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2Pacific Quantum Center, Far Eastern Federal University, 690950 Vladivostok, Russia

(Received 3 March 2023; accepted 10 July 2023; published 27 July 2023)

Using first-principles numerical simulations, we investigate the Casimir effect in zero-temperature
SU(3) lattice gauge theory in 3þ 1 spacetime dimensions. The Casimir interaction between perfect
chromometallic mirrors reveals the presence of a new gluonic state with the mass mgt ¼
1.0ð1Þ ffiffiffi

σ
p ¼ 0.49ð5Þ GeV ¼ 0.29ð3ÞM0þþ , which is substantially lighter than the 0þþ ground-state

glueball. We call this excitation “glueton,” interpreting it as a nonperturbative colorless state of gluons
bound to their negatively colored images in the chromometallic mirror. The glueton is a gluonic counterpart
of a surface electron-hole exciton in semiconductors. We also show that a heavy quark is attracted to the
neutral chromometallic mirror, thus supporting the existence of a “quarkiton” (a “quark exciton”) colorless
state in QCD, which is formed by a single quark with its antiquark image in the chromometallic mirror.
Analogies with edge modes in topological insulators and boundary states of fractional vortices in
multicomponent condensates are highlighted.
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I. INTRODUCTION

The presence of physical macroscopic objects affects
fluctuations of quantum fields in the vacuum around them,
while the modified fluctuations, in turn, exert the Casimir-
Polder force on these physical objects [1]. The phenome-
non, known as the Casimir effect [2], is often interpreted
as the experimentally measurable evidence [3–5] of the
vacuum energy associated with the “zero-point” quantum
fluctuations [6,7]. This interpretation originates from the
fact that vacuum fluctuations influence neutral objects,
such as perfectly conducting neutral metallic objects, that
carry no electric or other charges with their dipole and
higher-order moments vanishing. Another interpretation of
the Casimir effect in terms of the polarization of electric
charges in the plates is given in Ref. [8].
The Casimir energy depends not only on the geometry of

the objects, but also on interactions of the quantum fields
[6,7]. However, in a phenomenologically relevant case of
quantum electrodynamics, a correction to the tree–level
Casimir effect due to electron-photon interactions is so tiny
that it cannot be observed with the existing experimental
technology [9].

Remarkably, in strongly coupled theories, the effects of
boundaries are much more pronounced: They not only
modify the vacuum forces, but also influence the structure
of the vacuum itself. For example, analytical studies of
effective models suggest the existence of Casimir-induced
phase transitions in fermionic effective field theories
[10,11] and the CPN−1 model on a finite interval [12,13].
In addition, first-principles numerical simulations show that
boundaries in interacting gauge theories, such as compact
electrodynamics [14,15] and Yang-Mills theory in two
spatial dimensions [16], affect nonperturbative properties,
including mass gap generation and (de)confinement (for a
review, see Ref. [17]).
Moreover, bounded systems often possess new degrees

of freedom that emerge exclusively due to the presence of
boundaries. These boundary states and associated boun-
dary central charges ignite substantial interest in the
conformal field theories [18,19]. They also appear in
the condensed matter systems as the celebrated edge states
in topological insulators [20] that have deep roots in the
lattice field theory [21].
In our paper, we aim to uncover new, nonperturbative

boundary states in Yang-Mills theory and put a bridge
between the two phenomena, the Casimir effect and the
edge states in the scope of phenomenologically relevant
SU(3) Yang-Mills theory in 3þ 1 dimensions. What is the
relation between the restructuring of the gluonic vacuum
in bounded geometries [16]—related, in particular, to the
phenomenologically relevant MIT bag model [22,23]—and
possible boundary states in Yang-Mills theory? To this end,
we first address the Casimir effect on the lattice.
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II. CASIMIR EFFECT FOR GLUONS

A. Non-Abelian Casimir effect in continuum theory

Let us first start from the continuum limit, where the non-
Abelian Casimir setup features two perfectly conducting
flat chromometallic plates in the ðx1; x2Þ plane separated by
the distance R ¼ jl1 − l2j along the x3 axis, as is shown in
the inset in Fig. 1. For Yang-Mills theory with the action in
ð3þ 1Þd Minkowski spacetime,

