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We update results on the QCD equation of state in (2þ 1)-flavor QCD with nonzero conserved
charge chemical potentials obtained from an eighth-order Taylor series. To construct bulk thermody-
namic observables, we use continuum extrapolated results for the second and fourth order expansion
coefficients of pressure, while using spline interpolated result based on high statistics Nτ ¼ 8

data for the sixth and eighth order expansion coefficients. We present results for basic bulk
thermodynamic observables of strangeness-neutral strong-interaction matter, i.e., pressure, number
densities, energy, and entropy density, and resum Taylor series results using Padé approximants.
Furthermore, we calculate the speed of sound as well as the adiabatic compression factor of the
strangeness-neutral matter on lines of constant entropy per net baryon number. We show that the
equation of state [PðnBÞ; ϵðnBÞ] is already well described by the 4th-order Taylor series in almost
the entire range of temperatures accessible with the beam energy scan in collider mode at the Relativistic
Heavy Ion Collider.
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I. INTRODUCTION

Fundamental properties of hot and dense matter con-
trolled by the strong force are encoded in the equation of
state (EoS). The EoS is sensitive to the change of degrees of
freedom that dominate properties of strong-interaction
matter at low temperatures and densities on the one hand
and high temperature and densities on the other hand. It
describes fluctuations of, e.g., energy and particle densities
that signal the occurrence of phase transitions. The EoS
finds application in the hydrodynamic modeling of hot and
dense matter created in heavy ion collisions [1] and in
constraining the “cosmic trajectory” of matter in the
expanding early universe [2].
The EoS of strong-interaction matter is obtained from

quantum chromodynamics (QCD) at finite temperature and

non-zero values of the conserved charge chemical poten-
tials. It is well studied at vanishing values of the chemical
potentials [3–5]. For nonvanishing values of the chemical
potentials that couple to net baryon number (μB), net
electric charge (μQ), and net strangeness (μS), lattice
QCD calculations have to face the well-known sign
problem. Currently, this renders direct numerical calcula-
tions with nonzero, real-valued chemical potentials impos-
sible. For this reason numerical calculations at nonzero
ðμB; μQ; μSÞ have been performed by either using Taylor
expansions in terms of the chemical potentials, e.g., [6,7] or
by performing numerical simulations at imaginary values
of the chemical potential, [8,9]. Using the latter and
analyzing results with various ansätze for an analytic
continuation to real values of the chemical potential, the
EoS of (2þ 1)-flavor QCD has been determined [10–12].
Following the Taylor expansion approach, results for the
QCD EoS have been obtained from up to sixth-order
expansions [13,14].
We extend here theTaylor expansion approach for the EoS

in (2þ 1)-flavor QCD using recent high-statistics results for
Taylor expansion coefficients up to eighth-order [15] in
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(μB; μQ; μS). We will make use of the Padé-resummation of
Taylor series discussed in [15] and determine direct Taylor
series results as well as Padé-resummed approximants for
pressure, net baryon-number, energy and entropy densities.
Making use of our high-statistics data at temperatures in the
vicinity of the pseudocritical temperature we will, for the
first time, present contributions to higher-order derivatives
of bulk thermodynamic observables, i.e., the speed of
sound and adiabatic compressibility of strangeness-neutral
strong-interaction matter. These quantities have been
calculated previously at vanishing values of the chemical
potentials [4,5,16].
We focus on a situation most relevant in the context of

heavy ion collision experiments, in which overall net
strangeness number density (nS) vanishes and the ratio
of net electric charge (nQ) to net baryon-number (nB)
densities is close to the isospin-symmetric limit of strange-
ness neutral matter, nQ ¼ nB=2. In collisions of heavy
nuclei, e.g., gold or lead, the ratio nQ=nB is approximately
0.4. Earlier studies of the QCD EoS with a strange quark
mass tuned to its physical value, and degenerate light quark
masses tuned to reproduce the physical, light hadron
spectrum, have been performed for different values of
r≡ nQ=nB. They have shown that differences in bulk
thermodynamic observables, arising from the deviation
of r from the isospin-symmetric value, r ¼ 0.5, are
small [14]. We therefore stick here to an analysis of the
thermodynamics of strangeness-neutral, isospin-symmetric
systems, which is equivalent to setting the electric charge
chemical potential μQ to zero.
This paper is organized as follows. In Sec. II we

summarize basic thermodynamic relations and outline
calculations in QCD with nonvanishing chemical potentials
using the Taylor series approach and the resummation of
Taylor series using Padé approximants. In Sec. III we
present our results on Taylor expansion coefficients for
bulk thermodynamic observables and discuss their proper-
ties at low and high temperature by comparing with HRG
model calculations and Oðg2Þ high-temperature perturba-
tion theory, respectively. We furthermore discuss the
structure of expansion coefficients in the vicinity of the
pseudocritical temperature. In Sec. IV we analyze thermo-
dynamic observables as function of the baryon chemical
potential. We determine the baryon chemical potential as
function of net baryon-number density to arrive at the QCD
equation of state, PðnBÞ. We furthermore present results for
basic thermodynamic observables on the pseudocritical line
as well as on lines of constant ratio of entropy to net baryon
number. The latter are discussed in Sec. V. We finally give
our conclusions in Sec. VI. In three appendices we give
some details on directional partial derivatives (A) and
discuss Oðg2Þ perturbative results for the EoS of strange-
ness-neutral matter (B) as well as the calculation of the
isentropic speed of sound (C).

II. THERMODYNAMICS IN (2 + 1)-FLAVOR QCD
AND GLOBAL CONSTRAINTS

We present here the basic thermodynamic observables
that will be analyzed by us in later sections using results
from up to eighth-order Taylor expansions of the pressure
of QCD with a strange quark mass tuned to its physical
value and two degenerate light quark masses that corre-
spond in the continuum limit to a physical pion mass value
of about 135 MeV.
We also briefly summarize basic relations used in the

Taylor expansion approach to the thermodynamics of QCD
at nonzero values of the conserved charge chemical poten-
tials and discuss our approach to the utilization of Padé-
resummed Taylor series for thermodynamic observables.
Further details on these three topics can be found in [15].

A. Thermodynamic observables

In a grand canonical ensemble the pressure, p, is a
function of temperature T and a set of chemical potentials
μ⃗ ¼ ðμB; μQ; μSÞ, which couple to the currents of conserved
charges for net baryon number (B), electric charge (Q) and
strangeness (S). The pressure is given in terms of the
logarithm of the grand canonical partition function

p
T4

¼ 1

VT3
lnZðT; V; μ̂B; μ̂Q; μ̂SÞ: ð1Þ

We will often use dimensionless variables and observables
obtained by rescaling the dimensionful observables with
appropriate powers of the temperature, e.g. μ̂X ≡ μX=T or
p̂≡ p=T4. With this we obtain for the number densities,

n̂X ¼ 1

VT3

∂ lnZðT;V; μ̂B; μ̂Q; μ̂SÞ
∂μ̂X

; X ¼ B;Q;S; ð2Þ

and the energy density,

ϵ̂ ¼ 1

VT2

∂ lnZðT; V; μ̂B; μ̂Q; μ̂SÞ
∂T

¼ 3p̂þ T
∂p̂
∂T

: ð3Þ

The entropy density reads

ŝ ¼ ϵ̂þ p̂ − μ̂Bn̂B − μ̂Qn̂Q − μ̂Sn̂S: ð4Þ

Enforcing the constraint for isospin-symmetric systems,
nQ ¼ nB=2 in strangeness-neutral matter (nS ¼ 0) is equiv-
alent to demanding μQ ¼ 0 [14]. Thermodynamic observ-
ables thus become functions of T and μ̂B only, i.e.,
p̂≡ pðT; μ̂BÞ=T4 and ŝ ¼ ϵ̂þ p̂ − μ̂Bn̂B.
In addition to the basic bulk thermodynamic observables

introduced above, we also will calculate their temperature
derivatives, imposing external constraints. We calculate the
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isentropic speed of sound in a strangeness-neutral medium
with fixed nQ=nB, [17],

c2s ≡ c2
X⃗
¼
�
∂p
∂ϵ

�
X⃗
¼ ð∂p=∂TÞX⃗

ð∂ϵ=∂TÞX⃗
: ð5Þ

with X⃗ ¼ ðs=nB; nQ=nB; nSÞ. This also gives the adiabatic
compressibility

κs ¼
1

nB

�
∂nB
∂p

�
X⃗
¼ 1

c2sðϵþ p − μSnSÞ
: ð6Þ

The calculation of c2s and κs requires taking directional
derivatives, which can be done numerically on lines of
fixed constraints X⃗ in the parameter space ðT; μ⃗Þ, or using
analytic relations. Some details on partial derivatives at
fixed constraints are given in Appendix A.

B. Taylor expansions

We start with the expansion of the pressure, p̂ ¼ p=T4,
in terms of the three conserved charge chemical potentials
ðμ̂B; μ̂Q; μ̂SÞ,

p̂ ¼ 1

VT3
lnZðT; V; μ̂B; μ̂Q; μ̂SÞ

¼
X∞
i;j;k¼0

χBQS
ijk

i!j!k!
μ̂iBμ̂

j
Qμ̂

k
S; ð7Þ

with χBQS
000 ≡ pðT; 0Þ=T4 and expansion coefficients χBQS

ijk ,

χBQS
ijk ≡ χBQS

ijk ðTÞ ¼ ∂p̂

∂μ̂iB∂μ̂
j
Q∂μ̂

k
S

����
μ⃗¼0

: ð8Þ

These expansion coefficients are cumulants of conserved
charge fluctuations evaluated at vanishing chemical
potential.1

From this expansion and the constraints, we obtain
Taylor expansions for pressure and number densities,

Δp̂≡ pðT; μBÞ
T4

−
pðT; 0Þ
T4

¼
X∞
k¼1

P2kðTÞμ̂2kB ; ð9Þ

n̂X ¼
X∞
k¼1

NX
2k−1ðTÞμ̂2k−1B ; X ¼ B;Q; S: ð10Þ

The construction of the expansion coefficients,2 P2k ≡
χ̄B;2k0 =ð2kÞ! andN2k−1 has been discussed previously for the

general case of strangeness-neutral matter and a fixed ratio
nQ=nB ¼ r [14,15]. This gives the chemical potentials μ̂Q
and μ̂S as Taylor series in terms of μ̂B,

