomb phase, for J ¼ 0.2.

FIG. 4. Coulomb phase: estimates of hBxi=L versus 1=L in the
hard axial (top) and soft axial gauge with ζ ¼ 1 (bottom). For
L → ∞hBxi=L ≈ 0.5631 and 1.563 in the two cases, respectively.
Results in the Coulomb phase, for J ¼ 0.2.
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This gauge-fixing function has several shortcomings. First of
all, in even dimension, it does not represent a complete gauge
fixing for some values of L. For instance, if L ¼ 4nþ 2 and
d ¼ 4, transformations with [x ¼ ðx1; x2; x3; x4Þ],

ϕx ¼ A cos

�
π

2
ðx1 − x2Þ

�
cos

�
π

2
ðx3 − x4Þ

�
ð39Þ

leave FL0;xðAÞ invariant and are consistent with the C�

boundary conditions (ϕx is antiperiodic). In d ¼ 3 the
gauge fixing is complete in a finite volume. However, in
infinite volume, FL0;xðAÞ is invariant under a large set of
gauge transformations, as it occurs in the axial case. Thus,
we do not expect Bx to be a well-defined operator if
FL0;xðAÞ is used. For J ¼ 0, the average value of Bx

diverges in the infinite-volume limit; see Appendix A.
We have also performed some simulations for J ¼ 0.2,
observing that also in this case hBxi increases as L is varied.

B. Higgs phase

Let us now discuss the behavior of gauge-dependent
observables in the Higgs phase (numerical simulations have
been performed for J ¼ 0.4). In Fig. 5 we report the
susceptibility χ11 for the hard and the soft axial gauge
(with ζ ¼ 1), versus 1=L. In both cases χ11 has a finite limit
as L → ∞ and satisfies relation (30). The finite value in the
Higgs phase is consistent with the presence of a finite
photon mass. However, the apparent presence of size
corrections that decay as 1=L points to an unusual behavior
of the system, since in a standard massive phase corrections
are typically expected to scale as e−L=ξ.
In Fig. 6 we show results for the susceptibility χ11 in

the Lorenz gauges. In the hard case, χ11 is finite in the

infinite-volume limit and satisfies the exact relation (24)
with the corresponding quantity in the hard axial gauge.
Instead, in the soft Lorenz gauge, we find χ11 ∼ L2. This
divergence might be, erroneously, interpreted as an indi-
cation of the presence of physical long-range gauge
correlations in the Higgs phase—this would be in contrast
with the idea that the photon is massive. The correct
interpretation is instead, that in the soft Lorenz gauge
there are unphysical gauge modes that are long ranged and
contribute to χμν, even though they do not have physical
meaning. This interpretation is supported by Eq. (35) that
we rewrite as

χ11;Lζ ¼ χ11;HL þ ζ

d2p̂2
min

≈ χ11;HL þ ζ

d2π2
L2 ð40Þ

where χ11;Lζ and χ11;HL refer to the soft Lorenz gauge with
parameter ζ and to the hard Lorenz gauge, respectively.
Since χ11;HL has a finite large-L limit, this relation shows
that the divergence of χ11;Lζ is only due to the last term,
which has no physical meaning, and is related to the
presence of propagating longitudinal modes that are instead
completely suppressed in the hard gauge (ζ ¼ 0).
Perturbation theory provides the recipe for the definition

of a susceptibility that only couples the physical modes. We
define

G̃trðpÞ ¼
X
μν

�
1 −

p̂μp̂ν

p̂2

�
G̃μνðpÞ: ð41Þ

and a transverse susceptibility χtr ¼ G̃trðpaÞ. Using the
parametrization (22) we obtain

χtr ¼ ðd − 1ÞðcL1 − cL2Þ: ð42Þ

Equation (35) then implies

FIG. 5. Higgs phase: estimates of χ11 (hard axial gauge) and
χ11 − 1 (soft axial gauge with ζ ¼ 1), versus 1=L, in the Higgs
phase, J ¼ 0.4. Soft axial-gauge data have been slightly moved to
the right to improve readability. The line is only meant to guide
the eye, since we have no theoretical understanding of the
possible origin of the 1=L correction.