S ¼ −
1

4

Z
d4xFa

μνFa;μν; ð1Þ

the gauge-invariant Casimir boundary conditions are

Ea
kðxÞjx∈S ¼ Ba⊥ðxÞjx∈S ¼ 0; a ¼ 1;…; N2 − 1: ð2Þ

They imply that the tangential chromoelectric Ea
i ≡ Fa

0i and
normal chromomagnetic fields Ba

i ¼ ð1=2ÞεijkFa;jk vanish
at the surface S (in our case, S is the set of two planes).
Conditions (2) are identical, up to the color index
a ¼ 1;…; N2 − 1, to the ones imposed on the Abelian
electromagnetic (photon) field at the surface of a perfectly
conducting metal (a mirror) in electrodynamics. Thus,
Eq. (2) correspond to a chromometallic mirror plate for
gluons.
In Minkowski spacetime, the canonical energy-

momentum tensor reads as follows:

Tμν ¼ FμαFν
α −

1

4
ημνFαβFαβ; ð3Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the metric. The energy
density E is related to its Euclidean counterpart as

E ≡ T00 ¼ 1

2
ðB2 þ E2Þ → T44

E ¼ 1

2
ðB2

E − E2
EÞ; ð4Þ

where the superscript “E” labels the Euclidean quantities.

B. Casimir effect on the lattice

The formulation of the Casimir problem in lattice gauge
theories has been first discussed for Abelian gauge theories
in Refs. [24–26] with the extension to the investigation
of nonperturbative features of Abelian [14,15] and non-
Abelian [16] lattice gauge theories and, more recently,
to free fermionic lattice models [27–30]. Below, we will
briefly recall the essential points of the construction for
gauge theories, referring the interested reader for more
details to Ref. [26].
The Wilson form of the lattice Yang-Mills action (1) is

given by a sum over lattice plaquettes P≡ Pn;μν ¼ fn; μνg:

S ¼ β
X
P

ð1 − PPÞ; PP ¼ 1

3
ReTrUP; ð5Þ

where μ and ν label directions, n denotes a site of a 4d
Euclidean lattice, and β ¼ 6=g2 is the lattice coupling.
In continuum limit, the lattice spacing vanishes, a → 0,
the lattice plaquette UμνðnÞ ¼ UμðnÞUνðnþ μ̂ÞU†

μðnþ
ν̂ÞU†

νðnÞ ¼ expðia2FμνðnÞ þOða3ÞÞ reduces to the con-
tinuum field-strength tensor Fμν, and the lattice action (5)
becomes a Euclidean version of Yang-Mills action (1).
The Casimir boundary conditions (2) in the Euclidean

lattice formulation are achieved by promoting the lattice
coupling in Eq. (5) to a plaquette-dependent quantity
β → βP, where βP ¼ λβ if the plaquette P either touches
or belongs to the hypersurface spanned by the surface S
and βP ¼ β otherwise [26]. The quantity λ plays the role of
a Lagrange multiplier which, in the limit λ → ∞, enforces
the lattice version of Eq. (2).
The lattice Casimir energy density per unit area of the

Casimir plates on the zero-temperature lattice of the volume
L4
s is given by the properly normalized lattice version of

Eq. (4):

ECas ¼ βLs

�X3
i¼1

hPi4iS −
X3
i<j¼1

hPijiS
�
; ð6Þ

where average plaquettes are taken over the whole lattice
volume. Quantity (6) represents the difference between the
vacuum expectation values of temporal and spatial pla-
quettes in the presence of the mirror plates S. An additive
divergent contribution to the expectation values of pla-
quettes, arising from zero-point ultraviolet fluctuations,
cancels exactly in Eq. (6). The Casimir energy density (6) is
a finite physical quantity that depends only on the distance
R between the mirrors and vanishes in their absence
(at R → ∞). The Casimir pressure, given by the spatial

x3
x2

x1, x4

l2
l1

FIG. 1. Casimir energy density ECas vs distance R between the
perfect chromometallic plates in units of the fundamental string
tension σ for various values of the lattice coupling β and several
lattice volumes L4. The line shows the best fit by the phenom-
enological function (8), representing the Casimir energy of a
massive field. The inset illustrates the Casimir double-plate
geometry on the lattice with R ¼ jl2 − l1j.
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diagonal components of (3), is an anisotropic quantity that
can also be computed numerically in finite-size Yang-Mills
systems [31].
We perform simulations at zero-temperature L4

