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Hadronic matrix elements evaluated on the lattice can be converted to a continuum scheme such as MS
using intermediate nonperturbative renormalization schemes. Discretization effects on the lattice and
convergence of the continuum perturbation theory are both scheme dependent and we explore this
dependence in the framework of the Rome-Southampton method for generalized kinematics. In particular,
we implement several nonexceptional interpolating momentum schemes, where the momentum transfer is
not restricted to the symmetric point defined in RI=SMOM. Using flavor nonsinglet quark bilinears, we
compute the renormalization factors of the quark mass and wave function for Nf ¼ 3 flavors of dynamical
quarks. We investigate the perturbative and nonperturbative scale dependencies. Our numerical results are
obtained from lattice simulations performed with domain-wall fermions, based on ensembles generated by
RBC-UKQCD collaborations; we use two different lattice spacings 1=a ∼ 1.79 and 2.38 GeV. We also give
the numerical values for the relevant anomalous dimensions and matching coefficients at next-to-next-to-
leading order.
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I. INTRODUCTION

One major goal of lattice QCD is to determine the matrix
elements of hadronic operators, with particular emphasis on
flavor nonsinglet quark bilinear operators, such as the local
scalar, vector, axial vector, or pseudoscalar operators. To
produce physically meaningful results we need renormal-
ization factors to relate the bare lattice results to quantities
in standard renormalization schemes, such as the modified
minimal subtraction scheme, MS. This conversion can be
done in lattice perturbation theory but it is well known that
it results in large systematic error because the perturbative
series converges poorly. Instead, in the last couple of
decades, more efficient methods have been developed,
the most popular ones being the Schrödinger functional
[1,2] and Rome-Southampton [3] frameworks. In this work
we follow the latter. In both cases, the strategy comprises
two distinct steps: First the renormalization factors are
obtained nonperturbatively from lattice simulations in a
given intermediate scheme, hence the name nonperturba-
tive renormalization (NPR). Then these factors are con-
verted to MS providing us with a bridge between low and

high energies. This second step is done perturbatively, but
in the framework of the Rome-Southampton method, it
can be done in standard continuum perturbation theory so
that we can take advantage of the multiloop computation
available in the literature. In principle the method is
relatively simple: one makes lattice measurements of
Green’s functions with bilinear operators inserted into
quark 2-point functions (for example), and compares the
lattice results with continuum perturbative results. This
method can also be applied to more complicated Green’s
functions, higher twist bilinears, four-quark operators, etc.
It is worth noting that although traditionally we work in a
massless limit, a massive momentum scheme has been
developed in [4].
In early lattice studies the operator insertion was at zero

momentum transfer, see for example [3,5] for the early
direction of this approach. This choice of kinematics
corresponds to an exceptional momentum configuration
and is subject to potential infrared issues. The origin of the
problem and potential solutions were already discussed in
detail in [6]. These infrared problems can become even
more severe when the chiral limit is taken, and had lead to
significant discrepancies in the case of neutral meson
mixing [7,8]. With the improvement in lattice analyses
as well as the use of dynamical fermions, the refinement of
the nonperturbative structure that is of phenomenological
interest became suspect due to the emergence of the latent
infrared issues.
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Therefore in [9–12], an extension to the zero momentum
insertion for this class of Green’s functions was developed.
In particular the Green’s functions were computed with a
nonzero momentum flowing through the operator and
external quark legs at what is now termed the fully
symmetric momentum subtraction point or SMOM.1 This
circumvents any potential ambiguity in assessing infrared
effects due to exceptional momentum configurations and in
particular in the chiral limit extrapolation. In either scenario
of zero or nonzero operator momentum flow lattice
measurements were assisted by matching to the continuum
limit. By this we mean that one can compute the same
Green’s function for any of the above operators in the
continuum field theory at several loop orders in the MS
scheme. For the quark mass, in the zero momentum case
this has been carried out to three loops, but for the nonzero
momentum case this has only been carried out to two
loops, [9–11] though there has been progress towards the
next loop order in [13,14]. Such continuum matching
allows one to accurately tune to the ultraviolet before
extrapolating to the nonperturbative or low energy region
where measurements are made and errors estimated.
The effect of using a momentum configuration which

is infrared secure can be seen for example in [8,15–19]
where the renormalization factors for the various flavor
nonsinglet quark bilinear or four-quark operators were
calculated for both momentum configurations. A quantity
which can be used as a benchmark is the ratio of the vector
and axial vector operators. On symmetry grounds this has
to be unity for domain-wall fermions and thus provides a
stringent test of determining which momentum configu-
ration was more reliable. Similarly, the scalar and pseu-
doscalar densities should be equal, up to low-energy
effects due to spontaneous chiral symmetry breaking.
The size of these unwanted contaminations depend on the
momentum configuration. It is evident from the analysis
of, for example, [15,18,19], that the SMOM ratio ZA=ZV
is unity over virtually the full momentum range and well
into the deep infrared in marked contrast to the zero
momentum case. While this augurs well for significant
improvement in lattice measurements and errors, one
question naturally arises which will form the main focus
of our article.
Now that it is established that the SMOM nonexceptional

momentum configuration gives a clear improvement, it is
only one of many possible configurations that can be
studied. Indeed, for example in [9,10], a more general off-
shell case was developed which is termed IMOM to denote
the interpolating momentum subtraction configuration. In
the SMOM definition the momentum squared of the three
external momenta were all equal. By contrast in the IMOM
case the magnitude of the operator momentum flow is
allowed to vary and this is governed by an additional

kinematic parameter ω. For example the SMOM case
corresponds to ω ¼ 1. Varying ω between 0 and 4, which
are the respective values giving infrared or collinear
singularities, allows one to search for a value which can
improve the matching to the continuum, the nonperturba-
tive behaviour or maybe even reduce the lattice artifacts.
This therefore leads to our investigation to see if there is an
optimal value for ω, possibly different from one, which
minimizes errors and improves benchmarks such as that
studied in [15,18,19]. This would be the appropriate next
stage after the success of the SMOM schemes. For instance
the deviation between the scalar and pseudoscalar operators
renormalization factors can be examined to gauge pion
mass effects. While ω will be our main parameter the
overall momentum scale μ at which measurements are
made will also be important. Therefore to have a thorough
investigation we have performed a lattice computation of
various operators on different lattices for half integer values
of ω between 0 and 4 for various values of μ. This has
allowed us to identify an optimal area of the ðω; μ2Þ-plane
where there is an effective plateau upon which measure-
ments are reliably accurate. Moreover the picture appears to
be consistent for the operators we consider, though the
actual locations are not necessarily the same point for each
case. It suggests that there should be a similar qualitative
behavior for operators with covariant derivatives or four-
quark operators, which we do not consider here.
Although the article primarily concentrates on the lattice

computations and analysis, we were indebted throughout
to the various two-loop MS continuum results accumulated
over the last decade, [9–12,18,20], to facilitate the con-
tinuum matching. Moreover the measurement of quark
bilinear currents in the IMOM configuration will give
crucial directions to 4-point quark Green’s functions such
as those relevant to kaon mixing for example, [7,8]. In that
scenario the effective 4-point functions can be mimicked by
products of the Green’s functions we consider here. It is
particularly important in this case, as it has been argued that
the choice of kinematics was responsible for the discrep-
ancy observed in the literature.
The paper is organized as follows: In Sec. II we outline

the kinematics setup, explaining in detail how our incoming
and outgoing momenta are chosen to lead to a given value
of ω for a given value of μ. In Sec. III we explain how we
define the Z factors, and discuss our choice of projectors.
In Sec. IV, we present our results for the Z factors and
their scale evolutions. We conclude in Sec. V. Appendix A
shows the perturbative conversion factors for matching
from IMOM to MS. More details about the lattice simu-
lations can be found in Appendix B. We show the chiral
extrapolations in Appendix C. In Appendix D, we collect
the results for Zm for the =q projector. An extensive study
of the scale analysis dependence is presented in
Appendix E. Finally we show our continuum extrapola-
tions in Appendix F.1To ease the notation we drop the “RI” in RI=SMOM.
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II. KINEMATICS

We consider the interaction in Fig. 1, where the incoming
momentum is defined as p1, the outgoing momentum as
p2, and the momentum transfer as q.
The method is based on the Rome-Southampton regu-

larization independent momentum scheme: the fermions
are off-shell, we work in the chiral limit, and the renorm-
alization scale is given by the choice of external momenta.
In the original RI=MOM scheme (or RI0=MOM) [3], the
incoming and outgoing momenta are equal, p1 ¼ p2, so
that there is no momentum transfer, q ¼ 0. The renorm-
alization scale μ is defined by μ2 ¼ p2

1 ¼ p2
2. In contrast, in

the SMOM schemes, the incoming and outgoing momenta
are different: they are chosen such that q2 ¼ p2

1 ¼ p2
2;

naturally the renormalization scale is given by μ ¼
ffiffiffiffiffi
q2

p
.

The advantage is to avoid exceptional kinematics which
behave badly in the infrared regime [9].
The above schemes can be generalized further. We retain

the condition p2
1 ¼ p2

2 ¼ μ2 but drop the requirement
q2 ¼ μ2. We define the variable ω ¼ q2=μ2 to parametrize
the kinematics. ω ¼ 0 corresponds to the original
RI=MOM and RI0=MOM schemes, ω ¼ 1 corresponds
to the SMOM scheme. The possible values of ω range
between 0 and 4. Let us denote by α the angle between the
incoming and outgoing momenta. We choose our frame
such that the momenta take the following form (the time
component is represented by the last entry):

p1 ¼ μ½1; 0; 0; 0�; ð2:1Þ

p2 ¼ μ½cos α; sin α; 0; 0�: ð2:2Þ

This gives

q ¼ p1 − p2 ¼ μ½1 − cos α;− sin α; 0; 0�; ð2:3Þ
and

q2 ¼ μ2ðð1 − cos αÞ2 þ sin2 αÞÞ ð2:4Þ

¼ 2μ2ð1 − cos αÞ ð2:5Þ

≡ωμ2; ð2:6Þ

where we have defined ω ¼ 2ð1 − cos αÞ. Clearly the
parameter ω can take any real value between 0 and 4,
and the value of ω is directly related to the value of α as
shown in Fig 2.
We can check that the extreme cases ω ¼ 0 and ω ¼ 4

correspond to p1 ¼ p2 and p1 ¼ −p2, respectively,
and therefore these situations suffer from infrared and
collinear singularities. We also note thatω ¼ 0 is the choice
made in the original (exceptional) kinematics of a standard
RI=MOM scheme while ω ¼ 1 corresponds to the SMOM
kinematic of [9]. This has been known for a while, see for
example [9,10]. Different choices of ω are referred to as
interpolating momentum schemes [11,20,21]. However, to
our knowledge, there is no numerical study or practical
implementation of such kinematics.
Let us now turn to the lattice implementation. If L is the

physical spatial extent of the lattice (we do not consider the
temporal extent here for simplicity), we have

p1 ¼
2π

L
½l; 0; 0; 0�; ð2:7Þ

p2 ¼
2π

L
½m; n; 0; 0�; ð2:8Þ

where l, m, and n are dimensionless (they are the Fourier
modes if they are chosen to be integers). In order to
obtain any desired value of μ and ω we take advantage of
(partially) twisted boundary conditions, which allow l, m,
and n to be any real numbers. For any pair ðμ;ωÞ, the
numbers ðl; m; nÞ can be obtained from the kinematic
constraints p2

1 ¼ p2
2 ¼ μ2 and q2 ¼ ωμ2 by solving

μ ¼ 2πl=L; ð2:9Þ

l2 ¼ m2 þ n2; ð2:10Þ

ωl2 ¼ ðl −mÞ2 þ n2: ð2:11Þ

In order to show a concrete example, let us anticipate and
consider one of the ensembles used in this work, with

FIG. 1. We consider an incoming momentum p1, outgoing
momentum p2, and a momentum transfer q ¼ p1 − p2.