μ̂QðT; μBÞ ¼ q1ðTÞμ̂B þ q3ðTÞμ̂3B þ q5ðTÞμ̂5B þ… ð11Þ

μ̂SðT; μBÞ ¼ s1ðTÞμ̂B þ s3ðTÞμ̂3B þ s5ðTÞμ̂5B þ…: ð12Þ

Here we only consider the isospin-symmetric case,
nQ=nB ¼ 1=2, which fixes μQ ¼ 0. In that case one finds,
for instance, a simple relation between the expansion
coefficients of the net baryon-number density and the
pressure, NB

2k−1 ¼ 2kP2k.
Taking derivatives of the expansion coefficients with

respect to temperature we also obtain the Taylor series for
the energy and entropy densities,

Δϵ̂≡ ϵðT; μ̂BÞ
T4

−
ϵðT; 0Þ
T4

¼
X∞
k¼1

ϵ2kðTÞμ̂2kB ; ð13Þ

Δŝ≡ sðT; μ̂BÞ
T3

−
sðT; 0Þ
T3

¼
X∞
k¼1

σ2kðTÞμ̂2kB : ð14Þ

We note that to obtain Eqs. (13) and (14) one must take the
temperature derivatives before applying the constraints. In
the case μQ ¼ 0, nS ¼ 0, as well as for μQ ¼ 0, μS ¼ 0 the
expansion coefficients are directly related to the expansion
coefficients of the Taylor series of the pressure,

NB
2k−1ðTÞ ¼ 2kP2kðTÞ; ð15Þ

ϵ2kðTÞ ¼ 3P2kðTÞ þ T
dP2kðTÞ

dT
; ð16Þ

σ2kðTÞ ¼ ð4 − 2kÞP2kðTÞ þ T
dP2kðTÞ

dT
: ð17Þ

We also introduce the notation ϵ̂0 ≡ ϵðT; 0Þ=T4 and
σ̂0 ≡ sðT; 0Þ=T3.

C. Resummation with Padé approximants

In [15] we analyzed the resummation of the Taylor series
for the pressure and net baryon-number density using ½n;m�
Padé approximants. We showed that in the temperature
range [135 MeV:175 MeV], the [4, 4] Padé approximants
for the pressure have poles only in the complex plane. The
location of these poles provide an estimate for the range of
validity of the Taylor series. For chemical potentials in this
range, one finds good agreement between the Padé approx-
imants and the eighth-order Taylor series for pressure and

1We often suppress the argument (T) of these generalized
susceptibilities and also suppress superscripts and subscripts of
χBQS
ijk whenever one of the subscripts vanishes, e.g., χBQS

i0k ≡ χBSik .
2See [18] for this notation and explicit definitions of χ̄B;n0 .
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net baryon-number density.3 We will use here the Padé
approximants for the Taylor series of the pressure also to
determine energy and entropy densities as well as other
thermodynamic observables introduced in Sec. II A.
As has been discussed in [15], the Taylor series for the

pressure of isospin-symmetric matter with either μS ¼ 0 or
nS ¼ 0 may conveniently be rewritten as

ΔpðT; μBÞ
T4

¼ P2
2

P4

X∞
k¼1

c2k;2x̄2k;

¼ P2
2

P4

ðx̄2 þ x̄4 þ c6;2x̄6 þ c8;2x̄8 þ � � �Þ; ð18Þ

with x̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
P4=P2

p
μ̂B and

c6;2 ¼
P6P2

P2
4

; c8;2 ¼
P8P2

2

P3
4

: ð19Þ

Using expansion coefficients from fourth, sixth and
eighth-order Taylor series for the pressure we construct
several ½n;m� Padé approximants,

P½2; 4� ¼ x̄2

1 − x̄2 þ ð1 − c6;2Þx̄4
; ð20Þ

P½4; 2� ¼ x̄2 þ ð1 − c6;2Þx̄4
1 − c6;2x̄2

; ð21Þ

P½4; 4� ¼ ð1 − c6;2Þx̄2 þ ð1 − 2c6;2 þ c8;2Þx̄4
ð1 − c6;2Þ þ ðc8;2 − c6;2Þx̄2 þ ðc26;2 − c8;2Þx̄4

:

ð22Þ

The resulting approximants for the pressure are then
given by

�
ΔpðT; μBÞ

T4

�
½n;m�

¼ P2
2

P4

P½n;m�: ð23Þ

For the number density we construct the [3, 4] Padé
approximant.
Similar Padé approximants can be obtained for the

energy density and entropy densities by replacing the
expansion coefficientsP2k with the corresponding expansion
coefficients ϵ2k and σ2k. Rather then constructing in this
way Padé approximants for various thermodynamic observ-
ables, we also directly determine Padé-based approximants
from Eq. (23), using the relevant thermodynamic relations,
e.g., Eqs. (3), (4), and (10), for the energy, entropy and net

baryon-number densities. The Padé-based approximants,
called P-Padé in the following, ensure thermodynamic
consistency among different observables and, for instance,
ensure that the singularities in the approximations for,
nB=T3, ϵ=T4 and s=T3 coincide with those of the Padé
approximation for the pressure. The Padé-based (P-Padé)
result for the energy and entropy densities are obtained by
taking appropriate partial derivatives of the ½n;m� Padé
approximation for the pressure with respect to temperature
and chemical potential, and using Eqs. (3) and (4),

�
Δϵ
T4

�
½n;m�

¼ 3

�
Δp
T4

�
½n;m�

þ T
d
dT

�
P2
2

P4

P½n;m�

�
; ð24Þ

�
Δs
T3

�
½n;m�

¼
�
Δϵ
T4

�
½n;m�

þ
�
Δp
T4

�
½n;m�

− μ̂B
P2
2

P4

dP½n;m�
dμ̂B

:

ð25Þ

III. TAYLOR EXPANSION COEFFICIENTS OF
THE PRESSURE IN (2 + 1)-FLAVOR QCD

We update here our previous analysis of the EoS of
(2þ 1)-flavor QCD performed in lattice QCD calculations
with the highly improved staggered quark (HISQ) action
and a tree-level improved gauge action [14].

A. Datasets and analysis details

For our calculation of bulk thermodynamic observables
we use high-statistics datasets for (2þ 1)-flavor QCD with
light and strange quark masses tuned to physical values
(ml=ms ¼ 1=27). These datasets have been generated using
the HISQ action with tree-level coefficients and a tree-level
improved gauge action [14]. Gauge configurations were
generated using SIMULATeQCD code [20–22]. New data-
sets exist for the temperature interval [125 MeV:175 MeV]
and have been presented in [15]. Additional updates exist for
the lowest temperature, where we doubled the number of
gauge field configuration to 2.2 M. It is only in this
temperature range that 8th order expansion coefficients have
been calculated.
Compared to our previous calculation of the EoS [14], the

datasets for Nτ ¼ 8 and 12 contain more than an order of
magnitude larger statistics and, moreover, include entirely
new datasets on lattices with temporal extent Nτ ¼ 16.
At temperatures T > 180 MeV, we added to our analysis

data from calculations with a slightly larger light quark
mass (ml=ms ¼ 1=20), which had been used by HotQCD
previously [14]. In all cases results have been obtained on
lattices with spatial extent Nσ ¼ 4Nτ.
Continuum extrapolations of P2 and P4 have been

performed in three different temperature intervals, using
different ansätze. In the temperature interval [135 MeV:
175MeV]we use rational polynomial functions as described

3We note that the recently developed multi-Padé approach [19]
provides similar information on the location of poles in the
complex plane and may, in the future, also be used to calculate
thermodynamic observables.
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in [15,23]. The continuum extrapolations for 4th order
cumulants follows the same approach as that used for the
2nd order cumulants [15], except it is based on only three
different values of the cutoff, i.e., Nτ ¼ 6, 8 and 12. Given
our current statistical error for Nτ ¼ 12 data on 4th order
cumulants, continuum extrapolations based on 1=N2

τ as well
as 1=N2

τ þ 1=N4
τ corrections agree well within errors.

However, since there are no degrees of freedom left when
including 1=N4

τ corrections, we choose to use the 1=N2
τ

extrapolations when quoting errors.
For the high-temperature part T ≥ 175 MeV, we use a

polynomial ansatz to interpolate the data to the continuum
limit. Moreover, for low temperatures in the range
[125 MeV:145 MeV] we consider an HRG-motivated
ansatz, which takes into account the exponential drop of
thermodynamic observables at low temperatures and incor-
porates cutoff-dependent corrections,

fðTÞ ¼ A

�
B
T

�
3=2

e−B=T
�
1þ d1T þ d2T2 þ c

N2
τ

�
: ð26Þ

Finally, we match all the three functions and their
first derivative at T ¼ 135 MeV and at T ¼ 175 MeV.
For the interpolation of P6 and P8 we only used spline
interpolations of the Nτ ¼ 8 dataset. Much of the data
analysis in this study was facilitated through the

AnalysisToolbox [24]. Statistical uncertainty repre-
sented by bands in all figures is calculated through boot-
strap resampling. Central values are returned as the median
with lower and upper error bounds given by the 32% and
68% quantiles, respectively. Spline interpolations, when
needed, are cubic with evenly spaced knots. They are
calculated using the LSQUnivariateSpline method
of SciPy [25]. Central values and error bands shown for
the lattice QCD results are smoothed using splines.
Temperature derivatives of lattice QCD data are calculated
by fitting the temperature dependence with a spline, then
calculating the derivative of the spline numerically. We
have checked that our spline interpolations and the result-
ing derivatives are stable under variation of the number of
knots used for the interpolation. In general we use splines
with 12 knots.