s lattices
of various volumes Ls ¼ 12, 16, 20, 28, 32 using 13 values
of the gauge coupling varying in the range from β ¼ 5.6924
to β ¼ 6.5. The physical scaling of the lattice spacing a ¼
aðβÞ is set via the phenomenological value of the funda-
mental string tension:

ffiffiffi
σ

p ¼ 485ð6Þ MeV ¼ ½0.407ð5Þ fm�−1; ð7Þ

following Ref. [32]. Values of a
ffiffiffi
σ

p
for intermediate β’s,

which cannot be found in Ref. [32], are obtained from
an accurate spline interpolation. To generate and update
gauge field configurations, we used the Monte Carlo heat
bath algorithm [33,34]. For each point, set by the gauge
coupling constant β and the lattice distance between
plates R=a, we generated 6 × 105 trajectories. The first
105 configurations are omitted to achieve thermalization.
Next, we proceed to the numerical calculation of the
Casimir energy (6) on the lattice.

C. Non-Abelian Casimir energy and the glueton

Figure 1 shows the Casimir energy density between the
chromometallic plates (6) calculated from first principles
in SU(3) gauge theory. The data for a broad set of lattice
volumes and couplings nicely collapse to a smooth curve,
thus demonstrating the absence of substantial finite-size
and finite-volume effects.
The Casimir energy takes a large negative value as the

interplate separation R diminishes. This behavior points to
the attractive nature of the non-Abelian Casimir force
expected at short separations, where gluons should expe-
rience the asymptotic freedom and the Casimir interactions
should reduce to the one of a free massless vector field with
a color degeneracy factor.
At large interplate separations R, the Casimir energy

expectedly vanishes. In theories with a free massless field,
the Casimir energy density per unit plate area drops as an
inverse power R−3 of the distance R, while in field theories
with a mass m ≠ 0, one expects that the Casimir energy
density vanishes exponentially: EðRÞ ∼ e−2mR. The factor 2
implies that the particle has to travel from one mirror plate
to another and then get reflected to close the path, thus
propagating the distance 2R in total. Therefore, it is crucial
to determine how rapidly the energy diminishes in the
large-R limit, as this behavior should uncover the mass
spectrum of excitations in the gluonic vacuum between the
chromometallic mirrors.
In (2þ 1)-dimensional confining theories, closely spaced

chromometallic boundaries are known to affect the vacuum
structure between them [15,35]. In SU(2) Yang-Mills theory,
the lowest excitation between the plates corresponds to a
“Casimir particle” with a mass substantially lower than the

lowest glueball mass in the same theory [16]. The Casimir
mass is related to the magnetic mass in 2þ 1-dimensional
Yang-Mills theory [36].
The nonperturbative Casimir energy in ð2þ 1Þd non-

Abelian gauge theory can successfully be described as the
Casimir energy of a massive scalar particle [36]. Applying
the same idea in (3þ 1) dimensions, we fit our numerical
results with the Casimir energy of a scalar field [37–39]
with certain mass mgt:

ECas ¼ −C0

2ðN2
c − 1Þm2

gt

8π2R

X∞
n¼1

K2ð2nmgtRÞ
n2

: ð8Þ

The prefactor takes into account the ðN2
c − 1Þ-fold color

degeneracy (with Nc ¼ 3 in our case) as well as two-spin
polarization of (massless) gluons. The mass gap could
affect this factor, thus forcing us to include a phenomeno-
logical parameter C0. The sum in Eq. (8) is performed over
a quickly converging series of modified Bessel functions of
the second kind K2ðxÞ.
The best fit of the Casimir energy by function (8) is

shown in Fig. 1 by the red line. The fit (with χ2=d:o:f: ≃ 0.6
highlighting its good quality) provides us with the follow-
ing best-fit parameters: C0 ¼ 5.60ð7Þ and

mgt ¼ 1.0ð1Þ ffiffiffi
σ

p ¼ 0.49ð5Þ GeV: ð9Þ

Strikingly, the mass of the exchange particle (9) is
substantially smaller than the mass of the ground-state
glueball M0þþ ¼ 3.405ð21Þ ffiffiffi

σ
p ¼ 1.653ð26Þ GeV [32].