FIG. 2. The parameter ω is dependent upon the value of the
angle α between the incoming and outgoing momenta.
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spatial extent of L=a ¼ 32 and inverse lattice spacing of
a−1 ¼ 2.383ð9Þ GeV. In that case, we can see that the
following choice,

p1 ¼
2π

L
½2.1372; 0; 0; 0�; ð2:12Þ

p2 ¼
2π

L
½1.60291; 1.41363; 0; 0�; ð2:13Þ

corresponds to μ ¼ 1 GeV andω ¼ 0.5with an uncertainty
at the per-mille level.
It is worth noting another choice of kinematics given by2

p1 ¼
2π

L
½m;m;m;m�; ð2:14Þ

p2 ¼
2π

L
½�m;�m;�m;�m�: ð2:15Þ

Depending on the number of minus signs in p2, we can
obtain any integer value of ω between 0 and 4. With this
choice we also expect the quark wave renormalization
factor so to have similar lattice artifacts, whereas in the
setup mentioned above they will have different discretiza-
tion effects (except in some special cases). In that case, one
can expect the discretization effects to be ω independent.
We note that the same procedure with fewer than four
components can lead to a noninteger value of ω: if the last
component is fixed to zero, we can achieve the values
ω ¼ 0, 4=3, 8=3, 4.
In this work we only consider the setup given in

Eqs. (2.1)–(2.2) as we also want to investigate arbitrary
noninteger values of ω. We chose to vary ω between 0.5
and 4 with a step of 1=2. In addition, we can use the ω
dependence of the discretization effects to obtain an addi-
tional handle to estimate the systematic uncertainties.

III. IMPLEMENTATION

A. Lattice implementation

For the bilinears, omitting flavor and spin-color indices
for clarity (we only consider flavor nonsinglet operators)
we define OΓ ¼ ψ̄Γψ , with Γ ¼ 1, γμ, γμγ5, γ5 (S,V,A,P).
We sketch here the computation of the propagators and of
the bilinears needed to renormalize the quark mass and
the quark wave function. We drop the volume factors and
set a ¼ 1 for simplicity.
Following [22], the momentum source propagators are

computed by first solving

X
x

Dðy; xÞG̃xðpÞ ¼ eip:y1; ð3:1Þ

for a given momentum p, on Landau-gauged fixed con-
figurations. In the previous equation, D denotes a generic
Dirac matrix in spin-color space, regardless of the lattice
discretization. Then we obtain the momentum source propa-
gators by multiplying by the corresponding phase factor

GxðpÞ ¼ G̃xðpÞe−ip:x ¼
X
z

D−1ðx; zÞeip:ðz−xÞ: ð3:2Þ

Sowithin our conventions,GxðpÞ is an incoming propagator
(with respect to x) with momentum p. After gauge average,
the outgoing one is then given by Gxð−pÞ ¼ γ5GxðpÞ†γ5.
The advantage of the method proposed in [22] compared to a
traditional Fourier transom is that there sum over z in
Eq. (3.2) significantly reduces the statistical uncertainties.
For the bilinears, we consider the diagram shown in Fig 1
and compute (h…i denotes the gauge average)

VΓðp2; p1Þ ¼ hψðp2ÞOΓψ̄ðp1Þi; ð3:3Þ

¼
X
x

hGxð−p2ÞΓGxðp1Þi: ð3:4Þ

Defining GðpÞ ¼ P
x GxðpÞ, we then amputate the external

legs

ΠΓ ¼ hG−1ð−p2ÞiVΓðp2; p1ÞhG−1ðp1Þi: ð3:5Þ

This quantity ΠΓ is obviously a matrix in spin-color space,
the renormalization factors ZΓ are then defined by projecting
it to the corresponding tree-level value. A possible choice
(which defines a so-called γμ scheme) is to use the same Γ
matrix as in the vertex

ΛΓ ¼ 1

F
P½ΠΓ� ¼

1

F
Tr½ΓΠΓ�; ð3:6Þ

where the trace is taken in color space and F is the
corresponding tree-level value.

B. Z factors

Let us now specify our conventions for the renormaliza-
tion factors. We denote the renormalized quantities with an
index R, whereas the bare quantities do not carry extra
indices. The quark wave function renormalization factor Zq

is defined by ψR ¼ ffiffiffiffiffiffi
Zq

p
ψ, and GR ¼ ZqG represents

the renormalized fermion propagator. For the bilinears
defined above, the renormalized quantities are denoted
by OR

Γ ¼ ZΓOΓ. Note that for the corresponding Green’s
functions, we have as usual ΠR

Γ ¼ ZΓ=Zq × ΠΓ.
The renormalization factors for the bilinears are then

obtained by imposing

lim
m→0

ZΓðμ;ωÞ
ZqðμÞ

× ΛΓjðμ2¼p2
1
¼p2

2
;ðp1−p2Þ2¼ωμ2Þ ¼ 1; ð3:7Þ2Here we assume for simplicity that T ¼ L, but in general the

time component should be rescaled if this is not the case.
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where m is the (bare) quark mass (before taking the
chiral limit, we work with degenerate quark masses for
simplicity). Note that we could take also the chiral limit by
sending the renormalized mass to zero, here we assume
that there is no additive mass renormalization.3 There are
several possible ways to define the quark field renormal-
ization constant Zq. For example in RI0=MOM, one
imposes a condition directly on the fermionic propagator

ZqðμÞ ¼ −i lim
m→0

�
1

12p2
Tr½=pG−1ðpÞ�

�
μ2¼p2

: ð3:8Þ

We now turn to the quark mass. The choice of the field
renormalization fixes the renormalization factor Zm, which
relates the bare and renormalized masses as mR ¼ Zmm.
To be specific, we write in Fourier space the inverse bare
fermion propagator

G−1ðpÞ¼ i=pþmþΣ¼ i=pð1þΣVÞþmð1þΣSÞ; ð3:9Þ

and similarly, having a generic MOM scheme in mind, we
write for the renormalized propagator,

G−1
R ðpÞ ¼ i=pþmR þ ΣR ¼ i=pð1þ ΣV

RÞ þmRð1þ ΣS
RÞ:
ð3:10Þ

Since GR ¼ ZqG, we have

ð1þ ΣV
RÞ ¼ Z−1

q ð1þ ΣVÞ; ð3:11Þ

ð1þ ΣS
RÞ ¼ Z−1

q Z−1
m ð1þ ΣSÞ: ð3:12Þ

Traditionally in a MOM scheme, one defines the renorm-
alization factors Zm and Zq by imposing that the renor-
malized parts are finite in the chiral limit at a certain
renormalization point. For example the renormalization
factor Zm can then be extracted from

ZmðμÞ ¼
1

ZqðμÞ
lim
m→0

�
1

12m
Tr½G−1ðpÞ�

�
μ2¼p2

; ð3:13Þ

which is equivalent to

lim
m→0

�
1

12mR
Tr½G−1

R ðpÞ�
�
μ2¼p2

¼ 1: ð3:14Þ

In [9], it was suggested to replace this condition by

lim
m→0

�
1

12mR

�
Tr½G−1

R ðpÞ�μ2¼p2 −
i
2
Tr½qμΠμ

A;Rγ5�μ2¼p2
1
¼p2

2
¼ðp1−p2Þ2

��
¼ 1: ð3:15Þ

The motivation for this definition of Zm is that it leads to
Zm ¼ 1=ZP if ZP is defined from Eq. (3.6) at the same
kinematic point. This follows from requiring that the Ward-
Takahashi identities (WTI) given below are satisfied both
for the bare and renormalized quantities (for degenerate
quark masses)

qμΠVμðp1; p2Þ ¼ −iðG−1ðp2Þ − G−1ðp1ÞÞ; ð3:16Þ

qμΠAμðp1;p2Þ
¼2imΠPðp1;p1Þ− iðγ5G−1ðp2ÞþG−1ðp1Þγ5Þ; ð3:17Þ

in the case of degenerate quark masses. Imposing this
condition with the SMOM kinematics leads to maintaining
the WTI on the renormalized quantities. In particular the
procedure leads to ZA ¼ ZV .

