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Polarizabilities reveal valuable information on the internal structure of hadrons in terms of charge and
current distributions. For neutral hadrons, the standard approach is the background field method, but for a
charged hadron, its acceleration under the applied field complicates the isolation of the polarization energy.
In this work, we explore an alternative method based on four-point functions in lattice QCD. The approach
offers a transparent picture on how polarizabilities arise from photon, quark, and gluon interactions. We
carry out a proof-of-concept simulation on the electric polarizability of a charged pion, using quenched
Wilson action on a 243 × 48 lattice at β ¼ 6.0 with pion mass from 1100 MeV to 370 MeV. We show in
detail the evaluation and analysis of the four-point correlation functions and report results on charge radius
and electric polarizability. Our results from connected diagrams suggest that charged pion αE is due to a
cancellation between elastic and inelastic contributions. It would be interesting to see how the cancellation
plays out at smaller pion masses in future simulations.
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I. INTRODUCTION

Understanding electromagnetic polarizabilities has been
a long-term goal of lattice QCD. The challenge in the effort
lies in the need to apply both QCD and QED principles.
The standard approach to compute polarizabilities is the
background field method which has been widely used for
dipole polarizabilities [1–19]. Methods to study higher-
order polarizabilities have also been proposed [20–23] in
this approach. Although such calculations are relatively
straightforward, requiring only energy shifts from two-
point functions, there are a number of unique challenges.
First, since weak fields are needed, the energy shift
involved is very small relative to the mass of the hadron
(on the order of one part in a million depending on the field
strength). This challenge has been successfully overcome
by relying on statistical correlations with or without the
field. Second, there is the issue of discontinuities across the
boundaries when applying a uniform field on a periodic

lattice. This has been largely resolved by using quantized
values for the fields, or Dirichlet boundary conditions.
Third and more importantly, a charged hadron accelerates
in an electric field and exhibits Landau levels in a magnetic
field. Such motions are unrelated to polarizability and must
be disentangled from the deformation energy on which the
polarizabilities are defined. For this reason, most calcu-
lations have focused on neutral hadrons. For charged
hadrons, what happens is that the two-point correlator
does not develop single exponential behavior at large times.
In Ref. [24], a relativistic propagator for a charged scalar is
used to demonstrate how to fit such lattice data for charged
pions and kaons. This approach is improved recently in
Ref. [25] with an effective charged scalar propagator
exactly matching the lattice being used to generate the
lattice QCD data. A new fitting procedure is proposed
where a χ2-function utilizes information in both the real and
imaginary parts of the correlator while remaining invariant
under gauge transformations of the background field. For
magnetic polarizability, a field-dependent quark-propaga-
tor eigenmode projector is used to filter out the effects of
Landau levels [26,27]. These special techniques for
charged particles involve fairly complicated analysis to
treat the collective motion of the system in order to isolate
the polarizabilities.
In this work, we explore an alternative approach based on

four-point functions in lattice QCD. Instead of background
fields, electromagnetic currents couple to quark fields to
induce interactions to all orders. It is a general approach that
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treats neutral and charged particles on equal footing, but
particularly suited for charged particles. The trade-off is an
increased computational demand of four-point functions.
Although four-point functions have been applied to study
various aspects of hadron structure [28–33], not too much
attention has been paid to its potential application for
polarizabilities. We know of two such studies from a long
time ago [34,35], a recent calculation on the pion [36], and a
preliminary one on the proton [37]. A reexamination of the
formalism in Ref. [35] is recently carried out in Ref. [38] for
both electric and magnetic polarizabilities of a charged pion
and a proton. We also note that although Refs. [11,21] are
based on the background field method, they are in fact four-
point function calculations. A perturbative expansion in the
background field at the action level is performed in which
two vector current insertions couple the background field to
the hadron correlation function, leading to the same dia-
grammatic structures as in this work.
Experimentally, polarizabilities are primarily studied by

low-energy Compton scattering. Theoretically, a variety of
methods have been employed to describe the physics
involved, from the quark-confinement model [39], to the
Nambu-Jona-Lasinio model [40,41], to the linear sigma
model [42], to dispersion relations [43–46], to chiral
perturbation theory (ChPT) [47–49] and chiral effective
field theory (EFT) [50,51]. Reviews on hadron polar-
izabilities can be found in Refs. [47,51,52].
The presentation is organized as follows. In Sec. II we

outline the methodology to extract polarizabilities, using
the electric polarizability of a charged pion as an example.
In Sec. III we detail our notations and algorithms used to
evaluate the four-point functions, including how the
sequential-source technique (SST) can be applied in this
context. In Sec. IV we show our analysis procedure and
results from a proof-of-concept simulation. In Sec. V we
give concluding remarks and an outlook. Some technical
details are put in the Appendixes.

II. METHODOLOGY

In Ref. [38], a formula is derived for electric polar-
izability of a charged pion,

αE ¼ αhr2Ei
3mπ

þ lim
q→0

2α

q2

Z
∞

0

dt

�
Q44ðq; tÞ −Qelas

44 ðq; tÞ
�
: ð1Þ

Here α ¼ 1=137 is the fine structure constant. The first term
in the formula involves the charge radius and pion mass
(we will refer to this term as the elastic contribution). The
second term has the elastic contribution Qelas

44 subtracted
from the total (we will refer to this term as the inelastic
contribution). The formula will be used in discrete
Euclidean spacetime but we keep the Euclidean time axis
continuous for notational convenience. Special kinematics
(called zero-momentum Breit frame) are employed in
the formula to mimic low-energy Compton scattering.
The process is illustrated in Fig. 1, where the initial (p1)
and final (p2) pions are at rest and the photons have purely
spacelike momentum,

p1¼ð0;mπÞ; q1¼ðq;0Þ; q2¼ð−q;0Þ; p2¼ð0;mπÞ:
ð2Þ

The Q44 is defined as the μ ¼ 4 ¼ ν component of the
Fourier transforms,

Qμνðq; t2; t1Þ≡
X
x2;x1

e−iq·x2eiq·x1Pμνðx2;x1; t3; t2; t1; t0Þ; ð3Þ

where Pμν is a four-point function defined in position space
(Ω denotes the vacuum),

Pμνðx2; x1; t3; t2; t1; t0Þ

≡
P

x3;x0hΩjψðx3Þ∶jLμ ðx2ÞjLν ðx1Þ∶ψ†ðx0ÞjΩiP
x3;x0hΩjψðx3Þψ†ðx0ÞjΩi

: ð4Þ

Here ψ is the interpolating field of the pion and jLμ the
lattice version of the electromagnetic current density. The
two-point function in the denominator is for normalization.
Normal ordering is used to include the required subtraction
of vacuum expectation values (VEV) on the lattice. The
sums over x0 and x3 enforce zero-momentum pions at the
source (t0) and sink (t3). The two currents are inserted at t1
and t2 with two possibilities of time ordering implied in the
normal ordering. The field operators for ψ and jLμ used in
this work, along with conservation properties of Q44 at
q ¼ 0, are given in Appendix A. To see the structure of the
four-point function in Eq. (4), we insert a complete set of
states in the numerator (twice) and in the denominator
(once). When the times are well separated (defined by the
time limits t3 ≫ t1;2 ≫ t0) the correlator is dominated by
the ground state,

FIG. 1. Four-point function for charged pion polarizabilities
under the zero-momentum Breit frame. Time flows from right to
left and the four momentum conservation is expressed as p2 ¼ q2
þq1 þ p1.
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Pμνðx2; x1; t3; t2; t1; t0Þ

→
N2

s jhπð0Þjψð0ÞjΩij2e−mπt3hπð0Þj∶jLμ ðx2ÞjLν ðx1Þ∶jπð0Þi
N2

s jhπð0Þjψð0ÞjΩij2e−mπ t3

→ hπð0Þj∶jLμ ðx2ÞjLν ðx1Þ∶jπð0Þi
¼ hπð0ÞjTjLμ ðx2ÞjLν ðx1Þjπð0Þi − hΩjTjLμ ðx2ÞjLν ðx1ÞjΩi:

ð5Þ

Here Ns ¼ NxNyNz is the number of spatial sites on the
lattice. The role of the two-point function as normalization
and the inclusion of VEV subtraction is evident in the limit.
Assuming time separation t ¼ t2 − t1 > 0 and inserting a

complete set of intermediate states, the diagonal component
of Qμν develops the time dependence in the same limits,

Qμμðq; tÞ ¼ N2
s

X
n

jhπð0ÞjjLμ ð0ÞjnðqÞij2e−aðEn−mπÞt

− N2
s

X
n

jhΩjjLμ ð0ÞjnðqÞij2e−aEnt: ð6Þ

At large time separations, it is dominated by the elastic
contribution (n ¼ π term in the first sum),

Qelas
μμ ðq; tÞ≡ N2

s jhπð0ÞjjLμ ð0ÞjπðqÞij2e−aðEπ−mπÞt: ð7Þ

We see that the elastic piece in the four-point function has
information on the form factor of the pion through the
amplitude squared. The form factor Fπ can be determined
from Q44 at large time separations,

Qelas
44 ðq; tÞ ¼ ðEπ þmπÞ2

4Eπmπ
F2
πðq2Þe−aðEπ−mπÞt: ð8Þ

The charge radius hr2Ei in the formula can then be extracted
from Fπ . A salient feature here is that the elastic contribu-
tion in four-point functions is positive definite.
Aside from the charge radius term in Eq. (1), αE is

proportional to the difference in the areas under theQ44 and
Qelas

44 curves. It is this difference that is responsible for the
sign of απE. On a finite lattice the time integral does not
really extend to ∞, but are limited to the available time
slices between the two current insertions. In practice, one
should check if the largest time separation is enough to
establish the elastic limit. Equivalent directions for q can be
used to improve the signal-to-noise ratio. Note that αE has
the expected physical unit of a3 (fm3) since 1=q2 scales like
a2, the integral scales like a, and Q44 is dimensionless in
our notation.

III. CORRELATION FUNCTIONS

In this section, we detail how to simulate Eq. (4) and its
Fourier transform Eq. (3) at the quark level. Wick con-
tractions of quark-antiquark pairs in the unsubtracted part

lead to topologically distinct quark-line diagrams shown in
Fig. 2. The raw correlation functions can be found in
Appendix B.
Diagrams (a), (b), and (c) are connected. Diagram (d) has

a loop that is disconnected from the hadron, but connected
between the two currents. Diagram (e) has one disconnected
loop and diagram (f) has two such loops. Furthermore,
diagrams (d), (e), and (f) must have associated VEV
subtracted. However, if conserved lattice current density
is used, there is no need for subtraction in diagram (e) since
the VEV vanishes in the configuration average [53]. In this
work, we focus on the connected contributions [diagrams
(a), (b), and (c)]. The disconnected contributions [diagrams
(d), (e), and (f)] are more challenging and are left for future

FIG. 2. Skeleton diagrams of a four-point function contributing
to polarizabilities of a meson: (a) connected insertion: different
flavor, (b) connected insertion: same flavor, (c) connected in-
sertion: same flavor Z-graph, (d) disconnected insertion: single
loop, double current, (e) disconnected insertion: single loop,
(f) disconnected insertion: double loop. In each diagram, flavor
permutations are assumed as well as gluon lines that connect the
quark lines. The zero-momentum pion interpolating fields are
represented by vertical bars (wall sources). Time flows from right
to left.
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work. In particular, we will explain how to use the sequential
source technique (SST) to simplify the evaluations.