Moreover, the result (9) is surprising, because the
ground-state glueball mass M0þþ , by its very definition,
is identified with the lowest possible mass in the system.
The same phenomenon has been found for an effective
particle that governs the long-distance limit of the Casimir
effect in two spatial dimensions [16]. Nevertheless, we
found an excitation with the nonzero mass (9), which is
substantially lower than the lowest ground-state mass.
The apparent contradiction is resolved by noticing that

the ground-state glueball mass M0þþ determines the mass
gap in the bulk of the system (far from eventual boundaries)
while the mass (9) is associated with a new excitation in
Yang-Mills theory that emerges exclusively due to the
presence of a boundary. We call this boundary state
“glueton,” interpreting it as a nonperturbative colorless
state of gluons bound to their negatively colored images in
the chromometallic mirror.
The states localized at the boundaries of a system (often

called the edge states) can have lower masses than the mass
gap in the bulk of the same system. In the condensed matter
context, this effect appears at the contacts of semiconductor
structures (the Volkov-Pankratov states [40]) and the
boundaries of topological insulators (massless edge modes
featuring the spin Hall effect [41,42]). However, contrary to
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the mentioned boundary modes, the glueton has a non-
topological origin.
The glueton is a non-Abelian analog of a surface exciton

that emerges in electronic systems. The surface exciton is
an electrically neutral quasiparticle that exists in semi-
conductors and insulators close to their boundaries: An
electron (or a hole) in the bulk of the material couples to its
image hole (electron) state in the reflective boundary and
forms a neutral quasiparticle [43]. These electron-hole
states can move only along the boundary of the material.
The physics of surface excitons constitutes a vast area of
research in solid-state physics [44–47].
The mass of the glueton (9) is of the same order as an

effective mass of a gluon which governs an infrared
behavior of a gauge-fixed gluon propagator in some
approaches to SU(3) gauge theory (see, for example, the
recent work in Ref. [48]). There are, however, three reasons
why the gluon is different from the glueton.

(i) Contrary to the gluon, the glueton is a colorless
object which shares this similarity with a glueball.

(ii) Likewise, the gluon mass is obtained from the
gauge-dependent propagator, which requires a
gauge fixing, while the Casimir interactions are
formulated in the explicitly gauge-invariant way.

(iii) Finally, in the interacting theory, such as Yang-Mills
theory, the Casimir energy cannot be expressed via a
two-point function, such as the gluon propagator.1

Thus, the glueton mass and gluon mass, which
describe the infrared behavior of these different
quantities, are not a priori related.

The glueton should also be distinguished from another
gluonic excitation, the so-called “gluelump” [49–52].
The gluelump is a purely gluonic system consisting of a
valence gluon connected by an adjoint string to a static
adjoint source which can be associated with an infinitely
heavy gluon. Although the gluelump is not a physical
object that cannot be directly measured in an experiment, its
theoretical investigation provides valuable insight into the
nonperturbative confining properties of QCD [53]. Further-
more, contrary to the gluelump, the glueton can propagate
along a reflective domain wall in QCD (for example, along
the vacuum-hadronic interface in anMIT bagmodel [22,23])
and, thus, can potentially contribute to the stability of such
states and associated physically measurable quantities.
For completeness of our description, we also mention

that Yang-Mills theory possesses yet another, “torelon,”
excitation which appears in systems with a compact
spatial dimension [54]. The torelon corresponds to a
confining flux tube that winds around a spatial torus
and has no fixed color sources. It has a numerically
calculable spectrum corresponding to the eigenstates of
the stretched confining string, which cannot collapse due

to geometrical topological reasons [55,56]. Recently, it
has been revealed that the ground state of the torelon
corresponds to an axion-type excitation on the world sheet
of the closed flux tube [56,57].
The glueton (a surface state) is yet another gluonic

excitation in addition to the glueball (a bulk state), the
gluelump (a heavy-light gluon-bound state), and the torelon
(a stretched-string state).

