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Simulations of lattice gauge theories with tensor networks and quantum computing have so far mainly
focused on staggered fermions. In this paper, we use matrix product states to study Wilson fermions in the
Hamiltonian formulation and present a novelmethod to determine the additivemass renormalization. Focusing
on the single-flavor Schwinger model as a benchmark model, we investigate the regime of a nonvanishing
topological θ-term,which is inaccessible to conventionalMonte Carlomethods.We systematically explore the
dependenceof themass shift on thevolume, the lattice spacing, theθ-parameter, and theWilsonparameter. This
allows us to follow lines of constant renormalized mass, and therefore to substantially improve the continuum
extrapolation of the mass gap and electric field density. For small values of the mass, our continuum results
agree with the theoretical prediction from mass perturbation theory. Going beyond Wilson fermions, our
technique can also be applied to staggered fermions, and we demonstrate that the results of our approach agree
with a recent theoretical prediction for the mass shift at sufficiently large volumes.

DOI: 10.1103/PhysRevD.108.014516

I. INTRODUCTION

Lattice gauge theory (LGT) is an essential tool for
exploring gauge theories in the nonperturbative regime [1].
After discretizing the Lagrangian on a space-time lattice,
stochastic Monte Carlo (MC) methods can be applied to
numerically study mass spectra [2], phase diagrams [3], and
many other static properties. However, standard MC
methods suffer from the sign problem in certain parameter
regimes, which prevents the investigation of many inter-
esting problems. Prominent examples are the phase dia-
gram of QCD at high baryon chemical potential or QCD
in the presence of a topological θ-term [4]. In contrast,
methods based on the Hamiltonian formulation do
not suffer from the sign problem. In particular, tensor

network approaches in the Hamiltonian formulation
have successfully demonstrated calculations in regimes
where conventional MC methods suffer from the sign
problem (see, e.g., Refs. [5–14] and Ref. [15] for a
review). Moreover, in recent years, quantum computing
has emerged as a promising new approach for tackling
gauge theories in the Hamiltonian formulation (see, e.g.,
Refs. [16–23] and Ref. [24] for a review).
The naive lattice discretization of theories with fermionic

degrees of freedom suffers from the fermion doubling
problem [1]. The most common approach for avoiding the
doubling problem in simulations based on tensor networks
and quantum computing has been the usage of Kogut-
Susskind staggered fermions [25]. While these fermions are
easy to implement, they do not allow for fully removing the
doublers in 2þ 1 and 3þ 1 space-time dimensions. Wilson
fermions offer an alternative discretization scheme for
avoiding the doublers, by giving them a mass proportional
to the inverse lattice spacing [26,27]. This renders the
doublers infinitely heavy when taking the continuum limit,
and they completely decouple from the theory. Wilson
fermions generalize straightforwardly to any number of
space-time dimensions and allow for fully removing the
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doublers. However, one complication arising from Wilson
fermions is the explicit breaking of axial symmetry, which
causes an additive mass renormalization [28]. Methods for
computing this mass shift have so far only been proposed
and implemented in the Lagrangian formulation.
In this paper, we extend the work done in Ref. [29] and

present a method to compute the mass shift in the
Hamiltonian formulation, focusing on the Schwinger
model with a topological θ-term as a benchmark model.
The knowledge of the mass shift allows for following lines
of constant renormalized mass. We demonstrate that
incorporating the mass shift improves the convergence of
the continuum extrapolation and allows for obtaining more
precise results with a given amount of resources.
This paper is organized as follows. In Sec. II, we review

the continuum formulation and the lattice formulation of
the Schwinger model with a topological θ-term. In Sec. III,
we explain the specific kind of tensor network, the matrix
product states (MPS), which we use for our numerical
calculations, as well as the new method for determining the
mass shift. Subsequently, we present our results for the
mass shift and its dependence on the volume, the lattice
spacing, the θ-parameter, and the Wilson parameter in
Sec. IV. We also perform the continuum extrapolations for
the electric field density and the Schwinger boson mass
after incorporating the mass shift. Finally, we provide a
conclusion and an outlook in Sec. V. In Appendix A, we
provide a short review of the quantum anomaly equation
and the resulting θ-independence of observables in the case
of vanishing fermion mass. Since our new method of
computing the mass shift is not restricted to a specific type
of fermion discretization, we demonstrate our method for
staggered fermions in Appendix B and compare our
numerical results to the recent theoretical prediction in
Ref. [30]. Related work that has made use of the mass shift
prediction for staggered fermions in Ref. [30] can be found
in Refs. [31,32].

II. THEORY

In this section, we will first review the continuum version
of the Schwinger model with a topological θ-term, includ-
ing expressions for the Schwinger boson mass and the
vacuum expectation value of the electric field density.
Secondly, we will present the corresponding lattice model
with Wilson fermions in the Hamiltonian formulation.