A. Two-point functions

First, we show how to evaluate the two-point function in
Eq. (4) which serves as normalization for the four-point
functions. It has the following Wick contraction using the
interpolating operator in Eq. (A1),

X
x3;x0

hΩjψðx3Þψ†ðx0ÞjΩi¼
X
x3;x0

Tr
s;c

h
γ5Sdðx0;x3Þγ5Suðx3;x0Þ

i
;

ð9Þ

where Sq denotes a quark propagator that carries the full
spacetime and spin and color information between two
points.1 The double sum projects to zero momentum both
at the source x0 and the sink x3 as required by the special
kinematics. The full evaluation involves essentially all-to-
all propagation which is computationally prohibitive.
Instead, we employ wall sources without gauge fixing
as an approximation, with the expectation that gauge-
dependent contributions to the final observables will
vanish in the configuration average [30,54]. Only terms
in the double sum where the quarks are at the same
location form the signal, the rest contribute to noise.
Details of our implementation of the wall source can be
found in Appendix C.
If we insert the wall at time slice t0 and project to zero

momentum at t3 in Eq. (9), we have

X
x3;x0

hΩjψðx3Þψ†ðx0ÞjΩi

¼ Tr
s;c

h
WTγ5Sdðx0; x3Þγ5Suðx3; x0ÞW

i
¼ Tr

s;c

h
WTγ5Pðt0ÞM−1

d Pðt3ÞTγ5Pðt3ÞM−1
u Pðt0ÞTW

i
: ð10Þ

The symbols W and PðtÞ are defined in Appendix C. We
introduce two zero-momentum quark propagators called a1
and a2 emanating from the walls at t0 and t3, respectively,

VðqÞ
a1 ≡M−1

q Pðt0ÞTW; VðqÞ
a2 ≡M−1

q Pðt3ÞTW: ð11Þ

We use “V” to emphasize that the wall-to-point quark
propagators so defined are column vectors in the ðx; s; cÞ
space. Using a1, the two-point function can be written as

X
x3;x0

hΩjψðx3Þψ†ðx0ÞjΩi

¼ Tr
s;c

h�
Pðt3Þγ5VðdÞ

a1

�†�
Pðt3Þγ5VðuÞ

a1

�i
¼ Tr

s;c

�
Pðt3ÞVðdÞ

a1

�†�
Pðt3ÞVðuÞ

a1

�i
ðType 1Þ: ð12Þ

In the last step the γ5-hermiticity of M−1
q is used to

eliminate γ5. Similarly, if we insert the wall at time slice
t3 and project to zero momentum at t0, we get in terms
of a2,X

x3;x0

hΩjψðx3Þψ†ðx0ÞjΩi

¼ Tr
s;c

h�
Pðt0Þγ5VðuÞ

a2

�†�
Pðt0Þγ5VðdÞ

a2

�i
¼ Tr

s;c

h�
Pðt0ÞVðuÞ

a2

�†�
Pðt0ÞVðdÞ

a2

�i
ðType 2Þ: ð13Þ

If we insert two walls, one at t0, one at t3, we obtain
additional expressions,X
x3;x0

hΩjψðx3Þψ†ðx0ÞjΩi

¼ Tr
s;c

h
WTγ5Sdðx0; x3ÞWWTγ5Suðx3; x0ÞW

i
¼ Tr

s;c

h�
WTPðt3ÞVðdÞ

a1

�†�
WTPðt3ÞVðuÞ

a1

�i
¼ Tr

s;c

h�
WTPðt0ÞVðuÞ

a2

�†�
WTPðt0ÞVðdÞ

a2

�i
ðType 3Þ:

ð14Þ

The expressions in the above three equations (which we
denote as Type 1, 2, 3 as indicated) are different estimators
of the wall-to-wall two-point function with zero momentum
for both initial and final pions. They are expected to
approach the same value in the limit of infinite number
of configurations. In the following, we use our notation to
evaluate the connected four-point functions in Fig. 2.

B. Four-point functions

We start with local (or point) current insertions of four-
point functions which have relatively simple Wick con-
tractions. The results in this work will be based on
conserved (or point-split) currents which avoids the issue
of computing the renormalization constant ZV for vector
currents. Below we detail how to evaluate the connected
contributions using both local and conserved currents.

1. Diagram a (different flavor)

There are two terms, d4 and d2 in Eq. (B4), that are
contributing to the connected part of diagram a. They are
characterized by the charge factor quqd̄ ¼ 2=9. The two
terms are related by a flavor permutation (1 ↔ 2 switch).

1In this work, all correlation functions in such expressions are
understood as path integral expectation values in lattice QCD.
They are evaluated as averages over gauge configurations in
Monte Carlo simulations.
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Under isospin symmetry in u and d quarks, the two terms have equal contributions. Including the Fourier transforms and
setting μ ¼ 4 ¼ ν for electric polarizability, the correlation function can be written as2

Q̃ða;PCÞ
44 ¼ −

4

9
Z2
Vκ

2Tr
s;c

h
γ5Sðt0; t2Þγ4e−iqSðt2; t3Þγ5Sðt3; t1Þγ4eiqSðt1; t0Þ

i
: ð15Þ

We evaluate the correlation function by inserting two walls, one at t0 and one at t3,

Q̃ða;PCÞ
44 ðq; t1; t2Þ ¼ −

4

9
Z2
Vκ

2Tr
s;c

h
WTγ5Sðt0; t2Þe−iqγ4Sðt2; t3ÞWWTγ5Sðt3; t1Þeiqγ4Sðt1; t0ÞW

i
¼ −

4

9
Z2
Vκ

2Tr
s;c

h
WTγ5Pðt0ÞM−1

q Pðt2ÞTe−iqγ4Pðt2ÞM−1
q Pðt3ÞTW

×WTγ5Pðt3ÞM−1
q Pðt1ÞTeiqγ4Pðt1ÞM−1

q Pðt0ÞTW
i
: ð16Þ

The notation makes it clear that all spatial sums are automatically incorporated into the matrix multiplications. Using the
Va1 and Va2 propagators defined in Eq. (11) and the γ5-hermiticity of M−1, the final expression for diagram (a) can be
written as

Q̃ða;PCÞ
44 ðq; t1; t2Þ ¼

4

9
Z2
Vκ

2Tr
s;c

h�
½Pðt2ÞVa2�†γ5γ4eiqPðt2ÞVa1

�†�½Pðt1ÞVa2�†γ5γ4eiqPðt1ÞVa1

�i
: ð17Þ

There is an overall sign change from taking the dagger. The first parenthesis corresponds to the current insertion at t2 on one
of the quark lines in the pion; the second parenthesis the current insertion at t1 on the other quark line. Both t1 and t2 are free
to vary between t0 and t3.
In the case of conserved current, there are 8 terms contributing to diagram (a) in Eq. (B6). Their sum under isospin

symmetry, along with the Fourier transforms and wall-source insertions, can be written in similar form,

Q̃ða;PSÞ
44 ðq;t1;t2Þ¼

1

9
κ2ðd16þd18þd20þd22þd8þd10þd12þd14Þ

¼4

9
κ2Tr

s;c

h�
½Pðt2ÞVa2�†γ5ð1−γ4ÞeiqU4ðt2;t2þ1ÞPðt2þ1ÞVa1

− ½Pðt2þ1ÞVa2�†γ5ð1þγ4ÞU†
4ðt2þ1;t2ÞeiqPðt2ÞVa1

�†

×
�
½Pðt1ÞVa2�†γ5ð1−γ4ÞeiqU4ðt1;t1þ1ÞPðt1þ1ÞVa1

− ½Pðt1þ1ÞVa2�†γ5ð1þγ4ÞU†
4ðt1þ1;t1ÞeiqPðt1ÞVa1

�i
; ð18Þ

with local current replaced by its point-split form in the parentheses.

2. Diagram (b) (same flavor) and SST

For local current, there are 2 terms, d1 and d7 in Eq. (B4), that are contributing to the connected part of same-flavor
correlations. They are characterized by the charge factors ququ ¼ 4=9 or qd̄qd̄ ¼ 1=9. The d1 diagram is clockwise
propagation t0 → t3 → t2 → t1 → t0 where the two currents couple to the same u quark, while the d7 diagram is
counterclockwise propagation t0 → t1 → t2 → t3 → t0 where the two currents couple to the same d quark. Under isospin
symmetry, the total contribution from uu and dd correlations has a total charge factor of 4=9þ 1=9 ¼ 5=9.
Including the Fourier transforms, setting μ ¼ 4 ¼ ν for electric polarizability, and inserting the wall sources, the

correlation function can be written as

Q̃ðb;PCÞ
44 ¼ 5

9
Z2
Vκ

2Tr
s;c

h
WTγ5Sðt0; t1Þγ4eiqSðt1; t2Þγ4e−iqSðt2; t3ÞWWTγ5Sðt3; t0ÞW

i
: ð19Þ

2We use Qμν for normalized correlation functions as defined in Eqs. (3) and (4), and tilded Q̃μν for unnormalized, i.e., without the
denominator Eq. (4).
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This expression involves numerous quark propagators; t0
and t3 are fixed, but t1 and t2 are free to vary. To cut down
the computational cost, we fix the current at t1. Then only
one new inversion between t1 and t2 is required. Since the
current insertions take place between the hadron source (t0)
and sink (t3), a method called SST (sequential source
technique) can be employed for the propagator. To see how
SST arises in this context, we first define the product that
involves t0 → t3 → t2 propagation as

γ4e−iqSðt2; t3ÞWWTγ5Sðt3; t0ÞW
¼ γ4e−iqPðt2ÞM−1

q Pðt3ÞTWWTγ5Pðt3ÞM−1
q Pðt0ÞTW

¼ γ4e−iqPðt2ÞVa2WTPðt3Þγ5Va1; ð20Þ

which is built directly from the two previously-computed
propagators Va1 and Va2 along with other factors. This does
not require a new inversion. Next, we define the rest in
Eq. (19) as

