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Hadronic matrix elements evaluated on the lattice can be converted to a continuum scheme such as MS
using intermediate nonperturbative renormalization schemes. Discretization effects on the lattice and
convergence of the continuum perturbation theory are both scheme dependent and we explore this
dependence in the framework of the Rome-Southampton method for generalized kinematics. In particular,
we implement several nonexceptional interpolating momentum schemes, where the momentum transfer is
not restricted to the symmetric point defined in RI/SMOM. Using flavor nonsinglet quark bilinears, we
compute the renormalization factors of the quark mass and wave function for Ny = 3 flavors of dynamical

quarks. We investigate the perturbative and nonperturbative scale dependencies. Our numerical results are
obtained from lattice simulations performed with domain-wall fermions, based on ensembles generated by
RBC-UKQCD collaborations; we use two different lattice spacings 1/a ~ 1.79 and 2.38 GeV. We also give
the numerical values for the relevant anomalous dimensions and matching coefficients at next-to-next-to-

leading order.
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I. INTRODUCTION

One major goal of lattice QCD is to determine the matrix
elements of hadronic operators, with particular emphasis on
flavor nonsinglet quark bilinear operators, such as the local
scalar, vector, axial vector, or pseudoscalar operators. To
produce physically meaningful results we need renormal-
ization factors to relate the bare lattice results to quantities
in standard renormalization schemes, such as the modified
minimal subtraction scheme, MS. This conversion can be
done in lattice perturbation theory but it is well known that
it results in large systematic error because the perturbative
series converges poorly. Instead, in the last couple of
decades, more efficient methods have been developed,
the most popular ones being the Schrodinger functional
[1,2] and Rome-Southampton [3] frameworks. In this work
we follow the latter. In both cases, the strategy comprises
two distinct steps: First the renormalization factors are
obtained nonperturbatively from lattice simulations in a
given intermediate scheme, hence the name nonperturba-
tive renormalization (NPR). Then these factors are con-
verted to MS providing us with a bridge between low and
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high energies. This second step is done perturbatively, but
in the framework of the Rome-Southampton method, it
can be done in standard continuum perturbation theory so
that we can take advantage of the multiloop computation
available in the literature. In principle the method is
relatively simple: one makes lattice measurements of
Green’s functions with bilinear operators inserted into
quark 2-point functions (for example), and compares the
lattice results with continuum perturbative results. This
method can also be applied to more complicated Green’s
functions, higher twist bilinears, four-quark operators, etc.
It is worth noting that although traditionally we work in a
massless limit, a massive momentum scheme has been
developed in [4].

In early lattice studies the operator insertion was at zero
momentum transfer, see for example [3,5] for the early
direction of this approach. This choice of kinematics
corresponds to an exceptional momentum configuration
and is subject to potential infrared issues. The origin of the
problem and potential solutions were already discussed in
detail in [6]. These infrared problems can become even
more severe when the chiral limit is taken, and had lead to
significant discrepancies in the case of neutral meson
mixing [7,8]. With the improvement in lattice analyses
as well as the use of dynamical fermions, the refinement of
the nonperturbative structure that is of phenomenological
interest became suspect due to the emergence of the latent
infrared issues.
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Therefore in [9—12], an extension to the zero momentum
insertion for this class of Green’s functions was developed.
In particular the Green’s functions were computed with a
nonzero momentum flowing through the operator and
external quark legs at what is now termed the fully
symmetric momentum subtraction point or SMOM.' This
circumvents any potential ambiguity in assessing infrared
effects due to exceptional momentum configurations and in
particular in the chiral limit extrapolation. In either scenario
of zero or nonzero operator momentum flow lattice
measurements were assisted by matching to the continuum
limit. By this we mean that one can compute the same
Green’s function for any of the above operators in the
continuum field theory at several loop orders in the MS
scheme. For the quark mass, in the zero momentum case
this has been carried out to three loops, but for the nonzero
momentum case this has only been carried out to two
loops, [9—11] though there has been progress towards the
next loop order in [13,14]. Such continuum matching
allows one to accurately tune to the ultraviolet before
extrapolating to the nonperturbative or low energy region
where measurements are made and errors estimated.

The effect of using a momentum configuration which
is infrared secure can be seen for example in [8,15-19]
where the renormalization factors for the various flavor
nonsinglet quark bilinear or four-quark operators were
calculated for both momentum configurations. A quantity
which can be used as a benchmark is the ratio of the vector
and axial vector operators. On symmetry grounds this has
to be unity for domain-wall fermions and thus provides a
stringent test of determining which momentum configu-
ration was more reliable. Similarly, the scalar and pseu-
doscalar densities should be equal, up to low-energy
effects due to spontaneous chiral symmetry breaking.
The size of these unwanted contaminations depend on the
momentum configuration. It is evident from the analysis
of, for example, [15,18,19], that the SMOM ratio Z,/Zy
is unity over virtually the full momentum range and well
into the deep infrared in marked contrast to the zero
momentum case. While this augurs well for significant
improvement in lattice measurements and errors, one
question naturally arises which will form the main focus
of our article.

Now that it is established that the SMOM nonexceptional
momentum configuration gives a clear improvement, it is
only one of many possible configurations that can be
studied. Indeed, for example in [9,10], a more general off-
shell case was developed which is termed IMOM to denote
the interpolating momentum subtraction configuration. In
the SMOM definition the momentum squared of the three
external momenta were all equal. By contrast in the IMOM
case the magnitude of the operator momentum flow is
allowed to vary and this is governed by an additional

'"To ease the notation we drop the “RI” in RI/SMOM.

kinematic parameter w. For example the SMOM case
corresponds to @ = 1. Varying @ between 0 and 4, which
are the respective values giving infrared or collinear
singularities, allows one to search for a value which can
improve the matching to the continuum, the nonperturba-
tive behaviour or maybe even reduce the lattice artifacts.
This therefore leads to our investigation to see if there is an
optimal value for w, possibly different from one, which
minimizes errors and improves benchmarks such as that
studied in [15,18,19]. This would be the appropriate next
stage after the success of the SMOM schemes. For instance
the deviation between the scalar and pseudoscalar operators
renormalization factors can be examined to gauge pion
mass effects. While @ will be our main parameter the
overall momentum scale y at which measurements are
made will also be important. Therefore to have a thorough
investigation we have performed a lattice computation of
various operators on different lattices for half integer values
of w between 0 and 4 for various values of u. This has
allowed us to identify an optimal area of the (e, y?)-plane
where there is an effective plateau upon which measure-
ments are reliably accurate. Moreover the picture appears to
be consistent for the operators we consider, though the
actual locations are not necessarily the same point for each
case. It suggests that there should be a similar qualitative
behavior for operators with covariant derivatives or four-
quark operators, which we do not consider here.

Although the article primarily concentrates on the lattice
computations and analysis, we were indebted throughout
to the various two-loop MS continuum results accumulated
over the last decade, [9-12,18,20], to facilitate the con-
tinuum matching. Moreover the measurement of quark
bilinear currents in the IMOM configuration will give
crucial directions to 4-point quark Green’s functions such
as those relevant to kaon mixing for example, [7,8]. In that
scenario the effective 4-point functions can be mimicked by
products of the Green’s functions we consider here. It is
particularly important in this case, as it has been argued that
the choice of kinematics was responsible for the discrep-
ancy observed in the literature.

The paper is organized as follows: In Sec. II we outline
the kinematics setup, explaining in detail how our incoming
and outgoing momenta are chosen to lead to a given value
of w for a given value of p. In Sec. III we explain how we
define the Z factors, and discuss our choice of projectors.
In Sec. IV, we present our results for the Z factors and
their scale evolutions. We conclude in Sec. V. Appendix A
shows the perturbative conversion factors for matching
from IMOM to MS. More details about the lattice simu-
lations can be found in Appendix B. We show the chiral
extrapolations in Appendix C. In Appendix D, we collect
the results for Z,, for the ¢ projector. An extensive study
of the scale analysis dependence is presented in
Appendix E. Finally we show our continuum extrapola-
tions in Appendix F.
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T q=DP1— P2

/1 P2\

FIG. 1. We consider an incoming momentum p;, outgoing
momentum p,, and a momentum transfer ¢ = p; — p,.

II. KINEMATICS

We consider the interaction in Fig. 1, where the incoming
momentum is defined as p;, the outgoing momentum as
P2, and the momentum transfer as q.

The method is based on the Rome-Southampton regu-
larization independent momentum scheme: the fermions
are off-shell, we work in the chiral limit, and the renorm-
alization scale is given by the choice of external momenta.
In the original RI/MOM scheme (or RI'/MOM) [3], the
incoming and outgoing momenta are equal, p; = p,, SO
that there is no momentum transfer, ¢ = 0. The renorm-
alization scale y is defined by > = p? = p3. In contrast, in
the SMOM schemes, the incoming and outgoing momenta
are different: they are chosen such that ¢> = p? = p3;

naturally the renormalization scale is given by u = /¢

The advantage is to avoid exceptional kinematics which
behave badly in the infrared regime [9].

The above schemes can be generalized further. We retain
the condition p? = p3 =p? but drop the requirement
g*> = u*. We define the variable @ = ¢?/u* to parametrize
the kinematics. @ =0 corresponds to the original
RI/MOM and RI'/MOM schemes, @ = 1 corresponds
to the SMOM scheme. The possible values of @ range
between 0 and 4. Let us denote by « the angle between the
incoming and outgoing momenta. We choose our frame
such that the momenta take the following form (the time
component is represented by the last entry):

p1 = u[1,0,0,0], (2.1)
P> = plcosa, sina, 0,0]. (2.2)

This gives
q=pi—pr=u[l —cosa,—sina,0,0], (2.3)

and

q* = 1*((1 = cos@)? +sin* a)) (2.4)
=2u*(1 —cosa) (2.5)
=y’ (2.6)

< y

a=m,w=4 a=0,w=0

FIG. 2. The parameter @ is dependent upon the value of the
angle a between the incoming and outgoing momenta.

where we have defined @ = 2(1 —cosa). Clearly the
parameter @ can take any real value between 0 and 4,
and the value of w is directly related to the value of a as
shown in Fig 2.

We can check that the extreme cases w = 0 and w = 4
correspond to p; =p, and p; = —p,, respectively,
and therefore these situations suffer from infrared and
collinear singularities. We also note that @ = 0 is the choice
made in the original (exceptional) kinematics of a standard
RI/MOM scheme while w = 1 corresponds to the SMOM
kinematic of [9]. This has been known for a while, see for
example [9,10]. Different choices of w are referred to as
interpolating momentum schemes [11,20,21]. However, to
our knowledge, there is no numerical study or practical
implementation of such kinematics.