B. Taylor expansion coefficients for the
pressure and the trace anomaly

The Taylor series in terms of the conserved charge
chemical potentials μ⃗ ¼ ðμB; μQ; μSÞ have been reorganized
to obtain the Taylor series for the pressure in strangeness-
neutral, isospin-symmetric matter given in Eq. (9). Results
for the expansion coefficients ð2kÞ!P2k ≡ χ̄B;n0 are shown in
Fig. 1. For the fits and interpolations of different order

FIG. 1. The nth-order Taylor expansion coefficients, PnðTÞ, for the Taylor series of the pressure of (2þ 1)-flavor QCD as a function of
μ̂B ¼ μB=T versus temperature. Shown are the expansion coefficients n!Pn for isospin-symmetric, strangeness-neutral matter (μQ ¼ 0,
nS ¼ 0). The solid magenta lines show results from a corresponding HRG model calculation using the QMHRG2020 list of hadron
resonances [15]. Yellow bands show the location of the pseudocritical temperature Tpcð0Þ ¼ 156.5ð1.5Þ MeV [28]. The green bands at
high temperature show the Oðg2Þ perturbative result using a renormalization scale in the range ½4πT; 8πT� (for details see Appendix B).
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expansion coefficients shown in this figure we use the same
approach as discussed in [15]. I.e., for theOðμ̂2BÞ expansion
coefficient the band shows a continuum extrapolation based
on Nτ ¼ 6, 8, 12, and 16 datasets; for the Oðμ̂4BÞ expansion
coefficient we show a continuum extrapolation based on
Nτ ¼ 6, 8 and 12 datasets and for the higher-order
expansion coefficients we only use results from our
high-statistics calculations on lattices with temporal extent
Nτ ¼ 8, where more than 1.5 million gauge field configu-
rations have been generated at each temperature value.
In this case the curves show spline interpolations of the
Nτ ¼ 8 data. Here we note that the 6th and 8th order
expansion coefficients of the pressure have been also
estimated using lattice QCD calculations with imaginary
chemical potentials in 2þ 1 flavor case using Nτ ¼ 8
lattices and stout2 action [26], and in 2þ 1þ 1 flavor
case on Nτ ¼ 12 lattices using stout4 action [27]. The
qualitative features of the expansion coefficients obtained
in these calculations are similar to the ones obtained here.
In the following we discuss several features of the

expansion coefficients in the high, low, and intermediate
temperatures ranges, respectively.

1. High-temperature region

It is apparent that the expansion coefficientsP2k approach
the high-temperature ideal gas limit rapidly. In fact, for
temperatures T ≳ 250 MeV, deviations from the ideal gas
values are only about 12% for P2 and P4. Moreover, at these
temperature values the expansion coefficientsP2k start being
consistent with zero for k ≥ 3, as is the case in a massless,
ideal gas. For k ¼ 1 and 2, deviations from the ideal gas limit
are well described by Oðg2Þ high-temperature perturbation
theory, although for a detailed quantitative comparison,
refined resummed approaches such as hard thermal loop
(HTL) [29] or 3-d effective theory (EQCD) [30] may be
necessary, as discussed in Refs. [31–33]. In Fig. 1 we show
the ideal gas limit result (red line) and Oðg2Þ corrections
(green band), using a 2-loop running coupling [34] g2ðTÞ
with a renormalization scale kTπT with 4 ≤ kT ≤ 8 as
discussed in Appendix B.
For the higher-order expansion coefficients, k ≥ 3, the

ideal gas limit as well as Oðg2Þ corrections vanish, which
also is consistent with the results shown in Fig. 1.
We also note that for vanishing quark masses, the strange

quark sector in strangeness-neutral, isospin-symmetric
matter does not contribute to the perturbative expansion
of the pressure up to Oðg2Þ, i.e., although in this case the
strangeness chemical potential is nonzero, μS ¼ μB=3, the
flavor chemical potential for strange quarks vanishes,
μs ¼ 0. The rapid approach to perturbative behavior of
the Taylor expansion coefficients of pressure, and as such
also to the μ̂B-dependent contribution to the pressure, is in
contrast to the behavior seen at μ̂B ¼ 0, where it was found
that even at T ≃ 300 MeV deviations from the ideal gas

limit amount to almost 50% for the pressure and 25% for
the energy density [5].

2. Low-temperature region

At low temperatures lattice QCD results for P2 and P4

approach results obtained in hadron resonance gas (HRG)
model calculations using noninteracting, pointlike reso-
nances. In Fig. 1 QCD results for the pressure coefficients
are compared to HRG model calculations that use the
QMHRG2020 list of hadron resonances [23]. It is apparent
that differences between QCD and HRGmodel calculations
show up earlier and are more pronounced with increasing
order of the expansion coefficients. While P2=PHRG

2 devi-
ates from unity by about 10% at T ≃ Tpc, this deviation
reaches already 50% for P4=PHRG

4 . Moreover, it is evident
from the comparison of the temperature dependence of P4

calculated in QCD and the QMHRG model, respectively,
that the slope of P4ðTÞ differs already significantly
for T > 140 MeV.
Deviations from HRG model calculations thus are even

more apparent in the slope of P2kðTÞ. The T-derivatives,
P0
2k ¼ TdP2k=dT, of the expansion coefficients are shown

in Fig. 2. As expected P0
2ðTÞ starts deviating from

HRG model calculations already at T ≃ 140 MeV and
differences are about 30% in the vicinity of the pseudoc-
ritical temperature, Tpc. For P0

4ðTÞ differences are signifi-
cant in the entire low-temperature region, T ≥ 125 MeV.
The functions P0

2kðTÞ are the Taylor expansion coeffi-
cients of the μ̂B-dependent part of the trace anomaly,

Δðϵ − 3pÞ
T4

¼
X
k

P0
2kμ̂

2k
B : ð27Þ

We thus can expect that differences between HRG and
QCD results will be larger for energy and entropy densities
than for pressure and net baryon-number density as the
former two observables receive contributions from P0

2kðTÞ.
This will be discussed in Sec. III C.

3. Intermediate temperature range:
Pseudocritical region

The expansion coefficients shown in Fig. 1, as well as
their T-derivatives shown in Fig. 2, make it clear that at
temperatures in the vicinity of Tpc, deviations from the
asymptotic behavior at low and high temperature are large.
As has been noted before, the temperature dependence and
the relation between subsequent expansion coefficients in
the vicinity of Tpc resemble many features expected from
universal scaling in the vicinity of a second-order phase
transition. The maximum in TdP2=dT is close to Tpc. In
fact, as P2ðTÞ is an energylike observable [35], its
derivative with respect to T,

D. BOLLWEG et al. PHYS. REV. D 108, 014510 (2023)

014510-6



P0
2 ¼ T

dP2

dT
≡ T

2

∂
3p̂

∂T∂μ̂2B

����
μ̂B¼0

; ð28Þ

behaves like a specific heat, which in the chiral limit will
develop a pronounced peak at the chiral phase transition
temperature Tc. This can be used as one of the definitions of
a pseudocritical temperature. However, unlike the magnet-
izationlike susceptibilities, which diverge at Tc, the energy-
like susceptibility will only lead to a local maximum at Tc.
Using the maximum of P0

2 as a definition for Tpc thus may
be more strongly affected by regular contributions to the
partition function. Its maximum, on the other hand,
characterizes the temperature at which P00

2ðTÞ vanishes.
As the maximum and minimum of P00

2ðTÞ on the left and
right of this crossing point approach each other and will
diverge in the chiral limit, the crossing point itself is a
well defined estimator for a pseudocritical temperature.
The temperature at this crossing point will converge to
the uniquely defined Tc in the chiral limit. We find for the
location of the maximum of P0

2,

dP0
2=dT ¼ 0 ⇒ Tpc;P2

¼ 153.8ð7Þð5Þ MeV; ð29Þ

where the first error is statistical and the second error
reflects the uncertainty in defining the T-scale used in all
our calculations.
Similarly, the maximum and minimum, visible in P0

4

[Fig. 2 (top, right)] will diverge in the chiral limit.

The temperature at which P0
4 changes sign thus also is a

good observable to define a pseudocritical temperature.
From the continuum-extrapolated fits shown in Fig. 2 we
thus deduce another estimator for Tpc,

P0
4 ¼ 0 ⇒ Tpc;P4

¼ 155.3ð2Þð5Þ MeV: ð30Þ

Both estimators for Tpc, based on temperaturelike deriva-
tives of p=T, are in good agreement with results obtained
previously by the HotQCD Collaboration using the average
over 5 different observables that can be used to define a
pseudocritical temperature,4 i.e., Tpc ¼ 156.5ð1.5Þ MeV
[28]. Other determinations of pseudocritical temperature,
using the zero temperature subtracted chiral susceptibility
only [36], gave Tpc ¼ 158.0ð6Þ MeV, and a recent, not
yet continuum extrapolated, calculation with twisted mass
fermions in (2þ 1þ 1)-flavor QCD examined three differ-
ent definitions of pseudocritical temperature giving results
ranging from 146.2(21)(1) MeV to 157.8(7)(10) MeV [37].
The fact that the temperature derivative of P4, on the

one hand, and the temperature derivative of the mixed
observable P0

2 (involving T- and μ̂B derivatives), on the
other hand, lead to quite similar results for the value of a
pseudocritical temperature is naturally understood in terms
of universal behavior in the vicinity of a critical point.

FIG. 2. Derivatives of Taylor expansion coefficients P2, P4, P6, and P8 with respect to temperature. The solid magenta lines at low
temperatures show results from a corresponding HRG model calculation using the QMHRG2020 list of hadron resonances [15]. Yellow
bands show the location of the pseudocritical temperature Tpc [28] and the green bands at high temperature show theOðg2Þ perturbative
result using a renormalization scale in the range ½4πT; 8πT�.