WTγ5Sðt0; t1Þγ4eiqSðt1; t2Þ
¼ WTγ5Pðt0ÞM−1

q Pðt1ÞTγ4eiqPðt1ÞM−1
q Pðt2ÞT

¼
h
Pðt2Þγ5M−1

q γ5Pðt1ÞTγ4e−iqPðt1Þγ5M−1
q γ5Pðt0ÞTγ5W

i†
¼ −

h
Pðt2Þγ5M−1

q Pðt1ÞTγ4e−iqPðt1ÞVa1

i†
¼ −

h
Pðt2Þγ5Vð4;PCÞ

a3

i†
; ð21Þ

where we have introduced a SST propagator called a3
(specialized to μ ¼ 4 here),

Vðμ;PCÞ
a3 ðqÞ≡M−1

q Pðt1ÞT ½γμe−iqPðt1ÞVa1�: ð22Þ

This expression indicates that Vð4;PCÞ
a3 can be obtained by a

standard inversion Mx ¼ b with a “spatially extended
source” b ¼ ½γ4e−iqPðt1ÞVa1� at t1. This source is con-
structed from a previously defined quark propagator Va1
and the current insertion, hence the name “sequential
source”. Using ða1; a2Þ and the newly defined propagator
a3, the final expression for diagram (b) takes the form,

Q̃ðb;PCÞ
44 ðq; t2Þ ¼ −

5

9
Z2
Vκ

2Tr
s;c

h
½Pðt2Þγ5Vð4;PCÞ

a3 ðqÞ�†

× γ4e−iqPðt2ÞVa2WTPðt3Þγ5Va1

i
: ð23Þ

Figure 3 is a schematic depiction of how the propagators
form the full correlation function in Eq. (23).
For conserved current, there are eight terms contributing

to diagram (b) in Eq. (B6). Following the same procedure
as for point current, the final expression for diagram
(b) from point-split current can be written as

Q̃ðb;PSÞ
44 ðq; t2Þ ¼

1

9
κ2ðd1 þ d3 þ d5 þ d7 þ d25 þ d31 þ d37 þ d43Þ

¼ −
5

9
κ2Tr

s;c

h
½Pðt2Þγ5Vð4;PSÞ

a3 ðqÞ�†ð1 − γ4Þe−iqU4ðt2; t2 þ 1ÞPðt2 þ 1ÞVa2WTPðt3Þγ5Va1

− ½Pðt2 þ 1Þγ5Vð4;PSÞ
a3 ðqÞ�†ð1þ γ4ÞU†

4ðt2 þ 1; t2Þe−iqPðt2ÞVa2WTPðt3Þγ5Va1

i
; ð24Þ

where a new inversion is needed for the SST propagator,

Vð4;PSÞ
a3 ðqÞ≡M−1

q

h
PTðt1Þð1 − γ4Þe−iqU4ðt1; t1 þ 1Þ

× Pðt1 þ 1ÞVa1 − PTðt1 þ 1Þð1þ γ4Þ
×U†

4ðt1 þ 1; t1Þe−iqPðt1ÞVa1

i
: ð25Þ

This is the point-split version of Eq. (22) with μ ¼ 4. Since
the current is split in the t direction, U4 and U†

4 commute
with e−iq in these two equations.

3. Diagram (c) (same flavor Z-graph) and SST

For local current, there are two terms, d0 and d9 in
Eq. (B4), that are contributing to the connected part of
same-flavor correlations. They are characterized by the
same charge factors ququ ¼ 4=9 or qd̄qd̄ ¼ 1=9. The d0
diagram is a clockwise propagation t0 → t3 → t1 → t2 →
t0 where the two currents couple to the u quark, while the
d9 diagram is a counterclockwise propagation t0 → t2 →
t1 → t3 → t0 where the two currents couple to the d quark.
They are essentially the Z-graph of diagram (b) with the

FIG. 3. Diagram (b) in terms of quark propagators: one part is
Va1 to the pion wall at t3, then Va2 to the current insertion at t2;
the other is a SST propagator Va3 (red) built from Va1 and the
current insertion at t1.
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current insertions 1 and 2 switched, whose correlation
function can be written as

Q̃ðc;PCÞ
44 ¼ 5

9
Z2
Vκ

2Tr
s;c

h
γ5WTSðt0; t2Þγ4e−iqSðt2; t1Þ

× γ4eiqSðt1; t3ÞWWTγ5Sðt3; t0ÞW
i
: ð26Þ

First we isolate the t3 → t1 → t2 propagation,

Sðt2; t1Þγ4eiqSðt1; t3ÞW
¼Pðt2ÞM−1

q Pðt1ÞTγ4eiqPðt1ÞM−1
q Pðt3ÞTW

¼Pðt2ÞM−1
q Pðt1ÞTγ4eiqPðt1ÞVa2≡Pðt2ÞVð4;PCÞ

a4 ðqÞ; ð27Þ

where a new SST propagator is introduced (specialized to
μ ¼ 4 here),

Vðμ;PCÞ
a4 ðqÞ≡M−1

q Pðt1ÞT ½γμeiqPðt1ÞVa2�: ð28Þ

Using a1 and a4, the final expression for diagram (c) using
point current takes the form,

Q̃ðc;PCÞ
44 ðq; t2Þ ¼

5

9
Z2
Vκ

2Tr
s;c

h
½γ4eiqPðt2Þγ5Va1�†Pðt2Þ

× Vð4;PCÞ
a4 ðqÞWTPðt3Þγ5Va1

i
: ð29Þ

Figure 4 is a schematic depiction of how the propagators
form this correlation function.
For conserved current, there are eight terms contributing

to diagram (c) in Eq. (B6). Following a similar procedure as
for local current, the final expression for diagram (c) from
point-split current can be written as

Q̃ðc;PSÞ
44 ðq; t2Þ ¼

1

9
κ2ðd0 þ d2 þ d4 þ d6 þ d27 þ d33 þ d39 þ d45Þ

¼ 5

9
κ2Tr

s;c

h
½Pðt2Þγ5Va1�†ð1 − γ4Þe−iqU4ðt2; t2 þ 1ÞPðt2 þ 1ÞVð4;PSÞ

a4 ðqÞWTPðt3Þγ5Va1

− ½Pðt2 þ 1Þγ5Va1�†ð1þ γ4ÞU†
4ðt2 þ 1; t2Þe−iqPðt2ÞVð4;PSÞ

a4 ðqÞWTPðt3Þγ5Va1

i
; ð30Þ

where

Vð4;PSÞ
a4 ðqÞ≡M−1

q

h
PTðt1Þð1 − γ4ÞeiqU4ðt1; t1 þ 1ÞPðt1 þ 1ÞVa2 − Pðt1 þ 1ÞTð1þ γ4ÞU†

4ðt1 þ 1; t1ÞeiqPðt1ÞVa2

i
: ð31Þ

Compare to Eq. (25) for diagram (b), this expression has a2
instead of a1, q instead of −q.
The total connected contribution to the polarizabilities in

Eq. (1) is simply the sum of the individual normalized
terms in Fig. 2,

Q44ðq; t2; t1Þ ¼ QðaÞ
44 þQðbÞ

44 þQðcÞ
44 ; ð32Þ

for either point current or conserved current. The charge
factors and flavor-equivalent contributions have been
included in each diagram.

IV. SIMULATION DETAILS AND RESULTS

Having laid out the methodology and detailed the
correlation functions, we now discuss how to numerically
evaluate them in a Monte Carlo simulation in order to
extract the polarizability. As a proof-of-principle test, we
use quenched Wilson action with β ¼ 6.0 and κ ¼ 0.1520,
0.1543, 0.1555, 0.1565 on the lattice 243 × 48. The pion
mass corresponding to the kappas will be determined in our
simulation. We analyzed 1000 configurations for each of
the kappas. The scale of this action has been determined in
Ref. [55], with inverse lattice spacing 1=a ¼ 2.312 GeV
and kappa critical κc ¼ 0.15708. It also gives the pion mass
as a function of kappa,

ðmπaÞ2 ¼ 2.09 ×
1

2

�
1

κ
−

1

κc

�
; ð33Þ

which will be compared with the measured mπ . Dirichlet
(or open) boundary condition is imposed in the time
direction, while periodic boundary conditions are used in
spatial dimensions. The pion source is placed at t0 ¼ 7 and
sink at t3 ¼ 42 (time is labeled from 1 to 48). One current is
inserted at a fixed time t1, while the other current t2 is free

FIG. 4. Diagram (c) in terms of quark propagators; a1 from t0
to t3, SST quark propagator a4 (red) with sequential source built
from a2 and current insertion at t1, and a1 from t2 to t0. This is
the Z-graph of diagram (b).
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to vary. We use integers fnx; ny; nzg to label the discrete
momentum on the lattice,

q ¼
�
2πnx
Lx

;
2πny
Ly

;
2πnz
Lz

	
;

nx; ny; nz ¼ 0;�1;�2;…; ð34Þ

and consider five different combinations f0; 0; 0g;
f0; 0; 1g; f0; 1; 1g; f1; 1; 1g; f0; 0; 2g. In lattice units they
correspond to the values q2a2 ¼ 0, 0.068, 0.137, 0.206,
0.274, or in physical units to q2 ¼ 0, 0.366, 0.733, 1.100,
1.465 (GeV2). In order to evaluate the connected diagrams,
we need four inversions of the quark matrix with varying
sources; two wall-sourced propagators Va1 and Va2, and

two SST propagators Vð4;PSÞ
a3 ðqÞ and Vð4;PSÞ

a4 ðqÞ at a fixed q.
So the count for five momenta is 2þ 2 × 5 ¼ 12 per kappa
per configuration. It takes longer to do the inversions for
larger kappas due to critical slowing down.