A. Continuum Schwinger model

The Schwinger model describes quantum electrodynam-
ics in 1þ 1 dimensions. In the continuum, the correspond-
ing Hamiltonian density for a single fermion flavor with a
topological θ-term is given by

H ¼ −iψ̄γ1ð∂1 − igA1Þψ þmψ̄ψ þ 1

2

�
_A1 þ

gθ
2π

�
2

: ð1Þ

We have chosen temporal gauge, A0 ¼ 0, and therefore only
the F01 ¼ _A1 gauge field component appears. The bare
coupling of the gauge field to the fermionic fieldψ is denoted
by g, and has units of mass. The fermionic field ψ is a two-
component spinor with bare mass m. The θ-term gθ=2π in
Eq. (1) represents a static background electric field [33–35].
The Schwinger model is superrenormalizable; therefore, the
bare and renormalized parameters are identical [34,36].
In the massless case, the axial transformation of the

fermionic fields, ψ → eiγ5αψ , is a symmetry of the classical
theory but not of the quantum theory. Based on Ref. [37],
we review in Appendix A that this quantum anomaly
implies that the θ-parameter becomes unphysical for the
massless case and observables should therefore become
θ-independent.
For the massive continuum Schwinger model, Ref. [34]

used mass perturbation theory up to order O½ðm=gÞ2� to
derive the following expressions for the vacuum expect-
ation value of the electric field density:

F
g
¼ eγffiffiffi

π
p

�
m
g

�
sin θ − 8.9139

e2γ

4π

�
m
g

�
2

sin ð2θÞ; ð2Þ

and the mass gap, called the Schwinger boson mass,

MS

g
¼ 1ffiffiffi

π
p

�
1þ 3.5621

ffiffiffi
π

p �
m
g

�
cos θ

þ πð5.4807 − 2.0933 cos ð2θÞÞ
�
m
g

�
2
�
1=2

; ð3Þ

where γ ¼ 0.5772156649 is the Euler-Mascheroni constant.
We can see from both expressions that they become
independent of θ whenm=g ¼ 0, as expected from the axial
anomaly. In particular for m=g ¼ 0, a nonvanishing back-
ground electric field, corresponding to a nonzero θ-term, gets
completely screened by fermion-anti-fermion pairs that are
created from thevacuum [35]. This pair creation accumulates
negative and positive charges at the ends of the spatial
dimension, thereby creating an electric field in the opposite
direction to the original background electric field, such that
the overall electric field vanishes. The mass gapMS=g, also
known as the Schwinger boson mass, represents a stable
mesonic bound state of a fermion-anti-fermion pair [35].

B. Lattice formulation with Wilson fermions

In order to numerically study the Schwinger model with
matrix product states (MPS), we first need a discrete lattice
Hamiltonian, which we will introduce in this section. We
follow Refs. [38,39] and derive the lattice Hamiltonian with
Wilson fermions, which yields the Hamiltonian in Eq. (1)
in the continuum limit. Our starting point is the free Dirac
Hamiltonian in the continuum,

Hfree ¼
Z

dxψð−iγ1∂1 þmÞψ : ð4Þ
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To obtain a discretized version of Eq. (4), we use the
symmetric lattice derivative, ∂1ψn ¼ ðψnþ1 − ψn−1Þ=2a
and replace

R
dx → a

P
n, where a is the lattice spacing

and n indicates the lattice site. The resulting Hamiltonian
reads

Hfree
lat ¼ a

X
n

�
mlatψ̄nψn − iψ̄nγ

1

�
ψnþ1 − ψn−1

2a

��
: ð5Þ

Here, we explicitly distinguish between the continuum
mass m and the lattice mass mlat. The naive lattice
Hamiltonian in Eq. (5) is plagued by fermionic doublers,
and we therefore add the Wilson term,

ΔHWilson ¼ r
a2

2

X
n

ψ̄n∂
2
1ψn

¼ r
a2

2

X
n

ψ̄n

�
ψnþ1 þ ψn−1 − 2ψn

a2

�
; ð6Þ

to the Hamiltonian in order to remove them [26]. Here, r is
the Wilson parameter, and we use the symmetrized discrete
second derivative. The Wilson term in Eq. (6) gives a mass
proportional to r=a to the doublers, such that they decouple
in the continuum limit, a → 0 [26].
When adding the Wilson term in Eq. (6) to the

Hamiltonian in Eq. (5), we obtain the free lattice Dirac
Hamiltonian with Wilson fermions,

Hfree
lat;Wilson ¼

X
n

�
ðamlat − rÞψ̄nψn þ ψ̄n

�
r − iγ1

2

�
ψnþ1

þ ψ̄n

�
rþ iγ1

2

�
ψn−1

�
: ð7Þ

Next, we would like to gauge the theory, such that Uð1Þ
gauge transformations of the form ψn → eiβnψn correspond
to a (local) symmetry of the Hamiltonian. To this end, we
introduce the link operator Un which is placed on the link
between sites n and nþ 1, and transforms under gauge
transformations asUn → eiβnUne−iβnþ1 . The conjugate field
to Un is the electric field En, which is also acts on the
links, and satisfies the commutation relations ½En;Un0 � ¼
gδn;n0Un0 . By introducing this gauge symmetry, we obtain
the interacting lattice Hamiltonian,