III. QUARKS AND MIRRORS

A. The quarkiton: A quark bound by a mirror

We argued above that the chromometallic Casimir plate,
acting as a mirror for gluons, facilitates the creation of a
colorless (glueton) state bound of gluons to their mirror
images. One can question whether a quark can form a
colorless bound state with its negative image in a chro-
mometallic mirror, a “quarkiton.”
This “quark-chromometallic mirror” bound state is

expected to be strengthened by the color confinement
phenomenon. Indeed, in the bulk of the confinement phase,
the chromoelectric field of a quark is squeezed into the
confining string, which terminates, in a meson, on an
antiquark. If we place a quark near the non-Abelian mirror,
the confining string should terminate on the mirror, thus
attracting the quark to its negative image. Therefore, we
expect to observe the confinement of a quark with a neutral
chromometallic mirror via the formation of the confining
QCD string.
Since the mirror is a globally color-neutral object, the

induced color charge, which mimics the image antiquark
at the mirror, should lead to a redistribution of the color
charge over the surface of an (infinite) mirror. In a
confining system, the redistributed charge can contribute
positively to the total free energy of the quark-mirror
system, and it can, in principle, outweigh the negative
contribution of the quarkiton bound state.
As we study a purely gluonic system, we cannot

investigate the formation of the quarkiton state by calcu-
lating the mass spectrum with quark degrees of freedom
near the mirror. However, we can calculate the free energy
FQjðdÞ of a heavy quark “Q” located at the distance d near
the mirror “j.” This quantity, which has a meaning of a
(color-averaged) potential produced by the mirror on the
quark, allows us to estimate whether (and how strongly) the
quark is attracted to (or repelled by) the mirror.
Associating the potential of the static quark with its free

energy FQjðdÞ, we use the Polyakov loop operator, which
places a static heavy quark at the spatial point x:

Px ¼
1

3
ReTr

 YLt−1

x4¼0

Ux;x4

!
; ð10Þ

where the product over the timelike oriented non-Abelian
Ux;x4 matrices is closed via the periodic boundary

1The two-point function can be used to calculate the Casimir
energy in free theories [6], though.
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conditions. The effect of the boundary mirror is identified
via the expectation value of the Polyakov loop:

hPxijðdÞ ¼ expf−LTFQjðdÞg; ð11Þ

placed at the point x ¼ ðx1; x2; dÞ in the presence of a
single mirror (with fixed x3 ¼ 0) and averaged over the
tangential coordinates x1 and x2. In Eq. (11), LT is the
lattice length in the imaginary time direction which also
serves as an infrared regulator. At finite temperature T, the
length LT is fixed, LT ¼ 1=T, and the term in the exponent
of Eq. (11) reduces to the familiar ratio F=T.
In the thermodynamic limit at zero temperature,

LT → ∞, the Polyakov loop observable vanishes identi-
cally, making it practically impossible to calculate the
potential (11) of the heavy quark at large LT . This property
is of a kinematic rather than dynamical origin, shared by
any (even unconfined) massive particle with a finite free
energy F > 0. Therefore, to prove qualitatively the exist-
ence of an attractive interaction between a single quark and
the mirror, we consider rather a small lattice with the
temporal extension LT ¼ 12a, in which the spatial corre-
lator is limited to a few lattice steps due to finite-volume
effects.
The expectation value (10) contains unphysical distance-

independent contributions, usually subtracted via a renorm-
alization procedure. Because of the small lattice volume, it
is challenging to renormalize the quark-free energy via its
short-distance behavior, as it is usually done at finite
temperature [58]. We notice, however, that the free energy
should flatten at the point d ¼ 6a at the middle of the lattice
due to the periodicity of the lattice. The flattening at this
point is a β-independent feature, which we use as a
renormalization requirement to calculate the renormalized
free energy Fren

Qj ðdÞ ¼ FQjðd; βÞ − F0ðβÞ near the mirror.

The distance-independent subtraction term in our range of
β’s is described by remarkably simple linear depend-
ence: F0ðβÞ ¼ −15.5þ 2.9β.
The renormalized free energy of a heavy quark near the

mirror, shown in Fig. 2, exhibits reasonable physical scaling,
because the points with different lattice cutoffs a ¼ aðβÞ
collapse to the same smooth curve. We observe that the flat
mirror attracts the quark along the normal direction, thus
supporting the formation of the quarkiton bound state. The
flattening of the free energy at larger distances l is due to a
finite-volume effect which should disappear at larger vol-
umes. At shorter distances,Fren

Qj ðlÞ shows qualitative signs of
the expected linear behavior. Since the system resides far
from the thermodynamic limit, all conclusions drawn from
Fig. 2 should be considered qualitative statements.