FIG. 6. Higgs phase. Top: estimates of χ11 in the hard Lorenz
gauge. Bottom: estimates of χ11=L2 in the soft Lorenz gauge with
ζ ¼ 1. Results in the Higgs phase for J ¼ 0.4.
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χtrðζ1Þ ¼ χtrðζ2Þ: ð43Þ

The transverse susceptibility is independent of ζ and
therefore is the same in hard and soft gauges. In particular,
χtrðζÞ is finite in the Higgs phase for all values of ζ, as
expected.
The behavior of hBxi and of the corresponding suscep-

tibility is analogous to that observed in the Coulomb phase;
see Fig. 7. The average hBxi is well defined only for Lorenz
gauges. In the axial gauge, we have instead hBxi ∼ L. This
is not unexpected since the argument we have presented in
the previous section, i.e., that the divergence of hBxi is
related to the large number of quasizero modes present in
the axial case, does not rely on any particular property of
the two phases.
Finally, let us consider the susceptibility χB. Not surpris-

ingly, in the axial-gauge data are consistent with a behavior
χB ∼ L3, as in the Coulomb phase. In the hard Lorenz case,
we observe that χB is finite as L increases. This is the
expected behavior in the Higgs phase, in which the photon
is massive. In the soft Lorenz gauge instead, data are
consistent with χB ∼ L. It is easy to realize that this
divergence is due to the contributions of the nonphysical
longitudinal modes present for nonzero values of ζ. The
linear divergence with L can be predicted by a simple
argument. Let us assume that the hard-gauge correlation
function has the form (at least for small values of p)

G̃μνðp; ζ ¼ 0Þ ¼ Z
p̂2 þM2

�
δμν −

p̂μp̂ν

p̂2

�
; ð44Þ

and, as predicted by the Ward identities, that

G̃μνðp; ζÞ ¼ G̃μνðp; ζ ¼ 0Þ þ ζ
p̂μp̂ν

ðp̂2Þ2 : ð45Þ

In a Gaussian approximation—we neglect irreducible four-
field contributions—we have

χB ¼ 2

Ld

X
p

X
μν

G̃μνðp; ζÞG̃μνð−p; ζÞ; ð46Þ

and therefore,

χB ¼ 2ðd − 1ÞZ2
1

Ld

X
p

1

ðp̂2 þM2Þ2

þ 2ζ
1

Ld

X
p

1

ðp̂2Þ2 : ð47Þ

The first sum has a finite limit as L → ∞, while the second
one, see Appendix A, diverges as L and lnL in d ¼ 3 and
d ¼ 4, respectively. Thus, in three dimensions the longi-
tudinal modes give rise to a contribution that increases as L,
in agreement with the numerical results. We conclude that
the photon-mass operator is not well defined nonperturba-
tively in the Lorenz soft gauge, because of the contributions
of the nonphysical longitudinal modes. Apparently, only
the hard Lorenz gauge is a consistent gauge fixing in which
the operator is correctly defined.

V. SOME FIELD-THEORY RESULTS

The results of the previous sections can be combined
with QFT results to obtain some general predictions of the
behavior of Abelian gauge systems at charged fixed points.
First, let us note that our previous results also allow us to

predict that the anomalous dimension of the gauge field is
the same in the axial gauge as in the Lorenz gauge. Indeed,
as we have discussed before, the large-scale behavior of the
susceptibilities χμν (for μ; ν < d) is the same for all gauge
fixings (although some caution should be exercised in the
soft Lorenz case). Indeed, a summary of the results
obtained is the following:

(i) the susceptibilities χμν (μ; ν < d) in the hard Lorenz
and in the hard axial gauge differ only by a
multiplicative constant: 2d=ðd − 1Þ for μ ¼ ν and
−d for μ ≠ ν, see Eq. (24);

(ii) the susceptibilities in the hard and soft axial gauges
differ by an additive constant, see Eq. (30);

(iii) the susceptibilities in the hard and soft Lorenz gauge
behave differently, because of the coupling with the
longitudinal modes. If one considers the transverse
definition, see Eq. (41), results are independent of ζ,
i.e., are the same in the hard and soft case.