Hint
lat;Wilson ¼

X
n

�
ψ̄n

�
r − iγ1

2

�
Unψnþ1

þ ψ̄n

�
rþ iγ1

2

�
U†

nψn−1

þ ðamlat − rÞψ̄nψn þ a
E2
n

2

�
: ð8Þ

For numerical simulations, it is more convenient to
work with a dimensionless formulation. Hence, we use

dimensionless operators, Ln ¼ En=g and ϕn;α ¼
ð−1Þn ffiffiffi

a
p

ψn;α, where α labels the spinor component,
and we consider the dimensionless Hamiltonian W̃ ¼
ð2=ag2ÞHint

lat;Wilson.
The physical states of the Hamiltonian have to obey

Gauss’s law, ∀ n Ln − Ln−1 ¼ Qn, where Qn ≡ ϕ†
nϕn − 1

is the charge operator. For open boundary conditions
(OBC), the set of constraints can be solved explicitly,

Ln ¼ l0 þ
Xn
k¼1

Qk; ð9Þ

where l0 is the electric field value on the left boundary and
nothing but a background electric field corresponding to
θ=2π in Eq. (1). Thus, the fermionic charge content
completely determines the flux content of the links after
fixing l0. Substituting Eq. (9) into Eq. (8), we can eliminate
the electric field. Applying the unitary transformation
ϕn →

Q
k<n U

†
kϕn to the resulting expression, the gauge

field can be fully removed [40]. The Hamiltonian obtained
in this way is directly constrained to the physical subspace
and its eigenstates fulfill Gauss’s law.
For convenience in the numerical simulations, we map

the fermionic fields to spin operators by choosing the
ordering ϕn;α → χ2n−2þα and applying a Jordan-Wigner
transformation, χn ¼

Q
k<nðiσzkÞσ−n [41]. In the previous

expression, the matrices σan with a ∈ fx; y; zg are the
usual Pauli matrices acting on site n, and we define
σ�n ≡ ðσxn � iσynÞ=2. The final dimensionless lattice
Hamiltonian in the spin formulation, using γ0 ¼ σx and
γ1 ¼ iσz, is given by

W̃ ¼ ixðr − 1Þ
XN−1

n¼1

ðσ−2nσþ2nþ1 − σþ2nσ
−
2nþ1Þ

þ ixðrþ 1Þ
XN−1

n¼1

ðσþ2n−1σz2nσz2nþ1σ
−
2nþ2Þ

− ixðrþ 1Þ
XN−1

n¼1

ðσ−2n−1σz2nσz2nþ1σ
þ
2nþ2Þ

þ 2i

�
mlat

g

ffiffiffi
x

p þ xr

�XN
n¼1

ðσ−2n−1σþ2n − σþ2n−1σ
−
2nÞ

þ
XN−1

n¼1

�
l0 þ

Xn
k¼1

Qk

�
2

: ð10Þ

In the expression above, x≡ 1=ðagÞ2 is the inverse lattice
spacing squared in units of the coupling. Equation (10)
describes the Schwinger model with Wilson fermions in the
spin formulation on a lattice with dimensionless physical
volume agN ¼ N=

ffiffiffi
x

p
.

In the continuum, stateswhichdonot have avanishing total
charge have infinite energy [42]. Hence, only states with zero
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total charge have finite energy and can be labeled physical. To
ensure that our results are in the sector of vanishing total
charge, we add a penalty term to the Hamiltonian,

W ¼ W̃ þ λ

�XN
n¼1

Qn

�2

; ð11Þ

where the constant λ has to be chosen large enough.
The two terms corresponding to the electric field energy

and the charge penalty, respectively, can be expressed in
terms of Pauli matrices using the expression Qk ¼
ðσz2k−1 þ σz2kÞ=2 for the charge operator, which yields

XN−1

n¼1

�
l0 þ

Xn
k¼1

Qk

�
2

þ λ

�XN
n¼1

Qn

�2

¼ l0
X2N−2

n¼1

�
N − ⌈ n

2
⌉
�
σzn

þ 1

2

X2N
n¼1

X2N
k¼nþ1

�
N − ⌈ k

2
⌉þ λ

�
σznσ

z
k

þ l20ðN − 1Þ þ 1

4
NðN − 1Þ þ λN

2
; ð12Þ

where ⌈:⌉ is the ceiling function. Equation (12) includes
long-range interactions originating from the Coulomb
force mediated by massless photons. The Hamiltonian in
Eq. (11), after substituting in Eq. (12), can be efficiently
addressed with MPS, as shown in the next section.

III. METHODS

In this section, we first briefly review the MPS tech-
niques used for computing the ground state and excited
states. Then, we propose a new method to compute the
mass shift by measuring the mass dependence of the
vacuum expectation value of the electric field density.