4Note that pseudocritical temperatures are not unique and
depend on the observable used to define them.
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Close to Tc higher-order derivatives of the pressure are
dominated by the contribution of the so-called singular
part of p=T,

p=T ∼ ffðzÞ; ð31Þ

where ff is the universal scaling function corresponding to
the universality class of the chiral phase transition.5 The
argument z of the scaling function ffðzÞ and its prefactor
generally depend on the quark masses. However, as we are
interested here only in derivatives with respect to T and μ̂B,
keeping the quark masses fixed, we may think of the
argument of the scaling function as just being proportional
to the reduced temperature t, i.e., z≡ cmt, with t given by a
leading-order Taylor expansion,

t ¼ 1

t0

�
T − Tc

Tc
þ κB2 μ̂

2
B þOðμ̂4B; μ̂2BðT − TcÞ; ðT − TcÞ2Þ

�
:

ð32Þ

Here t0, as well as the chiral phase transition temperature Tc

and the curvature coefficient κB2 , are nonuniversal param-
eters. This suggests that up to a proportionality factor,
taking two derivatives with respect to μ̂B is equivalent to
taking one derivative with respect to T [39,40].
The anticipated relation between derivatives with respect

to T and μ̂B, respectively, is apparent in the structure of the
expansion coefficients shown in Figs. 1 and 2; P0

2 and P4

receive singular contributions from f00fðzÞ,

Ps
2
0 ¼ −

2T
Tc

κB2Af
00
fðzÞ þ subleading

Ps
4 ¼ −ðκB2 Þ2Af00fðzÞ þ subleading; ð33Þ

where we summarized common factors in the factor
A ¼ ðh0=2t20T3Þh−α=βδ.
At temperatures in the region between Tc and the

pseudocritical temperature for physical quark mass values,
the relative magnitude of P0

2 and P4 is well described by
scaling relations. Matching values of P0

2 and P4 in the
vicinity of Tc thus ensures that their T-derivatives, which
will diverge in the chiral limit, will become identical when
approaching this limit.
In Fig. 3 we show the expansion coefficient P4 and

compare it with an appropriately rescaled temperature
derivative, P0

2, of the expansion coefficient P2. To determine
the rescaling factor κB2 we calculate the ratio 2TP4=TcP0

2

in the temperature interval [130 MeV:156.5 MeV] and
average the results in this interval. As can be seen in the

inset of Fig. 3 these estimates increase with increasing T,
indicating the relevance of regular contributions to the
expansion coefficients P2k, which lead to deviations from
a T-independent result for κ2 that one would expect to find
in the scaling regime. For the curvature coefficient we thus
find 0.012 ≤ κB2 ≤ 0.022. This result is in good agreement
with other determinations of the curvature coefficient κB2
[28,41,42] that are based on properties of magnetizationlike
observables.

C. Taylor expansion coefficients
for energy and entropy densities

As discussed in Sec. II B in the case of isospin-
symmetric, strangeness-neutral matter, Taylor expansion
coefficients of net baryon-number, energy and entropy
densities are all given in terms of the expansion coefficients
P2k and their temperature derivatives P0

2k. In particular, the
Taylor series for the μ̂B-dependent contribution to the trace
anomaly ðϵ − 3pÞ=T4 is given in terms of the T-derivatives,
P0
2k, only. Combining results for P2k and P0

2k, shown in
Figs. 1 and 2, we then obtain the expansion coefficients for
Taylor series of the energy and entropy densities. We show
the results for these expansion coefficients, together with
those of the pressure series,6 in Fig. 4. As discussed for the
expansion coefficients P2k, also ϵ2k and σ2k are continuum
extrapolated for k ¼ 1, 2 and we give spline interpolations
of the Nτ ¼ 8 results for k ¼ 3, 4. We show a comparison
with HRG model calculations for the expansion coeffi-
cients of the pressure. For energy and entropy we do
so only for the second-order expansion coefficients.

FIG. 3. Comparison of the fourth-order Taylor expansion
coefficient, P4, of the pressure and the temperature derivative
of the second-order expansion coefficient, P2. The red and green
bands reflect the errors on P0

2 and P4, respectively. The inset
shows results for κB2 obtained from an appropriately scaled ratio
of P0

2 and P4 as discussed in the text. From this we find
0.012 ≤ κB2 ≤ 0.022.

5The chiral phase transition generally is expected to belong to
the 3-d,Oð4Þ universality class, although larger symmetry groups
may become relevant, if the anomalous Uð1Þ symmetry of QCD
gets effectively resorted [38].

6Note that the expansion coefficients for the number density
are just proportional to those of the pressure series and thus are
not shown separately in Fig. 4.
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As discussed in connection with Fig. 2, differences between
HRGmodel andQCD calculations are large for higher-order
expansion coefficients in the entire temperature range.
At high temperatures we again show results from Oðg2Þ

perturbation theory (PT). In the case of the energy and
entropy densities this also includes contributions arising
from T-derivatives of the coupling g2ðTÞ, although this
might be considered as a part of theOðg4Þ contribution in a
perturbative expansion. We thus consider our Oðg2Þ PT-
ansatz as a model for describing the high-T behavior of the
Taylor expansion coefficients and subsequently also for the
bulk thermodynamic observables.

IV. BULK THERMODYNAMICS
OF (2 + 1)-FLAVOR QCD

We will use here the Taylor series of the pressure and
related observables to calculate thermodynamic observables
in an isospin-symmetric, strangeness-neutral medium as
function of temperature and baryon chemical potential.
Further on, we will eliminate the baryon chemical potential
in favor of other external control parameters like the net
baryon-number density or constant ratio of entropy over net
baryon number.

A. Density dependent contribution to bulk
thermodynamic observables

In [15] we already used the new data obtained in the
temperature interval T ∈ ½125MeV∶175MeV� to construct

8th-order Taylor series for the pressure and the related
7th-order series for the net baryon-number density. We
had shown there that these expansions are reliable for
μ̂B ≲ 2.5 for the pressure and μ̂B ≲ 2.0 for the number
density, respectively. It also could be shown that these
expansions agree well with corresponding Padé approx-
imants. Here we extend this discussion up to T ¼
280 MeV using existing data from our previous analysis
of Taylor series in QCD [14], where a somewhat larger
light quark mass, ml=ms ¼ 1=20, has been used in the
high-temperature region. Using such a somewhat larger
light quark mass at high temperature is of no concern as
ml=T ≪ 1 and has only little influence on thermodynamic
observables in this region. We furthermore present results
for the energy and entropy densities, which require the
temperature derivatives of the expansion coefficients of
the pressure.

1. EoS: Pressure versus net baryon-number density

In Fig. 5 we show the number density (right) and the
density dependent (μB ≠ 0) contribution to the pressure
(left) for the case ðμQ; nSÞ ¼ ð0; 0Þ and for several values of
μ̂B. Similar results for the case ðμQ; μSÞ ¼ ð0; 0Þ have been
shown in [15]. At high temperatures, T ≳ 200 MeV, the
Taylor series converges rapidly. As can be seen from the
expansion coefficients presented in Fig. 1, in this temper-
ature range the 4th-order expansion coefficient, P4, is more
than two orders of magnitude smaller than the 2nd-order

FIG. 4. Second-order (top, left), fourth-order (top, right), sixth-order (bottom, left), and eighth-order (bottom, right) expansion
coefficients of pressure (P2k), energy density (ϵ2k), and entropy density (σ2k) for a isospin-symmetric, strangeness-neutral medium
(μQ ¼ 0; nS ¼ 0). Bands at high temperature show the Oðg2Þ perturbative result using a renormalization scale in the range ½4πT; 8πT�.
The yellow band indicates the location of the pseudocritical temperature at Tpc [28].
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coefficient, P2. Furthermore, within our current statistical
accuracy the 6th-order coefficient, P6, is consistent with
zero. Taking into account the statistical error on P6, also its
magnitudes is at least two orders of magnitude smaller than
the 4th-order expansion coefficient. For T ≳ 200 MeV we
thus show results for the pressure and net baryon-number
density also for larger chemical potentials, e.g., μ̂B ≃ 3.
Using even larger values for μ̂B in this high-temperature
regime seems to be possible.
For T ≤ 200 MeV contributions from higher-order

expansion coefficients become important. The 6th and
8th-order expansion coefficients, which are clearly non-
zero, show a lot of structure. Nonetheless, for T ≤
150 MeV their contribution to the Taylor series of pressure
and net baryon-number density is small7 for μ̂B ≤ 2.5. This
is in accordance with estimates for the radius of conver-
gence ðμB=TÞconv of the Taylor series [15,19,43] that
suggest ðμB=TÞconv < 2.5 also in this temperature range.
For further discussion on the radius of convergence of the
Taylor series see Refs. [26,44,45]. We also note that in this
temperature range and for μ̂B < 2.5 Taylor series results
are consistent within errors with those obtained from the
4th-order series. For temperatures in the vicinity of Tpc, i.e.,

for 150 MeV < T < 200 MeV, contributions from higher-
order Taylor expansion coefficients, however, need to be
taken into account already for μ̂B > 2.
This suggests that in the three different temperature

intervals 4th and 3rd-order Taylor series provide a good
approximation to the 8th-order Taylor series for pressure
and net baryon-number density, as long as the baryon
chemical potential is smaller than (i) 2.5T for
T ≤ 150 MeV, (ii) 2T for 150 MeV < T < 200 MeV,
and (iii) 3T for T ≥ 200 MeV. In these cases we may
invert pðμBÞ and nBðT; μBÞ exactly and provide a simple
analytic expression for pðT; nBÞ, which provides useful
insight into the structure of the QCD EoS in a parameter
range that covers almost the entire parameter range acces-
sible with the beam energy scan (BES-II) at the Relativistic
Heavy Ion Collider (RHIC) in collider mode. In particular,
at the two lowest beam energies

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV and
11.5 GeV the baryon chemical potentials at the freeze-out
temperature TfðμBÞ has been estimated to be about
μB=Tf ¼ 2.8 and 2.0, respectively [46].
Inverting the Oðμ̂3BÞ Taylor series for the net baryon-

number density we obtain the chemical potential as
function of T and nB,

μ̂BðT; nBÞ ¼ yðT; nBÞ1=3 −
NB

1 ðTÞ
3NB

3 ðTÞ
yðT; nBÞ−1=3;

yðT; nBÞ ¼
NB

1 ðTÞ
NB

3 ðTÞ

 
n̂B

2NB
1 ðTÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NB

1 ðTÞ
27NB

3 ðTÞ
þ
�

n̂B
2NB

1 ðTÞ
�

2

s !
; ð34Þ

where NB
1 ðTÞ ¼ 2P2ðTÞ and NB

3 ðTÞ ¼ 4P4ðTÞ are the coefficients of Oðμ̂2BÞ and Oðμ̂4BÞ terms in the net baryon-number
density, which are obtained either from the Taylor series for net baryon-number density or in Oðg2Þ high-temperature
perturbation theory.

FIG. 5. Pressure (left) and net baryon-number density (right) versus temperature for several values of the baryon chemical potential
μ̂B ≡ μB=T. Shown are results obtained in different orders of the Taylor series of pressure and net baryon-number density of isospin-
symmetric, strangeness-neutral matter. The yellow bands highlight the variation of Δp=T4 and nB=T3 with μ̂B at Tpcðμ̂BÞ.