For the soft Lorenz gauge, one can prove to all orders of
perturbation theory that [3,60] ηA ¼ 4 − d, independent of
the nature of the matter fields. Indeed, the proof only relies
on the relation ZAZe ¼ 1 between the renormalization
constants of the gauge field and of the electric charge e.
This implies [3]

βe2 ¼ e2rðd − 4þ ηAÞ; ð48Þ
FIG. 7. Higgs phase. Top: estimates of hBxi in the hard Lorenz
gauge. Bottom: estimates of hBxi=L in the hard axial gauge.
Results in the Higgs phase for J ¼ 0.4.
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which connects the anomalous dimension ηA ¼ d log ZA
d log μ of

the gauge field (μ is the RG energy scale) and the β function

of the gauge coupling βe2 ¼ de2r
d log μ, where e

2
r ¼ e2Bμ

d−4=Ze.
In this expression the beta function βe2 and the anomalous
dimension ηA of the field are functions of the renormalized
Lagrangian parameters; in particular they can be computed
in perturbation theory, as an expansion in powers of e2r and
the other Lagrangian parameters. At a transition which is
associated with a charged fixed point, i.e., where the gauge
theory provides the effective critical behavior, we have
e2r ≠ 0. Therefore, the fixed-point condition βe2 ¼ 0
implies [20,60]

ηA ¼ 4 − d: ð49Þ

Numerical results [52] for the three-dimensional Abelian-
Higgs model are in full agreement with this prediction.
A second interesting result concerns the parameter ζ that

parametrizes the soft gauges. As a consequence of the Ward
identities discussed in Sec. B, in the soft Lorenz gauge we
have ζ ¼ ζrZA, which implies

βζ ¼ −ζrηA: ð50Þ

The value ζ ¼ 0 is a fixed point of this equation, as
expected. Indeed, if we start from a model with a purely
transverse gauge field, no longitudinal contributions are
generated by the RG flow. Instead, if we start the flow from
a value ζ ≠ 0, ζ flows toward þ∞, indicating that the hard-
gauge fixing is an unstable fixed point, at least for d < 4.
Moreover, for ζ ≠ 0 the large-scale behavior is singular, as
the non-gauge-invariant modes become unbounded under
the RG transformations. Therefore, also QFT (which
describes the critical behavior at charged transitions)
predicts that only the hard Lorenz-gauge fixing provides
a consistent definition of non-gauge-invariant quantities at
the critical point in three dimensions.
Equations (49) and (50) allow us to predict the crossover

behavior of χμν at a critical charged transition point in the
soft Lorenz gauges. For d < 4 we predict

χμνðζÞ ¼ L2−ηAfμνðζLηAÞ ¼ Ld−2fμνðζL4−dÞ: ð51Þ

This relation should hold for L → ∞, ζ → 0 at fixed ζL4−d.
The function fμνðxÞ can be computed using Eq. (35). If
χμνðζ ¼ 0Þ ≈ aμνLd−2 for L → ∞, Eq. (35) implies

χμνðζÞ ≈ aμνLd−2 þ ζL2

d2π2

¼ Ld−2
�
aμν þ

1

d2π2
ζL4−d

�
; ð52Þ

so that fμνðxÞ ¼ aμν þ x=ðd2π2Þ.

VI. CONCLUSIONS

In this work we investigate the behavior of gauge
correlations in Abelian gauge theories with noncompact
gauge fields. Because of the unbounded nature of the
fluctuations of the gauge fields, a rigorous definition of the
model requires the introduction of a gauge-fixing term.
This is at variance with compact formulations (for instance,
models with Wilson action), in which a gauge fixing is not
required to make the model well defined. Here we consider
two widely used gauge fixings, the axial and Lorenz one.
We also distinguish between hard-gauge fixings—in this
case the partition function is given in Eq. (6)—and soft
ones depending on a parameter ζ—the corresponding
partition function is given in Eq. (8).
Gauge-invariant correlations are obviously independent

of the gauge-fixing procedure. On the other hand, the large-
scale behavior of gauge-dependent quantities may have a
nontrivial dependence. Here we first consider correlations
of the gauge field Ax;μ and we derive general relations,
independent of the nature of the matter couplings, between
these correlations computed in the presence of different
gauge fixings. Second, we consider the photon-mass
composite operator A2

x;μ, which is usually introduced in
the action, in perturbative calculations, as an infrared
regulator of the theory.
As a specific example, we analyze the behavior of these