A. Matrix product states

Tensor network states are a family of entanglement-
based ansätze for the wave function of quantummany-body
systems, where the amount of entanglement in the ansatz
state is limited by the size of the tensors [15,43,44]. A
widely used class of one-dimensional tensor network states
are the MPS, which for a system of 2N spins on a lattice
with OBC reads

jψi ¼
X

i1;i2;…;i2N

Ai1
1;α1

Ai2
α1;α2…Ai2N

α2N−1;1
ji1i ⊗ ji2i… ⊗ ji2Ni:

ð13Þ

In the expression above, the indices αk, commonly referred
to as virtual indices, are implicitly contracted. For a fixed

value of ik, the Aik
αk−1;αk in the ansatz can be interpreted as

matrices, hence the name MPS. The maximum value of the
virtual indices, corresponding to the maximum size of
the matrices Aik , is referred to as the bond dimension D
of the MPS. The value of D determines the number of
variational parameters in the ansatz and the amount of
entanglement that can be present in the MPS. The physical
indices in range over the physical degrees of freedom on
each lattice site n. For our case of spin 1=2, they take two
possible values.
In order to compute the ground state, we adopt a

standard variational algorithm successively updating the
tensors in order to minimize the energy expectation value
E ¼ hψ jWjψi [15,43,44]. For our simulations, we use the
implementation in the ITensors Julia package [45]. We
continue the optimization until the relative change of the
energy is below a certain tolerance η, which we will set to
10−12 in our simulations. After obtaining the ground
state jψ0i, the first excited state can be computed in a
similar fashion by considering the Hamiltonian Weff ¼
W þ jE0jjψ0ihψ0j [46]. Assuming that the first excited
state has an energy E1 < 0 [47], the ground state of Weff
corresponds to the first excited state ofW. Having obtained
an MPS approximation for a state jψi, we can proceed to
measure observables O by expressing them as matrix
product operators [48] and contracting the network corre-
sponding to hψ jOjψi.

B. New method for computing the mass shift

The main goal of our work is to compute the mass shift,
which arises due to the Wilson term in Eq. (6). The
technique we propose is not only applicable to Wilson
fermions, but also to staggered fermions [46], as we will
demonstrate in Appendix B. While the mass shift for
staggered fermions in the one-flavor Schwinger model
can be analytically computed for periodic boundary con-
ditions (PBC) [30], the mass shift of Wilson fermions can
only be numerically investigated. For this numerical
investigation, let us express the renormalized mass mr=g
in terms of the lattice mass mlat=g,

mr

g
¼ mlat

g
þMSðN; x; l0; rÞ: ð14Þ

Here, MS refers to the mass shift as a function of the
parameters N, x, l0, and r in units of the coupling g.
To obtain the mass shift for either Wilson or staggered

fermions, we measure the vacuum expectation value of the
dimensionless electric field densityF=g as a function of the
lattice mass mlat=g, see Fig. 1. Using the fact that F=g ¼ 0
for mr ¼ 0, we can determine the mass shift from this plot.
To this end, we fit a quadratic function to our numerical
data, following the analytical continuum prediction in
Eq. (2), and afterwards identify the term MSðN; x; l0; rÞ
in Eq. (14) with minus the value of mlat=g for which
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F=g ¼ 0. This new method to determine the mass shift
requires numerical data at negative values of mlat=g and
therefore cannot be implemented with standard lattice
Monte Carlo methods due to the sign problem. The
MPS method explained in Sec. III A circumvents the sign
problem, which is the reason why we use this method for
measuring F=g and computing the mass shift.
For measuringF=g and computingMS, we first calculate

Ln ¼ En=g from the fermionic charge content using Eq. (9).
In order to avoid boundary effects due toOBC,we only keep
links from the center of the lattice and average the electric
field over those links, which we then identify with F=g. To
estimate the errors, we follow Ref. [10] and consider two
sources of errors, which we add in quadrature: first, the
errors from the extrapolation of F=g to infinite bond
dimension D, and second, the errors from the extrapolation
of F=g to the continuum limit, ag → 0. Unlike in Ref. [10],
we do not perform an infinite-volume extrapolation and
explicitly work at fixed finite volume N=

ffiffiffi
x

p
.

This method for computing the MS cannot be used
directly for θ ¼ 0 asF=gwill be zero for all values of mass.
However, one can measure the MS for small values of θ and
then extrapolate to θ ¼ 0.

IV. RESULTS

In this section, we numerically test our new method to
determine the mass shift and investigate the dependence of

the resulting mass shift on the volume, the lattice spacing,
the θ-parameter and the Wilson parameter. Furthermore, we
compare the continuum electric field density at fixed finite
volume and finite mass to the analytical results from mass
perturbation theory. Finally, we show the same comparison
for the Schwinger boson mass for zero bare fermion mass.
For all our simulations, we use the standard choice for
the Wilson parameter, r ¼ 1, unless stated otherwise.
Moreover, we set the strength of the penalty term enforcing
vanishing total charge to λ ¼ 100, where we have checked
that this strength is sufficient to avoid states with nonzero
charge.

A. Dependence of mass shift on parameters

In the following, we will provide a detailed numerical
study of how the mass shift due to the Wilson term
depends on the volume N=

ffiffiffi
x

p
, the lattice spacing ag, the

θ-parameter, and the Wilson parameter r.

1. Dependence on volume

To examine the volume dependence of the mass shift, we
fix x ¼ 10 and l0 ¼ 0.1 and compute MS for different
volumes N=

ffiffiffi
x

p
, following the procedure outlined in

Sec. III B. Our results are shown in Fig. 2. We observe
that the mass shift initially shows a strong dependence on
the lattice volume, before it eventually plateaus upon
reaching a volume of N=

ffiffiffi
x

p
≈ 30. The strong volume

dependence of the mass shift for small volumes is likely
due to finite-volume effects of the electric field density, as
we will explain in the following.