C. Our definitions

We deviate from the choice made in [9] for several
reasons. Firstly, some derivations in [9] rely on the SMOM
kinematics, which we want to generalize here. Secondly,
rather than imposing the renormalization conditions
directly on the quark propagators, we prefer to extract
the renormalization factors from the bilinears. In this paper
we are using domain wall fermions, so we assume that
ZA ¼ ZV , whose values are known from previous studies
on the same lattice, and are given in Appendix B for
convenience. (The deviation ZV=ZA from one is studied in
Appendix 4.6.) Additionally, we define Zm directly as

Zm ¼ 1=ZS; ð3:18Þ

and we also define

ZV

Zqðμ;ωÞ
lim
m→0

½ΛV �IMOM ¼ 1; ð3:19Þ

ZSðμ;ωÞ
Zqðμ;ωÞ

lim
m→0

½ΛS�IMOM ¼ 1; ð3:20Þ

3With domain-wall fermions, a small additive renormalization
of the quark mass is also necessary. For simplicity we also assume
the residual mass has already been included; here the quark mass
renormalizes multiplicatively.
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where the shorthand IMOM stands for μ2 ¼ p2
1 ¼ p2

2,
ðp1 − p2Þ2 ¼ ωμ2. (These equations are used for the
quark wave function and the mass renormalization factors.)
More explicitly, we define

Zqðμ;ωÞ ¼ ZV lim
m→0

½ΛV �IMOM; ð3:21Þ

Zmðμ;ωÞ ¼
1

ZV
lim
m→0

�
ΛS

ΛV

�
IMOM

; ð3:22Þ

where ΛV;S are the bare (and local) vertices defined above.
Note that both Zm and Zq acquire an ω dependence through
these definitions. This dependence is discussed in Sec. IV.
The main advantage of this approach is that the Green’s
functions of the bilinears have a much safer infrared
behavior than the quark propagators.
In order to completely fix the definition of Zq and Zm

in Eqs. (3.21) and (3.22) we need to specify our the choice
of projector Pμ for the vector Green’s function,

ΛV ¼ 1

F
Pμ½ΠVμ �: ð3:23Þ

We implement the so-called γμ and =q projectors (the trace is
taken over both Dirac and color indices)

ΛðγμÞ
V ¼ 1

48
Tr½γμΠVμ �; ð3:24Þ

ΛðqÞ
V ¼ qμ

12q2
Tr½=qΠVμ �; ð3:25Þ

where obviously q ¼ p1 − p2 is the momentum transfer
of the IMOM kinematic defined above, μ2 ¼ p2

1 ¼ p2
2,

ðp1 − p2Þ2 ¼ ωμ2. Plugging these definitions in
Eqs. (3.21) and (3.22), we see that we have defined two
kinds of IMOM schemes similarly to what was done in the
SMOM case. In order to keep track of what projector was

used, we introduce the respective notations Z
ðγμÞ
m ðμ;ωÞ and

ZðqÞ
m ðμ;ωÞ for the renormalization factors.
The renormalization factors for the other bilinears are

defined exactly in the same way as Eqs. (3.19) and (3.20).
This, together with a lattice formulation which preserves
chiral symmetry, leads to ZV ¼ ZA and ZS ¼ ZP, apart
from the physical effects of spontaneous chiral symmetry
breaking, which may become important at low p2 and q2.
This is discussed in Sec. IV. Naturally for a lattice
formulation which breaks explicitly chiral symmetry, one
can follow [9] with the modification q2 ¼ ωμ2.

D. Nomenclature

To define unambiguously a momentum scheme for a
composite operator one needs to specify the kinematics
(the choice of momenta) and the choice of projectors, not
only for theGreen’s function corresponding to the operator in
question, but also for the quark wave function.4 Historically,
when the Rome-Southampton method was introduced in [3],
the kinematics was the exceptional case,p1 ¼ p2 andZq was
defined through a γμ projector, i.e. Eq. (3.24). Although the
authors of [3] mentioned explicitly that other choices were
possible, by convention “RI=MOM scheme” refers to this
specific choice of kinematics and wave function. Similarly, it
also became standard to call “RI0=MOMscheme” a scheme in
which the kinematics is also exceptional (p1 ¼ p2) but the
quark wave function is renormalized through a =q projector,
i.e. Eq. (3.25). (In [3] the definition of the projector differs
from the one given here, but both definitions are equivalent up
to lattice artifacts).
We turn now to the SMOM schemes. By definition,

the S of SMOM refers to the situation where p2
1 ¼ p2

2 ¼
ðp1 − p2Þ2, i.e. ω ¼ 1, or “symmetric” [9]. For the quark

0 2 4 6
1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3
1.3

1.4

1.5

1.6

1.7

FIG. 3. Zm at μ ¼ 2 GeV in MS, converted using NNLO. The results are shown as a function of the square of the momentum scale at
which the renormalization factors are nonperturbatively extracted.

4Strictly speaking we also need to specify the gauge, but it is
standard to assume that the computation is performed in the
Landau gauge.
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wave function, the convention in [9] was that RI=SMOM
refers to a =q projector and RI=SMOMγμ to a γμ projector.
There is also a similar subtlety in the definition of Zm,
see Sec. III B.
Here, following the conventions adopted by RBC-

UKQCD (see for example [8]), we use the notations
ZðXÞðμ;ωÞ, where X ∈ fγμ; =qg indicates the choice of the
projector for the wave function. Obviously the choice of
kinematics is explicitly given by ω. When needed, we also
refer to these schemes as IMOMðγμÞ and IMOMðqÞ.

Name Kinematics Projector for Zq

RI=MOM p1 ¼ p2 γμ
RI0=MOM p1 ¼ p2 =q
RI=SMOMγμ p2

1 ¼ p2
2 ¼ ðp1 − p2Þ2 γμ

RI=SMOM p2
1 ¼ p2

2 ¼ ðp1 − p2Þ2 =q

IMOMðγμÞ p2
1 ¼ p2

2 ¼ μ2, ðp1 − p2Þ2 ¼ ωμ2 γμ
IMOMðqÞ p2

1 ¼ p2
2 ¼ μ2, ðp1 − p2Þ2 ¼ ωμ2 =q
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FIG. 4. Zm at μ ¼ 2 GeV in MS converted from X ¼ γμ and for ω ¼ 0.5, 1.0, 1.5, 2.0.
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IV. RESULTS

A. A first look at Zm

For clarity we assume here that the Z factors are
taken in the chiral limit. (We find that the chiral
extrapolations are well under control; they are shown

in Appendix C.) In Fig. 3 we show our results for ZMS
m

computed at 2 GeV for the various values of ω and
for the two different values of the lattice spacing.

We start by computing Z
ðγμÞ
m ðμ;ωÞ for the different values

of ðμ;ωÞ, then we run perturbatively to the reference
scale of 2 GeV and finally match to MS using NNLO at
fixed ω. This can written as

Z
ðγμÞ
m ð2 GeV;ωÞ ¼ U

ðγμÞ
m ð2 GeV; μ;ω;ω0Þjω¼ω0

Z
ðγμÞ
m ðμ;ωÞ;

ð4:1Þ

ZMS
m ð2 GeVÞ ¼ C

ðγμÞ
m ð2 GeV;ωÞZðγμÞ

m ð2 GeV;ωÞ: ð4:2Þ
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FIG. 5. Same as Fig. 4 for ω ¼ 2.5, 3.0, 3.5, 4.0.
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Although the notations should be self-explanatory, the
precise definitions of the matching and running coef-
ficients are given in Appendix A (we assume ν ¼ μ and
do not repeat the corresponding index for clarity). Our

results are shown versus the square of the lattice
momentum ðapÞ2 ¼ ðaμÞ2 for fixed values of ω in

Figs. 4 and 5. The blue squares show Z
ðγμÞ
m ðμ;ωÞ for

the different values of the renormalization scale (at this

FIG. 6. Comparison of the nonperturbative and perturbative running for Z
ðγμÞ
m . Note that for ω ¼ 1 the perturbative running is known

at N3LO.
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point no perturbation theory is used). Then for each
value of μ, we run to 2 GeV, using the perturbative
predictions at LO, NLO, and NNLO, still in the
IMOM scheme (red points), as in Eq. (4.1). Finally

we convert this renormalization factor to MS at 2 GeV
(magenta), see Eq. (4.2). As expected, the large values of
ω and ðaμÞ2 are more affected by discretization effects.
The extreme value ω ¼ 4 is just shown here for

FIG. 7. Same as Fig. 6 for ZðqÞ
m .
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illustration. It is clear from Fig. 3 that, even on our
finest lattice, there is still an ðaμÞ2 and ω dependence
after conversion. This is not unexpected since these
quantities have different discretization effects and
different perturbative uncertainties. We also show a
similar analysis for X ¼ =q in Appendix D, Fig. 22;
our conclusions remain the same, although ω ∼ 1
appears to be better for =q while γμ favors ω ∼ 2 for
this quantity.
From this analysis, we conclude that the bulk of the

renormalization scale dependence is well described by
perturbation theory as long as ω remains moderate.
However it is clear that our results are affected by
systematic errors (as expected) and a more refined analysis
is required in order to disentangle the various effects.
Furthermore we observe that for this quantity our data favor

ω ¼ 2 for X ¼ γμ, where the systematic errors are signifi-
cantly less pronounced.

B. Strategy and nonperturbative running

In practice, we want to perform the computation non-
perturbatively on the lattice at several values of the lattice
spacing, take the chiral and continuum limit and then apply
(continuous) perturbation theory. So the strategy is to
compute the Z factors at a given scale μ (fixed in physical
units) in the chiral limit, for a fixed value of ω and for each
lattice spacing a in the corresponding IMOM scheme. The
extrapolation to the continuum can be performed once the
corresponding bare quantity has been computed at the same
values of the lattice spacing a. In a nutshell, the strategy
reads (omitting the chiral extrapolation for clarity) [16,17]

FIG. 8. Ratio of the nonperturbative running over the perturbative prediction for Z
ðγμÞ
m . The central value is shown on the left and the

error on the right. This ratio is exactly one (by definition) for the point (μ ¼ 2.5 GeV, ω ¼ 2).
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ðstep 1Þ OIMOM;ðXÞðμ;ωÞ ¼ lim
a2→0

ZIMOM;ðXÞðμ;ω; a2ÞObareða2Þ; ð4:3Þ

ðstep 2Þ OMSðμÞ ¼ Cðμ;ωÞIMOM;ðXÞOIMOM;ðXÞðμ;ωÞ; ð4:4Þ

where X denotes the projector used in the defining of
IMOM. Clearly the first step is purely nonperturbative and
can be used to assess the size of the discretization artifacts.
On the other hand, the second step is performed in the
continuum and can be used to estimate the size of the
perturbative uncertainties.
In this work, we are only concerned with renormalization

factors and do not want to introduce bare quantities.
However we still want to disentangle the lattice discretiza-
tion artifacts from the perturbative errors. It is therefore
natural to consider the nonperturbative scale evolution of
Zm. In the spirit of [15], we define Σm as

ΣðXÞ
m ða2; μ; μ0;ω;ω0Þ ¼ lim

m→0

ZðXÞ
m ða2; μ;ωÞ

ZðXÞ
m ða2; μ0;ω0Þ

; ð4:5Þ

where X can either be γμ or =q. We can then take the
continuum limit a2 → 0 and define

σðXÞm ðμ; μ0;ω;ω0Þ ¼ lim
a2→0

ΣðXÞ
m ða2; μ; μ0;ω;ω0Þ: ð4:6Þ

Similarly, for the quark wave function we define σq, by just
substituting Zq for Zm in the above definitions. We note that