7Note that also in a hadron resonance gas, where the μ̂B-dependent contribution is proportional to coshðμ̂BÞ − 1, the Oðμ̂4BÞ Taylor
series provides more than 90% of the exact result. Including also theOðμ̂6BÞ contribution results in agreement with the exact HRG result
to better than 1% for μ̂B ≤ 2.5.
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Inserting these results for the chemical potential in the
4th-order Taylor series for the pressure we obtain a low-
order approximation for the EoS of strangeness-neutral
matter, i.e., pðT; nBÞ,

ΔpðT; nBÞ
T4

¼ P2ðTÞμ̂2BðT; nBÞ þ P4ðTÞμ̂4BðT; nBÞ. ð35Þ

Going beyond the low-order approximation for the
EoS we can solve n̂BðT; μ̂BÞ numerically for μ̂B at fixed
T. We then obtain μ̂BðT; nBÞ, which can be inserted in the
8th-order Taylor series for pðT; μ̂BÞ and thus allows us to
determine pðT; nBÞ.
In Fig. 6 we show results for lines of constant net baryon-

number density in the μ̂B-T plane. Results are shown for

several values of nB=n0, with n0 ¼ 0.16=fm3 denoting
nuclear matter density. They are compared to QMHRG
model calculations at low T and Oðg2Þ perturbation theory
at high T, respectively. The inset shows a comparison of the
numerically inverted Taylor series result and the exact
inversion of the 3rd-order Taylor series for n̂Bðμ̂BÞ given in
Eq. (34). Here we show results only in T-intervals where μ̂B
stays below the maximal values given above. As can be
seen, the temperature dependence of μ̂B characterizing lines
of constant nB are well determined from the Oðμ̂3BÞ Taylor
series for the net baryon number-density for μ̂B ≤ 2.5.
Inserting μ̂BðT; nBÞ in the Taylor series for the pressure

we obtain the contribution to the QCD EoS of strangeness-
neutral, isospin-symmetric matter that depends on nonzero
net baryon number density. Results for Δp=ðnBTÞ as
function of nB=T3 for several values of T are shown in
Fig. 7 (left). Again we only show results for Δp=ðnBTÞ for
values of nB=T3 which correspond to μ̂B ≤ 2.5 for T ≤
200 MeV and μ̂B ≤ 3 for T > 200 MeV. In Fig. 7 (left) we
show corresponding results as function of nB=n0.
For T ≳ 240 MeV it is evident that ΔpðT; nBÞ=ðTnBÞ,

rises almost linearly in nB=T3 and is close to the ideal gas
result. I.e., ΔpðT; nBÞ is proportional to ðnB=TÞ2. In this
temperature range the density-dependent part of the QCD
EoS is not only close to the ideal gas result, but also agrees
rather well with the Oðg2Þ perturbative EoS already for
T ≥ 220 MeV. This is shown by the gray bands in Fig. 7
(right) for which we used the Oðg2Þ perturbative EoS
for the case ðμQ; nSÞ ¼ ð0; 0Þ, given in Appendix B, with a
renormalization scale kTπT, using 4 ≤ kT ≤ 8.
From Eqs. (34) and (35) we expect at low densities to

find Δp ∼ ðnB=TÞ2. The notion of low density, however, is
temperature dependent. As can be seen from Eq. (34), the
leading order coefficient NB

1 ðTÞ sets the scale for nB. As
NB

1 ðTÞ drops exponentially at low temperature one quickly
enters a region of “high density” already at densities

FIG. 6. Lines of constant net baryon-number density in the
μ̂B-T plane. Solid bands indicate results obtained by numerically
solving theOðμ̂5BÞ series of n̂B for μ̂B. Dashed lines indicate HRG
results while short bands at high temperature indicate the Oðg2Þ
perturbative result with 4 ≤ kT ≤ 8. The yellow band indicates
Tpcðμ̂BÞ. In the inset, we show the result from numerically
inverting the Taylor series divided by the analytic inversion of the
Oðμ̂3BÞ result.

FIG. 7. Pressure divided by net baryon-number density versus nB=T3 (left) and nB=n0 (right), respectively. Shown are results for
strangeness-neutral, isospin-symmetric matter at several values of T. In the left hand figure we compare results obtained from the full
Taylor series for the pressure with those obtained inOðμ̂4BÞ only (dashed lines). In the right hand side the gray bands show a comparison
with Oðg2Þ high-T perturbation theory. The bands shown in both figure are shown up to values of nB=T3 or nB=n0 corresponding to
μ̂B ¼ 2.5 for T < 200 MeV and μ̂B ¼ 3 otherwise.
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smaller than nuclear matter density, n0 ≃ 0.16 fm−3,
whereas at high temperature the low density regime
(Δp ∼ ðnB=TÞ2) persists into a region well above n0.
At low densities we thus expect that the density

dependent contribution (Δp) to the total pressure is propor-
tional to ðnB=TÞ2 while the nB-dependence weakens.
At high densities and, within the approximation given
by Eq. (35), one finds Δp ∼ n4=3B .
Results for ΔpðT; nBÞ=nB, obtained with this Oðμ̂4BÞ

approximation (dashed lines), are compared with the full
Taylor series results (bands) in Fig. 7 (left). The bands are
shown up to a maximal density that can be reliably reached
with our current 8th-order Taylor series in different temper-
ature regions, i.e., we demand that μ̂B ≤ 2.5 for T ≤
200 MeV and μ̂B ≤ 3 at higher temperatures. As can be
seen the dashed lines indeed provide a good approximation
for the EoS at temperatures 135 MeV < T ≤ 150 MeV and
for T ≥ 200 MeV. Only for 150 MeV < T < 200 MeVwe
find that an EoS based on the 4th-order Taylor series is
not sufficient. Here differences become visible in a region
corresponding to μ̂B > 2.

2. Energy and entropy densities

The calculation of Taylor series for the energy and
entropy densities requires the derivatives of Taylor expan-
sion coefficients of the pressure with respect to temper-
ature, P0

2k ≡ TdP2k=dT. These expansion coefficients are
shown in Fig. 2. They directly give the Taylor series for the
μ̂B-dependent contribution to the trace anomaly, as intro-
duced in Eq. (27). In Fig. 8 we show Δðϵ − 3pÞ=T4 for
several values of the baryon chemical potential. This should
be compared to the trace anomaly at μ̂B ¼ 0 (Fig. 5 (right)
of [5]). We note that at Tpc and for μ̂B ¼ 2.5 the fermionic
contribution to the trace anomaly is as large as the
contribution at μ̂B ¼ 0 but rapidly drops at larger values
of the temperature. For T ≥ 200 MeV the μ̂B-dependent
contribution to the trace anomaly stays below 10% of the
value of the trace anomaly at μ̂B ¼ 0.

A consequence of this is that the maximum in the trace
anomaly, which at μ̂B ¼ 0 is reached at T ≃ 200 MeV [5],
gets shifted to smaller temperatures and comes closer to
the pseudocritical temperature. In fact, as can be seen in
Fig. 8, the location of themaximumofΔðϵ − 3pÞ=T4 is close
to the pseudocritical temperature determined from chiral
observables,

Tpcðμ̂BÞ ¼ T0
pcð1 − κB;f2 μ̂2B þOðμ̂4BÞÞ; ð36Þ

with T0
pc ¼ 156.5ð1.5Þ MeV and κB;f2 ¼ 0.012ð4Þ denoting

the curvature coefficient of the pseudocritical line in strange-
ness-neutral matter8 [28]. For large values of the chemical
potential, where Δðϵ − 3pÞ=T4 is dominated by the μ̂B-
dependent contribution, violations of the conformal relation
ϵ ¼ 3p thus are maximal on the pseudocritical line.
Combining the results for Δðϵ − 3pÞ=T4 (Fig. 8) and

Δp=T4 (Fig. 5) we obtain the Taylor series results for the μ̂B-
dependent contributions to ϵ=T4 and s=T3, respectively.
These observables are shown in Fig. 9. As discussed in the
case of Δp=T4 and nB=T3, we also find for Δðϵ − 3pÞ=T4,
as well as for Δϵ=T4 and Δs=T3, that the 4th-order Taylor
expansions provide good approximations to the full 6th and
8th-order series results forT ≥ 200 MeVandT ≤ 150 MeV
whenever μ̂B ≤ 2.5 in the low-T region and μ̂B ≤ 3 at highT.
Higher-order corrections become more important in the
calculation of the entropy density at high temperature. As
canbe seen inFig. 9 (right) the6th and 4th-order correction to
s=T3 agreewith each other in the region T > 200 MeV only
up to μ̂B ≃ 2.5 but start to differ for larger μ̂B.
As can be seen in Fig. 9 for large μ̂B the 4th-order

Taylor expansion results for Δϵ=T4 and Δs=T3 show a
wiggly behavior in the intermediate temperature interval,
150 MeV < T < 200 MeV, which results from the pro-
nounced minimum of P0

4 in this temperature interval. This
structure gets smoothed out by higher-order corrections. We
will show in the next subsection that a Padé-resummed
Taylor series shows a much smoother behavior in this
temperature range.
We use the 6th-order Taylor expansion results for

Δp=T4, Δϵ=T4, and Δs=T3 to obtain the latter two as
functions of T and nB. We again compare with correspond-
ing 4th-order approximations using,

ΔϵðT; n̂BÞ
T4

¼ ϵ2ðTÞμ̂2BðT; nBÞ þ ϵ4ðTÞμ̂4BðT; nBÞ; ð37Þ

ΔsðT; n̂BÞ
T3

¼ σ2ðTÞμ̂2BðT; nBÞ þ σ4ðTÞμ̂4BðT; nBÞ; ð38Þ

FIG. 8. The μ̂B-dependent contribution to the trace anomaly in
(2þ 1)-flavor QCD for several values of μ̂B. The yellow band
shows the line Δððϵ − 3pÞ=T4ÞðTpcðμ̂BÞÞ.

8For a summary of different determinations of the curvature
coefficient κB2 , using various external constraints, see for
instance [36,47].
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with μ̂BðT; n̂BÞ taken from Eq. (34). Results for
ΔϵðT; n̂BÞ=nB and ΔsðT; n̂BÞ=nB as functions of n̂B are
shown in Fig. 10.