FIG. 1. Electric field densityF=g versus latticemassmlat=g. The
markers represent data for different physical volumesN=

ffiffiffi
x

p ¼ 10
(purple circles), 15 (yellow triangles), 25 (black crosses), and 40
(blue squares), demonstrating the presence of finite-volume effects
for the mass shift. Following Eq. (2), the electric field density
vanishes formr=g ¼ 0; therefore, the intercepts of the data curves
withF=g ¼ 0 (red dashed line) correspond tominus themass shift
for a given volume. Note that the error bars are much smaller than
the markers and thus, are not visible.

FIG. 2. Mass shift (MS) versus inverse volume. The markers
show data for volumes N=

ffiffiffi
x

p
between 10 and 40, where x ¼ 10

and l0 ¼ 0.1 are fixed. The MS exhibits a plateau for volumes
N=

ffiffiffi
x

p ≳ 30, with a relative difference in theMS of∼0.01% for the
largest two volumes of 35 and 40 (see inset). As before, the error
bars are much smaller than the markers and thus are not visible.
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On a lattice with OBC in the sector of vanishing total
charge, the electric field is given by l0 on both ends. Since
the electric field in the whole system is determined by the
fermionic charge content via Eq. (9), and the charge can
only take values f−1; 0; 1g, a number of links from the
right and left boundary are required to realize a bulk value
for the electric field differing from l0. For small volumes,
such a bulk region might not be able to form, which results
in finite-size effects for the electric field density. In turn,
these effects propagate to the mass shift.

2. Dependence on lattice spacing

In order to extrapolate observables to the continuum
limit, one needs to evaluate their values at different lattice
spacing ag while keeping the renormalized mass mr=g
constant. This requires the knowledge of the mass shift as a
function of ag.
To examine the dependence of the mass shift on the

lattice spacing, we fix l0 ¼ 0.125 and set the volume to
N=

ffiffiffi
x

p ¼ 30, which is a value that we have seen to be
large enough to avoid noticeable finite-size effects (see
Sec. IVA 1). Figure 3 shows our results for the mass shift as
a function of the lattice spacing. The data reveal that
the mass shift depends linearly on ag to first order.
In particular, we observe that the mass shift decreases as
we approach the continuum limit, as expected.

3. Dependence on θ-parameter

As outlined in Sec. II A, the θ-parameter becomes
unphysical for vanishing fermion mass in the continuum
limit. This is due to the axial anomaly, as reviewed in

Appendix A. However, the axial anomaly is not exact on the
lattice, and some remnant dependence on the θ-parameter
appears when measuring the mass shift at mr=g ¼ 0 [10].
This can be directly seen in our numerical data in Fig. 4,
which shows the dependence of the mass shift on the lattice
spacing ag for two different values of the background field,
l0 ¼ θ=2π, at a fixed physical volume of N=

ffiffiffi
x

p ¼ 20.
To illustrate the dependence of the mass shift on the

θ-parameter in more detail, Fig. 5 shows the difference in
the mass shift between the two different l0 values,

ΔMS≡MSjl0¼0.25 −MSjl0¼0.03: ð15Þ

While we observe a noticeable difference ΔMS for large
lattice spacing ag ∼ 1, this difference decreases when
decreasing ag and eventually becomes negligible around
ag≲ 0.3. This result agrees with the expectation that the
axial anomaly is restored towards the continuum limit. Note
that the l0 dependence of the mass shift only vanishes in
the infinite-volume limit. Thus, for our finite volume of
N=

ffiffiffi
x

p ¼ 20, a small l0 dependence is expected to remain,
which agrees with the data in Fig. 5.
The physics of the Schwinger model is periodic in θ with

period 2π, or, equivalently, periodic in l0 with period 1 [35],
as reviewed in Appendix A. To investigate if this perio-
dicity is also reflected in the mass shift, we study the mass
shift over a full period of l0 between 0 and 1. As depicted in
Fig. 6, our numerical data for the mass shift show the
expected periodicity. The mass shift increases for l0 < 0.5
upon reaching a peak at 0.5 and then decreases for l0 > 0.5,

FIG. 3. Mass shift (MS) as a function of the lattice spacing ag.
We fix l0 ¼ 0.125 and N=

ffiffiffi
x

p ¼ 30, with N ranging from 300 to
500. To first order, the ag-dependence of the MS is linear. As
before, the error bars are much smaller than the markers and thus
are not visible.

FIG. 4. Mass shift (MS) versus lattice spacing ag ¼ 1=
ffiffiffi
x

p
for

two different values of the background field, l0 ¼ θ=ð2πÞ ¼ 0.03
(black crosses) and 0.25 (red circles), demonstrating that the MS
is different when l0 ¼ θ=2π varies. The volume is fixed to
N=

ffiffiffi
x

p ¼ 20, with N ranging from 25 to 90. As before, the error
bars are much smaller than the markers and thus are not visible.
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while being symmetric around l0 ¼ 0.5 or, equivalently,
around θ ¼ π.