Let us now turn to the lattice implementation. If L is the
physical spatial extent of the lattice (we do not consider the
temporal extent here for simplicity), we have

2
P ="2[1,0.0,0], (2.7)
L
2
P2 = fﬂ[m,n,O, 0], (2.8)

where [, m, and n are dimensionless (they are the Fourier
modes if they are chosen to be integers). In order to
obtain any desired value of y and w we take advantage of
(partially) twisted boundary conditions, which allow [, m,
and n to be any real numbers. For any pair (u, w), the
numbers (/,m,n) can be obtained from the kinematic
constraints p? = p3 = u? and ¢*> = wy® by solving

— 2xl/L, (2.9)
P =m?+ n?, (2.10)
ol? = (I—m)> +n°. (2.11)

In order to show a concrete example, let us anticipate and
consider one of the ensembles used in this work, with
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spatial extent of L/a = 32 and inverse lattice spacing of
a! =2.383(9) GeV. In that case, we can see that the
following choice,

2

py = [21372.0,0,0, (2.12)
2

p2 = (160291, 1.41363,0,0] (2.13)

corresponds to 4 = 1 GeV and @ = 0.5 with an uncertainty
at the per-mille level.
It is worth noting another choice of kinematics given by*

2

P = f[m,m,m,m], (2.14)
2w
pa = [Em.Em £m, £m]. (2.15)

Depending on the number of minus signs in p,, we can
obtain any integer value of @ between 0 and 4. With this
choice we also expect the quark wave renormalization
factor so to have similar lattice artifacts, whereas in the
setup mentioned above they will have different discretiza-
tion effects (except in some special cases). In that case, one
can expect the discretization effects to be w independent.
We note that the same procedure with fewer than four
components can lead to a noninteger value of w: if the last
component is fixed to zero, we can achieve the values
w=0,4/3,8/3, 4.

In this work we only consider the setup given in
Egs. (2.1)—(2.2) as we also want to investigate arbitrary
noninteger values of w. We chose to vary @ between 0.5
and 4 with a step of 1/2. In addition, we can use the @
dependence of the discretization effects to obtain an addi-
tional handle to estimate the systematic uncertainties.

1. IMPLEMENTATION

A. Lattice implementation

For the bilinears, omitting flavor and spin-color indices
for clarity (we only consider flavor nonsinglet operators)
we define Or = yly, with I' =1, y,, 7,75, v5s (S,V,A,P).
We sketch here the computation of the propagators and of
the bilinears needed to renormalize the quark mass and
the quark wave function. We drop the volume factors and
set a = 1 for simplicity.

Following [22], the momentum source propagators are
computed by first solving

S D(.)G,(p) = 71, (3.1)

*Here we assume for simplicity that T = L, but in general the
time component should be rescaled if this is not the case.

for a given momentum p, on Landau-gauged fixed con-
figurations. In the previous equation, D denotes a generic
Dirac matrix in spin-color space, regardless of the lattice
discretization. Then we obtain the momentum source propa-
gators by multiplying by the corresponding phase factor

G.(p) = G(p)e ¥ => D7 (x.2)e" 9. (32)

So within our conventions, G, (p) is an incoming propagator
(with respect to x) with momentum p. After gauge average,
the outgoing one is then given by G.(—p) = ysG.(p)'7s.
The advantage of the method proposed in [22] compared to a
traditional Fourier transom is that there sum over z in
Eq. (3.2) significantly reduces the statistical uncertainties.
For the bilinears, we consider the diagram shown in Fig 1
and compute ({...) denotes the gauge average)

Vr(p2s p1) = (w(p2)Orw(p1)), (3.3)

= Z<Gx(—p2)er(pl )>

X

(3.4)

Defining G(p) = >, G,(p), we then amputate the external
legs

I = (G (=p2)) V(P2 PG (1)) (3.5)

This quantity I is obviously a matrix in spin-color space,
the renormalization factors Zr- are then defined by projecting
it to the corresponding tree-level value. A possible choice
(which defines a so-called y, scheme) is to use the same I'
matrix as in the vertex

1 1
where the trace is taken in color space and F is the
corresponding tree-level value.

B. Z factors

Let us now specify our conventions for the renormaliza-
tion factors. We denote the renormalized quantities with an
index R, whereas the bare quantities do not carry extra
indices. The quark wave function renormalization factor Z,
is defined by yg = \/Z,y, and Gg = Z,G represents
the renormalized fermion propagator. For the bilinears
defined above, the renormalized quantities are denoted
by OR = ZOr. Note that for the corresponding Green’s
functions, we have as usual TIR = Z-/ Z, x .

The renormalization factors for the bilinears are then
obtained by imposing

Z ’
lim (i, @)

X A
AT

-1, (37)

W=pi=p3.(p1=p2)*=u)
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where m is the (bare) quark mass (before taking the
chiral limit, we work with degenerate quark masses for
simplicity). Note that we could take also the chiral limit by
sending the renormalized mass to zero, here we assume
that there is no additive mass renormalization.” There are
several possible ways to define the quark field renormal-
ization constant Z,. For example in RI'’/MOM, one
imposes a condition directly on the fermionic propagator

Tr[pG™ (p)] (3.8)

Z,(u) = —ilim .
w=p

m—0 12p2

We now turn to the quark mass. The choice of the field
renormalization fixes the renormalization factor Z,,, which
relates the bare and renormalized masses as my = Z,,m.
To be specific, we write in Fourier space the inverse bare
fermion propagator

Gl p)=ig+m+Z=ip(1+Z")+m(1+Z5), (3.9)

and similarly, having a generic MOM scheme in mind, we
write for the renormalized propagator,
Ggl(p) =ip+mp+3g = ip(1 +Zf) + me(l + =5).
(3.10)
|

m—0

The motivation for this definition of Z,, is that it leads to
Z,=1/Zp if Zp is defined from Eq. (3.6) at the same
kinematic point. This follows from requiring that the Ward-
Takahashi identities (WTI) given below are satisfied both
for the bare and renormalized quantities (for degenerate
quark masses)

4 lyu(p1. p2) = =i(G™(p2) = G7'(p1)). (3.16)
¢, (p1,p2)
=2imIp(py,p1)=i(ysG~' (p2) + G~ (p1)ys),  (3.17)

in the case of degenerate quark masses. Imposing this
condition with the SMOM kinematics leads to maintaining
the WTI on the renormalized quantities. In particular the
procedure leads to Z, = Zy,.

*With domain-wall fermions, a small additive renormalization
of the quark mass is also necessary. For simplicity we also assume
the residual mass has already been included; here the quark mass
renormalizes multiplicatively.

(1 ) ;
hm{lsz {TI[GRI Py = gTr[qﬂH’Zx,RrsL;p%pg(p]_pz)z] } = 1.

Since Gi = Z,G, we have

1+Zx) =2Z'(1+%"),

. (3.11)

(1+%3) =2,"Z,'(1+25). (3.12)

Traditionally in a MOM scheme, one defines the renorm-
alization factors Z,, and Z, by imposing that the renor-
malized parts are finite in the chiral limit at a certain
renormalization point. For example the renormalization
factor Z,, can then be extracted from

1
Z,, (1) = lim [—Tr G l(p } , 3.13
)= 7o | TP (B3
which is equivalent to
lim [ Tr[G3(p)] L (314)
im T =1. .
m—0 12mR R AP W2=p?

In [9], it was suggested to replace this condition by

(3.15)

I
C. Our definitions

We deviate from the choice made in [9] for several
reasons. Firstly, some derivations in [9] rely on the SMOM
kinematics, which we want to generalize here. Secondly,
rather than imposing the renormalization conditions
directly on the quark propagators, we prefer to extract
the renormalization factors from the bilinears. In this paper
we are using domain wall fermions, so we assume that
Z, = Zy, whose values are known from previous studies
on the same lattice, and are given in Appendix B for
convenience. (The deviation Zy/Z, from one is studied in
Appendix 4.6.) Additionally, we define Z,, directly as

Z,=1/Zs, (3.18)
and we also define
Zy .
m}}g})[/\v]moaa =1, (3.19)

lim [Ag]pom = 1.
Z, (i, @) oS MOM
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’5/15 =02 “8w=25
5 -5 ~&-w=30

14l T 8-w=35

: i \\ -#-w=4.0

13 b s J

0 2 4 6

FIG. 3.

where the shorthand IMOM stands for p? = p} = p3,
(p1 — p2)* = wu®. (These equations are used for the
quark wave function and the mass renormalization factors.)
More explicitly, we define

Zy(n ) = Zy lim [Avlivom: (3.21)
1. [Ag
Z,(p,0) =—Ilim [—} , (3.22)
Zy m=0 | Ay | vom

where Ay g are the bare (and local) vertices defined above.
Note that both Z,, and Z, acquire an @ dependence through
these definitions. This dependence is discussed in Sec. I'V.
The main advantage of this approach is that the Green’s
functions of the bilinears have a much safer infrared
behavior than the quark propagators.

In order to completely fix the definition of Z, and Z,,
in Egs. (3.21) and (3.22) we need to specify our the choice
of projector P, for the vector Green’s function,

1
Ay = £ P[]

- (3.23)

We implement the so-called y,, and ¢ projectors (the trace is
taken over both Dirac and color indices)

() _ 1

Avy = &Tr[}/ﬂnwx], (324)
(¢ _ 4"

AV = quTr[ﬂHVﬂ] . (325)

where obviously ¢ = p; — p, is the momentum transfer
of the IMOM kinematic defined above, u? = p? = p3,
(p1 — p2)* = wp®.  Plugging these definitions in
Egs. (3.21) and (3.22), we see that we have defined two
kinds of IMOM schemes similarly to what was done in the
SMOM case. In order to keep track of what projector was

X =9y, L/a =32

1.7
-1
_m--—a -
—~ 1.6 i’"l,,—r”’.:,:;i -#-w=05
’//: D/,D:;;i(’(” -8-w=1.0
% [E/I::/i,’/’"_,..___. a-w=15
15t /n B &~ —E-w=20
o éy’/[/’ S&-w=25
2 - 8w=30
14 ¢ 8-w=35
-#-w=4.0
18 L A ]
0 1 2 3
2
(ap)

Z,, at y = 2 GeV in MS, converted using NNLO. The results are shown as a function of the square of the momentum scale at
which the renormalization factors are nonperturbatively extracted.

used, we introduce the respective notations ZEZ") (u, w) and

z\ (4, w) for the renormalization factors.

The renormalization factors for the other bilinears are
defined exactly in the same way as Eqs. (3.19) and (3.20).
This, together with a lattice formulation which preserves
chiral symmetry, leads to Zy = Z, and Zg = Zp, apart
from the physical effects of spontaneous chiral symmetry
breaking, which may become important at low p? and g>.
This is discussed in Sec. IV. Naturally for a lattice
formulation which breaks explicitly chiral symmetry, one
can follow [9] with the modification ¢*> = wp?.

D. Nomenclature

To define unambiguously a momentum scheme for a
composite operator one needs to specify the kinematics
(the choice of momenta) and the choice of projectors, not
only for the Green’s function corresponding to the operator in
question, but also for the quark wave function.* Historically,
when the Rome-Southampton method was introduced in [3],
the kinematics was the exceptional case, p; = p, and Z, was
defined through a y, projector, i.e. Eq. (3.24). Although the
authors of [3] mentioned explicitly that other choices were
possible, by convention “RI/MOM scheme” refers to this
specific choice of kinematics and wave function. Similarly, it
also became standard to call “RI’/MOM scheme” a scheme in
which the kinematics is also exceptional (p; = p,) but the
quark wave function is renormalized through a ¢ projector,
i.e. Eq. (3.25). (In [3] the definition of the projector differs
from the one given here, but both definitions are equivalent up
to lattice artifacts).