3. Comparison of Taylor series and their
resummation using Padé approximants

As seen already in the analysis of the Taylor expansion
for the pressure and net baryon-number density, Padé
approximants agree well with the Taylor series themselves
at low μ̂B up to the region where we estimated the latter to
provide reliable results [15]. We will extend this approach
here to the analysis of Taylor series for the energy and
entropy densities.
We use Padé approximants for thermodynamic observ-

ables derived from the Taylor series of the pressure in two
ways. On the one hand we construct Padé approximants
based on the Taylor series for a given observable, e.g., the
energy and entropy density series given in Eqs. (13) and (14)
can be resummed using Padé approximants similar to that of
the pressure series given in Eq. (23) by just replacing the
expansion coefficientsP2k by ϵ2k or σ2k, respectively. On the

other hand we use the P-Padé, i.e., appropriate derivatives of
the Padé approximants for the pressure, for the energy and
entropy densities as given in Eqs. (24) and (25).
InFig. 11 (left)we compare6th and 8th-order Taylor series

for Δp̂ with corresponding [4, 2], [2, 4], and [4, 4] Padé
approximants introduced in Eqs. (20)–(23). Corresponding
results forΔϵ̂ are shown in Fig. 11 (right). In the figure for the
pressure (top, left) we compare the 6th-order Taylor expan-
sion results with the two possible ½n;m� Padé approximants
that use up to 6th-order expansion coefficients. As can be
seen the [4, 2] Padé agrees with the Taylor series result while
the [2, 4] Padé differs from these two in the temperature
interval 150 MeV≲ T ≲ 180 MeV. In the (bottom, left)
figure shows a comparison of the 8th-order Taylor expansion
results with the [4, 4] Padé approximant. They are in good
agreement with each other. Moreover, as can be seen from
the inset, for large values of μ̂B the [2, 4] and [4, 4] Padé
approximants stay in much better agreement with each other
than the [4, 2] and [4, 4] Padé approximants or, equivalently,
the 6th and 8th-order Taylor series. Similar conclusions can
be drawn for the energy density shown in the right hand part
of the figure.

FIG. 9. μ̂B-dependent part of the energy (left) and entropy (right) densities versus temperature. Shown are results from 2nd, 4th, 6th,
and 8th-order Taylor expansions. The yellow bands indicate how Δϵ=T4 and Δs=T3 change with μ̂B at Tpc.

FIG. 10. Energy density in units of T4 divided by net baryon-number density versus nB=T3 (left) and the corresponding figure for
entropy density (right). Shown are results for strangeness-neutral, isospin-symmetric matter at several values of T using 6th-order Taylor
expansions for ϵ=T4 and s=T3 and a 5th-order Taylor expansions for nB=T3. Dashed lines show a comparison with results based on
4th and 3rd-order expansions, respectively, using Eq. (34) to obtain ϵðnBÞ and sðnBÞ.

EQUATION OF STATE AND SPEED OF SOUND OF (2þ 1)-FLAVOR … PHYS. REV. D 108, 014510 (2023)

014510-13



In Fig. 12 we compare at fixed values of the temperature
8th-order Taylor expansion results with the [4, 4] Padé
approximant as well as the P-Padé results for pressure, energy
and entropy densities that we have discussed above and in
Sec. II C. We generally find that the P-Padé results for bulk
thermodynamic observables are in better agreement with the
Taylor series results than the [4, 4] or [3, 4]Padé approximants.
This may not be too surprising, as both approaches are based
on a thermodynamically self-consistent set of expressions.
We consider results for bulk thermodynamic observables

based on the 8th-order Taylor series for the pressure reliable
when the Taylor series results agree with the [4, 4] Padé
approximants as well as the P-Padé approximants shown in
Fig. 12. These parameter ranges are similar for all four bulk
thermodynamic observables shown in Fig. 12 and also
agree with current estimates for a radius of convergence of
the Taylor series given in [15,19,43]. We thus conclude that
the region of reliability of current EoS results is slightly
temperature dependent, increasing from μ̂B ≃ 2.2 at T ¼
135 MeV to μ̂B ≃ 3.2 at T ¼ 180 MeV. The latter also
holds for higher values of the temperature where our results
only are based on 6th-order Taylor series expansions.

B. Bulk thermodynamic observables

Having discussed the μB-dependent contribution to bulk
thermodynamic observables in the previous subsection we

can now combine these results with those obtained at
vanishing values of the chemical potential, for which we
use the continuum-extrapolated results obtained for
(2þ 1)-flavor QCD by the HotQCD collaboration [5].
In Fig. 13 we show the total pressure (left) as well as

energy (middle) and entropy (right) densities for μ̂B ∈
½0∶2.5� in the entire temperature range analyzed by us. For
μ̂B ¼ 3 we show results in the region T ≥ 180 MeV only.
Also shown in Fig. 13 are results from HRG model

calculations for μ̂B ¼ 0 and 2.5. It is apparent that the HRG
model results show a stronger μ̂B-dependence than the
QCD data. Already in the vicinity of Tpc differences
between HRG model calculations and QCD increase with
increasing values of μ̂B. This is to be expected as higher-
order Taylor expansion coefficients start to differ from
HRG model results already at rather low temperatures,
T < 140 MeV, and differences get large in the transition
region (see Fig. 4). These differences are larger for the
energy and entropy densities than for pressure and number
density. In particular, we find that the Oðμ̂2BÞ coefficients in
QCD are about 30% smaller than in HRG model calcu-
lations (see Fig. 4) and the ratio of Oðμ̂4BÞ and Oðμ̂2BÞ
expansion coefficients of the energy density calculated in
lattice QCD and HRG models, respectively, differs by
almost a factor 5, i.e., ϵ4ðTpcÞ=ϵ2ðTpcÞ ¼ 0.013ð2Þð6Þ in
QCD compared to ðϵ4ðTpcÞ=ϵ2ðTpcÞÞHRG ¼ 0.065ð1Þ in the

FIG. 11. Comparison of 6th (top) and 8th (bottom) order Taylor expansion results for Δp=T4 and Δϵ=T4 with corresponding [2, 4]
and [4, 4] Padé and P-Padé approximants. The inset in the bottom panels shows differences in the [2, 4] and [4, 4] as well as in [4, 2] and
[4, 4] Padé approximations, which are all based on 8th-order Taylor series. The yellow bands highlight the variation of Δp=T4 and
Δϵ=T4 with μ̂B at Tpcðμ̂BÞ.
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HRG model, using the QMHRG2020 hadron list. As a
consequence, with increasing μ̂B the difference between
the energy density calculated in QCD and HRG models
increases on the pseudocritical line, Tpcðμ̂BÞ.
As discussed in [14], the curvature coefficients κϵ2 and κ

s
2

for lines of constant energy and entropy densities, respec-
tively, are related through the second-order expansion
coefficients σ2 and s2,

κs2
κϵ2

¼ σ2
ϵ2

¼ 1 −
P2

ϵ2
¼ 0.872ð3Þð5Þ: ð39Þ

Lines of constant energy density thus are flatter than those
for constant entropy density, i.e., the entropy decreases on a
line of constant energy density. Using the coefficients ϵ2
and σ2, shown in Fig. 4, we get

κϵ2 ¼ 0.0104ð12Þ; κs2 ¼ 0.0091ð11Þ; ð40Þ

which should be compared to the curvature coefficient κB;f2

of the pseudocritical line given in Eq. (36). These results
thus suggest that, within current statistical errors, energy

FIG. 12. Top to bottom: comparison of Taylor series and Padé approximants for pressure, net baryon-number, energy, and entropy
densities, at three values of the temperature, T ¼ 135 MeV (left), 155 MeV (middle), and 175 MeV (right). Taylor expansion results are
shown for 8th and 7th-order (number density), respectively. The corresponding Padé approximants are [4, 4] and [3, 4]. Also shown are
P-Padé approximants (P-Pade) which are appropriate T- and μB-derivatives of the [4, 4] Padé approximant for the pressure as discussed
in Sec. II C.
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and entropy densities stay constant on the pseudocritical
line or drop slightly.
Using the results for ϵ=T4 shown in Fig. 13 (middle) we

find for the energy density on the pseudocritical line,

ϵðTpcðμ̂BÞÞ¼
�
370ð40Þð30ÞMeV=fm3; μ̂B¼ 0

330ð28Þð53ÞMeV=fm3; μ̂B¼ 2.5
. ð41Þ

Here the first error is the statistical error on ϵ at Tpcðμ̂BÞ,
while the second error reflects the systematic uncertainty
arising from the uncertainty on Tpcðμ̂BÞ, which rises from
1.5 MeV at μ̂B ¼ 0 to 4 MeV at μ̂B ¼ 2.5.

V. THERMODYNAMICS AT CONSTANT RATIO
OF ENTROPY TO NET BARYON NUMBER

Equilibrated strong interaction matter created, for in-
stance in heavy ion experiments, follows lines of constant
entropy per net baryon number while expanding and
cooling after the initial collision of nuclei. The composition
of the initially colliding nuclei thus fixes the conserved
charge content of the matter created in this collisions,
i.e., nS ¼ 0 and nQ=nB fixed.
Also for the calculation of thermodynamic observables

such as the speed of sound or the adiabatic compressibility
of matter, one needs to determine the lines of constant s=nB
in QCD [11,13]. We have determined the lines of constant
s=nB in a strangeness-neutral medium with fixed nQ=nB.

In Fig. 14 we show such lines in the μ̂B-T plane for s=nB
and fixed ðnS; nQ=nBÞ ¼ ð0; 0.5Þ in the range 25 ≤ s=nB ≤
400. This roughly corresponds to the range covered
by BES-II at RHIC in the range of beam energies
7.7 GeV ≤ ffiffiffiffiffiffiffiffi

sNN
p ≤ 200 GeV. Also shown in Fig. 14 is

the asymptotic behavior of lines of constant nB at high

FIG. 13. Pressure (left) as well as energy (middle) and entropy (right) densities versus temperature for several values of the baryon
chemical potential. Figures show results for the case nS ¼ 0, nQ=nB ¼ 0.5 in the temperature interval [130 MeV:280 MeV]. Figures on
the top show results from 6th order Taylor series and the figures on the bottom have been used using Padé and P-Padé approximants,
respectively. The Taylor expansions are based on the continuum and spline interpolated data shown in Fig. 1 for the temperature interval
[130 MeV:175 MeV]. At larger temperatures we used data from our earlier analysis of bulk thermodynamics in a sixth-order Taylor
expansion [14]. Results for μ̂B ¼ 0 have been taken from [5].