B. Quarkiton and color confinement

The color confinement property of the low-temperature
(hadronic) phase requires that the asymptotic physical

states of QCD must be colorless states of quarks and
gluons. It is always concluded that quark confinement
implies that an isolated quark possesses infinite free energy
and, therefore, cannot exist in the hadronic phase [59].
Strikingly similar physical properties are shared by

fractional vortices in interacting multicomponent Bose-
Einstein condensates in two spatial dimensions, as domain
walls (strings in 2d) linearly confine the vortices in bound
states that resemble hadrons in QCD [60]. Consequently, an
isolated vortex, similarly to an isolated quark, cannot exist
in the bulk of the condensate, as a long domain wall
attached to the vortex makes its energy infinite. However,
single fractional vortices can still survive near the edge of
the system, forming a bound state with its boundary (for
fractionally charged vortices in superconductors with
multiband condensates and the boundary bound states,
see Refs. [61–63]).

C. Quarkiton interactions

Our interpretation of the quarkiton boundary states can
also be qualitatively supported by investigating the inter-
actions of two quarkitons near the mirror. Let us consider a
quark Q and an antiquark Q̄ located at the same distance d
from the boundary and at a distance l as shown in the inset
in Fig. 3. Neglecting the short-distance Coulomb inter-
action via perturbative gluons, we consider the simplest
confining string model, which implies that the energy of a
mesonic, quark-antiquark QQ̄ state is E1 ¼ σl. However, if
Q and Q̄ form quarkiton states with, respectively, their
mirror images Q̄0 and Q0, then the total energy of this
system is E2 ¼ 2Egl ¼ 2σd (we neglect the interaction of
the string with the mirror as well as perturbative gluonic
exchanges). Therefore, energy arguments suggest that, at
short QQ̄ separation l < 2d, the common mesonic QQ̄

FIG. 2. The renormalized free heavy-quark energy Fren
Qj ðdÞ at a

distance d from the chromometallic mirror, plotted in physical
units, for various lattice coupling constants β at 123 lattice. The
inset visualizes a quarkiton with the quark Q and its negative
image in the chromometallic mirror, the antiquark Q̄0, connected
by a confining string (the “mirror” part of the string is shown in
blue).
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state gets formed. As the separation increases at l > 2d, the
string rearranges, and the meson decays into two quarkiton
states: QQ̄ → QQ̄0 þ Q̄Q0.
The string rearrangement can be seen in Fig. 3, although

our relatively small (L ¼ 12) lattice does not allow us to
observe it in detail. At large separation, d from the mirror,
d ¼ 5a, the correlator of Polyakov loops, CdðlÞ ¼
hPðxÞP�ðxþ lÞid as the function of their mutual distance
l, coincides with the same correlator in the absence of the
mirrors. Thus, no quarkiton states are formed (a quark
attracts to antiquark). As the distance to the mirror
diminishes, the correlator increases in magnitude. At a
small distance to the mirror d, the correlator reaches the
plateaus in l, implying that the free energy of quarks does
not depend on their separation l. This physical picture is
perfectly consistent with the formation of the quarkiton:
The quark and the antiquark attract to their images in the
mirror. Moreover, again expectedly, the plateau at d ¼ 1a is
higher than at d ¼ 2a, in agreement with the fact that the
string between the (anti)quark and its image in the mirror is
shorter for the quark which is located closer to the mirror.
At short distances, the perturbative Coulomb interaction
prevails over the string effects [64], but this fact does not
change our conclusions given the monotonic nature of the
attractive QQ̄ potential.
The boundary (glueton and quarkiton) states can also

interact with the bulk (glueball and meson) states. Also,
two quarkiton states, confined to the boundary, can
combine by producing a colorless meson state which can
then propagate into the bulk of the system.