correlation functions in the three-dimensional Abelian-
Higgs model, in which an N-component complex scalar
field is coupled with a noncompact real Abelian gauge
field. In particular, we study their behavior in the so-called
Coulomb and Higgs phases (see Fig. 1 for a sketch of the
phase diagram). In the Coulomb phase, the correlation
function G̃μνðpÞ of the gauge fields has the same small-
momentum behavior as in the absence of matter fields, for
all gauge fixings considered. In particular, the susceptibility
χμν defined in Eq. (16) diverges as L2 in the infinite-volume
limit. In the Higgs phase, we expect the photon to be
massive and therefore χμν should be finite as L → ∞. This
turns out to be true for the axial soft and hard gauges and
for the hard Lorenz gauge. On the other hand, χμν ∼ L2 in
the soft Lorenz gauge. This divergence is caused by the
unphysical contributions due to the longitudinal modes that
propagate in the soft Lorenz gauge.
While the behavior of G̃μνðpÞ in all gauges is consistent

with the general picture that the photon is massless/massive
in the Coulomb/Higgs phase, the interpretation of the
results for the photon-mass operator Bx ¼

P
μ A

2
x;μ is more

complicated. If we consider the soft and hard axial gauges,
we find hBxi ∼ L in both phases. The operator does not
have a well-defined infinite-volume limit. The divergence
is due to the presence of a (d − 1)-dimensional family of
quasizero modes, so that Ax;μ develops infinite-range
fluctuations in the infinite-volume limit. Therefore, if an
axial-gauge fixing is used, Bx cannot be defined
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nonperturbatively. In the soft and hard Lorenz gauge, the
average hBxi is finite as L → ∞ in both phases, and thus
the operator is well defined. However, in the Higgs phase,
the susceptibility χB defined in Eq. (16) behaves differently
in the hard and soft case. In the hard case, χB has a finite
infinite-volume limit, as expected—the photon mass is
finite. Instead, χB diverges as L in the soft gauge. This
divergence is due to the longitudinal modes that are not
fully suppressed.
The results presented here show that neither the axial

gauge nor the soft Lorenz gauge are appropriate for the
study of generic gauge-dependent correlation functions.
More precisely, we show that in these gauges some
correlators of the gauge field do not have a smooth
thermodynamic limit and cannot be used to characterize
the large-distance behavior of the gauge field. For instance,
in the axial and soft Lorenz-gauge A2

μ correlators cannot be
used to distinguish the Higgs phase in which photons are
massive from the Coulomb phase in which photons are
massless, since they diverge in both the phases in the
thermodynamic limit. Of course, this does not mean that
these gauge fixings cannot be used tout court, since other
gauge-dependent correlators may in principle be well
defined and encode physically relevant information.
Note, however, that also scalar correlators have analogous
issues; see Appendix A of Ref. [52].
Axial gauges suffer from the existence of an infinite

family of quasizero modes, giving rise to spurious diver-
gences, unrelated to the presence of long-range physical
correlations. Soft Lorenz gauges suffer instead from the
presence of propagating unphysical longitudinal modes,
that, at least for d < 4 and therefore in three dimensions,
may hide the physical signal. Apparently, only the hard
Lorenz-gauge fixing provides a consistent model in which
gauge-dependent correlations have the expected large-scale
(small-momentum) behavior. It is interesting to observe
that also QFT singles out the hard Lorenz gauge as the
gauge of choice for the study of gauge correlations. Note
that the shortcomings of the axial gauge and of the soft
Lorenz gauge are not related to the nature of the matter
fields but are due to intrinsic properties of the gauge
fixings. Therefore, our conclusions should be relevant also
for systems in which fermions are present.
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APPENDIX A: CRITICAL BEHAVIOR
IN THE U(1) ABELIAN GAUGE THEORY

In this appendix we summarize the expressions of the
observables defined in Sec. II for the free U(1) gauge theory,
i.e., in the absence of matter fields. The susceptibilities χμν

can be trivially derived from the small-momentum behavior
of G̃μνðpÞ defined in Sec. II. Moreover, we have

hBxi ¼
1

V

X
p

X
μν

G̃μνðpÞ; ðA1Þ

χB ¼ 2

V

X
p

X
μν

½G̃μνðpÞ�2: ðA2Þ

Because of theC� boundary conditions the sums go over the
momenta

p ¼ π

L
ð2n1 þ 1; 2n2 þ 1; 2n3 þ 1Þ; ðA3Þ

with 0 ≤ ni < L.