FIG. 14. Lines of constant entropy per baryon number in the
T-μ̂B plane. Solid bands indicate results obtained by numerically
solving s=nB derived from the Oðμ̂6BÞ pressure series for μ̂B.
Dashed lines indicate HRG results while the (almost straight)
vertical bands indicate the Oðg2Þ perturbative result with
4 ≤ kT ≤ 8. The yellow band indicates Tpcðμ̂BÞ. In the inset,
we show the result from this numerical inversion divided by the
corresponding inversion coming from the Oðμ̂4BÞ pressure series.
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temperature and the approach to the HRG model at low
temperature. As can be seen, QCD results for lines of
constant s=nB differ much more from high-T perturbation
theory then the lines of constant nB. This, of course, arises
from the μB ¼ 0 contribution to the total entropy density,
which approaches the ideal gas limit slowly. The inset in
Fig. 14 shows that these lines are already well determined
using 4th order Taylor series only.
In Fig. 15 we show the temperature dependence of

pressure, energy and entropy densities on lines of constant
s=nB. Obviously, the T-dependence of these observables is
similar to that obtained for fixed μ̂B. Above the pseudoc-
ritical temperature, however, these observables rise some-
what faster than at μB ¼ 0, i.e., at s=nB ¼ ∞. This is
expected as Fig. 14 shows that the value of the chemical
potential on lines of constant s=nB increases above Tpc with
increasing temperature.
The speed of sound in strangeness-neutral matter

with fixed nQ=nB reflects the temperature dependence of
p and ϵ, shown in Fig. 15. As defined in Eq. (5) we have,

c2s ¼
�
∂p
∂ϵ

�
s=nB;nQ=nB;nS

¼
ð∂p=∂TÞs=nB;nQ=nB;nS
ð∂ϵ=∂TÞs=nB;nQ=nB;nS

: ð42Þ

The numerator is related to the entropy density evaluated at
fixed X⃗ ¼ ðs=nB; nQ=nB; nSÞ, while the denominator is a

specific heat defined at fixed X⃗. We note, however, that the
temperature derivatives taken at fixed X⃗ differ, of course,
from those taken at fixed ⃗μ̂. Some relations for constrained
partial derivatives are given in Appendices A and C we give
an explicit expression for c2s.
For nS ¼ 0 we obtain from Eqs. (5) and (6) for the speed

of sound (c2s) and the closely related adiabatic compress-
ibility (κs)

c2s ¼
NX⃗

ðϵþ pÞDX⃗

;

κs ¼
1

c2sðϵþ pÞ ¼
DX⃗

NX⃗

: ð43Þ

The functions NX⃗ðT; μ⃗Þ and DX⃗ðT; μ⃗Þ are given in terms of
second-order cumulants of the conserved charges ðB;Q; SÞ,
the entropy density and its derivatives with respect to T as
well as the three chemical potentials. All these observables
themselves are functions of T and μ⃗. One thus may evaluate
c2s by either taking numerically the T-derivatives appearing
in Eq. (42) or use directly Eqs. (C2)–(C5). The results
shown in Fig. 16 are based on the former approach.
As can be seen in Fig. 15 (left) and (middle) the shape

of pðTÞ and ϵðTÞ varies little when changing s=nB and
follows a similar pattern in both quantities. In the temper-
ature range currently accessible to us we thus do not expect
to observe a strong dependence of the speed of sound and
the adiabatic compressibility on s=nB. This is indeed
apparent from the results for both observables, calculated
for several fixed ratios s=nB, as shown in Fig. 16. At low
temperatures we show results for c2s only down to T-values
that can be reached at fixed s=nB for μ̂B < 2.5. As can be
seen in Fig. 14 this allows to explore the entire available
temperature range (T > 135 MeV) for s=nB ≥ 30, but
limits the temperature range for smaller values of s=nB.
At zero baryon density (s=nB ¼ ∞) the speed of sound

has a minimum at T ¼ 145–150 MeV [5]. From Fig. 16
(left) we see that for temperatures T > 145 MeV the speed
of sound slightly increases with decreasing s=nB and
steadily increases with T. At temperatures T < 145 MeV
the opposite trend is expected to show up in HRG model
calculations: c2s decreases with decreasing s=nB and
increasing T, see Fig. 16 (left). At low temperatures, the
speed of sound is known to have a “bump” arising from the
interplay of baryon and light meson contributions to c2s .
This is apparent from the inset in Fig. 16 (left), where we
show results on the speed of sound calculated in a HRG
model using the QMHRG2020 list of hadrons for several
representative values of s=nB. The bump in the speed of
sound at low temperature is responsible for the minimum in
c2s at T ¼ 145–150 MeV observed in lattice QCD calcu-
lations. This bump, however, will disappear with decreas-
ing s=nB. The HRGmodel calculation shown in the inset of
16 (left) indicate that c2s will stop developing a bump at low
temperatures at s=nB ≃ 15. Therefore, we expect that the
minimum in c2s will become shallower and its position will
possibly shift to smaller temperatures with decreasing

FIG. 15. Total pressure (left), energy density (middle), and entropy density (right) versus temperature for several values of the
ratio s=nB.
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s=nB. Lattice QCD calculations for s=nB ¼ 100 shown
in Fig. 16 (left) seem to confirm this expectation. For
sufficiently small s=nB the minimum in the speed of sound
may disappear altogether.
As c2s as well as ϵ andp increasewith decreasing s=nB it is

clear that the adiabatic compressibility shown in Fig. 16
(right) will decreasewith decreasing s=nB.Moreoverwe find
that it monotonically decreases with increasing temperature.

VI. CONCLUSIONS

We presented an update on the Taylor expansion of basic
thermodynamic observable (pressure, energy, and entropy
densities) of strangeness-neutral, isospin-symmetric strong-
interactionmatter.We showed that the μ̂B-dependent parts of
these observables approach the high-temperature perturba-
tive regime much more rapidly than the contribution to these
observables at μ̂B ¼ 0. The μ̂B-dependent contributions are
well described by Oðg2Þ perturbation theory already for
T ≳ 250 MeV.
We furthermore constructed the QCD equation of state

[PðnBÞ, ϵðnBÞ]. We showed that the Taylor series can be
resummed using Padé approximants. The regime where
Taylor expansions and Padé approximants agree with each
other gives further confidence in the validity range of
current Taylor expansion results varying from μ̂B ≃ 2.5 at
low temperatures to μ̂B ≳ 3 at T > 200 MeV.
We showed that Oðμ̂4BÞ Taylor series results for the

pressure provide a good description of the EoS in almost
the entire parameter range currently accessible in the beam
energy scan performed at RHIC in collider mode. This
allows for an analytic ansatz for the μ̂B-dependent part of
the EoS of strangeness-neutral, isospin-symmetric matter,
valid at temperatures T ≳ 135 MeV and μB=T ≲ 2.5,
which requires as input only the two leading-order
Taylor expansion coefficients [P2ðTÞ; P4ðTÞ] of the pres-
sure series. We note, however, that this conclusion is based
on lattice calculation with Nτ ¼ 8 lattices only.

For the first time, we presented results for the speed of
sound in strangeness-neutral matter at nonzero net baryon-
number density. We showed that the minimum in c2s
becomes shallower and its position shifts toward smaller
temperatures for s=nB ≤ 100. It is possible that this mini-
mum will disappear for sufficiently small s=nB. All data
presented in the figures of this paper can be found
in Ref. [48].
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APPENDIX A: CONSTRAINED PARTIAL
DERIVATIVES

We summarize here relations for partial derivatives of
thermodynamic observables with respect to temperature,
keeping specific external conditions ðx; y; zÞ fixed,
For any thermodynamic function fðT; μB; μQ; μSÞ we

have�
∂f
∂T

�
ðx;y;zÞ

¼
�
∂f
∂T

�
ðμB;μQ;μSÞ

þ
�
∂f
∂μB

�
ðT;μQ;μSÞ

�
∂μB
∂T

�
ðx;y;zÞ

þ
�

∂f
∂μQ

�
ðT;μB;μSÞ

�
∂μQ
∂T

�
ðx;y;zÞ

þ
�
∂f
∂μS

�
ðT;μB;μQÞ

�
∂μS
∂T

�
ðx;y;zÞ

: ðA1Þ

Similarly one has for two thermodynamic functions
fðT; μB; μQ; μSÞ and gðT; μB; μQ; μSÞ the relation�

∂f
∂g

�
ðx;y;zÞ

¼ ð∂f=∂TÞðx;y;zÞ
ð∂g=∂TÞðx;y;zÞ

. ðA2Þ

In Eqs. (A1) and (A2) the derivatives of the chemical
potentials are taken on lines of constant xðT; μB; μQ; μSÞ,
yðT; μB; μQ; μSÞ, and zðT; μB; μQ; μSÞ in the space of
external parameters ðT; μB; μQ; μSÞ. In the lattice QCD
context we usually work in the parameter space
(T; μ̂≡ μ=T). Moreover, we conveniently work with
reduced, i.e., dimensionless, thermodynamic observables,
i.e., we want to replace, e.g., ϵ̂ ¼ ϵ=T4, etc.
Changing the partial derivatives ∂μB to ∂μB=T and intro-

ducing reduced observables is straightforward, as these
derivatives are taken at fixed T. We have for an observable
that has dimension of Tn the relation,

∂f
∂μB

����
T
¼ Tn−1 ∂f̂

∂μ̂B

����
T
: ðA3Þ

Rewriting the temperature derivatives one has to be a bit
more careful,

∂f
∂T

����
μ⃗

¼ ∂f
∂T

����
⃗μ̂

−
X

i¼B;Q;S

μi
T2

∂f
∂μi=T

����
T

¼ ∂Tnf̂
∂T

����
⃗μ̂

−
X
i

μi
T2

Tn ∂f̂
∂μ̂i

����
T

¼ Tn−1
�
nf̂ þ T

∂f̂
∂T

����
⃗μ̂

−
X
i

μ̂i
∂f̂
∂μ̂i

����
T

�
: ðA4Þ

APPENDIX B: IDEAL GAS AND
HIGH-TEMPERATURE PERTURBATION
THEORY FOR ISOSPIN-SYMMETRIC,
STRANGENESS-NEUTRAL MATTER

At large values of the temperature, the pressure
approaches that of a massless ideal gas of quarks and
gluons. In the case of massless quarks, the leading order,
ideal gas result as well as the Oðg2Þ correction are second-
order polynomials in μ̂2f [49,50],

p=T4 ¼ p̂id − g2p̂2; ðB1Þ

with the ideal gas term

p̂id ¼
8π2

45

�
1þ 21nf

32

�
þ
X

f¼u;d;s

�
1

2

�
μf
T

�
2

þ 1

4π2

�
μf
T

�
4
�
;