We turn now to the SMOM schemes. By definition,
the S of SMOM refers to the situation where p? = p3 =
(p1 — p2)? ie. @ = 1, or “symmetric” [9]. For the quark

4Stn'ctly speaking we also need to specify the gauge, but it is
standard to assume that the computation is performed in the
Landau gauge.
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wave function, the convention in [9] was that RI/SMOM
refers to a ¢ projector and RI/SMOM

There is also a similar subtlety in the definition of Z,,,

see Sec. III B.

Here, following the conventions adopted by RBC-
UKQCD (see for example [8]), we use the notations
ZX) (u, w), where X € {ru- 4} indicates the choice of the
projector for the wave function. Obviously the choice of
kinematics is explicitly given by . When needed, we also

refer to these schemes as IMOM"+) and IMOM @)

21

21

w—05 X = 'y,“L/a—32

g, t0ay, projector.

Name Kinematics Projector for Z,
RI/MOM P1=D2 Yu
RI'/MOM P1=D2 q
RI/SMOM,, pi=p3=(p1—p)? Yu
RI/SMOM pi=r:=(p1—p)* q
IMOM®)  p? = p3 =%, (p1 — p2)* = op® Yu
IMOM@  pt = p3 =4, (p1 — p2)* = wp? q

\ - -2 () IMOM

\ -4-78 X> 2GeV) IMOM LO

i ~#-259(2GeV) IMOM NLO
\ ——2{Y(2GeV) IMOM NNLO
\ -4 - ZM5(2 GeV) MS NLO
—4— ZM5(2 GeV) MS NNLO

(ap)?

wf15 X =9y, L/a =32

- -2 () IMOM
-i- me)(Q GeV) IMOM LO
- -259(2GeV) IMOM NLO
i —6—759(2 GeV) IMOM NNLO
\ -4 - ZM5(2 GeV) MS NLO
\ —4— Z)5(2GeV) MS NNLO

(ap)?

2.1

1.9

w—lO X =7, L/a =32

" ~#-29() IMOM

| -4-29(2GeV) IMOM LO

! -$-289(2GeV) IMOM NLO

\ —4—2Y(2GeV) IMOM NNLO
\ -4 - ZM5(2GeV) MS NLO

\ —4— ZM5(2 GeV) MS NNLO

(ap)?

wf20 X =9y, L/a =32

21 r

- -2 () IMOM
-&- Z,,f”(2 GeV) IMOM LO
- -259(2GeV) IMOM NLO
7 X) (2 GeV) IMOM NNLO
-4 - ZM5(2 GeV) MS NLO
—4— ZM5(2 GeV) MS NNLO

(ap)?

FIG. 4. Z, at y =2 GeV in MS converted from X =y, and for » = 0.5, 1.0, 1.5, 2.0.
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IV. RESULTS
A. A first look at Z,,

For clarity we assume here that the Z factors are
taken in the chiral limit. (We find that the chiral
extrapolations are well under control; they are shown
in Appendix C.) In Fig. 3 we show our results for ZMS
computed at 2 GeV for the various values of w and
for the two different values of the lattice spacing.

We start by computing Z,(,Z”) (u, w) for the different values

wf25 X = fyH,L/af32

- -2 (1) IMOM
21 F -k- ZX)(QGeV) IMOM LO
-b- ZX)(2 GeV) IMOM NLO
2+ —4— 7Y (2GeV) IMOM NNLO
-%- Zf(z GeV) MS NLO
19| —4—2ZM5(2GeV) MS NNLO
1.8
N 17 F
1.6
15
14t
1.3
0 1 2 3
2
(ap)
w—35 X =79y, L/a=32
' - -2 (n) IMOM
21 r -1-29(2Gev) IMOM LO
-$-259(2GeV) IMOM NLO
2t —$-25(2GeV) IMOM NNLO
-4 -Z)5(2GeV) MS NLO
19l —$— Z35(2 GeV) MS NNLO
1.8
S 17F

FIG. 5.

' - -2 (u) IMOM

21 r -1-29(2Gev) IMOM LO

-#-209(2GeV) IMOM NLO
2t —$-2"(2GeV) IMOM NNLO

~4-7)5(2GeV) MS NLO

19l —$— 7)5(2 GeV) MS NNLO

18 r

S 17 F

of (4, ), then we run perturbatively to the reference

scale of 2 GeV and finally match to MS using NNLO at
fixed w. This can written as

(2 GeV.w) = U (2 GeV. .0, o) o 20" (1, ).
(4.1)
ZM5(2 GeV) = (2 GeV. )2 (2 GeV.w).  (4.2)

wf30 X = fyH,L/af32

—f- Z,,L (1) IMOM

21 -5-789(2GeV) IMOM LO

-B- ZX)(ZGeV) IMOM NLO
(

2r —6— 759 (2 GeV) IMOM NNLO
-%- ZE(2 GeV) MS NLO
19t —4—2ZM5(2GeV) MS NNLO

w—40 X =79y, L/a=32

Same as Fig. 4 for v = 2.5, 3.0, 3.5, 4.0.
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Although the notations should be self-explanatory, the
precise definitions of the matching and running coef-
ficients are given in Appendix A (we assume v = y and
do not repeat the corresponding index for clarity). Our

results are shown versus the square of the Ilattice

momentum (ap)? = (au)? for fixed values of w in

Figs. 4 and 5. The blue squares show Zf,}:“)(,u,a)) for

the different values of the renormalization scale (at this

oy &uy (u,2.5,0.5,0.5)

16 — u @ NNLO
e — u @ NNNLO
—
S b o
—
0
o~
2
>E
S
(%]
>E
o)

or&u)(u,2.5,1.5,1.5)

or&uy(u,2.5,2.0,2.0)

oy &uy (u,2.5,2.5,2.5)

oy &uy (u,2.5,3.0,3.0)

or&u)(u,2.5,3.5,3.5)

oY,&uY,(u,2.5,4.0,4.0)

FIG. 6. Comparison of the nonperturbative and perturbative running for Zf,{”

at N3LO.

. Note that for @ = 1 the perturbative running is known
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point no perturbation theory is used). Then for each
value of yx, we run to 2 GeV, using the perturbative
predictions at LO, NLO, and NNLO, still in the
IMOM scheme (red points), as in Eq. (4.1). Finally

we convert this renormalization factor to MS at 2 GeV
(magenta), see Eq. (4.2). As expected, the large values of
w and (ap)? are more affected by discretization effects.
The extreme value @ =4 1is just shown here for

=
o

15 — U@ NNLO
n o P
a =14 u @ NNNLO
o —
0 0
N12 N
2 2
<& sE&
3 5
1.0
st s-bE
1.4
n S}
— 1.3 ~
) S
12 ~
n L
o~ o~
11 3
<& sE&
3 3
1.0
st st
0.9 0.9
1.3
n S}
o~ m
Lr?‘ 1.2 d
o~ )
~N11 ~N
2 =2
<& sE&
S S
tzsg 1.0 cZ!E
A AS
0.9
in o
m 1.2 <
0 ]
m <
n 0
~ 1.1 ~
2 2
v:E s:E
Lz;E 1.0 @E
A A

FIG. 7. Same as Fig. 6 for ZS,?).
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illustration. It is clear from Fig. 3 that, even on our
finest lattice, there is still an (au)?> and @ dependence
after conversion. This is not unexpected since these
quantities have different discretization effects and
different perturbative uncertainties. We also show a
similar analysis for X = ¢ in Appendix D, Fig. 22;
our conclusions remain the same, although w~1
appears to be better for ¢ while y, favors @ ~2 for
this quantity.

From this analysis, we conclude that the bulk of the
renormalization scale dependence is well described by
perturbation theory as long as @ remains moderate.
However it is clear that our results are affected by
systematic errors (as expected) and a more refined analysis
is required in order to disentangle the various effects.
Furthermore we observe that for this quantity our data favor

w at LO

w at NLO

w at NNLO

w at NLO

w at NNLO

w =2 for X = y,, where the systematic errors are signifi-
cantly less pronounced.

B. Strategy and nonperturbative running

In practice, we want to perform the computation non-
perturbatively on the lattice at several values of the lattice
spacing, take the chiral and continuum limit and then apply
(continuous) perturbation theory. So the strategy is to
compute the Z factors at a given scale y (fixed in physical
units) in the chiral limit, for a fixed value of @ and for each
lattice spacing a in the corresponding IMOM scheme. The
extrapolation to the continuum can be performed once the
corresponding bare quantity has been computed at the same
values of the lattice spacing a. In a nutshell, the strategy
reads (omitting the chiral extrapolation for clarity) [16,17]

0.07" ——

. 0.03 —
— T0°0

0.01
/ i
w €00
L00
| _—

0.75 0.87 0.93 0.97 0.99 1.01 1.03 1.07 1.13 1.25
oY ju¥(u,2.5 w,2.0)

FIG. 8.

Ratio of the nonperturbative running over the perturbative prediction for Z,,

0.00

0.01

0.03 0.07
6 arju(u, 2.5 w,2.0)

0.13 0.25

() . The central value is shown on the left and the

error on the right. This ratio is exactly one (by definition) for the point (u = 2.5 GeV, w = 2).
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(step 1) OIMOM,(X)(ﬂ’w) _ alzir_l}OZIMOM,(X) (. @, a?) 0P (a?), (4.3)
(step 2) OMS (i) = C(p, @)MOMX) OIMOMX) (4 ), (4.4)
where X denotes the projector used in the defining of X), 2 Z(X) (@* pu, w)
IMOM. Clearly the first step is purely nonperturbative and Zn (@, po o, @, @) = lim —5—————,  (4.5)

can be used to assess the size of the discretization artifacts.
On the other hand, the second step is performed in the
continuum and can be used to estimate the size of the
perturbative uncertainties.

In this work, we are only concerned with renormalization
factors and do not want to introduce bare quantities.
However we still want to disentangle the lattice discretiza-
tion artifacts from the perturbative errors. It is therefore
natural to consider the nonperturbative scale evolution of
Z,,. In the spirit of [15], we define X, as

w atLO

m=0 7\ )( 2, Ho» @)

where X can either be y, or 4. We can then take the
continuum limit a®> — 0 and define

(X)

o (s oy @, ) = lim %, (a, . po. . @p). (4.6)

Similarly, for the quark wave function we define ¢, by just
substituting Z,, for Z,, in the above definitions. We note that

[ [ ~
.07
o™
3 'g\ e
2 ° 3
o
o w
(=3
' L L
1 2 u 3 4
4

3
(e} (e}
— -
z z 0.01
@ © 2 < [ ] >
3 3 0.03 _
1&
007 —
1 2 u 3 4 1 2 U 3 4
4 4 -~ i-
=~ 7 =
~ &
3 3
; ° 09" / ;
z i‘S 0P ¢ Iz
& 2 Z S |82
3 3
\
u 3 4

0.75 0.87 0.93 0.97 0.99 1.01 1.03 1.07 1.13 1.25
ol jul(u, 2.5, w,2.0)

01 0.03 0.07

6 oﬁ,/uﬁ,(u,z.s,w,z.m

FIG. 9. Same as Fig. 8 for Zsf).
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TABLE I. Running between 2 and 2.5 GeV for the quark mass.
First we perform the computation directly in MS then and in the
SMOM (@ = 1) schemes y, and ¢. In this case the running is
known at NNNLO (N3LO). The lattice results are denoted by NP
(nonperturbative). We also show the running computed first
nonperturbatively then converted to MS; we denote them by
MS < y, and MS « ¢, respectively.