A. Raw correlation functions

First, we discuss how to determine pion mass from the
various two-point functions in Sec. III A. In Fig. 5 we show
the wall-to-wall pion correlations based on Eq. (12) (Type 1)
and Eq. (13) (Type 2) at κ ¼ 0.1555. Type 1 only depends
on the a1 quark propagator originating from the wall source
at t0 ¼ 7. Instead of ending at fixed t3 ¼ 42, we allow it to
vary in the entire range of t on the lattice. One can visualize
it as a moving wall sink. In this way, we get to observe a
plateau in the effective mass function which we use to
extract the mass. Similarly, Type 2 only depends on the a2
quark propagator originating from the wall source at
t3 ¼ 42. Instead of ending at fixed t0 ¼ 7, we allow it to
vary in the entire range of t on the lattice. We flip the sign of
its effective mass function so a direct comparison of the
plateaus for the two types can be made. We use Type 1 with
a varying sink to extract pion and rho masses at the four
kappa values. We obtain approximately 1100, 800, 600, and
370 MeV for pion mass at κ ¼ 0.1520, 0.1543, 0.1555,
0.1565, respectively. These values agree well with those
predicted from the relation in Eq. (33). From this point on,
we will refer to pion mass rather than kappa values. The rho
meson is considered in this work to judge the efficacy of
vector meson dominance in charge radius extraction. More
precise numbers for mπ and mρ with uncertainties will be
given in the summary table at the end (Table I). Another
benefit of plotting the Type 1 and Type 2 correlators with a
varying sink is we get to see the limited “window of
opportunity” in the effective mass where ground state
dominates. This is the window in which we study the
current-current correlations. We utilize this information to
fix one of the two currents in the four-point function
calculation so it mainly couple to the zero-momentum
ground state. Having examined the plots, we settle on

t1 ¼ 18, 18, 18, 14 for mπ ¼ 1100, 800, 600, 370 MeV,
respectively.
Next, we discuss normalization constant for four-point

functions. This is the zero-momentum wall-to-wall two-
point function in the denominator of Eq. (4). We have three
options, corresponding to the three types in Eqs. (12)–(14).
Type 1 normalization constant is simply the special value at
t ¼ t3 ¼ 42 in the blue curve of Fig. 5, and Type 2 the
special value at t ¼ t0 ¼ 7 in the orange curve of Fig. 5.
Type 3 normalization constant is computed separately. The
three types are not expected to agree configuration by
configuration since they originate from different wall
sources, but they should approach the same value in the
configuration average within statistics. We found the
numerical values 0.4683(6), 0.4672(6), 0.468(7), from
Type1, Type2, and Type 3, respectively, at this pion mass.
We see that Type 3 has larger statistical uncertainties than in
Type 1 and Type 2. This is expected since Type 3 is
constructed from two wall sources, while the other two from

FIG. 5. Moving sink zero-momentum pion correlator Type 1
(blue) and Type 2 (orange) and their effective mass functions at
mπ ¼ 600 MeV. They are constructed from either a1 or a2 quark
propagators as explained in the text. The vertical gridlines
indicate the three fixed-time points in the study. These functions
can be used to extract the pion mass in single-exponential
fashion. The value at t3 ¼ 42 in Type 1 or at t0 ¼ 7 in Type 2
can be used for normalization of four-point functions.
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one. Wewill use Type 3 as normalization for the reason to be
discussed below.
Having determined the two-point functions, we present

in Fig. 6 the raw normalized four-point functionsQ44 at five
different values of momentum q and at mπ ¼ 600 MeV.
For comparison purposes, all points inQ44 are displayed on
the same linear scale. For the effective mass function
lnQ44ðtÞ=Q44ðtþ 1Þ, only points between the pion walls

are displayed for clarity. The results are based on conserved
currents and only the connected diagrams (a), (b), and (c).
There are a number of interesting features in these plots.
First, the results for q ¼ 0 confirms the current con-

servation property discussed in Eq. (A9). Basically, for
conserved current, we expect the ratio of four-point
function to two-point function to approach the charge
factor 2quqd̄ ¼ 4=9 for diagram (a) in the isospin limit,

TABLE I. Summary of results in physical units from two-point and four-point functions. Charge radius is chirally extrapolated to the
physical point, as well as αE elastic and αE total. The αE inelastic at the physical point is taken as the difference of the two. Known values
from ChPT and PDG are listed for comparison purposes. All polarizabilities are in units of 10−4 fm3.

κ ¼ 0.1520 κ ¼ 0.1543 κ ¼ 0.1555 κ ¼ 0.1565 Physical point Known value

mπ (MeV) 1104.7� 1.2 795.0� 1.1 596.8� 1.4 367.7� 2.2 138 138
mρ (MeV) 1273.1� 2.5 1047.3� 3.4 930:� 7 830:� 17 770 770

hr2Ei (fm2) 0.1424� 0.0029 0.195� 0.007 0.257� 0.005 0.304� 0.016 0.40� 0.05 0.434� 0.005 (PDG)

αE elastic 0.618� 0.012 1.17� 0.04 2.07� 0.04 3.97� 0.21 13.9� 1.8 15.08� 0.13 (PDG)
αE inelastic −0.299� 0.019 −0.672� 0.030 −0.92� 0.11 −1.27� 0.13 −9.7� 1.9 to −5.1� 2.0
αE total 0.319� 0.023 0.50� 0.05 1.15� 0.11 2.70� 0.25 4.2� 0.5 to 8.8� 0.9 2.93� 0.05 (ChPT)

2.0� 0.6� 0.7 (PDG)

FIG. 6. Normalized four-point functions (left panel) and their effective mass functions (right panel) from the connected diagrams as a
function of current separation at mπ ¼ 600 MeV. The q ¼ 0 results serve as a check of current conservation. The results for nonzero q
between t2 ¼ 18 and t2 ¼ 41 will become the basis for our analysis. The vertical gridlines indicate the pion walls (t0 ¼ 7 and t3 ¼ 42)
and the fixed current insertion (t1 ¼ 18). The horizontal gridlines in the effective mass functions indicate the value of Eπ −mπ where the
continuum dispersion relation Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

π

p
is used.
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independent of current insertion points t1 and t2. For
diagrams (b) and (c), the factor is ququ þ qd̄qd̄ ¼ 5=9.
Indeed, this is confirmed in all three diagrams (black dots).
In diagram (a), current conservation is limited between t2 ¼
7 (on the pion-wall source) and t2 ¼ 41 (one step inside the
pion-wall sink) because the two currents independently
couple to two different quarks in this range. In diagram (b),
where they couple to the same quark, current conservation
emerges only starting from t2 ¼ 19. In diagram (c), it
is limited between t2 ¼ 7 and t2 ¼ 17 because it is the
Z-graph of (b) (different time ordering). If diagrams (b) and
(c) are added, then current conservation extends to the
whole range, just like diagram (a), except for the special
point of t1 ¼ t2 to be discussed below. Outside the regions
of current conservation, the q ¼ 0 signal is exactly zero,
while the q ≠ 0 signal gradually goes to zero towards the
Dirichlet wall.
Second, we found that although we have three options

for two-point functions to be used as normalization, they
have different statistical fluctuations. This is demonstrated
in Fig. 7 where we plot the three types for a select few
configurations out of the 1000, using diagram (a) at zero
momentum and a fixed time slice in the conserved region
(7 < t2 < 41) as an example. For each type, we plot
separately the unnormalized four-point function, two-point
function, and their ratios. We see that the ratio from Type 3
gives the expected value (4=9) exactly whereas Type 1 and
Type 2 fluctuate around it. The reason is that Type 3,
despite being more noisy than Type 1 and Type 2, is exactly
correlated with the four-point function configuration by
configuration, both being constructed from the same two
wall sources. We rely on this perfect correlation in Type 3
to serve as a strong numerical validation that the wall
sources and the conserved currents are correctly imple-
mented in our study. At nonzero momentum (q ≠ 0),
however, we found that all three normalization types
produce comparable statistical uncertainties for the nor-
malized four-point functions. Fig. 6 is plotted using Type 3
normalization.
Third, the special point of t1 ¼ t2 is regular in diagram

(a), but gives irregular results in diagram (b) and (c) for all
values of q. This is the contact term in the discussion
surrounding Eq. (A9). We avoid this point in our analysis.
Fourth, we observe that the results about t1 ¼ 18 in

diagrams (b) and (c) are mirror images of each other,
simply due to the fact that they are from the two different
time orderings of the same diagram. In principle, this
property could be exploited to reduce the cost of simu-
lations. In this study, however, we computed all three
diagrams separately, and add them between t1 ¼ 19 and
t3 ¼ 41 as the signal. We also note in passing that the Q44

signal in diagram (c) is negative definite whereas it is
positive definite in diagrams (a) and (b).
Finally, the effective mass function of Q44 for diagram

(b) approaches the value of Eπ −mπ at large separation

times between t1 and t2. This is an indication that the four-
point function for diagram (b) is dominated by the elastic
contribution with a falloff rate of Eπ −mπ according to
Eq. (7). The same is true for diagram (a), although deviations
are slightly larger at higher momentum. The situation for
diagram (c), however, is completely different. The falloff
rates approach high above their respective Eπ −mπ values,
suggesting they are dominated by inelastic contributions. In
other words, the intermediate state is not a pion, but some
four-quark state at higher mass and energy.
We also used local current as a guide to develop our

formalism and algorithms. If we take four-point function

ratio at zero momentum, we expect Q̃ðPSÞ
44 ð0Þ=Q̃ðPCÞ

44 ð0Þ →
Z2
V where Q̃ðPCÞ

44 is computed without the ZV factor in the
formulas. For example, we obtain an estimate of ZV ≈ 1.35
at mπ ¼ 600 MeV, which is consistent with literature [56].
Since our results are based exclusively on conserved
current, we will not discuss local current further.

FIG. 7. Statistical fluctuations are shown in the unnormalized
four-point function (red), three types of two-point functions
(black), and their ratios (blue) at 20 randomly selected configu-
rations. For this figure, diagram (a) at q ¼ 0 and mπ ¼ 600 MeV
is used as an example. Neighboring points are connected by
straight lines to facilitate visualization. The faint horizontal
gridline indicates the expected ratio 4=9 for this diagram and
conserved currents.
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B. Elastic form factor

The formula for electric polarizability in Eq. (1)
involves the charge radius rE and the elastic contribution
Qelas

44 , both of which can be extracted from the large-time
behavior of four-point functions Q44. According to
Eq. (8), Qelas

44 is expected to exhibit single-exponential
behavior with a falloff rate of Eπ −mπ . The form factor Fπ

is contained in the amplitude of this falloff. Based on the
discussion about Fig. 6, diagrams (a) and (b) have the
expected falloff whereas diagram (c) does not. As far as
elastic contribution is concerned, we can drop diagram (c)
and focus only on diagrams (a) and (b). This improves the
form factor analysis by eliminating the inelastic ‘con-
tamination’ from diagram (c). It can be regarded as a form
of optimization in the analysis. Figure 8 shows an example
of the four-point functions Qab

44 including only diagrams
(a) and (b), along with their effective mass functions. We
focus in the region of signal between t1 and t3 and plot
them as a function of time separation t ¼ t2 − t1 between
the two currents. Note that we exclude the t ¼ 0 point
from the analysis due to contact terms, as discussed
earlier. We see that there is a region where the effective
mass functions coincide with the Eπ −mπ gridlines,

indicating that Qab
44 is dominated by elastic contributions.