1. Lorenz gauge

In the Lorenz gauge, the propagator G̃μνðpÞ is given by

G̃μνðpÞ ¼
1

κ

δμν
p̂2

þ ζκ − 1

κ

p̂μp̂ν

ðp̂2Þ2 ; ðA4Þ

where p̂μ ¼ 2 sinpμ=2 and p̂2 ¼Pμ p̂
2
μ. It follows that

χμν ¼ ðdδμν þ ζκ − 1Þ 1

κd2p̂2
min

;

hBxi ¼
d − 1þ ζκ

κ
Id;1ðLÞ;

χB ¼ 2ðd − 1þ ζ2κ2Þ
κ2

Id;2ðLÞ; ðA5Þ

where pmin ¼ π=L and

Id;nðLÞ ¼
1

Ld

X
p

1

ðp̂2Þn : ðA6Þ

The behavior of the sums Id;n depends on the dimension d.
For d > 2, Id;1 has a finite limit for L → ∞, while it
diverges logarithmically in d ¼ 2. In particular, in d ¼ 3
we have [61,62]

I3;1ðLÞ ≈
Z
½−π;π�3

d3p
ð2πÞ3

1

p̂

¼ 1

192π3
ð
ffiffiffi
3

p
− 1ÞΓ

�
1

24

�
2

Γ
�
11

24

�
2

≈ 0.252731: ðA7Þ

Instead, the sum Id;2 diverges for L → ∞ in dimension
d ≤ 4, as L4−d (as lnL in d ¼ 4). We find
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I3;2ðLÞ ≈ a2L½1þOðL−1Þ�; a2 ≈ 0.015216;

I4;2ðLÞ ≈ a2 lnLþOð1Þ; a2 ≈
1

8π2
: ðA8Þ

Thus, in three dimensions the susceptibilities χμν and χB
diverge as L2 and L, respectively, while hBxi is finite.

2. Axial gauge

In the axial gauge

G̃μνðpÞ ¼
1

κ

δμν
p̂2

þ p̂μp̂ν

p̂2
d

�
1

κp̂2
þ ζ

�
; ðA9Þ

if both μ and ν are not equal to d. Otherwise, we have

G̃μνðpÞ ¼ ζ
p̂μp̂ν

p̂2
d

: ðA10Þ

As for the susceptibilities, we find χdμ ¼ ζ and, for
μ; ν < d,

χμν
δμν þ 1

dκ
1

p̂2
min

þ ζ ≈
δμν þ 1

dκπ2
L2; ðA11Þ

where pmin ¼ π=L. As expected, χdμ is finite (it vanishes in
the hard axial gauge for which ζ ¼ 0), while the other
susceptibility components diverge as L2. Although the
large-L behavior is the same as in the Lorenz case, here the
asymptotic behavior is ζ independent: The susceptibilities
behave identically in the hard and soft axial case, a result
that does not hold in the Lorenz case.
As for hBxi and χB we find

hBxi¼
1

κ
ððd−2ÞId;1þJ1Þþζð1þðd−1ÞJ1J−1Þ;

χB ¼ 2ζ2þ2ζ2ðd−1Þð2J1J−1þðd−2ÞJ2J2−1þJ2J−2Þ

þ 2

κ2
ððd−2ÞId;2þJ2þ2ðd−1ÞζκJ2J−1Þ; ðA12Þ

where the quantitiesJnðLÞ correspond to theone-dimensional
sums [p ¼ ð2nþ 1Þπ=L with n ¼ 0;…; L − 1],

JnðLÞ ¼
1

L

X
p

p̂−2n: ðA13Þ

Since we have (these expressions can be derived as in
Appendix B. 1. d of Ref. [63])

J2 ¼
1

48
LðL2 þ 2Þ;

J1 ¼
L
4
;

J−1 ¼ 2;

J−2 ¼ 6; ðA14Þ

we obtain for large values of L for d > 2:

hBxi ≈
1þ 2ðd − 1Þζκ

4κ
L;

χB ≈
1

24κ2
½1þ 4ðd − 1Þζκ

þ 2ðd − 1Þð2d − 1Þζ2κ2�L3: ðA15Þ

Note that hBxi diverges, at variance with what happens in
the Lorenz case. From a technical point of view this is due
to the fact that the axial-gauge propagator is more divergent
than the Lorenz one: Indeed, in the axial gauge G̃μνðpÞ
diverges as pd → 0, for any value of the other momentum
components, while in the Lorenz gauge a divergence is only
observed as jpj → 0. More intuitively, note that, in infinite
volume, the axial-gauge-fixed Hamiltonian is still invariant
under the gauge transformations (3) if the function
ϕx ¼ ϕðx1;…;xdÞ depends on xi with i < d only. This should
be compared with the Lorenz case, in which only gauge
transformations with Δμϕx ¼ cμ, where cμ is x indepen-
dent, leave the infinite-volume gauge-fixed Hamiltonian
invariant. The presence of this large family of quasizero
modes is responsible for the divergence of the variance of
Ax;μ for μ < d.