D. A heavy quark between non-Abelian mirrors

Finally, we address the nature of the vacuum between
two chromometallic mirrors. In Ref. [16], the same ques-
tion has been raised in two spatial dimensions for the

vacuum of SU(2) gauge theory in between two parallel
wires (plates in Euclidean spacetime). It was concluded
that, in the confining low-temperature phase, the approach-
ing plates generate a deconfinement phase in the space
between them. The deconfinement mechanism in this non-
Abelian theory has been related to an identical effect in the
2þ 1-dimensional compact Abelian gauge model [35],
where the Casimir-induced deconfinement can be explained
analytically [65].
We see no pronounced signatures of a phase transition in

the space between the plates in the behavior of the non-
Abelian Casimir energy (6) shown in Fig. 1. To quantify the
effect of the chromometallic mirrors on (de)confining
properties of the vacuum, we study another quantity, the
unrenormalized free energy of a heavy quark calculated in
the space between the plates:

LTFCas
Q ðRÞ ¼ − ln jPjVðRÞ ≡ − ln

����� X
x∈VðRÞ

Px

����
�
; ð12Þ

where the expectation value of the Polyakov loop jPjV is
taken only over the volume V ¼ VðRÞ between the mirrors
separated by the distance R.
In the inset in Fig. 4, we show the Polyakov loop in

between the plates jPjVðRÞ. This quantity takes a finite value
at small interplate separations R and then quickly dimin-
ishes with increasing distance between the plates. Such
behavior points to an effective deconfinement regime
between the closely spaced plates, which we interpret as
a signal of the formation of (a superposition of) finite-
energy quarkiton states between the test quark and its
antiquark image in the mirrors. As the distance between the
plates increases, the free energy of long-stretched quarkiton
states rises, and the Polyakov loop vanishes, thus signaling
the onset of the confining regime.

FIG. 3. Correlator of the Polyakov loops CdðlÞ for a quark and
an antiquark located at the fixed distance d from the chromo-
metallic mirror and separated by the distance l from each other on
the lattice 124 at β ¼ 5.6924 (a

ffiffiffi
σ

p
≃ 0.4 [32]). The correlator at

d ¼ 1a is scaled by the factor 1=4. The correlator in the absence
of the plates is also shown.

FIG. 4. Mean free energy of a heavy quark in between the
mirrors (12) as function of the intermirror separation R=a (in
lattice units) on the lattice 324. The red line is the best fit by the
Cornell potential (13) with the fit parameters c1 ¼ 2.03ð4Þ,
c2 ¼ 0.044ð1Þ, and c0 ¼ 5.55ð2Þ. The inset shows the expect-
ation value of the corresponding Polyakov loop (12).
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The phenomenological interaction between quarks and
antiquarks is often described by a Cornell-type potential
that combines a linear string behavior at long distances
with a short-distance Coulomb interaction [64]. Therefore,
the mean free energy of a quarkiton, in which a quark
interacts with its antiquark image in the mirror, should
follow a similar behavior with the typical quarkiton size set
by the interplate separation R. This phenomenological
expectation is indeed confirmed in Fig. 4, showing that
the free energy (12) is indeed excellently described by the
Cornell potential:

LTFCas
Q ðR=aÞ ¼ −

c1
R=a

þ c2
R
a
þ c0; ð13Þ

where ca (with a ¼ 0, 1, 2) are the fitting parameters.
Equation (13) implies that, at short interplate separations,
a heavy quark in the space between the mirrors possesses
a finite free energy which we interpret as a deconfinement
of color. As the distance between the plates R increases,
the free energy increases, leading to the exponential
vanishing of the Polyakov loop and the onset of the color
confinement.

IV. CONCLUSIONS

Using first-principles numerical simulations, we calcu-
lated the nonperturbative non-Abelian Casimir energy
generated by two closely spaced chromometallic mirror
plates in SU(3) Yang-Mills theory. We also revealed the
presence of a new gluonic excitation, the glueton, which we

interpret as a colorless bound state of a gluon with its image
in a chromometallic mirror.
The glueton is a nontopological excitation that shares

similarities with a surface exciton in a superconductor.
Unexpectedly, the glueton mass (9) turns out to be lower
than the mass of the ground-state 0þþ glueball. This
property of the glueton (“the edge mode is lighter than
the mass gap in the bulk”) is shared by its topological
analogs in condensed matter such as edge modes in
topological insulators [20] or the Volkov-Pankratov states
at the interfaces of semiconductors [40].
The presence of boundaries also affects the dynamics of

quarks. We show that, similarly to confined fractional
vortices in multicomponent condensates [60–63], a single
isolated quark can exist in the hadronic phase of QCD near
(and confined to) a large perfect chromometallic mirror,
forming a colorless boundary state: the quarkiton. The
glueton and quarkiton states can be relevant near domain
walls in QCD and QCD-like theories.
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