FIG. 9. Same as Fig. 8 for ZðqÞ
m .
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we cannot only run in the μ direction but also in the ω
direction by setting ω ≠ ω0.
In this work, we only consider two values of the lattice

spacing; therefore, we add a systematic error as an estimate
of the residual discretization errors. This error is obtained

by adding half the difference between the extrapolated
value and the value on the finest lattice spacing. The
continuum extrapolations can be found in Appendix F. We
now have, for each value of μ, μ0, ω, ω0, a central value of
σfm;qg, a statistical error and a systematic error from the
continuum extrapolation. In the following we will always
sum the systematic and statistical uncertainties in quad-
rature except when stated otherwise.
We can now compare the continuous nonperturbative

running obtained from our lattice simulation with the
perturbative prediction. This has to be done in a kinematic
region where both perturbation theory and lattice results are
reliable, the so-called Rome-Southampton windows. In this
region the perturbative and lattice results should run in the
same way, so the ratio should be constant. We will see
deviations from constancy in regions where perturbation
theory converges slowly (for example at small μ or small
q2 ¼ ωμ2). We will also see nonconstancy if lattice artifacts
are important, which is likely to happen at large μ2 and
large ωμ2. We also note that our procedure to estimate the
residual discretization errors could potentially under-
estimate them in the large μ2 and large ωμ2 regions.
In the following sections we will first keep ω ¼ ω0 and

compare the μ dependence of the lattice results and the
continuum. An advantage of IMOM is that we have two
parameters, μ and ω, so we can better test that we are
working in a region where we can trust both perturbative
and lattice results. Accordingly, we next will vary both μ
and ω and study if a plateau is emerging where we can
reliably determine the Z factors of interest.

TABLE III. Nonperturbative running for the quark mass in the γμ scheme.

ω=μ ¼ 1.0 1.5 2.5 3.0 3.5 4.0

0.5 1.219(123) 1.131(21) 0.922(8) 0.866(13) 0.827(18) 0.793(26)
1.0 1.343(64) 1.092(16) 0.931(6) 0.882(11) 0.846(17) 0.816(24)
1.5 1.306(52) 1.110(12) 0.937(5) 0.894(11) 0.861(17) 0.831(25)
2.0 1.214(49) 1.099(11) 0.944(5) 0.904(10) 0.878(14) 0.860(17)
2.5 1.176(37) 1.085(9) 0.949(5) 0.916(9) 0.898(10) 0.893(7)
3.0 1.180(39) 1.070(7) 0.952(6) 0.925(8) 0.911(8) 0.910(4)
3.5 1.169(27) 1.065(6) 0.959(5) 0.937(6) 0.928(4) 0.935(5)
4.0 1.142(27) 1.049(5) 0.970(2) 0.968(10) 1.004(36) 1.144(116)

TABLE IV. Nonperturbative running for the quark mass in the =q scheme.

ω=μ ¼ 1.0 1.5 2.5 3.0 3.5 4.0

0.5 1.182(128) 1.110(21) 0.933(8) 0.886(9) 0.860(8) 0.846(8)
1.0 1.302(73) 1.074(18) 0.944(5) 0.907(5) 0.888(4) 0.885(11)
1.5 1.266(57) 1.082(10) 0.951(3) 0.922(3) 0.912(3) 0.924(17)
2.0 1.157(49) 1.074(11) 0.959(4) 0.936(5) 0.933(4) 0.958(22)
2.5 1.127(43) 1.060(10) 0.966(5) 0.950(5) 0.950(3) 0.969(16)
3.0 1.126(45) 1.047(8) 0.969(5) 0.958(6) 0.962(3) 0.985(15)
3.5 1.114(32) 1.042(7) 0.976(4) 0.970(4) 0.982(7) 1.018(28)
4.0 1.080(30) 1.023(7) 0.989(6) 1.009(25) 1.081(71) 1.274(182)

TABLE II. Study of the convergence of the perturbative series
for running of the quark mass between 2 and 2.5 GeV in MS,
SMOM-γμ, and =q.

Scheme NLO-LO NNLO-NLO NNNLO-NNLO

MS −0.0081 −0.0015 −0.0002
γμ −0.0126 −0.0054 −0.0040
=q −0.0096 −0.0026 −0.0017

TABLE I. Running between 2 and 2.5 GeV for the quark mass.
First we perform the computation directly in MS then and in the
SMOM (ω ¼ 1) schemes γμ and =q. In this case the running is
known at NNNLO (N3LO). The lattice results are denoted by NP
(nonperturbative). We also show the running computed first
nonperturbatively then converted to MS; we denote them by
MS ← γμ and MS ← =q, respectively.

Scheme LO NLO NNLO NNNLO NP

MS 0.9537 0.9456 0.9441 0.9439
MS ← γμ 0.9537 0.9350 0.9389 0.9426

MS ← =q 0.9537 0.9451 0.9462 0.9475
γμ 0.9537 0.9411 0.9357 0.9318 0.9307(62)
=q 0.9537 0.9441 0.9415 0.9400 0.9436(46)
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C. Quark mass renormalization factor

The running of the quark mass is shown in Fig 6 for

the γμ scheme and in Fig. 7 for the =q scheme. In these

plots we show both the nonperturbative scale evolution

σ
ðγμÞ
m ðμ; μ0;ω;ω0Þ and the perturbative prediction

u
ðγμÞ
m ðμ; μ0;ω;ω0Þ. In order to study the μ evolution for

fixed values of ω, we set ω ¼ ω0 ¼ 0.5; 1.0; 1.5;…; 4.0
and let μ vary between 1 and 4 GeV. We find a good

FIG. 10. Same as Fig. 6 for Z
ðγμÞ
q .
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agreement for intermediate values of μ and ω, where both
perturbation theory and lattice artifacts are expected to be
under good control. In fact, perturbation theory works
surprisingly well even for small values of μ, where

significant discrepancies with the lattice results only
emerge at μ ≃ 1 GeV. Out of the two schemes, perturbation
theory and lattice results agree best in the γμ scheme. The
onset of lattice artifacts for large values of μ and ω becomes

FIG. 11. Same as Fig. 6 for ZðqÞ
q .
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only relevant for q2 ≳ 25 GeV2. This becomes particularly
visible for large values of ω ¼ 4, where perturbation
theory also becomes less reliable. The discrepancy of
lattice results and perturbation theory occurs already at
values of q2 ≳ 10 GeV2 in the =q scheme.
Next we allow ω ≠ ω0 and show the ratio of the

nonperturbative running divided by the perturbative pre-
diction as a function of μ and ω at LO, NLO, and NNLO.
Here we choose to fix ω0 ¼ 2 and μ0 ¼ 2.5 GeV as a
reference point. For μ ¼ μ0 and ω ¼ ω0 this ratio is one
by definition, and ideally should stay close to one in
the remainder of the ðμ;ωÞ plane. We show our results for
X ¼ γμ in Fig. 8 and in Fig. 9 for X ¼ =q, where we also give
the combined lattice and perturbative uncertainties (added
in quadrature).
As expected, we observe that increasing the order of

the perturbative expansion improves the agreement with the
nonperturbative evolution. The corner of the planes are

affected by larger systematic errors, in particular where
ω ¼ 4 and/or μ > 3.5 GeV where the discretization
effects become more sizeable. However our data agree
with NNLO at a few percent level for a large part of the
ðμ;ωÞ plane: approximately for 1.5 GeV ≤ μ ≤ 3.5 GeV
and 1 ≤ ω ≤ 3.
For completeness, we study the next order in perturba-

tion theory for the case ω ¼ 1, as the three-loop matching
has been computed in [13,14] and the MS four-loop
anomalous dimension can be found in [23]. We take
μ0 ¼ 2 GeV and μ ¼ 2.5 GeV and compute the running
in different schemes, see Table I. In Table II, we show the
contributions of the higher orders. Although the corrections
to the leading order contributions are rather small, we see
that the convergence in MS seems to be much better than in
theMOM schemes, in the sense that the (iþ 1)th correction
is much smaller than the ith order. However, the important
observations here are that the leading order gives by far the

FIG. 12. Same as Fig. 8 for Z
ðγμÞ
q .
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main contribution and that the perturbative series seems to
converge nicely to the nonperturbative values.5

Finally for completeness, in Tables III and IV we
give our results for the nonperturbative running of the
quark mass, with μ0 ¼ 2 GeV and ω ¼ ω0 varying
between 0.5 and 4.0. In Appendix E, we show more
numerical results, where we vary our parameters ω, ω0,
μ, and μ0 in various ways. Our main conclusion remains
that the nonperturbative results agree very well with the
perturbative ones as long as we stay away from the corner
of the ðω; μÞ plane. However it is worth noting again that
for X ¼ γμ, our data favor ω ¼ 2. From the contour plot, we
conclude that in the region 1.5≤ω≤2.5 and 1.5 ≤ μ ≤ 2.5

the nonperturnative and pertubative running agree within
∼1% for X ¼ γμ and within ∼1% for X ¼ =q.

D. Quark wave function renormalization factor

As for the quark mass, we find that the chiral extrap-
olations are well under control; they are presented in
Appendix C. Here we focus on the scale dependence.

FIG. 13. Same as Fig. 8 for ZðqÞ
q .

TABLE V. Running between 2 and 2.5 GeV for the quark wave
function in MS and in the SMOM schemes γμðω ¼ 1Þ and =q. In
this case the running is known at NNNLO.

Scheme LO NLO NNLO NNNLO NP

MS 1.0 1.0048 1.0062 1.0064
MS ← γμ 1.0 1.0069 1.0078 N.A.

MS ← =q 1.0 1.0195 1.0175 1.0146
γμ 1.0 1.0017 1.0020 N.A 1.0037(20)
=q 1.0 1.0048 1.0081 1.0113 1.0195(25)

5The attentive reader would have noticed that in Table I the
NLO for γμ and =q are identical. This seems to be nothing but a
numerical accident: adding more significant figures leads to
0.941112 for γμ and 0.944132 for =q.
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Our results are shown for ω ¼ ω0: in Figs. 10 and 11 we
compare the nonperturbative running to the perturbative
prediction. Then in Figs. 12 and 13 we again fix ω0 ¼ 2
and μ0 ¼ 2.5 GeV as reference points and let ω and μ vary.
Here the situation is very different from the quark mass,
mainly because there is no contribution at leading order (in
the Landau gauge). A numerical study of the convergence
can be found in Tables V and VI. In the =q scheme, the
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FIG. 14. σðqÞq ðμ; μ0;ω;ω0Þ for ω0 ¼ ω, statistical error only.

TABLE VI. Study of the convergence of the perturbative series
for running of the quark wave function between 2 and 2.5 GeV in
MS, SMOM-γμ, and =q.