Scheme LO NLO NNLO NNNLO NP
MS 0.9537 0.9456 0.9441  0.9439

MS <y, 09537 09350 0.9389  0.9426

MS « ¢4 09537 09451 09462  0.9475

Yu 0.9537 0.9411 0.9357 0.9318 0.9307(62)
q 0.9537 0.9441 0.9415 0.9400 0.9436(46)
TABLE II.  Study of the convergence of the perturbative series

for running of the quark mass between 2 and 2.5 GeV in MS,
SMOM-y,,, and 4.

Scheme NLO-LO NNLO-NLO NNNLO-NNLO
MS —0.0081 —0.0015 —0.0002
Yu -0.0126 —0.0054 —0.0040
q —-0.0096 —0.0026 —0.0017

we cannot only run in the g direction but also in the w
direction by setting @ # .

In this work, we only consider two values of the lattice
spacing; therefore, we add a systematic error as an estimate
of the residual discretization errors. This error is obtained

by adding half the difference between the extrapolated
value and the value on the finest lattice spacing. The
continuum extrapolations can be found in Appendix F. We
now have, for each value of y, ug, o, @y, a central value of
Oimgq}> @ statistical error and a systematic error from the
continuum extrapolation. In the following we will always
sum the systematic and statistical uncertainties in quad-
rature except when stated otherwise.

We can now compare the continuous nonperturbative
running obtained from our lattice simulation with the
perturbative prediction. This has to be done in a kinematic
region where both perturbation theory and lattice results are
reliable, the so-called Rome-Southampton windows. In this
region the perturbative and lattice results should run in the
same way, so the ratio should be constant. We will see
deviations from constancy in regions where perturbation
theory converges slowly (for example at small g or small
q* = wp?). We will also see nonconstancy if lattice artifacts
are important, which is likely to happen at large > and
large wu?. We also note that our procedure to estimate the
residual discretization errors could potentially under-
estimate them in the large x> and large wu? regions.

In the following sections we will first keep @ = @, and
compare the y dependence of the lattice results and the
continuum. An advantage of IMOM is that we have two
parameters, y and @, so we can better test that we are
working in a region where we can trust both perturbative
and lattice results. Accordingly, we next will vary both u
and w and study if a plateau is emerging where we can
reliably determine the Z factors of interest.

TABLE III.  Nonperturbative running for the quark mass in the y, scheme.

o/p= 1.0 1.5 25 3.0 35 4.0
0.5 1.219(123) 1.131(21) 0.922(8) 0.866(13) 0.827(18) 0.793(26)
1.0 1.343(64) 1.092(16) 0.931(6) 0.882(11) 0.846(17) 0.816(24)
L5 1.306(52) 1.110(12) 0.937(5) 0.894(11) 0.861(17) 0.831(25)
2.0 1.214(49) 1.099(11) 0.944(5) 0.904(10) 0.878(14) 0.860(17)
2.5 1.176(37) 1.085(9) 0.949(5) 0.916(9) 0.898(10) 0.893(7)
3.0 1.180(39) 1.070(7) 0.952(6) 0.925(8) 0.911(8) 0.910(4)
35 1.169(27) 1.065(6) 0.959(5) 0.937(6) 0.928(4) 0.935(5)
4.0 1.142(27) 1.049(5) 0.970(2) 0.968(10) 1.004(36) 1.144(116)
TABLE IV. Nonperturbative running for the quark mass in the ¢ scheme.

o/p= 1.0 1.5 2.5 3.0 35 4.0
0.5 1.182(128) 1.110(21) 0.933(8) 0.886(9) 0.860(8) 0.846(8)
1.0 1.302(73) 1.074(18) 0.944(5) 0.907(5) 0.888(4) 0.885(11)
1.5 1.266(57) 1.082(10) 0.951(3) 0.922(3) 0.912(3) 0.924(17)
2.0 1.157(49) 1.074(11) 0.959(4) 0.936(5) 0.933(4) 0.958(22)
2.5 1.127(43) 1.060(10) 0.966(5) 0.950(5) 0.950(3) 0.969(16)
3.0 1.126(45) 1.047(8) 0.969(5) 0.958(6) 0.962(3) 0.985(15)
35 1.114(32) 1.042(7) 0.976(4) 0.970(4) 0.982(7) 1.018(28)
4.0 1.080(30) 1.023(7) 0.989(6) 1.009(25) 1.081(71) 1.274(182)
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C. Quark mass renormalization factor

The running of the quark mass is shown in Fig 6 for

the y, scheme and in Fig. 7 for the ¢ scheme. In these

plots we show both the nonperturbative scale evolution

oy&uk(y,2.5,2.5,2.5) oy&uk(y,2.5,1.5,1.5) oy&u¥(y,2.5,0.5,0.5)

oy&uk(u,2.5,3.5,3.5)

1.04

1.02

1.00

0.98

0.96

0.94

1.08

1.02

1.01

1.00

1.02

1.01

1.00

0.99

1.06

1.04

1.02

1.00

0.98

—— u@NNLO
¢ o

[EY

Gz”)(ﬂ,ﬂo,co, wy) and the perturbative prediction

u’(zﬂ)<ﬂ’ Ho» @, @g). In order to study the u evolution for

fixed values of w, we set w = wy =0.5,1.0,1.5,...,4.0
and let p vary between 1 and 4 GeV. We find a good

1.04
—— U@NNLO

5) t o
= 102
o
-
o)
~ 100
=
o
>
;gc 0.98 -

| 1 | 1 | 1

1 2 3 4

1.038

1.02

1.01

1.00

0.99

og&ug(u, 2.5,3.0,3.0)

0.98

1.15

110~

1.05 |

100t }

ag&ug(u, 2.5,4.0,4.0)

1 2 3 4

FIG. 10. Same as Fig. 6 for ZEJ“).
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agreement for intermediate values of u and w, where both
perturbation theory and lattice artifacts are expected to be
under good control. In fact, perturbation theory works
surprisingly well even for small values of u, where

115 —— u@ NNLO
. + o
n
o 105
i
~ 1.00
3
S5 095
=)
g
== 0.90 |-
0.85 1 | i 1 i | |
1 2 U 3 4
1.15 —— u@ NNLO
i b o
= 1.05
"
~ 1.00
3; ¢
So 0.95 +
>
g
= 0.90 -
0.85 it | : | : | .
1 2 [ 3 4
115 —— u@ NNLO
in —— u@ NNNLO
‘\{ 1.10 + o
0
o~
i 1.05
o~
2 1.00
Sl
S
3
< 0.95
115 —— U@ NNLO
n —— u@ NNNLO
m
\ 1.10 t o
-
n
N 1.05
=
T
3
2 1.00
[e)

significant discrepancies with the lattice results only
emerge at u ~ 1 GeV. Out of the two schemes, perturbation
theory and lattice results agree best in the y, scheme. The
onset of lattice artifacts for large values of 4 and @ becomes

115 —— u@NNLO
o — U @ NNNLO
S 110 . @
d U
o 1.05
)
~ 1.00
3
<5 095
I
% 0.90 |-
0.85 Lk ; ' ; '
1 2 3
u
115 —— u@NNLO
o —
S 110 u @ NNNLO
- + o
S
~ 105
A
~ 1.00
E’; [ ]
5o 095 {
o]
Z
== 0.90 |-
0.85 It . : | : . .
1 2
B 3
115 —— u @ NNLO
3 —— u@ NNNLO
m + o
S 110
m
)
N 1.05
=
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& 1.00
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0.95
115 —— U@ NNLO
o —
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o b oo
< 1.05
)
N 100
\:’: .
= }
3 095
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FIG. 11. Same as Fig. 6 for Z;".
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FIG. 12. Same as Fig. 8 for 2"/,

only relevant for ¢g> > 25 GeV?. This becomes particularly
visible for large values of @ =4, where perturbation
theory also becomes less reliable. The discrepancy of
lattice results and perturbation theory occurs already at
values of ¢> > 10 GeV? in the ¢ scheme.

Next we allow @ # w, and show the ratio of the
nonperturbative running divided by the perturbative pre-
diction as a function of x and w at LO, NLO, and NNLO.
Here we choose to fix wy =2 and pg = 2.5 GeV as a
reference point. For 4 = ug and @ = wy this ratio is one
by definition, and ideally should stay close to one in
the remainder of the (u, ) plane. We show our results for
X =y, inFig. 8 and in Fig. 9 for X = ¢, where we also give
the combined lattice and perturbative uncertainties (added
in quadrature).

As expected, we observe that increasing the order of
the perturbative expansion improves the agreement with the
nonperturbative evolution. The corner of the planes are

affected by larger systematic errors, in particular where
w =4 and/or u > 3.5GeV where the discretization
effects become more sizeable. However our data agree
with NNLO at a few percent level for a large part of the
(4, w) plane: approximately for 1.5 GeV <y < 3.5 GeV
and 1 <w <3.

For completeness, we study the next order in perturba-
tion theory for the case @ = 1, as the three-loop matching
has been computed in [13,14] and the MS four-loop
anomalous dimension can be found in [23]. We take
o =2 GeV and u = 2.5 GeV and compute the running
in different schemes, see Table 1. In Table II, we show the
contributions of the higher orders. Although the corrections
to the leading order contributions are rather small, we see
that the convergence in MS seems to be much better than in
the MOM schemes, in the sense that the (i 4+ 1)th correction
is much smaller than the ith order. However, the important
observations here are that the leading order gives by far the
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FIG. 13.

main contribution and that the perturbative series seems to
converge nicely to the nonperturbative values.’

Finally for completeness, in Tables III and IV we
give our results for the nonperturbative running of the
quark mass, with gy =2 GeV and w = w, varying
between 0.5 and 4.0. In Appendix E, we show more
numerical results, where we vary our parameters @, @,
u, and pq in various ways. Our main conclusion remains
that the nonperturbative results agree very well with the
perturbative ones as long as we stay away from the corner
of the (w, i) plane. However it is worth noting again that
for X = y,, our data favor @ = 2. From the contour plot, we
conclude that in the region 1.5<®w<25and 1.5 <u <25

>The attentive reader would have noticed that in Table I the
NLO for y, and ¢ are identical. This seems to be nothing but a
numerical accident: adding more significant figures leads to
0.941112 for y, and 0.944132 for 4.

6 08/ul(u, 2.5, w,2.0)

(4)

Same as Fig. 8 for Z;".

the nonperturnative and pertubative running agree within
~1% for X =y, and within ~1% for X = 4.

D. Quark wave function renormalization factor

As for the quark mass, we find that the chiral extrap-
olations are well under control; they are presented in
Appendix C. Here we focus on the scale dependence.

TABLE V. Running between 2 and 2.5 GeV for the quark wave
function in MS and in the SMOM schemes 7, (@ = 1) and 4. In
this case the running is known at NNNLO.

Scheme LO NLO NNLO NNNLO NP
MS 1.0 1.0048 1.0062 1.0064

MS <y, 1.0 1.0069 1.0078 N.A.