4. Dependence on Wilson parameter

The Hamiltonian in Eq. (8) has a spurious symmetry
ψ → γ5ψ ,mlat=g → −mlat=g, and r → −r, where “spurious”

means that this symmetry is only present when also trans-
forming the Wilson parameter r. Evaluating Eq. (14) for
mr=g ¼ 0, the symmetry implies that the mass shift is anti-
symmetric under r → −r, which yields MSðN; x; l0; rÞ ¼
− MSðN; x; l0;−rÞ. With our MPS approach, we can
directly check this behavior and study the model for r ¼
f−1; 1g as well as negative and positive values of mlat=g,
while keeping N, x, and l0 fixed. Our numerical results are
depicted in Fig. 7. We see that the data indeed follow the
expected behavior and that the mass shift obtained for r ¼ 1
is equal to the one obtained for r ¼ −1 up to a sign.

B. Continuum extrapolations

The knowledge of the mass shift allows us to follow lines
of constant renormalized mass as we approach the con-
tinuum. Thus, it helps to substantially improve the extrapo-
lation of our data to the continuum limit. In the following,
we will demonstrate this improvement for two observables:
the electric field density and the Schwinger boson mass.

1. Electric field density

To examine the mass dependence of the electric field
density in the continuum and to compare our numerical
data to the perturbative result in Eq. (2), we choose a fixed
volume N=

ffiffiffi
x

p ¼ 20 and set l0 ¼ 0.125. After computing

FIG. 6. Mass shift (MS) versus background electric field l0. The
field l0 ¼ θ=2π is swept over a full period between 0 and 1, and the
MSshows the expected periodicity in l0. The data points correspond
to l0 ∈ ½0.01; 0.9526�, N ¼ 100, and x ¼ 1. As before, the error
bars are much smaller than the markers and thus are not visible.

FIG. 5. Difference in mass shift (MS) between two different
values of the background field, l0 ¼ θ=ð2πÞ ¼ 0.25 and 0.03, see
Eq. (15), as a function of the lattice spacing ag. The volume is
fixed to N=

ffiffiffi
x

p ¼ 20, with N ranging from 25 to 90. The inset
shows data for x ¼ 1=ðagÞ2 ¼ 12.25, 16, and 20.25, which
demonstrate that the θ-dependence of the MS becomes negligible
for small ag. As before, the error bars are much smaller than the
markers and thus are not visible.

FIG. 7. Electric field density F=g as a function of the lattice
mass mlat=g for the Wilson parameter r ¼ 1 (black solid line with
lower x-axis) and r ¼ −1 (blue dashed line with upper x-axis).
We fix N ¼ 100, x ¼ 1, and l0 ¼ 0.125. The horizontal red
dotted line indicates F=g ¼ 0, and the orange dash-dotted
vertical line passes the intersection point of the blue and black
lines with the red dotted line. The intersection is at a value of
mlat=g ¼ 0.214681 for r ¼ −1 (upper x-axis) and mlat=g ¼
−0.214681 for r ¼ 1 (lower x-axis). As before, the error bars
are much smaller than the markers and thus are not visible.
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the mass shift for various values of ag, we can extrapolate
our numerical lattice data to the continuum while keeping
the value of the renormalized mass mr=g fixed.
Figure 8 shows an example for the extrapolation pro-

cedure and provides a comparison between the data
obtained when incorporating the mass shift and following
a line of constant mr=g (black crosses), as opposed to just
setting mlat=g to a constant value (green triangles). These
data demonstrate the importance of knowing the mass shift
for the extrapolation of observables to the continuum. For
the data points not incorporating the mass shift (green
triangles in Fig. 8), we observe considerable lattice effects,
which render the extrapolation to the limit ag → 0 chal-
lenging and thus result in large uncertainties for the central
value. Focusing on the data points incorporating the mass
shift (black crosses in Fig. 8), we see that those are closer to
the continuum limit, i.e., the difference between the
extrapolated value for F=g and the data point for the
smallest value of ag is significantly smaller.
When repeating this procedure for various values of the

mass, we can map out the mass dependence of the electric
field density in the continuum, which is shown in Fig. 9.

Again, we provide data obtained for incorporating the
mass shift and data without considering the mass shift.
Focusing on the data points without the mass shift, we see
that those have considerable error bars throughout the
entire range of masses we study, with a tendency to
larger errors for smaller values of m=g. For small values
of m=g, the data points agree with the results from mass
perturbation theory in Eq. (2) within error bars; however,
the central values are consistently above the theoretical
prediction.
In contrast, the data points incorporating the mass shift

have noticeably smaller error bars, despite using the same
lattices and therefore the same numerical resources as for
the data without the mass shift. For small values ofm=g, the
data perfectly agree with the perturbative result. As
expected, when increasing the values of m=g, perturbation
theory is eventually no longer suitable to describe the
electric field density, and our numerical data differ from the
perturbative prediction.