Scheme NLO-LO NNLO-NLO NNNLO-NNLO

MS 0.0048 0.0013 0.0003
γμ 0.0017 0.0003
=q 0.0048 0.0033 0.0032
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nonperturbative results differ significantly from the pertur-
bative predictions; however, one should keep in mind that
the running is very small in magnitude. It is also interesting
to have a close look at the =q scheme where there the
perturbative prediction is known at N3LO. As we can see,
the perturbative series seems to converge very poorly in
the sense that the relative difference decreases very slowly
as we increase the order of the expansion. Therefore we
conclude that the difference between the nonperturbative
result and the N3LO, namely ∼1.0195 − 1.0113 ∼ 0.0082,
could be explained by higher order in the perturbative
series.

E. Study of the ω (in)dependence of σq
Due to the vector WTI given in Eq. (3.16), we might

expect ZðqÞ
q to be ω independent up to lattice artifacts. This

is illustrated in Fig. 14 where we show σðqÞm ðμ; μ0;ω;ω0Þ as
a function of ω ¼ ω0 for different values of μ and μ0.
We can see that this property is rather well satisfied as
long as the scales remain moderate, say μ, μ0 ≤ 3 GeV.
However it is worth noting that this invariance is only
true in the continuum, as can be seen in Fig. 15. At finite
lattice spacing, within our small statistical errors, the

lattice artifacts are visible and ZðqÞ
q clearly shows a ω

dependence. These figures also suggest that the lattice
artifacts are well under control, with two lattice spacings,
as long as we do not go too high in energy. Note that in
these plots, the systematic errors due to the continuum
extrapolations are not included. The nonperturbative-
scale evolution of Zq, σqðμ; μ0Þ with μ0 ¼ 2 GeV and
ω ¼ ω0 for various values of μ and ω can be found in
Tables VII and VIII.
Also it is interesting to notice in Fig. 15 how the

discretization effects depend on ω. Clearly for ω ¼ 2.0
and 2.5 the lattice artifacts are much smaller than for
ω ¼ 1.0. Of course this effect is quantity dependent but
such a property could be very useful in future computations.

F. Study of the chiral symmetry breaking effects

One of the original arguments to motivate the
RI=SMOM schemes is a drastic reduction of the syst-
matics errors due to spontaneous chiral symmetry break-
ing. Even though these effects are physical, they can
prevent a clean determination of the renormalization
factors because they are absent from the perturbative
calculations. This is particularly true for quantities like

0.5 1 1.5 2 2.5 3 3.5 4
1

1.01

1.02

1.03

1.04

1.05

1.06

24
32
cont

0.5 1 1.5 2 2.5 3 3.5 4
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02
24
32
cont

FIG. 15. Example of continuum extrapolations for σðqÞq ðμ; μ0;ω;ω0Þ.

TABLE VII. Nonperturbative running for the quark wave function in the γμ scheme.

ω=μ ¼ 1.0 1.5 2.5 3.0 3.5 4.0

0.5 0.972(8) 0.993(4) 1.008(4) 1.014(8) 1.023(14) 1.040(26)
1.0 0.976(8) 0.994(3) 1.004(2) 1.007(5) 1.012(8) 1.021(15)
1.5 0.978(4) 0.998(2) 1.003(1) 1.005(2) 1.006(3) 1.004(3)
2.0 0.990(7) 0.998(2) 1.003(0) 1.005(1) 1.007(1) 1.008(1)
2.5 0.987(5) 0.997(2) 1.001(1) 1.002(2) 1.002(3) 1.003(4)
3.0 0.985(4) 0.999(2) 1.000(2) 0.998(4) 0.993(9) 0.978(18)
3.5 0.989(5) 1.001(2) 0.997(2) 0.993(6) 0.982(13) 0.959(27)
4.0 0.990(5) 0.999(1) 0.994(3) 0.983(8) 0.957(22) 0.887(60)
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ΠP and ΣS where the presence of pseudo-Goldstone poles
can completely dominate the signal. In practice, the
vertex functions from which we want to extract the Z
factors are “polluted” by negative powers of the quark
mass or the momentum scale. Of course these chiral
symmetry breaking effects are nonperturbative and dis-
appear for high momentum. However, we want to keep
the Rome-Southampton windows as open as possible, so
it is always desirable to reduce this infrared contamina-
tion or, at least, keeping them well under control.
If chiral symmetry is exactly realized then we should

find that ZS ¼ SP and ZV ¼ ZA. Therefore, in order to
study these chiral symmetry breaking affects as a function
of ω, we study the deviation of ZV from ZA and ZS from
ZP. We start by the analysis of the ratio ZV=ZA, see
Fig. 16 for ω ¼ 1 using the γμ projector. In the left panel,
we show our results for the various quark masses as a
function of μ. On the right panel, we show the chiral
extrapolation for ω ¼ 1 and μ ¼ 1 GeV. There we

observe a deviation from one at the order of a few
percents (the reader would notice that this is one of
the worst-case scenarios). However we do not see any
pole in powers of 1=m. We find the quark mass depend-
ence to be linear within our statistical error; therefore,
we extrapolate to the chiral limit using a straight line.
In Fig. 17 we observe that—as expected—the ratio
ZV=ZA collapses quickly to one as the energy scale
increases: at μ ¼ 2 GeV, the deviation from one is at
most at the per-mille level. Our results for the =q projector
are very similar. Our results seem to indicate a trend that
ZV=ZA increases toward one when ω increases between
0.5 and 2 (ZV=ZA ∼ 0.98 at ω ¼ 1 and ZV=ZA ∼ 0.99 at
ω ¼ 2), but this could well be a statistical effect.
Altogether we find that ZV=ZA ¼ 1 to a very good
approximation for all values of ω. This is true for both
values of the lattice spacing and both projectors X ∈ ðγμ; =qÞ.
We also study ðΛS − ΛPÞ=ΛV, which is proportional

to ZVð1=ZS − 1=ZPÞ. Our results are shown in Fig. 18.

1 2 3 4
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Z
V

/Z
A

 am=0.004

Z
V

/Z
A

 am=0.006

Z
V

/Z
A

 am=0.008

0 2 4 6 8

10 -3

0.96

0.965

0.97

0.975

0.98

0.985

FIG. 16. ZV=ZA for the γμ projector as a function of μ for ω ¼ 1. In the left panel we show the results at finite quark masses as a
function of the energy scale. As an example of chiral extrapolations, in the right panel we show our results for μ ¼ 1 GeV, ω ¼ 1. We
perform a linear extrapolation (solid line), and a quadratic extrapolation is shown as a dashed line for illustration.

TABLE VIII. Nonperturbative running for the quark wave function in =q scheme. Here we expect the results to be
ω independent.

ω=μ ¼ 1.0 1.5 2.5 3.0 3.5 4.0

0.5 0.935(27) 0.974(7) 1.018(7) 1.035(16) 1.059(31) 1.096(56)
1.0 0.951(19) 0.978(6) 1.017(6) 1.035(14) 1.058(28) 1.096(51)
1.5 0.950(15) 0.973(4) 1.017(4) 1.037(11) 1.064(25) 1.106(49)
2.0 0.942(15) 0.976(3) 1.020(3) 1.040(8) 1.069(20) 1.118(45)
2.5 0.942(14) 0.974(3) 1.019(1) 1.039(3) 1.060(9) 1.087(20)
3.0 0.937(12) 0.978(4) 1.017(2) 1.033(2) 1.048(2) 1.060(2)
3.5 0.943(10) 0.979(3) 1.014(2) 1.027(3) 1.039(3) 1.050(2)
4.0 0.940(10) 0.975(4) 1.013(3) 1.027(8) 1.046(18) 1.084(40)
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FIG. 17. ZV=ZA for the γμ projector as a function of ω for various values of μ.
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Here it is clear that the infrared effects due to
chiral symmetry breaking decrease when the value of ω
increases. For example, we observe that at μ ¼ 1.5 GeV,
ðΛS − ΛPÞ=ΛV ∼ 0.1. The same quantity reduces to ∼0.03
for ω ¼ 2.0. For illustration, we show ZS=ZV and ZP=ZV

versus μ for the different quark masses in Fig. 19. It will
be interesting to perform a similar study on four-quark
operators, especially those where the infrared contamina-
tion can be important and a source of disagreement (see for
example the section on BSM kaon mixing in FLAG [24,8]).
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FIG. 18. ðΛS − ΛPÞ=ΛV for the γμ projector as a function of ω for various values of μ.
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V. CONCLUSIONS AND OUTLOOK

As a proof of concept we have implemented several
IMOM schemes defined via two different projectors for
various values of the kinematics parameter ω. In this
framework we have determined the renormalization factors
and nonperturbative scale evolution functions of the quark
mass and of the quark wave function. To compare our
lattice results with NNLO results in continuum perturbation
theory, we also present the numerical form of the pertur-
bative scheme conversion factors for these schemes in these
general kinematics.
We find that the nonpertubative and perturbative results

agree very well as long as we stay away from the corner of

the ðω; μÞ plane, with one exception, namely ZðqÞ
q . For the

quark wave function renormalization, we argued that the
reason for the relatively bad agreement is the poor con-
vergence of the perturbative expansion. Clearly, having
several values of ω helps to have a better handle on the
systematic errors coming from the NPR procedure. As an
application, we have seen a example where the discretiza-

tion effects depend significantly on ω (see σðqÞq where the
discretization effects for ω ¼ 2, 2.5 are much smaller than
for ω ¼ 1), and so does the perturbative convergence. In
this proof of concept study, only two lattice spacings have
been used. Clearly, adding a finer lattice could potentially
allow us to test the agreement of the perturbative and
nonperturbative window even further.
Generally speaking, it is well known that the SMOM

kinematics (ω ¼ 1) leads to much cleaner determinations
of the renormalization factors than the ω ¼ 0 case. In this
work, we have shown that increasing the value of ω to
ω ∼ 2 has the potential to improve these determinations
even further:

(i) significantly smaller contributions of the pseudo-
Goldstone poles contamination in ΛP − ΛS,

(ii) reduction of the discretization effects in the vec-
tor WTI.