MS « ¢ 1.0 1.0195 1.0175 1.0146

Yu 1.0 1.0017  1.0020 N.A 1.0037(20)
q 1.0 1.0048 1.0081 1.0113 1.0195(25)
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TABLE VI.  Study of the convergence of the perturbative series Our results are shown for @ = wy: in Figs. 10 and 11 we
for running of the quark wave function between 2 and 2.5 GeV in compare the nonperturbative running to the perturbative
MS, SMOM-y,,, and . prediction. Then in Figs. 12 and 13 we again fix oy = 2
and o = 2.5 GeV as reference points and let w and y vary.
Here the situation is very different from the quark mass,

Scheme NLO-LO NNLO-NLO NNNLO-NNLO

MS 0.0048 0.0013 0.0003 mainly because there is no contribution at leading order (in
Yu 0.0017 0.0003 the Landau gauge). A numerical study of the convergence
0.0048 0.0033 0.0032 can be found in Tables V and VI. In the ¢ scheme, the
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FIG. 14. 05,4) (s o, @, wg) for wy = w, statistical error only.
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nonperturbative results differ significantly from the pertur-
bative predictions; however, one should keep in mind that
the running is very small in magnitude. It is also interesting
to have a close look at the ¢ scheme where there the
perturbative prediction is known at N°LO. As we can see,
the perturbative series seems to converge very poorly in
the sense that the relative difference decreases very slowly
as we increase the order of the expansion. Therefore we
conclude that the difference between the nonperturbative
result and the N°*LO, namely ~1.0195 — 1.0113 ~ 0.0082,
could be explained by higher order in the perturbative
series.

E. Study of the @ (in)dependence of o,
Due to the vector WTI given in Eq. (3.16), we might
expect qu) to be w independent up to lattice artifacts. This

is illustrated in Fig. 14 where we show pcl (s o, @, ) as
a function of w = w, for different values of x and p.
We can see that this property is rather well satisfied as
long as the scales remain moderate, say pu, uy <3 GeV.
However it is worth noting that this invariance is only
true in the continuum, as can be seen in Fig. 15. At finite

lattice spacing, within our small statistical errors, the

Example of continuum extrapolations for o,

o = 3.5 GeV, u=1.0 GeV
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lattice artifacts are visible and Z((]q) clearly shows a
dependence. These figures also suggest that the lattice
artifacts are well under control, with two lattice spacings,
as long as we do not go too high in energy. Note that in
these plots, the systematic errors due to the continuum
extrapolations are not included. The nonperturbative-
scale evolution of Z,, o,(u,py) with puy =2 GeV and
@ = wy for various values of 4 and w can be found in
Tables VII and VIIL.

Also it is interesting to notice in Fig. 15 how the
discretization effects depend on w. Clearly for @ = 2.0
and 2.5 the lattice artifacts are much smaller than for
@ = 1.0. Of course this effect is quantity dependent but
such a property could be very useful in future computations.

F. Study of the chiral symmetry breaking effects

One of the original arguments to motivate the
RI/SMOM schemes is a drastic reduction of the syst-
matics errors due to spontaneous chiral symmetry break-
ing. Even though these effects are physical, they can
prevent a clean determination of the renormalization
factors because they are absent from the perturbative
calculations. This is particularly true for quantities like

TABLE VII.  Nonperturbative running for the quark wave function in the y, scheme.

o/p= 1.0 1.5 2.5 3.0 3.5 4.0
0.5 0.972(8) 0.993(4) 1.008(4) 1.014(8) 1.023(14) 1.040(26)
1.0 0.976(8) 0.994(3) 1.004(2) 1.007(5) 1.012(8) 1.021(15)
1.5 0.978(4) 0.998(2) 1.003(1) 1.005(2) 1.006(3) 1.004(3)
2.0 0.990(7) 0.998(2) 1.003(0) 1.005(1) 1.007(1) 1.008(1)
2.5 0.987(5) 0.997(2) 1.001(1) 1.002(2) 1.002(3) 1.003(4)
3.0 0.985(4) 0.999(2) 1.000(2) 0.998(4) 0.993(9) 0.978(18)
35 0.989(5) 1.001(2) 0.997(2) 0.993(6) 0.982(13) 0.959(27)
4.0 0.990(5) 0.999(1) 0.994(3) 0.983(8) 0.957(22) 0.887(60)
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TABLE VIII. Nonperturbative running for the quark wave function in ¢ scheme. Here we expect the results to be
o independent.

o/p= 1.0 1.5 2.5 3.0 3.5 4.0
0.5 0.935(27) 0.974(7) 1.018(7) 1.035(16) 1.059(31) 1.096(56)
1.0 0.951(19) 0.978(6) 1.017(6) 1.035(14) 1.058(28) 1.096(51)
L5 0.950(15) 0.973(4) 1.017(4) 1.037(11) 1.064(25) 1.106(49)
2.0 0.942(15) 0.976(3) 1.020(3) 1.040(8) 1.069(20) 1.118(45)
2.5 0.942(14) 0.974(3) 1.019(1) 1.039(3) 1.060(9) 1.087(20)
3.0 0.937(12) 0.978(4) 1.017(2) 1.033(2) 1.048(2) 1.060(2)
35 0.943(10) 0.979(3) 1.014(2) 1.027(3) 1.039(3) 1.050(2)
4.0 0.940(10) 0.975(4) 1.013(3) 1.027(8) 1.046(18) 1.084(40)

I, and =5 where the presence of pseudo-Goldstone poles
can completely dominate the signal. In practice, the
vertex functions from which we want to extract the Z
factors are “polluted” by negative powers of the quark
mass or the momentum scale. Of course these chiral
symmetry breaking effects are nonperturbative and dis-
appear for high momentum. However, we want to keep
the Rome-Southampton windows as open as possible, so
it is always desirable to reduce this infrared contamina-
tion or, at least, keeping them well under control.

If chiral symmetry is exactly realized then we should
find that Z¢ = Sp and Zy, = Z,. Therefore, in order to
study these chiral symmetry breaking affects as a function
of w, we study the deviation of Zy from Z, and Zg from
Zp. We start by the analysis of the ratio Z,/Z,, see
Fig. 16 for @ = 1 using the y,, projector. In the left panel,
we show our results for the various quark masses as a
function of x. On the right panel, we show the chiral
extrapolation for w=1 and p =1 GeV. There we

w=1.0
1 I - - - -
0.995 | §
(o]
chv 0.99 |
2
5 0985
F 0.98 |
b
5 0975}
N
~
5 097 1
f ZV/ZA am=0.004
0.965 % E ZV/ZA am=0.006
I 1 z,/z, am=0.008
0'96 1 1 1 1
1 2 3 4
1[GeV]

observe a deviation from one at the order of a few
percents (the reader would notice that this is one of
the worst-case scenarios). However we do not see any
pole in powers of 1/m. We find the quark mass depend-
ence to be linear within our statistical error; therefore,
we extrapolate to the chiral limit using a straight line.
In Fig. 17 we observe that—as expected—the ratio
Zy/Z, collapses quickly to one as the energy scale
increases: at u =2 GeV, the deviation from one is at
most at the per-mille level. Our results for the ¢ projector
are very similar. Our results seem to indicate a trend that
Zy/Z, increases toward one when @ increases between
0.5and 2 (Zy/Z, ~098 at w =1 and Z,/Z, ~0.99 at
w =2), but this could well be a statistical effect.
Altogether we find that Z,/Z, =1 to a very good
approximation for all values of w. This is true for both
values of the lattice spacing and both projectors X € (y,. ).

We also study (Ag— Ap)/Ay, which is proportional
to Zy(1/Zg—1/Zp). Our results are shown in Fig. 18.

w=10,p=1.0 GeV

0.985

0.98 1

0.975

Yur L/a =32

0.97

Zv]|Za, X

0.965

0.96

x1078

FIG. 16. Zy/Z, for the y, projector as a function of u for @ = 1. In the left panel we show the results at finite quark masses as a
function of the energy scale. As an example of chiral extrapolations, in the right panel we show our results for y = 1 GeV, w = 1. We
perform a linear extrapolation (solid line), and a quadratic extrapolation is shown as a dashed line for illustration.
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FIG. 17. Zy/Z, for the y, projector as a function of w for various values of .
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Here it is clear that the infrared effects due to
chiral symmetry breaking decrease when the value of w
increases. For example, we observe that at 4 = 1.5 GeV,
(Ag — Ap)/Ay ~ 0.1. The same quantity reduces to ~0.03
for @ = 2.0. For illustration, we show Zs/Zy and Zp/Zy,
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FIG. 18.

versus u for the different quark masses in Fig. 19. It will
be interesting to perform a similar study on four-quark
operators, especially those where the infrared contamina-
tion can be important and a source of disagreement (see for
example the section on BSM kaon mixing in FLAG [24,8]).
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(Ag = Ap)/Ay for the ¥, Projector as a function of w for various values of u.
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FIG. 19. Zg and Zp at finite quark masses versus the renorm-
alization scale for w = 1.

V. CONCLUSIONS AND OUTLOOK

As a proof of concept we have implemented several
IMOM schemes defined via two different projectors for
various values of the kinematics parameter @. In this
framework we have determined the renormalization factors
and nonperturbative scale evolution functions of the quark
mass and of the quark wave function. To compare our
lattice results with NNLO results in continuum perturbation
theory, we also present the numerical form of the pertur-
bative scheme conversion factors for these schemes in these
general kinematics.

We find that the nonpertubative and perturbative results
agree very well as long as we stay away from the corner of

the (w, i) plane, with one exception, namely qu). For the
quark wave function renormalization, we argued that the
reason for the relatively bad agreement is the poor con-
vergence of the perturbative expansion. Clearly, having
several values of @ helps to have a better handle on the
systematic errors coming from the NPR procedure. As an
application, we have seen a example where the discretiza-

tion effects depend significantly on w (see a(qq) where the

discretization effects for @ = 2, 2.5 are much smaller than
for = 1), and so does the perturbative convergence. In
this proof of concept study, only two lattice spacings have
been used. Clearly, adding a finer lattice could potentially
allow us to test the agreement of the perturbative and
nonperturbative window even further.

Generally speaking, it is well known that the SMOM
kinematics (w = 1) leads to much cleaner determinations
of the renormalization factors than the w = 0 case. In this
work, we have shown that increasing the value of @ to
@ ~?2 has the potential to improve these determinations
even further:

(i) significantly smaller contributions of the pseudo-
Goldstone poles contamination in Ap — Ag,
(i) reduction of the discretization effects in the vec-
tor WTL
We remind the reader that @ = 2 corresponds to an angle
a = r/2 between the incoming and outgoing momenta, see
Fig. 2. With our choice of kinematics, this means that p,
and p, are parallel to the x axis and y axis, respectively.
Therefore this choice of kinematics takes advantage of the
hypercubic symmetry of the lattice. In addition, any term
proportional to p;.p, is also absent in this setup. Therefore
we believe that the improvements that we observe for are
not accidental but genuinely come from the kinematics. Of
course this statement needs to be checked on different
quantities. It will be interesting to extend this study to the
case of four-quark operators where the infrared contami-
nations due to chiral symmetry breaking are significantly
more sizeable, and one of the dominant sources of
systematic errors.
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APPENDIX A: PERTURBATION THEORY

In order to make contact to phenomenology, results
obtained from lattice simulations need to be converted to a
scheme that is used in continuum perturbation theory such
as MS. The nonperturbative renormalization schemes used
in this work serve as an intermediate scheme that can be
defined on the lattice and in the continuum. This enables
us to compare the nonperturbative with the perturbative
change of the renormalization scheme parameters y and w.
This appendix provides the ingredients for the perturbative
scheme changes at NNLO.
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TABLE IX. Values of the strong running coupling as a function
of the dimensional regularization scheme v. They are obtained in
the MS scheme in the three-flavor theory.