3. Some other gauge fixings

It is interesting to note that the results for the Lorenz
gauge apply only to the discretization (10). If instead the
discretization (38) is used, different results are obtained.
Indeed, in the latter case, in the infinite-volume limit, the
gauge-fixed Hamiltonian is invariant under a large family
of gauge transformations. For instance, one can consider
transformations like those reported in Eq. (39). To deter-
mine the full set of transformations that leave FL0;xðAÞ
invariant in infinite volume, we work in Fourier space and
consider a function ϕx of the form

ϕx ¼ aeip·x þ āe−ip·x; ðA16Þ

where a is an arbitrary complex constant. These trans-
formations leave FL0;xðAÞ invariant, if at least one of these
two conditions is satisfied:
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X
μ

cospμð1 − cospμÞ ¼ 0;

X
μ

sinpμð1 − cospμÞ ¼ 0: ðA17Þ

If only the first (the second) equation is satisfied, then a is
necessarily real (purely imaginary). The transformation
(39) corresponds to taking p ¼ ðπ=2;−π=2; π=2;−π=2Þ
and a real constant a. We have studied numerically the
equations (A17) in three dimensions, finding that both
equations are satisfied on a two-dimensional surface in
momentum space. The presence of this family of gauge
transformations that leave the Hamiltonian invariant,
implies that the correlation function G̃μνðpÞ is singular in
p space. In turn, this implies (we have performed a
numerical check) the divergence of the variance of Ax,
as it also occurs in the axial gauge.
Finally, we would like to make some comments on the

Coulomb gauge that we can define as

FL;xðAÞ ¼
Xd−1
μ¼1

ðAx;μ − Ax−μ̂;μÞ: ðA18Þ

In the hard case ζ ¼ 0, the correlation function is given by

G̃μνðpÞ ¼
1

κ

δμν
p̂2

−
1

κ

pμpν

p̂2p̂2
T
; μ; ν < d;

G̃dμ ¼ 0; μ < d;

G̃dd ¼
1

κ

1

p̂2
T

ðA19Þ

where p̂2
T ¼Pd−1

μ¼1 p̂
2
μ. The susceptibilities diverge as L2

while hBxi is given by

hBxi ¼
1

κ
ð2Id;1 þ Id−1;1Þ: ðA20Þ

In four dimensions, both sums are finite; therefore hBxi is
well defined. In three dimensions, however, the result
depends on the two-dimensional sum I2;1, which diverges

logarithmically. Therefore, for d ¼ 3, the photon-mass
operator is not well defined in the Coulomb gauge.

APPENDIX B: WARD IDENTITIES
IN DIFFERENT GAUGES

A crucial ingredient in the derivations presented in
Sec. III is the Ward identities satisfied by the correlation
functions. We derive them here for the generic gauge-fixing
function introduced in Sec. III; see Eq. (5). The corre-
sponding function SGFðAÞ defined in Eq. (7) is given by

SMðAÞ ¼
1

2ζV

X
pαβ

MαðpÞMβð−pÞe−iðpα−pβÞ=2

× ÃαðpÞÃβð−pÞ: ðB1Þ

Under an infinitesimal gauge transformation, we have

δSM ¼ 1

V

X
p

δMðpÞϕ̃ðpÞ;

δMðpÞ ¼
1

ζ

X
αβ

MαðpÞMβð−pÞe−iðpα−pβÞ=2

× ðip̂αÞÃβð−pÞ: ðB2Þ

If we now consider hAx;γi and require its invariance under
changes of variable represented by infinitesimal gauge
transformations, we obtain

hΔγϕx þ Ax;γδSMi ¼ 0: ðB3Þ

In Fourier space, this implies the relation

1

ζ

X
αβ

MαðpÞMβð−pÞe−iðpα−pβÞ=2p̂αG̃γβðpÞ ¼ p̂γ: ðB4Þ

In the axial gauge we have MαðpÞ ¼ δαd, while in the
Lorenz gauge we have MαðpÞ ¼ −eipα=2ip̂α. Substituting
these relations in Eq. (B4), we obtain Eqs. (28) and (33).
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