We remind the reader that ω ¼ 2 corresponds to an angle
α ¼ π=2 between the incoming and outgoing momenta, see
Fig. 2. With our choice of kinematics, this means that p1

and p2 are parallel to the x axis and y axis, respectively.
Therefore this choice of kinematics takes advantage of the
hypercubic symmetry of the lattice. In addition, any term
proportional to p1:p2 is also absent in this setup. Therefore
we believe that the improvements that we observe for are
not accidental but genuinely come from the kinematics. Of
course this statement needs to be checked on different
quantities. It will be interesting to extend this study to the
case of four-quark operators where the infrared contami-
nations due to chiral symmetry breaking are significantly
more sizeable, and one of the dominant sources of
systematic errors.
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APPENDIX A: PERTURBATION THEORY

In order to make contact to phenomenology, results
obtained from lattice simulations need to be converted to a
scheme that is used in continuum perturbation theory such
as MS. The nonperturbative renormalization schemes used
in this work serve as an intermediate scheme that can be
defined on the lattice and in the continuum. This enables
us to compare the nonperturbative with the perturbative
change of the renormalization scheme parameters μ and ω.
This appendix provides the ingredients for the perturbative
scheme changes at NNLO.
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The dependence of the strong coupling constant on the
dimensional regularization scale ν in the MS scheme is
governed by the β function

ν2
d
dν2

�
αs
4π

�
≡ −

X∞
i¼0

βi

�
αs
4π

�
iþ2

: ðA1Þ

Although it is known at five loops [25–27], wewill only use
the first three coefficients in the expansion to be consistent
with our NNLO analysis of the running. In the following
we will need the first two coefficients,

β0 ¼ 11 −
2

3
Nf; ðA2Þ

β1 ¼ 102 −
38

3
Nf; ðA3Þ

where we fixed the number of colors Nc ¼ 3 in this and the
following expressions. Using αSðMZÞ ¼ 0.1179ð10Þ and
MZ ¼ 91.1876ð21Þ GeV [28] we find the required values
of the strong coupling constant for Nf ¼ 3 flavors given in
Table IX. To arrive at three active flavors, we decoupled the
bottom and charm quark at νb ¼ 5 GeV and νc ¼ 1.5 GeV
respectively using central values mbðmbÞ ¼ 4.13 GeV and
mcðmcÞ ¼ 1.27 GeV for the quark masses in the MS
scheme [28]. The relevant threshold effects and running
of the strong coupling constant are implemented using
RunDec [29].
The fields andmasses in the IMOMðXÞ schemes are related

to the MS scheme as ψMSðνÞ ¼ ðZMS
q =ZðXÞ

q ÞψXðμ;ωÞ and

mMSðνÞ ¼ ðZMS
m =ZðXÞ

m ÞmXðμ;ωÞ, where X ∈ ðγμ; =qÞ. The
continuum perturbation theory expansion of the conversion
factors

ZMS
i ðϵ; νÞ

ZðXÞ
i ðϵ; μ;ωÞ

¼ϵ→0
CðXÞ
i ðν; μ;ωÞ; i ∈ fq;mg ðA4Þ

are knownup to two loops [10,20] for the IMOMscheme and
up to three loops [13,14] in the SMOM limit, i.e. where
ω ¼ 1. Writing

CðXÞ
i ¼ 1þ αs

4π
CðX;1Þ
i þ α2s

ð4πÞ2 C
ðX;2Þ
i ðA5Þ

and settingμ ¼ νwe find the numerical conversion factors as
a function ofω given in Table. X. The scheme transformation
can then be written as a product

UðXÞ
i ðμ1; μ0;ω1;ω0Þ ¼ CðXÞ

i ðν1; μ1;ω1ÞUMS
i ðν1; ν0Þ

× CðXÞ−1
i ðν0; μ0;ω0Þ

			
μ0¼ν0
μ1¼ν1

ðA6Þ

of the conversion factor, its inverse, and the MS evolution

kernelUMS
i ðν1; ν0Þ. The evolution Kernel fulfils the renorm-

alization group equation

ν2
d
dν2

UMS
i ðν; ν0Þ ¼ −γMS

i UMS
i ðν; ν0Þ ðA7Þ

and we expand the anomalous dimensions

γðXÞi ≡X∞
k¼0

γðX;kÞi

�
αs
4π

�
kþ1

; ðA8Þ

where X denotes the renormalization scheme. Hence we can
transform for example a light quark mass renormalized in
given scheme X at different kinematic points ðμ1;ω1Þ and
ðμ0;ω0Þ via

mðXÞðμ1;ω1Þ ¼ UðXÞ
m ðμ1; μ0;ω1;ω0ÞmðXÞðμ0;ω0Þ; ðA9Þ

TABLE X. The perturbative expansion coefficients of the
conversion factors CðγÞ

m , CðqÞ
m , CðγÞ

q , and CðqÞ
q as a function of

ω. Note that CðqÞ
q is independent of ω.

ω Cðq;1Þ
m Cðq;2Þ

m Cðγ;1Þ
m Cðγ;2Þ

m

0.5 −2.422 −64.756þ 5.988Nf −3.248 −89.07þ 7.571Nf

1.0 −0.646 −22.608þ 4.014Nf −1.979 −55.032þ 6.162Nf

1.5 0.778 10.344þ 2.432Nf −0.964 −28.916þ 5.035Nf

2.0 1.994 38.567þ 1.08Nf −0.098 −6.829þ 4.072Nf
2.5 3.071 63.81 − 0.115Nf 0.667 12.741þ 3.222Nf

3.0 4.042 86.961 − 1.195Nf 1.358 30.56þ 2.454Nf
3.5 4.933 108.544 − 2.184Nf 1.99 47.076þ 1.752Nf
4.0 5.757 128.894 − 3.1Nf 2.575 62.576þ 1.102Nf

ω Cðq;1Þ
q Cðq;2Þ

q Cðγ;1Þ
q Cðγ;2Þ

q

0.5 0 −25.464þ 2.333Nf 0.825 1.53þ 0.75Nf

1.0 0 −25.464þ 2.333Nf 1.333 9.599þ 0.185Nf

1.5 0 −25.464þ 2.333Nf 1.742 15.476 − 0.269Nf

2.0 0 −25.464þ 2.333Nf 2.093 20.137 − 0.658Nf

2.5 0 −25.464þ 2.333Nf 2.403 24.001 − 1.004Nf

3.0 0 −25.464þ 2.333Nf 2.684 27.292 − 1.316Nf

3.5 0 −25.464þ 2.333Nf 2.942 30.147 − 1.603Nf

4.0 0 −25.464þ 2.333Nf 3.182 32.66 − 1.869Nf

TABLE IX. Values of the strong running coupling as a function
of the dimensional regularization scheme ν. They are obtained in
the MS scheme in the three-flavor theory.

ν=GeV 1.0 1.5 2.0 2.5 3.0 3.5 4.0

αSðνÞ 0.4698 0.3467 0.2950 0.2652 0.2452 0.2307 0.2196
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where the logarithms log μ1=μ0 are summed using renormalization group improved perturbation theory. Explicitly, we find at
NNLO

UðXÞ
i ðμ1; μ0;ω1;ω0Þ ¼

�
1þ αsðμ1Þ

4π
JðX;1Þi ðω1Þ þ

α2sðμ1Þ
ð4πÞ2 JðX;2Þi ðω1Þ

��
αsðμ0Þ
αsðμ1Þ

�
γð0Þi =β0

×

�
1 −

αsðμ0Þ
4π

JðX;1Þi ðω0Þ þ
α2sðμ0Þ
ð4πÞ2

h

JðX;1Þi ðω0Þ

�
2
− JðX;2Þi ðω0Þ

i�
;

where the Jð1ÞX and Jð2ÞX are given by

JðX;1Þi ¼ γðX;1Þi

β0
−
β1γ

ð0Þ
i

β20
;

JðX;2Þi ¼ 1

2

�
JðX;1Þ2 þ γðX;2Þi

β0
þ β21γ

ð0Þ
i

β30
−
β1γ

ðX;1Þ
i

β20
−
β2γ

ð0Þ
i

β20

�
:

ðA10Þ

The leading order anomalous dimensions

γð0Þq ¼ 0;

γð0Þm ¼ 4 ðA11Þ
are scheme independent. The expressions for the NLO and
NNLO anomalous dimensions are given in Table XI
for different values of ω as a function of the number of
flavors Nf.

APPENDIX B: SIMULATION DETAILS

Our numerical work is based on RBC-UKQCD data;
the lattice details can be found in [16]. We compute the
propagators using Landau gauge-fixed 2þ 1, domain-wall
(Shamir [30])/Iwasaki lattices. The values of the parameters
can be found in [7].
In a nutshell, we use two lattice spacings (we refer to

them as 243 and 323):

a−1 ¼ 1.785ð5Þ GeV ð243Þ; ðB1Þ
a−1 ¼ 2.383ð9Þ GeV ð323Þ; ðB2Þ

for each lattice spacing we have three different sea quark
masses, am ¼ 0.005, 0.010, 0.020 for the 243 × 64 × 16

lattice and am ¼ 0.004, 0.006, 0.008 for the 323 × 64 × 16
lattice.
We take the chiral limit on each lattice spacing using the

values

amres ¼ 0.003152ð43Þ ð243Þ; ðB3Þ

TABLE XI. The NLO and NNLO coefficients of anomalous

dimensions γðqÞm , γðγÞm , γðγÞq , γðqÞq as a function of ω. Note that γðqÞq is
independent of ω.