The agreement is better at smaller momentum values. The
signal at large times is noisy and increasingly so at higher
momentum. We also see the effect of the Dirichlet wall
which forces the effective mass to curve down. In this
context, the inclusion of diagram (c) would push the
elastic limit into larger times where the signal is lost. To
account for possible violation of the continuum dispersion
relation, we perform a fit to the functional form of Qelas

44 in
Eq. (8), treating both fFπ; Eπg as free parameters with mπ

fixed at the measured values from two-point functions.
Details of the fits at all four pion masses are given in
Table II in Appendix D. From this table, we observe that
the Eπ from the fit largely agrees with that from the
continuum dispersion relation. Deviations become more
apparent at higher momentum.
After the form factor data are obtained, we fit them to the

monopole form,

FIG. 9. Pion elastic form factors extracted from four-
point functions. The red data points are the measured values
in Table II. The green solid line is a fit to the z-expansion in
Eq. (36). The green dashed line is a fit to the monopole form in
Eq. (35). The blue dashed line is the same monopole form
plotted with the measured rho mass, and the black solid line with
the physical rho mass.

FIG. 8. Normalized four-point functions from diagrams (a) and
(b) in log plot and their effective mass functions at different
values of q and mπ ¼ 600 MeV. They are plotted as functions of
time separation t ¼ t2 − t1 between the two currents relative to
fixed t1 ¼ 18. The horizontal gridlines in the effective mass are
Eπ −mπ using continuum dispersion relation for Eπ with
measured mπ . These functions are used to extract the elastic
contributions Qelas

44 .
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Fπðq2Þ ¼
1

1þ q2=m2
V
; ð35Þ

which is the well-known vector meson dominance (VMD)
commonly considered in pion form factor studies. The
results are illustrated in Fig. 9. We see that the monopole
form does not fit the data well, especially at higher-
momentum and lower-pion mass. We will not consider
the monopole fit further. Instead, we opt for the z-expansion
parametrization [57]

Fπðq2Þ ¼ 1þ
Xkmax

k¼1

akzk;

where z≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p

and t ¼ −q2; tcut ¼ 4m2
π; ð36Þ

where ak are free parameters and tcut is the two-pion
production threshold. We take t0 ¼ 0 so the form goes
throughFπð0Þ ¼ 1 by construction. Using this form, we can
find a good fit with kmax ¼ 3 in all cases. For comparison,
we also plot the monopole function with the measured rho
mass mρ and the physical rho mass of mphys

ρ ¼ 0.77 GeV.
We observe significant differences between the fitted
monopole form (mV) and the VMD form (mρ). The differ-
ence grows with increasing momentum and decreasing pion
mass. Similar behavior has been observed in previous
studies [53,58]. This issue of form factors in the four-point
function formalism deserves further study with more
advanced setups, such as dynamical ensembles, smaller
pion masses, and wider momentum coverage. Once the
functional form of form factor is determined, the charge
radius is obtained by

hr2Ei ¼ −6
dFπðq2Þ
dq2

����
q2→0

: ð37Þ

From the extracted charge radius, we attempt a chiral
extrapolation using a quadratic form aþ bmπ þ cm2

π . We
also perform a chiral extrapolation of the elastic part of αE
using the form a

mπ
þ bþ cmπ . The result is shown in

Fig. 10. The extrapolated charge radius at the physics
point is consistent with PDG value albeit our results suffer
from relatively large statistical errors. The same is true for
the elastic part of αE in Eq. (1). Their values in physical
units can be found in Table I.

C. Electric polarizability

Having obtained the elastic contribution Qelas
44 , we now

turn to the inelastic part of αE from Eq. (1). In Fig. 11 we
show separately the total contribution Q44 (from all three
diagrams) and Qelas

44 as a function of current separation

t ¼ t2 − t1. We use mπ ¼ 600 MeV as an example;
the graphs at the other pion masses look similar. Note
that although Qelas

44 is obtained in the large-time region, the
subtraction is done in the whole region according to
the functional form in Eq. (8). Most of the contribution
is in the small time region where inelastic contributions are
significant. We observe that Qelas

44 is consistently larger than
Q44, suggesting that the inelastic term in the formula is
negative. The time integral is simply the negative of the
shaded area between the two curves. One detail to notice is
that the curves include the t ¼ 0 point which has unphysical
contributions in Q44 as mentioned earlier. We would
normally avoid this point and only start the integral from
t ¼ 1. However, as one can see, the chunk of area between
t ¼ 0 and t ¼ 1 is the largest piece in the integral. To
include this contribution, we linearly extrapolated the Q44

term back to t ¼ 0 using the two points at t ¼ 1 and t ¼ 2.
This will incur a systematic effect on the order of Oða2Þ
since the error itself is order ofOðaÞ. As the continuum limit
is approached, the systematic effect will vanish (the chunk
will shrink to zero). There is no issue to include this point in
Qelas

44 using its functional form.
The inelastic term can now be constructed by multiply-

ing 2α=q2 and the time integral, and the whole term is a
function of momentum. Since αE is a static property, we
extrapolate it to q2 ¼ 0 smoothly. We consider three fits, a
quadratic fit aþ bxþ cx2 (x ¼ q2) using all four data
points, the same quadratic fit using the lowest three points,

FIG. 10. Chiral extrapolation of charge radius (top) and the
elastic part of electric polarizability (bottom). The green stars are
derived from PDG values.
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and a linear fit using the two lowest points. The results are
shown in Fig. 12 for all pion masses. One observes a spread
in the extrapolated values. The fits with four or two points
do not capture the curvature in the data; only the one with
three points does. We treat the spread as a systematic effect
as follows. We take the average of the largest spread out of
the three values at each pion mass, and it comes with a
statistical uncertainty. We then take half value of the spread
as a systematic uncertainty. The statistical and systematic
uncertainties are then propagated in quadrature to the
analysis of αE. For our data, the statistical uncertainties
are relatively small, so the systematic uncertainties from the
extrapolation are dominant in the inelastic contribution.
Finally, we assemble the two terms in the formula in

Eq. (1) to obtain αE in physical units. To see how the trend
continues to smaller pion masses, we take the total values
for αE at the four pion masses and perform a smooth
extrapolation to the physical point. Since our pion masses
are relatively large, we consider two forms to cover the
range of uncertainties in the extrapolation: a polynomial
form aþ bmπ þ cm3

π and a form
a
mπ

þ bmπ þ cm3
π inspired

by ChPT [59]. The spread can be considered as a systematic

effect. Since ChPT for pions has no m2
π term, we choose to

leave it out in the forms. The leading 1=mπ term is divergent
at the chiral limit. The extrapolated value of 4.2� 0.5 to
8.8� 0.9 is higher than the known value from ChPT at two
loop [47] which gives αE ¼ 2.93ð5Þ, and from PDG [60]
which quotes a value αE ¼ 2.0ð6Þð7Þ from experiment with
large uncertainties. Combining the chirally extrapolated
total and the previously chirally extrapolated elastic term
from Fig. 10, we obtain the inelastic term by taking the
difference of the two. This yields a prediction of −9.7� 1.9
to −5.1� 2.0 for the inelastic value at the physics point. We
should mention that the range is slightly smaller in
magnitude than the inelastic contribution obtained in
another lattice study [36] near physical pion mass. It
employs a formula derived from a different method but
has a similar structure.
We summarize the results in Fig. 13 and in Table I. At the

pion masses explored, our lattice results show a clear pattern
for electric polarizability: the elastic term makes a positive

FIG. 12. Momentum dependence of the inelastic term in
Eq. (1) and its extrapolation to q2 ¼ 0 at all pion masses.
Red points are based on the shaded areas in Fig. 11. Blue curve is
a quadratic extrapolation using all points. Black curve is the
same quadratic extrapolation using the three lowest points.
Green curve is a linear extrapolation based on the two lowest
points. Empty points indicate the corresponding extrapolated
values contributing to αE.

FIG. 11. Total Q44 and elastic Qelas
44 at different values of q

at mπ ¼ 600 MeV. The shaded area, ð1=aÞ R dt½Q44ðq; tÞ−
Qelas

44 ðq; tÞ�, is the dimensionless signal contributing to polar-
izability.
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contribution, whereas the inelastic term makes a negative
and smaller in magnitude contribution. The cancellation
leads to a positive value in the total. The cancellation
appears to continue in the approach to the physical point,
but it is less conclusive quantitatively, as indicated by
the uncertainty bands from extrapolations. This points to
the importance of exploring smaller pion masses in future
simulations.

V. SUMMARY AND OUTLOOK

We investigated the feasibility of using four-point
functions in lattice QCD to extract charged pion electric
polarizability. The approach is based on low-energy
Compton scattering tensor constructed with quark and
gluon fields in Euclidean spacetime [38]. The central object
is the formula given in Eq. (1) which consists of two terms.
One is an elastic contribution involving charge radius hr2Ei
and pion mass. The other an inelastic contribution in the
form of a subtracted time integral. In addition to four-point
functions, it requires two-point functions for pion mass and
normalization, but not three-point functions. The elastic
contribution can be obtained from the same four-point
function in the elastic limit.
We laid out a detailed formalism and notation using

standard Wilson fermion as a baseline. Although we use
both local current and conserved current on the lattice to
develop and test the formalism, our results are based on
conserved current on the lattice. It sidesteps the renormal-
ization issue (ZV ¼ 1), but comes with increased complex-
ity in implementation. To apply the special kinematics
(zero-momentum Breit frame) in the formula, we employ
wall sources without gauge-fixing for the creation and
annihilation of pions. We show how to construct the

four-point functions using SST quark propagation, develop
efficient algorithms for numerical evaluation, and use a
high-performance solver [61].
We carried out a proof-of-concept simulation using

quenched Wilson action with pion mass ranging from
1100 MeV to 370 MeV. We only considered the connected
contributions in this work. We discussed three types of
wall-to-wall two-point functions for normalization. We
found a perfect correlation between the four-point function
Q44ðq2 ¼ 0Þ and Type 3 two-point function imposed by
current conservation, configuration by configuration. This
property provides a strong check of our implementation.
The analysis procedure used to determine αE in Eq. (1)

involves multiple steps which we summarize here: 1)
Fit Type 1 two-point function to obtain mπ (and mρ). 2)

Fit four-point function QðabÞ
44 from diagrams (a) and (b) to

Qelas
44 at large times for elastic form factor Fπ. 3) Fit Fπ data

to a functional form, then extract charge radius hr2Ei which
is then chirally extrapolated. 4) Perform subtraction