TABLE X. The perturbative expansion coefficients of the
conversion factors C7, ¢, cy’, and Cffi) as a function of

o. Note that C(f) is independent of .

v/GeV 1.0 L5 2.0 25 3.0 35 4.0
as(v) 0.4698 0.3467 0.2950 0.2652 0.2452 0.2307 0.2196

The dependence of the strong coupling constant on the
dimensional regularization scale v in the MS scheme is
governed by the f function

“arlin) =2 (@)”

Although it is known at five loops [25-27], we will only use
the first three coefficients in the expansion to be consistent
with our NNLO analysis of the running. In the following
we will need the first two coefficients,

(A1)

2
38
pr=102-Np, (A3)

where we fixed the number of colors N, = 3 in this and the
following expressions. Using ag(M,) = 0.1179(10) and
M; =91.1876(21) GeV [28] we find the required values
of the strong coupling constant for N, = 3 flavors given in
Table IX. To arrive at three active flavors, we decoupled the
bottom and charm quark atv, =5 GeV and v, = 1.5 GeV
respectively using central values m;,(m;) = 4.13 GeV and
m.(m.) =127 GeV for the quark masses in the MS
scheme [28]. The relevant threshold effects and running
of the strong coupling constant are implemented using
RunDec [29].

The fields and masses in the IMOM®*) schemes are related
to the MS scheme as yy(v) = (ZIC\,’IS/Z(qX))y/X(M, w) and
mMS (1) = (Z5/ 25 Ymy (u, w), where X € (y,.4). The

continuum perturbation theory expansion of the conversion
factors

ZM(e,1) o

A% (€, 1, w)

1

2CMwpw).,  ie{gm} (A4

are known up to two loops [10,20] for the IMOM scheme and
up to three loops [13,14] in the SMOM limit, i.e. where
o = 1. Writing
@ (x2)
N C B
T

(A5)

it et i

w Cg,},"”

0.5 —2.422 —64.756 +5.988N; —3.248 —89.07 + 7.571N;
1.0 —-0.646 —22.608 +4.014N, —1.979 —-55.032 + 6.162N,

1.5 0.778 10.344 +2.432N, —0.964 —28.916 + 5.035N;
2.0 1994 38567+ 1.08N, —0.098 —6.829 +4.072N;
2.5 3.071 63.81 —0.115N;  0.667  12.741 + 3.222N
3.0 4.042 86.961 —1.195N, 1.358 30.56 +2.454N
3.5 4933 108.544 —2.184N, 1.99 47.076 + 1.752N
4.0 5757 128.894 —3.1N; 2.575  62.576 + 1.102N,
) Cgiqvl) C((fl) C{S%l) C{({sz)

0.5 0 —25.464 +2.333N;  0.825 1.53 +0.75N;
1.0 0 —25.464 +2.333N, 1333 9.599 + 0.185N
1.5 0 —25.464 +2.333N, 1742 15476 — 0.269N,
20 0 —25464+2333N, 2093 20.137-0.658N,
2.5 0 —25.464 +2.333N, 2.403 24.001 — 1.004N,
3.0 0 —25.464 +2.333N, 2.684 27.292 - 1316N,
3.5 0 —25.464 +2.333N, 2942 30.147 — 1.603N;
4.0 0 —25.464 +2.333N, 3.182  32.66 — 1.869N

and setting 4 = v we find the numerical conversion factors as
afunction of @ given in Table. X. The scheme transformation
can then be written as a product

Uz('x)<ﬂ1,ﬂo7w1,wo> = CEX)(Vl /41’0’1)UMS(V1’”0)

~1
x Y (v 0),.,  (AG)

H1=v]

of the conversion factor, its inverse, and the MS evolution

kernel UMS (1, ). The evolution Kernel fulfils the renorm-
alization group equation

d [
P UBS(v0) = —SUB () (A7)
and we expand the anomalous dimensions
k+1
(X.k)
, A8
=> (%) (A8)

where X denotes the renormalization scheme. Hence we can
transform for example a light quark mass renormalized in
given scheme X at different kinematic points (¢, ®;) and

(”0 s Cl)()) via

( (:ulva)l) - )<:u1’1u0’a)170)0> )(ﬂo,a)o), (A9)
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where the logarithms log y, / u, are summed using renormalization group improved perturbation theory. Explicitly, we find at

NNLO
0)
ag (1) (x.1) o (py) (x.2) ag(po) \ 7 /Po
U' ) ) ) - 1 J ' J
P o) = (142 ) + EE o) (G
" l_as(ﬂo)an(w )+a§(uo) [(Jom)(w ))2 _JXD g )]
4 ! 0 (4r)? ! 0 ! o)
|

TABLE XI. The NLO and NNLO coefficients of anomalous where the J;l) and Jgf) are given by

dimensions y.

551) )

independent of w.

svws 74 s vq as afunction of w. Note that y

24) is

) y,(f'w 755’2)
0.5 93.981 — 3.837Ny 2985.27 — 398.85TN s + 6.256N}
1.0 74.434 —2.653N; 1816.8 — 273.08N; + 3.623N%-
1.5 58.78 — 1.704N 948.781 — 176.459N + 1.515N_%
2.0  45.395-0.893Ny 240.849 — 95.917N; — O.288NJ2¢
2.5 33.558 = 0.175N —364.298 — 25.958N — 1.882N§»
3.0  22.868 +0.473N; —896.718 + 36.367N; — 3.322N}
35 13.075 + 1.066N —1374.46 + 92.858N; — 4.641N§
4.0 4.006 + 1.616N ¢ —1809.31 + 144.71N; — 5.862N]2c
0} y%’” %-2)
0.5 103.057-4.38IN;  3655.83 —479.684N; + 8.367N_%
1.0 89.101 — 3.541N, 2704.63 — 382.794N ; + 6.487NJ%
1.5 77.943 —2.865N 1993.76 — 308.337N; + 4.984NJ%
2.0 68.413 —2.283N, 1409.35 — 246.123N; + 3.701N}
2.5 59.993 — 1.77T1Ny 905.536 — 191.915N; + 2.567N3r
3.0 52.396 — 1.317N 458.454 — 143.458N; + 1.544NJ2C
35 45.441 - 0.895N 53.89 — 99.383N + 0.607N§-
4.0 39.005 — 0.505N —317.4 — 58.784N s — O.26Nj%
a) },gr,l) }/517’2>
0.5 13.257 — 0.783N 417.983 — 65.569N ; + 1.741N%
1.0 7.667 — 0.444N ¢ 200.702 — 36.683N ; + 0.988N%
1.5 3.171 = 0.172N 43.556 — 14.519N; + O.382N?-
2.0  —0.684 + 0.062N, —79.969 + 3.809N — 0.137Nfr
25 —4.102 + 0.269N, —181.296 + 19.56N; — 0.597N]2c
3.0 -7.195+0456N;  —266.635 4 33.428N; — 1.014N;-
35 —10.033+0.628N;  —339.81 +45.844N, — 1.396Nfr
40 -12.666 +0.788N;  —403.372 + 57.097N; — 1.751NJ2C
},gqfl) ygql)
0... 22.333 - 1.333N;

1088.54 — 146.397N ;s + 3.852N§-

Jn _ yy _ﬂm('o)
’ Po B
) _ 1 ( Jn 1 B g™ _ﬂzYSO))
‘ 2 Po B I I
(A10)
The leading order anomalous dimensions
7y =0,
)~ 4 (Al1)

are scheme independent. The expressions for the NLO and
NNLO anomalous dimensions are given in Table XI
for different values of @ as a function of the number of
flavors N .

APPENDIX B: SIMULATION DETAILS

Our numerical work is based on RBC-UKQCD data;
the lattice details can be found in [16]. We compute the
propagators using Landau gauge-fixed 2 4 1, domain-wall
(Shamir [30])/Iwasaki lattices. The values of the parameters
can be found in [7].

In a nutshell, we use two lattice spacings (we refer to
them as 243 and 323):

a-! =1.785(5) GeV

(24%), (B1)

a™' =2.383(9) GeV (32%), (B2)
for each lattice spacing we have three different sea quark
masses, am = 0.005, 0.010, 0.020 for the 243 x 64 x 16
lattice and am = 0.004, 0.006, 0.008 for the 323 x 64 x 16
lattice.

We take the chiral limit on each lattice spacing using the

values

amye = 0.003152(43)  (24%), (B3)
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am., = 0.0006664(76) (32%). (B4) APPENDIX C: CHIRAL EXTRAPOLATIONS
OF THE Z FACTORS
Our values for Zy are [17] In Figs. 20 and 21 we show our chiral extrapolations for
Z,, and Z, atfixed scale 4 = 2 GeV and for various w. Since
— 3 m q
Zy =0.71651(46)  (24°), (BS) we use domain-wall fermions, there is small additive mass
Zy = 0.74475(12) (322)' (B6) renormalization; therefore, the chiral limit is situated at

X =v,1=20GeV, L/a=24

X =v,1=20GeV, L/a=32

1.9 1.9
88— g—nm
18t = —=— . [§ w=05 1.8 f § w=05
B w=10 B w=10
o w=15 g w=15
8 w=20 8 w=20
1.7+ P 17/ & & & | s u_2s
e e 8 | 5 ,=30 8 w=30
— 8 w=35 — 8 w=35
5&51_6 - . . . P w=40 Eig 1.6 = o o o | §F w=40
L o - S " " " "
1.5 1.5
L e | B e ° ®
L e " " " "
147 . - 1.4, e s o
1.3 . . iin 1.3 . . .
0 0.01 0.02 0 5 10
am am x10°
FIG. 20. Chiral extrapolation of Z,, at 4 =2 GeV.
X =v,n=20GeV, L/a=24 X =v,1=20GeV, L/a=32
0.79 T T T 0.79 [FELE— ] T
0.78 0.78 1
8 w=05 s ®m—m—=8 8 w=05
077 g &—8— " | & ,_-10 0.77 ¢ 8 w=10
o w=15 g w=15
0.76 B w=20 0.76 o o o 8§ w=20
8 w=25 8 w=25
075 te———=&—— =" | § ,=30 0.75 g = = —m | 8 w=30
— 8 w=3.5 — 8 w=35
%.074} iFw=40 Z_o74ls — 888 [ § w=40
N ) =]
o a !:!:!:ﬁ
0.73 0.73 1
072 fe——#— & ———* 0.72
071 trg— & —8—— 8 0.71 +
l:.:l:|
0.7 ra g " 0.7
0.69 ! . : 0.69 ! : !
0 0.01 0.02 0 5 10
am am x107
FIG. 21.  Chiral extrapolation of Z, at u =2 GeV.
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am; = —am,,,. The values of the residual mass are given in Appendix B. We find a very mild quark mass dependence (if any)
and simply perform a linear extrapolation.