ðB2Þ

and the Oðg2Þ correction

p̂2 ¼
1

6

�
1þ 5nf

12

�
þ 1

2π2
X

f¼u;d;s

�
1

2

�
μf
T

�
2

þ 1

4π2

�
μf
T

�
4
�
;

ðB3Þ

Expressing the flavor chemical potentials in terms of
conserved charge chemical potentials,

μ̂u ¼ ðμ̂B þ 2μ̂QÞ=3;
μ̂d ¼ ðμ̂B − μ̂QÞ=3;
μ̂s ¼ ðμ̂B − μ̂QÞ=3 − μ̂S; ðB4Þ

the strangeness number density can be written as

n̂S ¼ −
1 − q1 − 3s1

3

�
1þ 1

2π2
g2
�

×

�
μ̂B þ −

ð1 − q1 − 3s1Þ2
18π2

μ̂3B

�
ðB5Þ

Here we introduced the ratio of chemical potentials,
s1 ¼ μ̂S=μ̂B and q1 ¼ μ̂Q=μ̂B. From Eq. (B5) we find the
constraint for a strangeness-neutral ideal gas,

s1 ¼
1 − q1

3
: ðB6Þ

Inserting this constraint in Eq. (B4) one finds that up to
Oðg2Þ in perturbation theory the strange quark chemical
potential vanishes in strangeness-neutral matter, μs ¼ 0.
Moreover, the electric charge chemical potential vanishes
(μQ ¼ 0) in the isospin-symmetric case nu ¼ nd. Up to
Oðg2Þ we thus may write for the μ̂B-dependent contribution
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to the pressure of an isospin-symmetric medium and the
two cases9 of interest to us (i) μS ¼ 0 or (ii) nS ¼ 0,

Δp=T4 ¼ Af

18

�
1 −

g2

2π2

��
μ̂2B þ 1

18π2
μ̂4B

�
; ðB7Þ

nB=T3 ¼ Af

9

�
1 −

g2

2π2

��
μ̂B þ 1

9π2
μ̂3B

�
; ðB8Þ

where Af ¼ 3 for μS ¼ 0 and Af ¼ 2 for nS ¼ 0.
For the coupling g2 we use the two-loop running

coupling, allowing for a free parameter in the renormaliza-
tion scale, kTπT, as it also is used in more refined,
resummed approaches, e.g., hard thermal loop (HTL)
calculations [30],

β0 ¼
11 − 2nf=3

4π

β1 ¼
102 − 38nf=3

16π2

g21loop ¼
2π

β0 ln ðkTπT=ΛMSÞ
; ðB9Þ

g2 ¼ g21loop

�
1 −

β1
β20

lnð2 lnðkTπT=ΛMSÞÞ
2 lnðkTπT=ΛMSÞ

�
; ðB10Þ

with nf ¼ 3. As a scale factor we use the average of
recent values summarized in the last FLAG report
ΛMS ¼ 339ð12Þ MeV [51].

From Eqs. (B7) and (B8) we easily find the low and high
density limits of the EoS of a massless, strangeness-neutral,
isospin-symmetric quark gas to Oðg2Þ in high-T perturba-
tion theory,

Δp
T4

¼
8<
:

9
2Afð1−g2=2π2Þ ð

nB
T3Þ2; nB

T3 ≪ 1;

1
4

	
81π2

Afð1−g2=2π2Þ


1=3ðnBT3Þ4=3; nB

T3 ≫ 1:
ðB11Þ

For arbitrary net baryon-number densities we invert
Eq. (B8) to obtain the baryon chemical potential as function
of nB=T3 in Oðg2Þ perturbation theory,

μ̂Bðn̂BÞ ¼ y1=3 −
3π2

y1=3
; ðB12Þ

with

y ¼ 34π2

2Afð1 − g2=2π2Þ

×
�
n̂B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂2B þ ð2πAfð1 − g2=2π2ÞÞ2=35

q �
: ðB13Þ

Inserting Eq. (B12) in Eq. (B7) we obtain the equation of
state of strangeness-neutral, isospin-symmetric matter in
the high-temperature limit. The result in the ideal gas limit
(g2 ¼ 0) is shown in Fig. 17. Comparingwith Fig. 4 one sees
that the density range covered at high temperature in current
Taylor series expansions with μ̂B ≤ 2.5, i.e., nB=T3 < 0.6
corresponds to the low density limit of an ideal gas,
μB=T ∼ nB=T3. The transition between the low and high
density regions, however, starts to set in for nB=T3 ≳ 0.6.

FIG. 17. Baryon chemical potential (left) and the μB-dependent part of the pressure (right) of a 3-flavor, ideal gas of massless quarks
versus net baryon-number density (nB). Shown are results for the cases ðμQ ¼ 0; nS ¼ 0Þ (Af ¼ 2) and ðμQ ¼ 0; μS ¼ 0Þ (Af ¼ 3).
Results are rescaled with powers of nB appropriate in the low density (main panel) and high density (insets) limits, respectively. Dashed
lines show the respective low and high density limits.

9Because of isospin symmetry and strangeness-neutrality
conditions that we impose, one has μs ¼ 0 at high temperature.
For this reason, strange quarks do not contribute to the density
dependent part, in particular the net baryon-number density of the
ideal gas and LO perturbative limits. This is reflected in the
parameter Af.

D. BOLLWEG et al. PHYS. REV. D 108, 014510 (2023)

014510-20



APPENDIX C: SPEED OF SOUND

The speed of sound is defined as

c2
X⃗
¼
�
∂p
∂ϵ

�
X⃗
; ðC1Þ

where X⃗ defines the external conditions, e.g., constant
entropy per particle number. We generalize this here to the

case of QCD, where three conserved currents need to be
specified. We do so by choosing X⃗ ¼ ðs=nB; nQ=nB; nSÞ
With this we obtain

c2
X⃗
¼ NX⃗

ðϵþ p − μSnSÞDX⃗

; ðC2Þ

with

NX⃗ ¼ s2as2 þ s0as þ sðsBaB þ sQaQ þ sSaSÞ þ s2BaB2 þ s2QaQ2 þ s2SaS2 þ sBsQaBQ þ sBsSaBS þ sQsSaQS

DX⃗ ¼ s0bs þ s2BbB2 þ s2QbQ2 þ s2SbS2 þ sBsQbBQ þ sBsSbBS þ sQsSbQS ðC3Þ

Here we use the abbreviation si for the derivatives of the entropy with respect to the chemical potential μi, i.e., si ¼ ∂s=∂μi.
Using nQ=nB ¼ r, the various coefficients appearing in Eq. (C3) are given by

as2 ¼ −ðχBS11 Þ2χQ2 þ 2χBQ11 χ
BS
11 χ

QS
11 − χB2 ðχQS

11 Þ2 − ðχBQ11 Þ2χS2 þ χB2 χ
Q
2 χ

S
2

as ¼ −ðr2bQ2 þ rbBQ þ bB2Þn2B −
1

2
ðrbQS þ bBSÞnBnS

aB ¼ ð2bB2 þ rbBQÞnB þ 1

2
bBSnS

aQ ¼ ðbBQ þ 2rbQ2ÞnB þ 1

2
bQSnS

aS ¼ ðbBS þ rbQSÞnB þ bS2nS

aB2 ¼ −r2χS2n2B þ rχQS
11 nBnS

aQ2 ¼ −χS2n2B þ χBS11 nBnS

aS2 ¼ ð2rχBQ11 − r2χB2 − χQ2 Þn2B
aBQ ¼ 2rχS2n

2
B − ðrχBS11 þ χQS

11 ÞnBnS
aBS ¼ −2rðχQS

11 − rχBS11 Þn2B þ ðχQ2 − rχBQ11 ÞnBnS
aQS ¼ 2ðχQS

11 − rχBS11 Þn2B þ ðrχB2 − χBQ11 ÞnBnS ðC4Þ

bs ¼ as2

bB2 ¼ ðχQS
11 Þ2 − χQ2 χ

S
2

bQ2 ¼ ðχBS11 Þ2 − χB2 χ
S
2

bS2 ¼ ðχBQ11 Þ2 − χB2 χ
Q
2

bBQ ¼ 2ðχBQ11 χS2 − χBS11 χ
QS
11 Þ

bBS ¼ 2ðχBS11 χQ2 − χBQ11 χ
QS
11 Þ

bQS ¼ 2ðχQS
11 χ

B
2 − χBQ11 χ

BS
11 Þ ðC5Þ

We note that all cumulants χab11 and χ
c
2, with a; b ¼ B, Q, S,

appearing in Eqs. (C4) and (C5) are defined as μi, i ¼ a, b,

derivatives of P and as such are functions of the chemical
potentials, i.e., χab11 ≡ χab11ðμB; μQ; μSÞ. They need to be

chosen such that the constraint X⃗ is satisfied.
For μ⃗ ¼ 0 Eq. (C3) reduces to Nμ⃗¼0 ¼ s2as2 and

Dμ⃗¼0 ¼ s0bs. All other coefficients appearing in
Eqs. (C4) and (C5) are proportional to μ2.
As discussed in Appendix A some care has to be taken

when rewriting the derivatives of, e.g., entropy density with
respect to T,

s0 ≡ ∂s
∂T

����
μ⃗

¼ T2

�
3ŝþ T

∂ŝ
∂T

����
⃗μ̂

−
X
i

μ̂i
∂ŝ
∂μ̂i

����
T

�
: ðC6Þ
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For μ⃗ ¼ 0 we obtain the well-known expression

c2s jμ⃗¼0 ¼
s
Ts0

����
μ⃗¼0

: ðC7Þ

Furthermore, for an ideal gas Eq. (C2) gives, of course, c2s ¼ 1=3 for arbitrary ðμB; μQ; μSÞ.
We are interested here in the speed of sound in strangeness-neutral matter. In that case all terms proportional to nS appearing

in Eqs. (C2) and (C4) can be set to zero.
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