QðabcÞ
44 ðqÞ −Qelas

44 ðqÞ at small times using all three diagrams
(a), (b), and (c). Do the time integration. Extrapolate back
to t ¼ 0 to include the missing chunk due to contact terms.
5) Extrapolate the inelastic term to q2 ¼ 0 to obtain the
static limit, then assemble everything in physical units for
αE. 6) Extrapolate the elastic and total αE in pion mass to
the physical point, obtain the inelastic by taking the
difference.
Our results at the pion masses explored so far reveal a

clear physical picture for charged pion αE; it is the result of
a cancellation between a positive elastic contribution and a
negative inelastic contribution. It would be interesting to see
how the cancellation plays out in the approach to the
physical point. Nevertheless, the simulation demonstrates
that the four-point function methodology can be a viable
alternative to the background method for polarizabilities of
charged hadrons. We caution that the picture is subject to a
number of systematic effects not incorporated at this stage,
such as the quenched approximation, finite-volume effects,
and disconnected loops. Other sources of uncertainty in
the present analysis include fitting the elastic form factor,
the contact term at t ¼ 0 in the inelastic term, and the
extrapolation of the inelastic term to q2 ¼ 0. All these open
issues deserve further study in future simulations.
Going forward, the investigation can proceed in multiple

directions. First, the quenched approximation should be
removed by employing dynamical fermions. Work is
underway to use our collection of two-flavor nHYP-clover
ensembles [62] which have been successfully used in a
number of physics projects. They have smaller pion masses
(about 315 MeV and 227 MeV) that can be used to check
the expected chiral behavior and facilitate a chiral extrapo-
lation study. The elongated geometries in these ensembles
offer a cost-effective way of studying finite-volume effects
and reaching smaller q values. It would be interesting to see

FIG. 13. Pion mass dependence of electric polarizability of a
charged pion from four-point functions in lattice QCD. Elastic
and inelastic contributions correspond to the two terms in the
formula in Eq. (1). Elastic and total are chirally extrapolated to
the physical point. Inelastic is the difference of the two. Empty
circles are extrapolated values at the physical point. Magenta
triangle is known value from ChPT. Black and green stars are
PDG values for elastic and total, respectively.
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how the charge radius is affected by the change of action.
Second, a simulation of charged pion magnetic polar-
izability (βM) is straightforward. The formula has been
derived in Ref. [38]. One just needs to replaceQ44 withQ11

in the formalism. It would be interesting to check the well-
known prediction αE þ βM ≈ 0 from ChPT. Third, the
disconnected contributions should be included. This is a
challenging task. Although disconnected loops generally
give smaller contributions than connected ones, they must
be dealt with for a complete picture from lattice QCD.
Fourth, the methodology can be equally applied to neutral
particles (for example π0 and the neutron). The advantage it
offers over the background field method is the natural
treatment of disconnected loops (or sea quarks) [4,5]. Our
ultimate target is the proton for which a formula is also
available [38]. A first-principles-based calculation of its
polarizabilities will be a valuable addition to the Compton
scattering effort in nuclear physics.
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APPENDIX A: OPERATORS AND CURRENT
CONSERVATION

To evaluate Eq. (4) in lattice QCD, we use standard
annihilation (ψ) and creation (ψ†) operators for a charged
pion,

ψπþðxÞ ¼ d̄ðxÞγ5uðxÞ; ψ†
πþðxÞ ¼ −ūðxÞγ5dðxÞ: ðA1Þ

We also consider rho meson two-point functions con-
structed from,

ψρðxÞi ¼ d̄ðxÞγiuðxÞ; i ¼ 1; 2; 3; ðA2Þ

and average over the spatial directions. For Wilson fer-
mions, the Dirac operatorMq ¼ =Dþmq takes the standard
form for a single-quark flavor labeled by q,

Mq ¼ 1 − κq
X
μ

h
ð1 − γμÞUμ þ ð1þ γμÞU†

μ

i
; ðA3Þ

where κq ¼ 1=ð2mq þ 4Þ is the hopping parameter and mq

the bare quark mass.
For current operators, we consider two options. One is

the lattice local (or point) current built from up and down
quark fields,

jðPCÞμ ≡ ZVκðquūγμuþ qdd̄γμdÞ: ðA4Þ

The factor κ here is to account for the quark-field rescaling
ψ →

ffiffiffiffiffi
2κ

p
ψ in Wilson fermions. The factor 2 is canceled by

the 1=2 factor in the definition of the vector current 1
2
ψ̄γμψ .

The charge factors are qu ¼ 2=3 and qd ¼ −1=3 where the
resulting e2 ¼ α ≈ 1=137 in the four-point function has
been absorbed in the definition of απE. The advantage of this
operator is that it leads to simple correlation functions. The
drawback is that the renormalization constant for the vector
current (ZV) has to be determined.
We also consider conserved vector current on the lattice

(ZV ≡ 1) which can be derived by the Noether procedure.
For the Wilson fermion action S ¼ ψ̄qMqψq built from the
matrix in Eq. (A3), the simplest way [63] is to substitute the
gauge fields by

UμðxÞ → UμðxÞeiqqv
q
μ ; ðA5Þ

and differentiate with respect to the external vector field vqμ,
then take vqμ → 0. The result is the point-split form

jðq;PSÞμ ðxÞ ¼ −i
δS
δvqμ

����
vqμ→0

¼ −qqκq
h
ψ̄qðxÞð1 − γμÞUμðxÞψqðxþ μ̂Þ

− ψ̄qðxþ μ̂Þð1þ γμÞU†
μðxÞψqðxÞ

i
: ðA6Þ

The phase factor −i is explained in Ref. [64]. An alternative
method [65,66] is through a local transformation on the
quark fields, ψ → e−iωðxÞψ , and do variation δS

δðΔμωÞ on the

finite difference Δμω ¼ ωðxþ μ̂Þ − ωðxÞ. For two-quark
flavors (u and d), we have

jðPSÞμ ðxÞ ¼ quκu
h
−uðxÞð1 − γμÞUμðxÞuðxþ μ̂Þ

þ ūðxþ μ̂Þð1þ γμÞU†
μðxÞuðxÞ

i
þ qdκd

h
−d̄ðxÞð1 − γμÞUμðxÞdðxþ μ̂Þ

þ d̄ðxþ μ̂Þð1þ γμÞU†
μðxÞdðxÞ

i
: ðA7Þ

The conserved current for nHYP fermion has the same
form, except the gauge links are nHYP-smeared. Although
conserved currents explicitly involve gauge fields and lead
to more complicated correlation functions, they have the
advantage of circumventing the renormalization issue.
Just like current conservation guarantees the normaliza-

tion condition in three-point functions,
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X
x1

hΩjψðxÞjðq;PSÞ4 ðx1Þψ†ð0ÞjΩi ¼ qqhΩjψðxÞψ†ð0ÞjΩi;

ðA8Þ

a similar condition holds in four-point functions,

X
x2;x1

hΩjψðxÞjðq2;PSÞ4 ðx2Þjðq1;PSÞ4 ðx1Þψ†ð0ÞjΩi

¼ q1q2hΩjψðxÞψ†ð0ÞjΩi: ðA9Þ

In physical terms, the charge overlap at q ¼ 0 on the left-
hand-side is effectively reconstructing the two-point func-
tion. Each charge density is spread over all spatial sites on
the lattice. By summing over x1 and x2 at zero momentum,
we recover the total charge factor from each insertion,
regardless of the time points of the insertions. There is a
subtle issue with four-point functions. If the two currents

couple to different quark lines (q1 ≠ q2), the conservation
is for all combinations of t1 and t2 between source and sink,
including t1 ¼ t2. If they couple to the same quark line
(q1 ¼ q2), the conservation is only true for t1 ≠ t2. The
point t1 ¼ t2 introduces unwanted contact terms on the
lattice and is avoided. The issue is a lattice artifact; in the
continuum, the contact interaction is regular and well-
defined. The conservation property in Eq. (A9) is used to
validate the four-point diagrams in this work.

APPENDIX B: WICK CONTRACTIONS

Here we give the unnormalized correlation functions in
Eq. (3) by contracting out all quark-antiqurk pairs.

1. Local current

For point current (PC), using Eqs. (A1) and (A4), the full
correlation function has 20 diagrams,

Q̃ðPCÞ
μν ðq; t3; t2; t1; t0Þ ¼

X
x2;x1

e−iq·x2eiq·x1
X
x3;x0

hΩjψπþðx3; t3ÞjðPCÞμ ðx2; t2ÞjðPCÞν ðx1; t1Þψ†
πþðx0; t0ÞjΩi

≡ Z2
Vκ

2

9

X19
i¼0

diðq; t3; t2; t1; t0Þ; ðB1Þ

where

dA10 ¼ −2 tr
h
Suðt1; t3Þγ5Sdðt3; t2Þγμe−iqSdðt2; t0Þγ5Suðt0; t1Þγνeiq

i
;

dA-bwd7 ¼ −2 tr
h
Suðt2; t3Þγ5Sdðt3; t1ÞγνeiqSdðt1; t0Þγ5Suðt0; t2Þγμe−iq

i
;

dB5 ¼ 4 tr
h
Suðt2; t3Þγ5Sdðt3; t0Þγ5Suðt0; t1ÞγνeiqSuðt1; t2Þγμe−iq

i
;

dB-bwd15 ¼ 1 tr
h
Suðt0; t3Þγ5Sdðt3; t2Þγμe−iqSdðt2; t1ÞγνeiqSdðt1; t0Þγ5

i
;

dC1 ¼ 4 tr
h
Suðt1; t3Þγ5Sdðt3; t0Þγ5Suðt0; t2Þγμe−iqSuðt2; t1Þγνeiq

i
;

dC-bwd17 ¼ 1 tr
h
Suðt0; t3Þγ5Sdðt3; t1ÞγνeiqSdðt1; t2Þγμe−iqSdðt2; t0Þγ5

i
;

dD0 ¼ −4 tr½Suðt0; t3Þγ5Sdðt3; t0Þγ5�tr
h
Suðt1; t2Þγμe−iqSuðt2; t1Þγνeiq

i
;

dD18 ¼ −1 tr½Suðt0; t3Þγ5Sdðt3; t0Þγ5�tr
h
Sdðt1; t2Þγμe−iqSdðt2; t1Þγνeiq

i
;

dEl4 ¼ −4 tr
h
Suðt1; t3Þγ5Sdðt3; t0Þγ5Suðt0; t1Þγνeiq

i
tr
h
Suðt2; t2Þγμe−iq

i
;

dEl13 ¼ 2 tr
h
Suðt1; t3Þγ5Sdðt3; t0Þγ5Suðt0; t1Þγνeiq

i
tr
h
Sdðt2; t2Þγμe−iq

i
;

dEl-bwd6 ¼ 2 tr
h
Suðt0; t3Þγ5Sdðt3; t1ÞγνeiqSdðt1; t0Þγ5

i
tr
h
Suðt2; t2Þγμe−iq

i
;

dEl-bwd14 ¼ −1 tr
h
Suðt0; t3Þγ5Sdðt3; t1ÞγνeiqSdðt1; t0Þγ5

i
tr
h
Sdðt2; t2Þγμe−iq

i
;