2. Schwinger boson mass

Finally, we consider the vector mass gap of the theory,
which is called the Schwinger boson mass, for the case
of mr=g ¼ 0. Using our dimensionless Hamiltonian in

FIG. 8. Electric field density F=g versus lattice spacing ag. The
markers represent data incorporating the mass shift for mr=g ¼
0.03 (black crosses) and data without incorporating the mass shift
for mlat=g ¼ 0.03 (green triangles). We keep l0 ¼ 0.125 and
N=

ffiffiffi
x

p ¼ 20 fixed. For the data including the mass shift, a linear
fit is sufficient, which is expected from the OðagÞ scaling
behaviour of nonimproved Wilson fermions [49]. For the data
without the mass shift, we approximate F=g at ag → 0 by fitting
a quadratic, cubic, and quartic polynomial and taking a weighted
average of the resulting y-intercepts. The weights correspond to
the mean square error of each fit, and the error on the y-intercept
for each fit is found following Sec. III B. We determine the final
error by adding the individual errors in weighted quadrature. As
before, the error bars are much smaller than the markers and thus
are not visible.

FIG. 9. Electric field density F=g extrapolated to the con-
tinuum as a function of the mass m=g. For the data incorporating
the mass shift (black crosses), m=g corresponds to the renor-
malized mass mr=g ¼ mlat=g + MS. For the data without
incorporating the mass shift (green circles), m=g is given by
mlat=g. For the continuum prediction from mass perturbation
theory (red line), see Eq. (2), m=g is the continuum mass. For the
extrapolation to ag ¼ 0, we use eight points with N ∈ ½100; 300�
and fixed l0 ¼ 0.125 and N=

ffiffiffi
x

p ¼ 20. As before, the error bars
for the black crosses are much smaller than the markers and thus
are not visible.
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Eq. (11) and denoting fW0 and fW1 as the energies of
the ground state and the first excited state of W̃, the
Schwinger boson mass in units of the coupling corresponds
to [46]

MS

g
¼ 1

2
ffiffiffi
x

p ðfW1 − fW0Þ −
2mr

g
: ð16Þ

Again, we study this quantity for various values of ag, and
then we extrapolate to the limit ag → 0, similar to the
electric field density. Figure 10 shows the continuum
extrapolation for the Schwinger boson mass for vanishing
renormalized fermion mass and l0 ¼ 0.125.
For the extrapolation, we choose a quadratic fit in ag (see

the red line in Fig. 10). The reason for this choice is
twofold. First, for nonimproved Wilson fermions [49], we
expect that observables such as the electric field density and
the energy haveOðagÞ effects (see also Fig. 8). Second, due
to the dimensionless formulation, Eq. (16) introduces
another factor of ag. Thus, this results in leading-order
corrections of ðagÞ2 for the Schwinger boson mass. When
performing the continuum extrapolation using a quadratic
function, we obtain a value of MS=g ¼ 0.5642� 0.0011
for the Schwinger boson mass. Our numerical result is in
good agreement with the theoretical calculation in Eq. (3),
which predicts MS=g ¼ 1=

ffiffiffi
π

p
≈ 0.5641.

V. CONCLUSION AND OUTLOOK

In this paper, we developed a new method that
allows for explicitly determining the additive mass

renormalization of Wilson fermions in the Hamiltonian
formulation. Focusing on the lattice Schwinger model
with a topological θ-term as a benchmark model,
our method relies on the fact that the electric field density
goes to zero when the renormalized fermion mass van-
ishes. Of course, when applying the method to other
models beyond the Schwinger model, a different observ-
able beyond the electric field density might need to be
considered.
For the lattice Schwinger model with a θ-term, we

computed the mass shift and studied its dependence on
the physical volume, the lattice spacing, the topological
θ-parameter, and the Wilson parameter. Our numerical
results show that the volume dependence of the mass shift
is strong for small volumes but becomes negligible for
volumes larger than N=

ffiffiffi
x

p
≈ 30. Moreover, the mass shift

is antisymmetric in the Wilson parameter and strongly
depends on the lattice spacing, as expected. The mass shift
also shows a weak dependence on the θ-parameter for finite
lattice spacing, due to the lattice distortion of the axial
anomaly, which becomes negligible as the lattice spacing
goes to zero.
Using our results for the mass shift, we were able to

follow lines of constant renormalized mass as we
approached the continuum. As two examples, we studied
the continuum limit of the electric field density and the
Schwinger boson mass of the theory. Our results demon-
strate that incorporating the mass shift significantly
improves the convergence toward the continuum limit as
well as the accuracy of the results. For small masses, our
numerical data show excellent agreement with results from
mass perturbation theory.
Although our study focused on Wilson fermions, our

method is not limited to a particular fermion discretization.
Therefore, in Appendix B, we demonstrate that the method
can also be used to determine the mass shift of staggered
fermions. Our numerical data show good agreement with
recent theoretical predictions [30], provided the volume is
sufficiently large.
In both cases of Wilson and staggered fermions, the

additive mass renormalization is positive, which implies
that our method requires numerical data at negative values
of the bare lattice mass mlat=g. Therefore, the method
cannot be implemented with the conventional Monte Carlo
approach due to the sign problem, and we employed MPS
to compute the electric field density and to determine the
mass shift.
Even though we used a tensor network approach, we

would like to emphasize that our method is completely
general and can be applied to arbitrary Hamiltonian
methods, including quantum computing. The electric field
density can be readily measured on a quantum device and
would allow for similar studies in upcoming quantum
computing experiments. Our MPS data can serve as a
benchmark for such experiments.