ω γðq;1Þm γðq;2Þm

0.5 93.981 − 3.837Nf 2985.27 − 398.857Nf þ 6.256N2
f

1.0 74.434 − 2.653Nf 1816.8 − 273.08Nf þ 3.623N2
f

1.5 58.78 − 1.704Nf 948.781 − 176.459Nf þ 1.515N2
f

2.0 45.395 − 0.893Nf 240.849 − 95.917Nf − 0.288N2
f

2.5 33.558 − 0.175Nf −364.298 − 25.958Nf − 1.882N2
f

3.0 22.868þ 0.473Nf −896.718þ 36.367Nf − 3.322N2
f

3.5 13.075þ 1.066Nf −1374.46þ 92.858Nf − 4.641N2
f

4.0 4.006þ 1.616Nf −1809.31þ 144.71Nf − 5.862N2
f

ω γðγ;1Þm γðγ;2Þm

0.5 103.057 − 4.387Nf 3655.83 − 479.684Nf þ 8.367N2
f

1.0 89.101 − 3.541Nf 2704.63 − 382.794Nf þ 6.487N2
f

1.5 77.943 − 2.865Nf 1993.76 − 308.337Nf þ 4.984N2
f

2.0 68.413 − 2.288Nf 1409.35 − 246.123Nf þ 3.701N2
f

2.5 59.993 − 1.777Nf 905.536 − 191.915Nf þ 2.567N2
f

3.0 52.396 − 1.317Nf 458.454 − 143.458Nf þ 1.544N2
f

3.5 45.441 − 0.895Nf 53.89 − 99.383Nf þ 0.607N2
f

4.0 39.005 − 0.505Nf −317.4 − 58.784Nf − 0.26N2
f

ω γðγ;1Þq γðγ;2Þq

0.5 13.257 − 0.783Nf 417.983 − 65.569Nf þ 1.741N2
f

1.0 7.667 − 0.444Nf 200.702 − 36.683Nf þ 0.988N2
f

1.5 3.171 − 0.172Nf 43.556 − 14.519Nf þ 0.382N2
f

2.0 −0.684þ 0.062Nf −79.969þ 3.809Nf − 0.137N2
f

2.5 −4.102þ 0.269Nf −181.296þ 19.56Nf − 0.597N2
f

3.0 −7.195þ 0.456Nf −266.635þ 33.428Nf − 1.014N2
f

3.5 −10.033þ 0.628Nf −339.81þ 45.844Nf − 1.396N2
f

4.0 −12.666þ 0.788Nf −403.372þ 57.097Nf − 1.751N2
f

ω γðq;1Þq γðq;2Þq

0…4 22.333 − 1.333Nf 1088.54 − 146.397Nf þ 3.852N2
f
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amres ¼ 0.0006664ð76Þ ð323Þ: ðB4Þ

Our values for ZV are [17]

ZV ¼ 0.71651ð46Þ ð243Þ; ðB5Þ

ZV ¼ 0.74475ð12Þ ð322Þ: ðB6Þ

APPENDIX C: CHIRAL EXTRAPOLATIONS
OF THE Z FACTORS

In Figs. 20 and 21 we show our chiral extrapolations for
Zm andZq at fixed scale μ ¼ 2 GeV and for variousω. Since
we use domain-wall fermions, there is small additive mass
renormalization; therefore, the chiral limit is situated at
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FIG. 21. Chiral extrapolation of Zq at μ ¼ 2 GeV.
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FIG. 20. Chiral extrapolation of Zm at μ ¼ 2 GeV.
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aml ¼ −amres. The values of the residual mass are given in Appendix B.We find a very mild quark mass dependence (if any)
and simply perform a linear extrapolation.

APPENDIX D: ZðXÞ
m FOR X = q

In Figs. 22 and 23 we show the equivalent of Figs. 4 and 5 for X ¼ =q on the L=a ¼ 32 lattice. See Sec. IVA for
more details.
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FIG. 22. Zm at μ ¼ 2 GeV in MS converted from X ¼ =q and for ω ¼ 0.5, 1.0, 1.5, 2.0.
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APPENDIX E: EXTENSIVE STUDY FOR σðXÞm

In this appendix we provide our numerical results for
running of the quark mass. These results are given for

σðXÞm ðμ; μ0;ω;ω0Þ as defined in Eq. (4.5), such that

ZðXÞ
m ðμ;ωÞ ¼ σðXÞm ðμ; μ0;ω;ω0ÞZðXÞ

m ðμ0;ω0Þ: ðE1Þ

1. Study of the ω dependence for fixed energy scales

In order to study the ω dependence, we first fix μ and μ0
to some reasonable values, where we expect a rather good
control over both the perturbative errors and the lattice
artifacts. We choose ðμ0; μÞ ¼ ð2.5 GeV; 1.5 GeVÞ.
We then vary ω, but first we only consider the
“diagonal” case, i.e. ω0 ¼ ω. We show our results in
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FIG. 23. Same as Fig. 22 for ω ¼ 2.5, 3.0, 3.5, 4.0.
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Tables XII and XIII. The middle column shows the
running itself obtained from the lattice, while the other
three columns on the right show the ratio of the non-
perberturbative running over the perturbative prediction
at leading order (LO), next-to-leading order (NLO), and
next-to-next-to-leading order (NNLO). The errors quoted
there combine an estimate of the discretization errors and
the statistical one.
We observe that the nonperturbative running agrees

extremely well with NNLO predictions for all values of
0.5 ≤ ω ≤ 3. Looking at the perturbative convergence and
stability, our data seem to favor the region ω ∼ 2.

2. Study of the ω dependence for larger energy ranges

Here we fix μ ¼ 2 GeV and let μ0 vary over the full
range. Again we only consider the case ω0 ¼ ω. The rows

μ0 ¼ 2 give trivially one, but we leave the results in order to
guide the eyes. We give our results in Table XIV.

3. Study of the running in the nondegenerate ω case

Here we fix again both energy scales ðμ0; μÞ ¼
ð2.5 GeV; 1.5 GeVÞ, and we allow ω ≠ ω0. Our results
are shown in Tables XV and XVI for X ¼ γμ and in
Tables XVII and XVIII for X ¼ =q.

TABLE XII. Running for the quark mass, γμ scheme for
ðμ0; μÞ ¼ ð2.5 GeV; 1.5 GeVÞ.
ðμ0;μÞ¼ð2.5;1.5Þ
ω ¼ ω0↓ σ

ðγμÞ
m σm=LO σm=NLO σm=NNLO

0.5 1.229(27) 1.091(24) 1.035(23) 1.006(22)
1.0 1.174(18) 1.042(16) 0.999(16) 0.984(15)
1.5 1.184(17) 1.051(15) 1.016(15) 1.009(15)
2.0 1.162(16) 1.032(14) 1.005(14) 1.004(14)
2.5 1.143(14) 1.014(12) 0.994(12) 0.998(12)
3.0 1.124(12) 0.998(11) 0.982(11) 0.990(11)
3.5 1.110(11) 0.985(9) 0.975(9) 0.986(9)
4.0 1.080(5) 0.959(5) 0.952(5) 0.967(5)

TABLE XIII. Same as Table XII.

ðμ0;μÞ¼ð2.5;1.5Þ
ω ¼ ω0↓ σðqÞm σm=LO σm=NLO σm=NNLO

0.5 1.194(23) 1.059(21) 1.012(20) 0.992(20)
1.0 1.138(18) 1.010(16) 0.980(16) 0.995(16)
1.5 1.138(13) 1.010(11) 0.991(11) 0.985(11)
2.0 1.117(13) 0.992(12) 0.981(12) 1.000(12)
2.5 1.096(13) 0.973(11) 0.970(11) 0.971(11)
3.0 1.080(13) 0.959(12) 0.962(12) 0.984(12)
3.5 1.068(11) 0.948(9) 0.956(10) 0.963(10)
4.0 1.033(12) 0.917(10) 0.929(10) 0.952(11)

TABLE XIV. Running for the quark mass, X ¼ γμ, μ ¼ 2 GeV.
We only consider ω ¼ ω0 and let μ0 vary between 1 and 4 GeV.

μ0↓ (GeV) σm σm=LO σm=NLO σm=NNLO

ω ¼ 0.5
1.0 0.826(83) 1.015(102) 1.145(115) 1.246(126)
1.5 0.884(17) 0.949(19) 0.982(19) 1.001(20)
2.0 1 1 1 1
2.5 1.084(10) 1.034(9) 1.014(9) 1.005(9)
3.0 1.153(17) 1.062(15) 1.029(15) 1.014(15)
3.5 1.206(24) 1.081(22) 1.038(21) 1.019(21)
4.0 1.253(35) 1.099(31) 1.048(30) 1.027(29)

ω ¼ 1.0
1.0 0.740(42) 0.910(51) 0.999(56) 1.045(59)
1.5 0.916(13) 0.984(14) 1.010(15) 1.021(15)
2.0 1 1 1 1
2.5 1.074(7) 1.025(7) 1.009(7) 1.004(6)
3.0 1.133(13) 1.044(12) 1.018(12) 1.010(12)
3.5 1.179(21) 1.057(19) 1.024(18) 1.014(18)
4.0 1.220(31) 1.070(27) 1.030(26) 1.018(26)

ω ¼ 1.5
1.0 0.764(35) 0.939(43) 1.010(46) 1.032(47)
1.5 0.901(10) 0.968(11) 0.989(11) 0.994(11)
2.0 1 1 1 1
2.5 1.067(6) 1.017(6) 1.005(6) 1.003(6)
3.0 1.118(13) 1.030(12) 1.010(11) 1.006(11)
3.5 1.159(20) 1.039(18) 1.013(18) 1.008(18)
4.0 1.196(31) 1.049(27) 1.018(26) 1.012(26)

ω ¼ 2.0
1.0 0.825(34) 1.014(42) 1.074(45) 1.078(45)
1.5 0.910(10) 0.978(11) 0.994(11) 0.995(11)
2.0 1 1 1 1
2.5 1.059(6) 1.010(5) 1.001(5) 1.000(5)
3.0 1.106(12) 1.019(11) 1.003(11) 1.002(11)
3.5 1.137(17) 1.020(15) 0.999(15) 0.998(15)
4.0 1.160(21) 1.018(18) 0.994(18) 0.993(18)
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TABLE XV. Running for the quark mass, γμ projector for
ðμ0; μÞ ¼ ð2.5 GeV; 1.5 GeVÞ.
ðμ0;μÞ¼ð2.5;1.5Þ
ω↓ σm σm=LO σm=NLO σm=NNLO

ω0 ¼ 0.5
0.5 1.229(27) 1.091(24) 1.035(23) 1.006(22)
1.0 1.308(29) 1.161(26) 1.067(23) 1.023(23)
1.5 1.373(30) 1.219(27) 1.094(24) 1.038(23)
2.0 1.425(32) 1.265(28) 1.113(25) 1.048(24)
2.5 1.473(34) 1.307(30) 1.131(26) 1.057(24)
3.0 1.515(35) 1.345(31) 1.145(27) 1.065(25)
3.5 1.551(36) 1.377(32) 1.156(27) 1.069(25)
4.0 1.568(33) 1.391(29) 1.154(24) 1.062(22)

ω0 ¼ 1.0
0.5 1.103(18) 0.979(16) 0.969(16) 0.967(16)
1.0 1.174(18) 1.042(16) 0.999(16) 0.984(15)
1.5 1.232(19) 1.094(17) 1.024(16) 0.998(15)
2.0 1.279(20) 1.136(18) 1.042(16) 1.008(16)
2.5 1.322(21) 1.174(19) 1.059(17) 1.017(16)
3.0 1.360(22) 1.208(20) 1.073(18) 1.024(17)
3.5 1.392(22) 1.236(20) 1.083(17) 1.028(17)
4.0 1.407(22) 1.249(20) 1.080(17) 1.021(16)