dEr2 ¼ −4 tr
h
Suðt2; t3Þγ5Sdðt3; t0Þγ5Suðt0; t2Þγμe−iq

i
tr
h
Suðt1; t1Þγνeiq

i
;
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dEr8 ¼ 2 tr
h
Suðt2; t3Þγ5Sdðt3; t0Þγ5Suðt0; t2Þγμe−iq

i
tr
h
Sdðt1; t1Þγνeiq

i
;

dEr-bwd11 ¼ 2 tr
h
Suðt0; t3Þγ5Sdðt3; t2Þγμe−iqSdðt2; t0Þγ5

i
tr
h
Suðt1; t1Þγνeiq

i
;

dEr-bwd16 ¼ −1 tr
h
Suðt0; t3Þγ5Sdðt3; t2Þγμe−iqSdðt2; t0Þγ5

i
tr
h
Sdðt1; t1Þγνeiq

i
;

dF3 ¼ 4 tr½Suðt0; t3Þγ5Sdðt3; t0Þγ5�tr
h
Suðt2; t2Þγμe−iq

i
tr
h
S
u
ðt1; t1Þγνeiq

i
;

dF9 ¼ −2 tr½Suðt0; t3Þγ5Sdðt3; t0Þγ5�tr
h
Suðt2; t2Þγμe−iq

i
tr
h
Sdðt1; t1Þγνeiq

i
;

dF12 ¼ −2 tr½Suðt0; t3Þγ5Sdðt3; t0Þγ5�tr
h
Sdðt2; t2Þγμe−iq

i
tr
h
Suðt1; t1Þγνeiq

i
;

dF19 ¼ 1 tr½Suðt0; t3Þγ5Sdðt3; t0Þγ5�tr
h
Sdðt2; t2Þγμe−iq

i
tr
h
Sdðt1; t1Þγνeiq

i
: ðB2Þ

We use a matrix notation that highlights time dependence. The trace is over spin and color. The momentum factor is defined
by a diagonal matrix,

½e�iq�s;c;x;s0;c0;x0 ≡ δss0δcc0δx;x0e�iq·x: ðB3Þ

The spatial sums over ðx2; x1; x3; x0Þ are implicit in the matrix multiplications. We use Sðt2; t1Þ to denote a quark propagator
from t1 to t2 (from right to left), obtained from the inverse of quark matrix M with a source Mx ¼ b, see Eq. (C11). The
terms are grouped into six distinct topological diagrams depicted in Fig 2, labeled by superscripts on di. If isospin limit
(κu ¼ κd ¼ κ) is taken, we get 12 diagrams (first six connected, the rest disconnected),

dA4 ¼ −2 tr½Sðt1; t3Þγ5Sðt3; t2Þγμe−iqSðt2; t0Þγ5Sðt0; t1Þγνeiq�;
dA-bwd2 ¼ −2 tr½Sðt2; t3Þγ5Sðt3; t1ÞγνeiqSðt1; t0Þγ5Sðt0; t2Þγμe−iq�;

dB1 ¼ 4 tr½Sðt2; t3Þγ5Sðt3; t0Þγ5Sðt0; t1ÞγνeiqSðt1; t2Þγμe−iq�;
dB-bwd7 ¼ 1 tr½Sðt0; t3Þγ5Sðt3; t2Þγμe−iqSðt2; t1ÞγνeiqSðt1; t0Þγ5�;

dC0 ¼ 4 tr½Sðt1; t3Þγ5Sðt3; t0Þγ5Sðt0; t2Þγμe−iqSðt2; t1Þγνeiq�;
dC-bwd9 ¼ 1 tr½Sðt0; t3Þγ5Sðt3; t1ÞγνeiqSðt1; t2Þγμe−iqSðt2; t0Þγ5�;

dD10 ¼ −5 tr½Sðt0; t3Þγ5Sðt3; t0Þγ5�tr½Sðt1; t2Þγμe−iqSðt2; t1Þγνeiq�;
dEl5 ¼ −2 tr½Sðt1; t3Þγ5Sðt3; t0Þγ5Sðt0; t1Þγνeiq�tr½Sðt2; t2Þγμe−iq�;

dEl-bwd6 ¼ 1 tr½Sðt0; t3Þγ5Sðt3; t1ÞγνeiqSðt1; t0Þγ5�tr½Sðt2; t2Þγμe−iq�;
dEr3 ¼ −2 tr½Sðt2; t3Þγ5Sðt3; t0Þγ5Sðt0; t2Þγμe−iq�tr½Sðt1; t1Þγνeiq�;

dEr-bwd8 ¼ 1 tr½Sðt0; t3Þγ5Sðt3; t2Þγμe−iqSðt2; t0Þγ5�tr½Sðt1; t1Þγνeiq�;
dF11 ¼ 1 tr½Sðt0; t3Þγ5Sðt3; t0Þγ5�tr½Sðt2; t2Þγμe−iq�tr½Sðt1; t1Þγνeiq�: ðB4Þ

2. Conserved current

For point-split current (PS), using Eqs. (A1) and (A7), Wick contraction yields 80 diagrams (not shown here) if u and d
are distinct. If isospin limit is taken, there are 48 diagrams which we express as

Q̃ðPSÞ
μν ðq; t3; t2; t1; t0Þ ¼

X
x2;x1

e−iq·x2eiq·x1
X
x3;x0

hΩjψπþðx3; t3ÞjðPSÞμ ðx2; t2ÞjðPSÞν ðx1; t1Þψ†
πþðx0; t0ÞjΩi

≡ κ2

9

X47
i¼0

diðq; t3; t2; t1; t0Þ: ðB5Þ
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The 24 connected diagrams are given by

dA16 ¼ −2 tr
h
Sðt1 þ ν̂4; t3Þðγ5ÞSðt3; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t0Þðγ5ÞSðt0; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4Þ

i
;

dA18 ¼ 2 tr
h
Sðt1 þ ν̂4; t3Þðγ5ÞSðt3; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t0Þðγ5ÞSðt0; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4Þ
i
;

dA20 ¼ 2 tr
h
Sðt1; t3Þðγ5ÞSðt3; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t0Þðγ5ÞSðt0; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1Þeiq
i
;

dA22 ¼ −2 tr
h
Sðt1; t3Þðγ5ÞSðt3; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t0Þðγ5ÞSðt0; t1 þ ν̂4Þð1þ γνÞU†
νðt1 þ ν̂4; t1Þeiq

i
;

dA-bwd8 ¼ −2 tr
h
Sðt2 þ μ̂4; t3Þðγ5ÞSðt3; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t0Þðγ5ÞSðt0; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4Þ

i
;

dA-bwd10 ¼ 2 tr
h
Sðt2; t3Þðγ5ÞSðt3; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t0Þðγ5ÞSðt0; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iq
i
;

dA-bwd12 ¼ 2 tr
h
Sðt2 þ μ̂4; t3Þðγ5ÞSðt3; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t0Þðγ5ÞSðt0; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4Þ
i
;

dA-bwd14 ¼ −2 tr
h
Sðt2; t3Þðγ5ÞSðt3; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t0Þðγ5ÞSðt0; t2 þ μ̂4Þð1þ γμÞU†
μðt2 þ μ̂4; t2Þe−iq

i
;

dB1 ¼ 4 tr
h
Sðt2 þ μ̂4; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4Þ

i
;

dB3 ¼ −4 tr
h
Sðt2; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iq
i
;

dB5 ¼ −4 tr
h
Sðt2 þ μ̂4; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4Þ
i
;

dB7 ¼ 4 tr
h
Sðt2; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t2 þ μ̂4Þð1þ γμÞU†
μðt2 þ μ̂4; t2Þe−iq

i
;

dB-bwd25 ¼ 1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t0Þðγ5Þ

i
;

dB-bwd31 ¼ −1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t0Þðγ5Þ
i
;

dB-bwd37 ¼ −1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t0Þðγ5Þ
i
;

dB-bwd43 ¼ 1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t1 þ ν̂4Þð1þ γνÞU†
νðt1 þ ν̂4; t1ÞeiqSðt1; t0Þðγ5Þ

i
;

dC0 ¼ 4 tr
h
Sðt1 þ ν̂4; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4Þ

i
;

dC2 ¼ −4 tr
h
Sðt1 þ ν̂4; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4Þ
i
;

dC4 ¼ −4 tr
h
Sðt1; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1Þeiq
i
;

dC6 ¼ 4 tr
h
Sðt1; t3Þðγ5ÞSðt3; t0Þðγ5ÞSðt0; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t1 þ ν̂4Þð1þ γνÞU†
νðt1 þ ν̂4; t1Þeiq

i
;

dC-bwd27 ¼ 1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t0Þðγ5Þ

i
;

dC-bwd33 ¼ −1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t1Þð1 − γνÞeiqUνðt1; t1 þ ν̂4ÞSðt1 þ ν̂4; t2 þ μ̂4Þð1þ γμÞU†

μðt2 þ μ̂4; t2Þe−iqSðt2; t0Þðγ5Þ
i
;

dC-bwd39 ¼ −1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t2Þð1 − γμÞe−iqUμðt2; t2 þ μ̂4ÞSðt2 þ μ̂4; t0Þðγ5Þ
i
;

dC-bwd45 ¼ 1 tr
h
Sðt0; t3Þðγ5ÞSðt3; t1 þ ν̂4Þð1þ γνÞU†

νðt1 þ ν̂4; t1ÞeiqSðt1; t2 þ μ̂4Þð1þ γμÞU†
μðt2 þ μ̂4; t2Þe−iqSðt2; t0Þðγ5Þ

i
:

ðB6Þ
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The 24 disconnected diagrams are given by

dD28¼−5tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt1þ ν̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4ÞSðt2þ μ̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dD34¼5tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt1þ ν̂4;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iqSðt2;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ
i
;

dD40¼5tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt1;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4ÞSðt2þ μ̂4;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
;

dD46¼−5tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt1;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iqSðt2;t1þ ν̂4Þð1þγνÞU†
νðt1þ ν̂4;t1Þeiq

i
;

dEl17¼−2tr
h
Sðt1þ ν̂4;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
tr
h
Sðt2þ μ̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
;

dEl19¼2tr
h
Sðt1þ ν̂4;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
tr
h
Sðt2;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
;

dEl21¼2tr
h
Sðt1;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
tr
h
Sðt2þ μ̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
;

dEl23¼−2tr
h
Sðt1;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
tr
h
Sðt2;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
;

dEl-bwd24 ¼1tr
h
Sðt0;t3Þðγ5ÞSðt3;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4ÞSðt1þ ν̂4;t0Þðγ5Þ

i
tr
h
Sðt2þ μ̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
;

dEl-bwd30 ¼−1tr
h
Sðt0;t3Þðγ5ÞSðt3;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4ÞSðt1þ ν̂4;t0Þðγ5Þ

i
tr
h
Sðt2;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
;

dEl-bwd36 ¼−1tr
h
Sðt0;t3Þðγ5ÞSðt3;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1ÞeiqSðt1;t0Þðγ5Þ
i
tr
h
Sðt2þ μ̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
;

dEl-bwd42 ¼1tr
h
Sðt0;t3Þðγ5ÞSðt3;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1ÞeiqSðt1;t0Þðγ5Þ
i
tr
h
Sðt2;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
;

dEr9 ¼−2tr
h
Sðt2þ μ̂4;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
tr
h
Sðt1þ ν̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dEr11¼2tr
h
Sðt2;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
tr
h
Sðt1þ ν̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dEr13¼2tr
h
Sðt2þ μ̂4;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
tr
h
Sðt1;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
;

dEr15¼−2tr
h
Sðt2;t3Þðγ5ÞSðt3;t0Þðγ5ÞSðt0;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
tr
h
Sðt1;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
;

dEr-bwd26 ¼1tr
h
Sðt0;t3Þðγ5ÞSðt3;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4ÞSðt2þ μ̂4;t0Þðγ5Þ

i
tr
h
Sðt1þ ν̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dEr-bwd32 ¼−1tr
h
Sðt0;t3Þðγ5ÞSðt3;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iqSðt2;t0Þðγ5Þ
i
tr
h
Sðt1þ ν̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dEr-bwd38 ¼−1tr
h
Sðt0;t3Þðγ5ÞSðt3;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4ÞSðt2þ μ̂4;t0Þðγ5Þ

i
tr
h
Sðt1;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
;

dEr-bwd44 ¼1tr
h
Sðt0;t3Þðγ5ÞSðt3;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iqSðt2;t0Þðγ5Þ
i
tr
h
Sðt1;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
;

dF29¼1tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt2þ μ̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
tr
h
Sðt1þ ν̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dF35¼−1tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt2;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
tr
h
Sðt1þ ν̂4;t1Þð1−γνÞeiqUνðt1;t1þ ν̂4Þ

i
;

dF41¼−1tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt2þ μ̂4;t2Þð1−γμÞe−iqUμðt2;t2þ μ̂4Þ

i
tr
h
Sðt1;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
;

dF47¼1tr½Sðt0;t3Þðγ5ÞSðt3;t0Þðγ5Þ�tr
h
Sðt2;t2þ μ̂4Þð1þγμÞU†

μðt2þ μ̂4;t2Þe−iq
i
tr
h
Sðt1;t1þ ν̂4Þð1þγνÞU†

νðt1þ ν̂4;t1Þeiq
i
:
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The shifted quark propagators have the following meaning depending on whether the current is split in temporal or spatial
directions, for example,

Sðt3; t2 þ μ̂4Þ≡
(
Sðt3; t2 þ 1Þ ¼ Pðt3ÞM−1Pðt2 þ 1ÞT; if μ ¼ 4

Sðt3; t2Þ ¼ Pðt3ÞM−1Pðt2ÞT; if μ ≠ 4;
ðB8Þ

where the projector PðtÞ is defined in Eq. (C9). The
associated gauge links have the meaning,

Uμðt2; t2 þ μ̂4Þ≡
(
U4ðt2; t2 þ 1Þ; if μ ¼ 4

Uμðt2; t2Þ; if μ ≠ 4;

U†
μðt2 þ μ̂4; t2Þ≡

(
U†

4ðt2 þ 1; t2Þ; if μ ¼ 4

U†
μðt2; t2Þ; if μ ≠ 4;

ðB9Þ

where the gauge links are defined in Eq. (C6). So the split
in time is explicitly carried in both the propagators and
gauge links, whereas the split in space is only implicitly
carried in the gauge links. Note the placement of e�iq in

relation to U and U†. They do not commute when the
currents are split in spatial directions.

APPENDIX C: WALL SOURCE
IMPLEMENTATION

We introduce a rigorous matrix notation to elucidate the
implementation of wall sources. We define wall sources as
a vector in spatial coordinates, diagonal in spin and color,

½W�s;c;x;s0;c0 ≡ δss0δcc0 : ðC1Þ

That is, all spatial entries of the real part are set to 1,
imaginary part to zero. It can be placed at any time slice.
Under a gauge transformation G, the gauge average is

hGðtÞWWTGðtÞ†iG ¼ 1x;s;c; where ½GðtÞW�x ¼ Gðt;xÞ1s;c: ðC2Þ

More explicitly,

½hGðtÞWWTGðtÞ†iG�x;y ¼
1

jGj
Z

DGGðt; xÞ1spinGðt; yÞ†1spin ¼ δx;y1s1c: ðC3Þ

We insert the wall source in between a pair of quark propagators in the path integral by the following steps, only
highlighting the time dependence in S to keep the notation simple,Z

DUPðUÞ Tr
x;s;c

h
…S½U�ðt0; tÞS½U�ðt; t00Þ…

i

¼
Z

DUPðUÞ Tr
x;s;c

h
…S½U�ðt0; tÞ1x;s;cS½U�ðt; t00Þ…

i

¼ 1

jGj
Z

DG
Z

DUPðUÞ Tr
x;s;c

h
…S½U�ðt0; tÞGðtÞWWTGðtÞ†S½U�ðt; t00Þ…

i

¼ 1

jGj
Z

DG
Z

DUPðUGÞ Tr
x;s;c

h
…S½UG�ðt0; tÞGðtÞWWTGðtÞ†S½UG�ðt; t00Þ…

i

¼ 1

jGj
Z

DG
Z

DUPðUÞ Tr
x;s;c

h
…S½U�ðt0; tÞWWTS½U�ðt; t00Þ…

i

¼
Z

DUPðUÞ Tr
x;s;c

h
…S½U�ðt0; tÞWWTS½U�ðt; t00Þ…

i

¼
Z

DUPðUÞTr
s;c

h
WTS½U�ðt; t00Þ…S½U�ðt0; tÞW

i
: ðC4Þ

In the last step, we use the cyclic property of trace TrAB ¼ TrBA. We also used the property that under a gauge
transformation Uμ → ðUGÞμ ≡ GUμG†, the propagator transforms as
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S½UG�ðt; t0Þ ¼ GðtÞS½U�ðt; t0ÞGðt0Þ†: ðC5Þ

More explicitly, the gauge links are

ðUμÞx;t;x0;t0 ¼ δðx;tÞ;ðx0;t0Þ−μUμðx; tÞ1s; ðC6Þ
and its gauge transformation is

ðGUμG†Þx;y ¼ GðxÞ½Uμ�x;yGðyÞ† ¼ GðxÞδx;y−μUμðxÞGðyÞ†
¼ δx;y−μGðxÞUμðxÞGðxþ μÞ†: ðC7Þ

Note that we will use

Uμðt; t0Þ ¼ PðtÞUμPðt0ÞT and U†
μðt; t0Þ ¼ PðtÞU†

μPðt0ÞT:
ðC8Þ

Here PðtÞ is defined as projection to a time slice [not to be
confused with the weighting factor PðUÞ in the path
integral in Eq. (C4)],

½PðtpÞ�s;c;x;s0;c0;t0;x0 ≡ δtp;t0δss0δcc0δx;x0 ; ðC9Þ

which is diagonal in spin, color, and space. When we take
the dagger of Uμðt; t0Þ, we need to switch the time argu-
ments since

½Uμðt; t0Þ�† ¼ ½PðtÞUμPðt0ÞT �† ¼ Pðt0ÞU†
μPðtÞT

¼ U†
μðt0; tÞ: ðC10Þ

Operationally, a quark propagator can be written in terms
of the inverse of the quark matrix as

Sðt; t0Þ≡ PðtÞM−1
q Pðt0ÞT: ðC11Þ

For Wilson-type fermions, Mq satisfies the γ5-hermiticity
relation

M†
q ¼ γ5Mqγ5; ðM−1

q Þ† ¼ γ5M−1
q γ5: ðC12Þ

Examples on how to use the notation to calculate two-point
and four-point correlation functions are discussed in Sec. III.

APPENDIX D: FORM FACTOR FROM FOUR-POINT FUNCTIONS

TABLE II. Pion form factor Fπðq2Þ from four-point functions. An example of the data to be fitted is given in Fig. 8. The fit form is in
Eq. (8) with Fπ and Eπ treated as free parameters and mπ taken from the measured value. For comparison, the Eπ from the continuum
dispersion relation is provided with the same mπ values. The four columns correspond to q ¼ f0; 0; 1g; f0; 1; 1g; f1; 1; 1g; f0; 0; 2g,
from left to right.

mπ ¼ 1100 MeV

Fπ 0.8209� 0.0023 0.7213� 0.0023 0.650� 0.004 0.604� 0.005
Eπ fit 1.2556� 0.0016 1.4021� 0.0027 1.530� 0.004 1.644� 0.006
Eπ continuum 1.2597� 0.0010 1.3976� 0.0009 1.5230� 0.0009 1.6389� 0.0008
Fit range f7; 9g f6; 8g f7; 10g f7; 12g
χ2=dof 2.00 1.40 2.70 1.90

mπ ¼ 800 MeV

Fπ 0.7677� 0.0027 0.646� 0.006 0.568� 0.010 0.552� 0.011
Eπ fit 0.9967� 0.0020 1.163� 0.005 1.308� 0.010 1.463� 0.013
Eπ continuum 0.9992� 0.0009 1.1682� 0.0007 1.3157� 0.0007 1.4483� 0.0006
Fit range f9; 13g f10; 17g f10; 17g f9; 14g
χ2=dof 1.40 1.40 1.10 0.72

mπ ¼ 600 MeV

Fπ 0.7412� 0.0015 0.6360� 0.0025 0.583� 0.004 0.525� 0.012
Eπ fit 0.8508� 0.0017 1.050� 0.004 1.231� 0.007 1.354� 0.016
Eπ continuum 0.8500� 0.0010 1.0435� 0.0008 1.2063� 0.0007 1.3497� 0.0006
Fit range f4; 13g f6; 15g f6; 9g f8; 13g
χ2=dof 0.52 1.30 1.50 0.39

mπ ¼ 360 MeV

Fπ 0.720� 0.004 0.616� 0.005 0.554� 0.006 0.530� 0.008
Eπ fit 0.695� 0.005 0.911� 0.009 1.076� 0.013 1.258� 0.018
Eπ continuum 0.7082� 0.0011 0.9316� 0.0009 1.1110� 0.0007 1.2652� 0.0006
Fit range f6; 11g f6; 11g f6; 11g f6; 11g
χ2=dof 0.68 0.34 0.68 1.00
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