FIG. 10. Schwinger boson mass or vector mass gap,MS=g, as a
function of the lattice spacing squared, ðagÞ2. For the data (black
crosses), we set l0 ¼ 0.125 and mr=g ¼ 0 and fix the volume to
N=

ffiffiffi
x

p ¼ 40 with N ∈ ½300; 600�. For the continuum extrapola-
tion using a quadratic function in ag (red line), we find
MS=g ¼ 0.5642� 0.0011, which agrees with the theoretical
prediction of MS=g ¼ 1=

ffiffiffi
π

p
≈ 0.5641 in Eq. (3).
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In this context, we would also like to note that our
method will be relevant for the recent proposals to combine
small-scale quantum computations with large-scale
Monte Carlo simulations of lattice gauge theories, e.g.,
in order to address the problems of critical slowing
down [50] and interpolator optimization [51,52]. These
proposals require the implementation of the same fermion
discretization, and our method to determine the mass shift
of Wilson fermions in the Hamiltonian formulation pro-
vides a crucial step into this direction.
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APPENDIX A: AXIAL ANOMALY

In this appendix, we briefly review the axial anomaly of
the continuum Schwinger model, as well as its implication
that observables should be invariant under changing
θ → θ þ 2π for m ≠ 0 and should become θ-independent
for m ¼ 0. For this, we first note that the continuum
Lagrangian of the Schwinger model,

L ¼ ψði=∂ − g=A −mÞψ −
1

4
FμνFμν þ gθ

4π
ϵμνFμν; ðA1Þ

is invariant under the axial transformation ψ → ψ 0 ¼ eiγ5αψ
for vanishing fermion mass, m ¼ 0. However, the quantum
theory described by the partition function,

Z½m; θ� ¼
Z

DADψ̄DψeiS½A;ψ̄ ;ψ ;m;θ�; ðA2Þ

with the action S ¼ R
d2xL does not have this symmetry,

even for m ¼ 0. This is due to the axial quantum anomaly,
which, following the Fujikawa method [37], can be shown
to result from the Jacobian J of the axial transformation
ψ → ψ 0 that changes the quantum measure Dψ in the path
integral,

J ¼ exp

�
−i

Z
d2x

gα
4π

ϵμνFμν

�
: ðA3Þ

The transformations of ψ̄ and ψ in Eq. (A2) yield the same
change of the measuresDψ̄ andDψ , so for the full measure
DADψ̄Dψ , we get the square of J. We can now show that
Z½m ¼ 0; θ� is identical to Z½m ¼ 0; θ ¼ 0�,

Z½m ¼ 0; θ� ¼
Z

DADψ̄DψeiS½A;ψ̄ ;ψ ;θ�

¼
Z

DADψ̄ 0Dψ 0eiS½A;ψ̄ ;ψ ;θ�

¼
Z

J2DADψ̄DψeiS½A;ψ̄ ;ψ ;θ�

¼
Z

DADψ̄DψeiS½A;ψ̄ ;ψ ;θ�−i
R

d2xgα
2πϵ

μνFμν

¼ Z½m ¼ 0; θ ¼ 0�; ðA4Þ

which implies that θ is unphysical for m ¼ 0. For the
second equality in Eq. (A4), we used the fact that the action
is invariant under the axial transformation ψ → ψ 0 for
m ¼ 0. For the last equality, we set α ¼ θ=2, which cancels
the θ-term present in the original action.
In the presence of a nonzero mass term in the action,

we would have found that Z½m; θ ¼ π� is identical to
Z½−m; θ ¼ 0� because the mass term acquires a factor of
e2iγ5α under the axial transformation.
Finally, we note that the last term in the fourth line of

Eq. (A4), excluding the prefactor i2α ¼ iθ, is the topo-
logical charge, which takes only integer values [35]. Hence,
the partition function is unaffected by shifting θ → θ þ 2π,
just as any observable of the theory. This periodicity in the
θ-parameter was also observed for the mass shift, as shown
in Fig. 6.

APPENDIX B: STAGGERED FERMIONS

In this appendix, we demonstrate that our method for
computing the mass shift is not limited to the case of
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Wilson fermions. Indeed, we apply the method to staggered
fermions, which are currently being mostly used in sim-
ulations of lattice gauge theories with tensor networks and
quantum computing.
Recently, Ref. [30] derived an analytical prediction for

the additive mass renormalization of staggered fermions
using a system with PBC. This derivation was based on
enforcing a discrete spurious chiral symmetry given by a
translation of one lattice site followed by shifting θ by π.
The resulting mass shift is given by

mr

g
¼ mlat

g
þ 1

8
ffiffiffi
x

p : ðB1Þ

Using the same approach as we discussed in the main
text, we can numerically compute this mass shift by
identifying the point at which the electric field density
vanishes with mr=g ¼ 0. Figure 11 shows our numerical
data for the electric field density using staggered fermions
and OBC. For small volumes, we observe a noticeable
difference from Eq. (B1), which is expected due to the
different boundary conditions in our simulations. As we
increase the volume, the boundary conditions become less
important, and the data eventually converge to the theo-
retical prediction.
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