APPENDIX D: Z)) FOR X =4

In Figs. 22 and 23 we show the equivalent of Figs. 4 and 5 for X = ¢ on the L/a = 32 lattice. See Sec. IVA for
more details.

w=05X=¢, L/a=232 w—lOX ¢, L/a =32
I ' ' ' ' T - -2 (1) IMOM
1.9 1 1 9 b -5-29(2GeV) IMOM LO
\‘ -B- wa‘) (2GeV) IMOM NLO
18 181 1 —4— 2" (2GeV) IMOM NNLO
\ -4 -2)5(2GeV) MS NLO
17k 17 \ —$— ZM5(2 GeV) MS NNLO
: : 5
16 | 16
15 F 15 F
1.4+ 14 r
1.3 + -#-259 (1) IMOM 1.3
-&- ZX) ZGCV) IMOM LO
12 L -$-289(2GeV) IMOM NLO 1ol
’ —$- 2" (2GeV) IMOM NNLO ’
~4-Z)5(2GeV) MS NLO
T1r —$— 75(2GeV)) MS NNLO 1Ay
0 1 2 3 0 1 2 3
2 2
(ap) (ap)
w—15X 4, L/a =32 w—20X 4, L/a =32
-#-259 (1) IMOM ' -#-259 (1) IMOM
191 -5 -2(2GeV) IMOM LO 1.9 1 -5 -2(2GeV) IMOM LO
-%-2(2GeV) IMOM NLO -$-289(2GeV) IMOM NLO
18 F —$- 2 (2GeV) IMOM NNLO 1.8 | —6— 759 (2 GeV) IMOM NNLO
i ~4-Z)5(2GeV) MS NLO -%- Zf(z GeV) MS NLO
17+ —4—2ZM5(2GeV) MS NNLO 17t ——7ZM5(2 GeV) MS NNLO
1.6
N 15 ¢
1.4
1.3
1.2
11 ¢ 14+
0 1 2 3 0 1 2 3

(ap)? (ap)?

FIG. 22. Z,, at u =2 GeV in MS converted from X = ¢ and for @ = 0.5, 1.0, 1.5, 2.0.
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w—25X gL/a—32 w—30X ij/a—32
- -2 (n) IMOM ' - -2 (u) IMOM
1.9 -3 sz> 2GeV) IMOM LO 1.9 1 -5-289¢ 2GeV) IMOM LO
-§-289(2GeV) IMOM NLO -§-259(2GeV) IMOM NLO
1.8 +Z@(2 GeV) IMOM NNLO 1.8 +Z}Q(2 GeV) IMOM NNLO
-4 -Z)5(2GeV) MS NLO -4 -Z)(2GeV) MS NLO
17L —$— 735(2 GeV) MS NNLO 17k —$— 735(2 GeV) MS NNLO
16
N 15 f
14 -
13 r
12+
1.1 F
0 1 2 3 0 1 2 3
2 2
(ap) (ap)
wf35X q,L/af32 w740X q,L/af32
' -8- Z,,L (1) IMOM ' -8- Z,,L (1) IMOM
19 ¢ -5-759(2Gev) IMOM LO 191 -%- Z,,L (ZGev) IMOM LO
-5- ZX)(QGeV) IMOM NLO -$-2(2GeV) IMOM NLO
1.8 + —— 2\ (2 GeV) IMOM NNLO 1.8 | —6— 759 (2GeV) IMOM NNLO
-4 - ZM5(2 GeV) MS NLO -4 - ZM5(2 GeV) MS NLO
17k —4— ZM5(2 GeV) MS NNLO 170 —4— ZM5(2 GeV) MS NNLO
1.6 16

FIG. 23. Same as Fig. 22 for o = 2.5, 3.0, 3.5, 4.0.

APPENDIX E: EXTENSIVE STUDY FOR o-,(f ) 1. Study of the w dependence for fixed energy scales
In this appendix we provide our numerical results for In order to study the @ dependence, we first fix y and

running of the quark mass. These results are given for  to some reasonable values, where we expect a rather good
(x) defined in Eq. (4.5 h that control over both the perturbative errors and the lattice
om (4, fio, @, o) as defined in Eq. (4.5), such tha artifacts. We  choose (g, u) = (2.5 GeV, 1.5 GeV).
® ) ® We then vary w, but first we only consider the

Zp (py0) = o’ (, po, @, 09)Zm (4o, @g).  (EI) “diagonal” case, i.e. wy = w. We show our results in
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TABLE XII. Running for the quark mass, y, scheme for
(4o 1) = (2.5 GeV, 1.5 GeV).

TABLE XIV. Running for the quark mass, X =y, 4 = 2 GeV.
We only consider @ = @, and let y, vary between 1 and 4 GeV.

(Ho.p) = (2.5,1.5)

= wpl o 6 /LO 6,/NLO 6,/NNLO
0.5 1.22927) 1.091(24) 1.03523) 1.006(22)
1.0 1.174(18) 1.042(16) 0.999(16) 0.984(15)
1.5 1.184(17) 1.051(15) 1.016(15) 1.009(15)
2.0 1.162(16) 1.032(14) 1.005(14) 1.004(14)
25 1.143(14) 1.014(12) 0.994(12) 0.998(12)
3.0 1.124(12) 0.998(11) 0.982(11) 0.990(11)
3.5 1.110(11) 0.985(9) 0.975(9)  0.986(9)

4.0 1.080(5)  0.959(5) 0.952(5) 0.967(5)

TABLE XIII. Same as Table XII.

(Ho.u) =(2.5,1.5)

= wyl o  5,/LO 6,/NLO ¢,/NNLO
0.5 1.194(23) 1.059(21) 1.012(20) 0.992(20)
1.0 1.138(18) 1.010(16) 0.980(16) 0.995(16)
1.5 1.138(13) 1.010(11) 0.991(11) 0.985(11)
2.0 1.117(13) 0.992(12) 0.981(12) 1.000(12)
25 1.096(13) 0.973(11) 0.970(11) 0.971(11)
3.0 1.080(13) 0.959(12) 0.962(12) 0.984(12)
3.5 1.068(11) 0.948(9) 0.956(10) 0.963(10)
4.0 1.033(12) 0.917(10) 0.929(10) 0.952(11)

Tables XII and XIII. The middle column shows the
running itself obtained from the lattice, while the other
three columns on the right show the ratio of the non-
perberturbative running over the perturbative prediction
at leading order (LO), next-to-leading order (NLO), and
next-to-next-to-leading order (NNLO). The errors quoted
there combine an estimate of the discretization errors and
the statistical one.

We observe that the nonperturbative running agrees
extremely well with NNLO predictions for all values of
0.5 < w < 3. Looking at the perturbative convergence and
stability, our data seem to favor the region @ ~ 2.

2. Study of the @ dependence for larger energy ranges

Here we fix 4 =2 GeV and let y, vary over the full
range. Again we only consider the case @, = w. The rows

/40*1/ (GCV) O Gm/LO O-m/NLO Gm/NNLO
0w =05

1.0 0.826(83) 1.015(102) 1.145(115) 1.246(126)
1.5 0.884(17) 0.949(19)  0.982(19)  1.001(20)
2.0 1 1 1 1

2.5 1.084(10) 1.034(9) 1.014(9) 1.005(9)
3.0 1.153(17) 1.062(15)  1.029(15)  1.014(15)
3.5 1.206(24) 1.081(22)  1.038(21) 1.019(21)
4.0 1.253(35) 1.099(31) 1.048(30)  1.027(29)
0 =10

1.0 0.740(42) 0.910(51)  0.999(56)  1.045(59)
1.5 0.916(13) 0.984(14) 1.010(15)  1.021(15)
2.0 1 1 1 1

2.5 1.074(7)  1.025(7) 1.009(7) 1.004(6)
3.0 1.133(13) 1.044(12) 1.018(12) 1.010(12)
35 1.17921) 1.057(19)  1.024(18)  1.014(18)
4.0 1.22031) 1.070(27) 1.030(26)  1.018(26)
w=15

1.0 0.764(35) 0.939(43) 1.010(46)  1.032(47)
1.5 0.901(10) 0.968(11)  0.989(11)  0.994(11)
2.0 1 1 1 1

2.5 1.067(6)  1.017(6) 1.005(6) 1.003(6)
3.0 1.118(13) 1.030(12) 1.010(11)  1.006(11)
3.5 1.159(20) 1.039(18)  1.013(18)  1.008(18)
4.0 1.196(31) 1.049(27) 1.018(26)  1.012(26)
0 =20

1.0 0.825(34) 1.014(42) 1.074(45) 1.078(45)
1.5 0.910(10) 0.978(11)  0.994(11)  0.995(11)
2.0 1 1 1 1

2.5 1.059(6)  1.010(5) 1.001(5) 1.000(5)
3.0 1.106(12) 1.019(11)  1.003(11) 1.002(11)
3.5 1.137(17) 1.020(15)  0.999(15)  0.998(15)
4.0 1.160(21) 1.018(18)  0.994(18)  0.993(18)

1o = 2 give trivially one, but we leave the results in order to
guide the eyes. We give our results in Table XIV.

3. Study of the running in the nondegenerate w case

Here we fix again both energy scales (pg,pu) =
(2.5 GeV, 1.5 GeV), and we allow @ # w,. Our results
are shown in Tables XV and XVI for X =y, and in
Tables XVII and XVIII for X = ¢.
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TABLE XV. Running for the quark mass, y, projector for TABLE XVI. Running for the quark mass, y, projector for

(pos ) = (2.5 GeV, 1.5 GeV). (pos ) = (2.5 GeV, 1.5 GeV) (continued).