ω0 ¼ 1.5
0.5 1.059(17) 0.940(15) 0.961(15) 0.977(16)
1.0 1.128(16) 1.001(14) 0.992(14) 0.994(14)
1.5 1.184(17) 1.051(15) 1.016(15) 1.009(15)
2.0 1.229(18) 1.091(16) 1.035(15) 1.019(15)
2.5 1.271(19) 1.128(17) 1.051(16) 1.028(16)
3.0 1.307(20) 1.161(18) 1.065(17) 1.035(16)
3.5 1.338(20) 1.188(18) 1.075(16) 1.040(16)
4.0 1.353(13) 1.201(12) 1.073(10) 1.033(10)

ω0 ¼ 2.0
0.5 1.002(15) 0.890(13) 0.934(14) 0.963(14)
1.0 1.067(14) 0.947(13) 0.964(13) 0.980(13)
1.5 1.119(15) 0.993(14) 0.987(13) 0.994(14)
2.0 1.162(16) 1.032(14) 1.005(14) 1.004(14)
2.5 1.201(17) 1.066(15) 1.021(14) 1.013(14)
3.0 1.236(18) 1.097(16) 1.034(15) 1.020(15)
3.5 1.265(18) 1.123(16) 1.044(15) 1.024(15)
4.0 1.279(12) 1.136(11) 1.043(10) 1.018(10)

TABLE XVI. Running for the quark mass, γμ projector for
ðμ0; μÞ ¼ ð2.5 GeV; 1.5 GeVÞ (continued).
ðμ0;μÞ¼ð2.5;1.5Þ
ω↓ σm σm=LO σm=NLO σm=NLO

ω0 ¼ 2.5
0.5 0.952(12) 0.845(10) 0.907(11) 0.947(12)
1.0 1.013(11) 0.899(10) 0.937(10) 0.964(10)
1.5 1.064(12) 0.944(11) 0.960(11) 0.978(11)
2.0 1.105(13) 0.981(11) 0.978(11) 0.988(11)
2.5 1.143(14) 1.014(12) 0.994(12) 0.998(12)
3.0 1.176(15) 1.044(13) 1.007(13) 1.005(13)
3.5 1.203(14) 1.068(13) 1.016(12) 1.008(12)
4.0 1.217(9) 1.080(8) 1.015(8) 1.003(8)

ω0 ¼ 3.0
0.5 0.911(11) 0.809(10) 0.887(10) 0.935(11)
1.0 0.970(10) 0.861(9) 0.915(9) 0.952(10)
1.5 1.018(11) 0.903(9) 0.938(10) 0.965(10)
2.0 1.057(11) 0.938(10) 0.955(10) 0.975(10)
2.5 1.092(12) 0.970(10) 0.970(10) 0.983(10)
3.0 1.124(12) 0.998(11) 0.982(11) 0.990(11)
3.5 1.150(12) 1.021(11) 0.992(11) 0.995(11)
4.0 1.163(7) 1.032(6) 0.990(6) 0.988(6)

ω0 ¼ 3.5
0.5 0.879(10) 0.780(9) 0.872(10) 0.927(11)
1.0 0.935(9) 0.830(8) 0.899(9) 0.943(9)
1.5 0.982(9) 0.871(8) 0.922(9) 0.957(9)
2.0 1.019(10) 0.905(8) 0.938(9) 0.966(9)
2.5 1.054(10) 0.935(9) 0.953(9) 0.975(9)
3.0 1.084(11) 0.962(10) 0.965(10) 0.982(10)
3.5 1.110(11) 0.985(9) 0.975(9) 0.986(9)
4.0 1.122(5) 0.996(4) 0.973(4) 0.980(4)

ω0 ¼ 4.0
0.5 0.846(10) 0.751(9) 0.853(10) 0.915(11)
1.0 0.901(9) 0.799(8) 0.880(9) 0.931(9)
1.5 0.945(9) 0.839(8) 0.902(9) 0.944(9)
2.0 0.982(10) 0.871(9) 0.918(9) 0.954(9)
2.5 1.014(10) 0.900(9) 0.932(9) 0.962(10)
3.0 1.044(11) 0.927(10) 0.945(10) 0.969(10)
3.5 1.068(10) 0.948(9) 0.954(9) 0.973(10)
4.0 1.080(5) 0.959(5) 0.952(5) 0.967(5)
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TABLE XVII. Same as Table XVI for the =q projector. Again we
have ðμ0; μÞ ¼ ð2.5 GeV; 1.5 GeVÞ.
ðμ0;μÞ¼ð2.5;1.5Þ
ω↓ σm σm=LO σm=NLO σm=NNLO

ω0 ¼ 0.5
0.5 1.194(23) 1.059(21) 1.012(20) 0.992(20)
1.0 1.294(26) 1.148(23) 1.052(21) 0.986(20)
1.5 1.378(29) 1.223(26) 1.085(23) 1.047(22)
2.0 1.447(33) 1.284(30) 1.109(26) 1.032(24)
2.5 1.513(38) 1.343(34) 1.133(29) 1.081(27)
3.0 1.574(42) 1.397(37) 1.155(30) 1.069(28)
3.5 1.631(41) 1.448(36) 1.175(29) 1.112(28)
4.0 1.661(40) 1.474(35) 1.177(28) 1.084(26)

ω0 ¼ 1.0
0.5 1.050(17) 0.932(15) 0.943(15) 1.002(16)
1.0 1.138(18) 1.010(16) 0.980(16) 0.995(16)
1.5 1.212(20) 1.076(17) 1.010(16) 1.057(17)
2.0 1.274(22) 1.130(20) 1.033(18) 1.043(18)
2.5 1.332(26) 1.182(23) 1.056(21) 1.092(22)
3.0 1.386(29) 1.230(26) 1.076(22) 1.081(22)
3.5 1.436(28) 1.275(24) 1.095(21) 1.123(22)
4.0 1.461(33) 1.297(29) 1.096(24) 1.095(24)

ω0 ¼ 1.5
0.5 0.985(11) 0.874(10) 0.924(10) 0.933(10)
1.0 1.068(10) 0.948(8) 0.960(9) 0.927(8)
1.5 1.138(13) 1.010(11) 0.991(11) 0.985(11)
2.0 1.196(16) 1.061(15) 1.013(14) 0.972(13)
2.5 1.250(21) 1.110(19) 1.035(17) 1.018(17)
3.0 1.301(24) 1.155(21) 1.055(19) 1.007(19)
3.5 1.348(21) 1.197(19) 1.074(17) 1.047(17)
4.0 1.372(19) 1.218(17) 1.075(15) 1.020(14)

ω0 ¼ 2.0
0.5 0.921(9) 0.818(8) 0.896(9) 0.961(9)
1.0 0.998(9) 0.886(8) 0.930(8) 0.954(8)
1.5 1.064(10) 0.944(9) 0.960(9) 1.014(10)
2.0 1.117(13) 0.992(12) 0.981(12) 1.000(12)
2.5 1.168(17) 1.037(15) 1.002(15) 1.047(16)
3.0 1.216(20) 1.079(18) 1.022(17) 1.036(17)
3.5 1.260(18) 1.118(16) 1.040(15) 1.077(15)
4.0 1.283(19) 1.139(17) 1.041(16) 1.051(16)

TABLE XVIII. Running for the =q projector (continued).

ðμ0;μÞ¼ð2.5;1.5Þ
ω↓ σm σm=LO σm=NLO σm=NNLO

ω0 ¼ 2.5
0.5 0.862(7) 0.765(6) 0.864(7) 0.889(7)
1.0 0.935(7) 0.830(6) 0.899(7) 0.884(7)
1.5 0.997(8) 0.885(7) 0.927(7) 0.939(7)
2.0 1.048(10) 0.930(9) 0.949(9) 0.928(9)
2.5 1.096(13) 0.973(11) 0.970(11) 0.971(11)
3.0 1.141(15) 1.013(13) 0.989(13) 0.961(13)
3.5 1.181(12) 1.048(11) 1.005(11) 0.998(10)
4.0 1.203(21) 1.068(19) 1.007(18) 0.974(17)

ω0 ¼ 3.0
0.5 0.818(6) 0.726(5) 0.842(6) 0.912(7)
1.0 0.887(7) 0.787(6) 0.875(7) 0.906(7)
1.5 0.945(7) 0.839(6) 0.903(6) 0.962(7)
2.0 0.993(8) 0.881(7) 0.923(8) 0.949(8)
2.5 1.038(11) 0.921(10) 0.943(10) 0.994(11)
3.0 1.080(13) 0.959(12) 0.962(12) 0.984(12)
3.5 1.119(11) 0.994(10) 0.978(10) 1.022(10)
4.0 1.139(20) 1.011(18) 0.979(17) 0.996(17)

ω0 ¼ 3.5
0.5 0.780(6) 0.692(5) 0.822(6) 0.859(7)
1.0 0.845(6) 0.750(5) 0.855(6) 0.853(6)
1.5 0.901(6) 0.800(5) 0.882(6) 0.906(6)
2.0 0.947(8) 0.840(7) 0.902(7) 0.894(7)
2.5 0.990(11) 0.879(10) 0.921(10) 0.936(10)
3.0 1.030(13) 0.914(12) 0.939(12) 0.926(12)
3.5 1.068(11) 0.948(9) 0.956(10) 0.963(10)
4.0 1.086(17) 0.964(15) 0.957(15) 0.939(14)

ω0 ¼ 4.0
0.5 0.741(8) 0.658(7) 0.799(9) 0.871(9)
1.0 0.804(8) 0.713(7) 0.830(8) 0.865(8)
1.5 0.856(9) 0.760(8) 0.856(9) 0.919(10)
2.0 0.900(12) 0.799(10) 0.876(11) 0.907(12)
2.5 0.941(15) 0.835(13) 0.894(14) 0.949(15)
3.0 0.979(17) 0.869(15) 0.912(16) 0.940(16)
3.5 1.014(15) 0.900(13) 0.928(13) 0.977(14)
4.0 1.033(12) 0.917(10) 0.929(10) 0.952(11)
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APPENDIX F: CONTINUUM EXTRAPOLATION

As an example of continuum extrapolations, we show ΣðγμÞ
m ðμ; μ0;ω;ω0Þ in Figs. 24 and 25. The magenta error bar is a

systematic error, obtained by adding half the difference between the extrapolated value, σ
ðγμÞ
m ðμ; μ0;ω;ω0Þ, and the value

obtained on the finest lattice.
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FIG. 24. Continuum extrapolations for Σm. We choose ðX; μ; μ0Þ ¼ ðγμ; 2 GeV; 3 GeVÞ and show our results for the different values
of ω ¼ ω0 from 0.5 (top left corner) to 2.0 (bottom right corner). We included an estimation of the error due to the continuum
extrapolation (error bar in magenta, see text).
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