(Ho.n) = (2.5.1.5) (Ho.u) = (2.5,1.5)

] O 6,/LO o0,/NLO c,/NNLO o Om 6,/LO o©,/NLO o,/NLO
o) = 0.5 W) = 25

0.5 1.229(27) 1.091(24) 1.035(23) 1.006(22) 0.5 0.952(12) 0.845(10) 0.907(11) 0.947(12)
1.0 1.308(29) 1.161(26) 1.067(23) 1.023(23) 1.0 1.013(11) 0.899(10) 0.937(10) 0.964(10)
1.5 1.373(30) 1.219(27) 1.094(24) 1.038(23) 1.5 1.064(12) 0.944(11) 0.960(11) 0.978(11)
2.0 1.425(32) 1.265(28) 1.113(25) 1.048(24) 2.0 1.105(13) 0.981(11) 0.978(11) 0.988(11)
2.5 1.473(34) 1.307(30) 1.131(26) 1.057(24) 2.5 1.143(14) 1.014(12) 0.994(12) 0.998(12)
3.0 1.515(35) 1.345(31) 1.145(27) 1.065(25) 3.0 1.176(15) 1.044(13) 1.007(13) 1.005(13)
3.5 1.551(36) 1.377(32) 1.156(27) 1.069(25) 35 1.203(14) 1.068(13) 1.016(12) 1.008(12)
4.0 1.568(33) 1.391(29) 1.154(24) 1.062(22) 4.0 1.217(9) 1.080(8) 1.015(8) 1.003(8)
W) = 1.0 @) = 3.0

0.5 1.103(18) 0.979(16) 0.969(16) 0.967(16) 0.5 0.911(11) 0.809(10) 0.887(10) 0.935(11)
1.0 1.174(18) 1.042(16) 0.999(16) 0.984(15) 1.0 0.970(10) 0.861(9) 0.915(9) 0.952(10)
1.5 1.232(19) 1.094(17) 1.024(16) 0.998(15) 1.5 1.018(11) 0.903(9) 0.938(10) 0.965(10)
2.0 1.279(20) 1.136(18) 1.042(16) 1.008(16) 2.0 1.057(11) 0.938(10) 0.955(10) 0.975(10)
2.5 1.322(21) 1.174(19) 1.059(17) 1.017(16) 2.5 1.092(12) 0.970(10) 0.970(10) 0.983(10)
3.0 1.360(22) 1.208(20) 1.073(18) 1.024(17) 3.0 1.124(12) 0.998(11) 0.982(11) 0.990(11)
3.5 1.392(22) 1.236(20) 1.083(17) 1.028(17) 35 1.150(12) 1.021(11) 0.992(11) 0.995(11)
4.0 1.407(22) 1.249(20) 1.080(17) 1.021(16) 4.0 1.163(7) 1.032(6) 0.990(6) 0.988(6)
W) = 15 @) = 35

0.5 1.059(17) 0.940(15) 0.961(15) 0.977(16) 0.5 0.879(10) 0.780(9) 0.872(10) 0.927(11)
1.0 1.128(16) 1.001(14) 0.992(14) 0.994(14) 1.0 0.935(9) 0.830(8) 0.899(9) 0.943(9)
1.5 1.184(17) 1.051(15) 1.016(15) 1.009(15) 1.5 0.982(9) 0.871(8) 0.922(9) 0.957(9)
2.0 1.229(18) 1.091(16) 1.035(15) 1.019(15) 2.0 1.019(10) 0.905(8) 0.938(9) 0.966(9)
2.5 1.271(19) 1.128(17) 1.051(16) 1.028(16) 2.5 1.054(10) 0.935(9) 0.953(9) 0.975(9)
3.0 1.307(20) 1.161(18) 1.065(17) 1.035(16) 3.0 1.084(11) 0.962(10) 0.965(10) 0.982(10)
3.5 1.338(20) 1.188(18) 1.075(16) 1.040(16) 35 1.110(11) 0.985(9) 0.975(9) 0.986(9)
4.0 1.353(13) 1.201(12) 1.073(10) 1.033(10) 4.0 1.122(5) 0.996(4) 0.973(4) 0.980(4)
W) = 2.0 @) = 4.0

0.5 1.002(15) 0.890(13) 0.934(14) 0.963(14) 0.5 0.846(10) 0.751(9) 0.853(10) 0.915(11)
1.0 1.067(14) 0.947(13) 0.964(13) 0.980(13) 1.0 0.901(9) 0.799(8) 0.880(9) 0.931(9)
1.5 1.119(15) 0.993(14) 0.987(13) 0.994(14) 1.5 0.945(9) 0.839(8) 0.902(9) 0.944(9)
2.0 1.162(16) 1.032(14) 1.005(14) 1.004(14) 2.0 0.982(10) 0.871(9) 0.918(9) 0.954(9)
2.5 1.201(17) 1.066(15) 1.021(14) 1.013(14) 2.5 1.014(10) 0.900(9) 0.932(9) 0.962(10)
3.0 1.236(18) 1.097(16) 1.034(15) 1.020(15) 3.0 1.044(11) 0.927(10) 0.945(10) 0.969(10)
3.5 1.265(18) 1.123(16) 1.044(15) 1.024(15) 35 1.068(10) 0.948(9) 0.954(9) 0.973(10)
4.0 1.279(12) 1.136(11) 1.043(10) 1.018(10) 4.0 1.080(5) 0.959(5) 0.952(5) 0.967(5)
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TABLE XVII. Same as Table X VI for the ¢ projector. Again we TABLE XVIII. Running for the ¢ projector (continued).
have (pg, ) = (2.5 GeV, 1.5 GeV).
(Ho.p)=(2.5.1.5)

(po.p) =(2.5,1.5) wl O 6,/LO ¢,/NLO 6,/NNLO
] O 6,/LO o0,/NLO c,/NNLO Wy — 2.5

@y =05 0.5 0.862(7) 0.765(6) 0.864(7)  0.889(7)
0.5 1.194(23) 1.059(21) 1.012(20) 0.992(20) 1.0 0.935(7) 0.830(6) 0.899(7) 0.884(7)
1.0 129426) 1.148(23) 1.05221) 0.986(20) 1.5 0.997(8) 0.885(7) 0.927(7) 0.939(7)
1.5 1.378(29) 1.223(26) 1.085(23) 1.047(22) 2.0 1.048(10) 0.930(9) 0.949(9) 0.928(9)
2.0 1.447(33) 1.284(30) 1.109(26) 1.032(24) 2.5 1.096(13) 0.973(11) 0.970(11) 0.971(11)
2.5 1.513(38) 1.343(34) 1.133(29) 1.081(27) 3.0 1.141(15) 1.013(13) 0.989(13) 0.961(13)
3.0 1.574(42) 1.397(37) 1.155(30) 1.069(28) 35 1.181(12) 1.048(11) 1.005(11) 0.998(10)
35 1.631(41) 1.448(36) 1.175(29) 1.11228) 4.0 1.203(21) 1.068(19) 1.007(18) 0.974(17)
40 L66140) 147435) 117708) 1084Q6) 4

wy=1.0 0.5 0.818(6) 0.726(5) 0.842(6) 0.912(7)
0.5 1.050(17) 0.932(15) 0.943(15) 1.002(16) 1.0 0.887(7) 0.787(6) 0.875(7)  0.906(7)
1.0 1.138(18) 1.010(16) 0.980(16) 0.995(16) 1.5 0.945(7) 0.839(6) 0.903(6) 0.962(7)
1.5 1.212(20) 1.076(17) 1.010(16) 1.057(17) 2.0 0.993(8) 0.881(7) 0.923(8) 0.949(8)
2.0 1.274(22) 1.130(20) 1.033(18) 1.043(18) 2.5 1.038(11) 0.921(10) 0.943(10) 0.994(11)
25 1332(26) 1.182(23) 1.056(21) 1.09222) 3.0 1.080(13) 0.959(12) 0.962(12) 0.984(12)
3.0 1.386(29) 1.230(26) 1.076(22) 1.081(22) 3.5 1.119(11) 0.994(10) 0.978(10) 1.022(10)
3.5 1.436(28) 1.275(24) 1.095(21) 1.123(22) 4.0 1.139(20) 1.011(18) 0.979(17) 0.996(17)
4.0 1.461(33) 1.297(29) 1.096(24) 1.095(24) Wy =35

wy =15 0.5 0.780(6) 0.692(5) 0.822(6) 0.859(7)
0.5 0.985(11) 0.874(10) 0.924(10) 0.933(10) 1.0 0.845(6) 0.750(5) 0.855(6) 0.853(6)
1.0 1.068(10) 0.948(8) 0.960(9) 0.927(8) 15 0.901(6) 0.800(5) 0.882(6) 0.906(6)
1.5 1.138(13) 1.010(11) 0.991(11) 0.985(11) 2.0 0.947(8) 0.840(7) 0.902(7) 0.894(7)
2.0 1.196(16) 1.061(15) 1.013(14) 0.972(13) 2.5 0.990(11) 0.879(10) 0.921(10) 0.936(10)
2.5 1.250(21) 1.110(19) 1.035(17) 1.018(17) 3.0 1.030(13) 0.914(12) 0.939(12) 0.926(12)
3.0 1.301(24) 1.155(21) 1.055(19) 1.007(19) 35 1.068(11) 0.948(9) 0.956(10) 0.963(10)
35 1.348(21) 1.197(19) 1.074(17) 1.047(17) 4.0 1.086(17) 0.964(15) 0.957(15) 0.939(14)
40 1372(19) 1218017) 1075(15) 1020014) o

wy=2.0 0.5 0.741(8) 0.658(7) 0.799(9) 0.871(9)
0.5 0.921(9) 0.818(8) 0.896(9) 0.961(9) 1.0 0.804(8) 0.713(7) 0.830(8) 0.865(8)
1.0 0.998(9) 0.886(8) 0.930(8) 0.954(8) 1.5 0.856(9) 0.760(8) 0.856(9) 0.919(10)
1.5 1.064(10) 0.944(9) 0.960(9) 1.014(10) 2.0 0.900(12) 0.799(10) 0.876(11) 0.907(12)
2.0 1.117(13) 0.992(12) 0.981(12) 1.000(12) 2.5 0.941(15) 0.835(13) 0.894(14) 0.949(15)
25 1.168(17) 1.037(15) 1.002(15) 1.047(16) 3.0 0.979(17) 0.869(15) 0.912(16) 0.940(16)
3.0 1.216(20) 1.079(18) 1.022(17) 1.036(17) 3.5 1.014(15) 0.900(13) 0.928(13) 0.977(14)
3.5 1.260(18) 1.118(16) 1.040(15) 1.077(15) 4.0 1.033(12) 0.917(10) 0.929(10) 0.952(11)
4.0 1.283(19) 1.139(17) 1.041(16) 1.051(16)

014509-31



GARRON, CAHILL, GORBAHN, GRACEY, and RAKOW PHYS. REV. D 108, 014509 (2023)

APPENDIX F: CONTINUUM EXTRAPOLATION

As an example of continuum extrapolations, we show zf,?‘) (s o, @, ) in Figs. 24 and 25. The magenta error bar is a
systematic error, obtained by adding half the difference between the extrapolated value, 65,?‘)(/4, Uo, W, @), and the value

obtained on the finest lattice.
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FIG. 24. Continuum extrapolations for X,,. We choose (X, u, stg) = (7,.2 GeV,3 GeV) and show our results for the different values
of @ = w, from 0.5 (top left corner) to 2.0 (bottom right corner). We included an estimation of the error due to the continuum

extrapolation (error bar in magenta, see text).

014509-32



NONPERTURBATIVE RENORMALIZATION WITH ...

PHYS. REV. D 108, 014509 (2023)

w=wy=2.5

w=wy=3.0

1.11 1.1
= 11f — 1.09¢
3ﬁ 35
3 1.00t 3 1.08¢
S S
™ 1,08} ™ 1.07¢
S S
L 107t L 106
1S G
S 1.06¢ 1.05}
1.05 — : : 1.04 ‘
0 5 10 15 0 5 10 15
a*[fm’] 1072 a’[fm’] 1072
w=wy=3.5 w=wy=4.0
1.08 1.08
= = 1.07}
3 1.07¢ 3
3 3 1.061
~ S
™ 1,06 ™ 1.05¢
S S
£ 2 1oa)
£x 105 R
© © 1.03t
1.04 — L . 1.02 .
0 5 10 15 0 5 10 15
a*[fm?] 1073 a*[fm?] %1073
FIG. 25. Same as Fig. 24 for o = wy = 2.5,3.0,...,4.0.
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