
Note on lattice description of generalized symmetries
in SUðNÞ=ZN gauge theories

Motokazu Abe ,1,* Okuto Morikawa ,2,† and Soma Onoda1
1Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

(Received 1 May 2023; accepted 30 June 2023; published 14 July 2023)

Topology and generalized symmetries in the SUðNÞ=ZN gauge theory are considered in the continuum
and the lattice. Starting from the SUðNÞ gauge theory with the ’t Hooft twisted boundary condition, we give
a simpler explanation of the van Baal’s proof on the fractionality of the topological charge. This description
is applicable to both continuum and lattice by using the generalized Lüscher’s construction of topology on
the lattice. Thus we can recover the SUðNÞ=ZN principal bundle from lattice SUðNÞ gauge fields being
subject to the ZN-relaxed cocycle condition. We explicitly demonstrate the fractional topological charge,
and verify an equivalence with other constructions reported recently based on different ideas. Gauging the
ZN 1-form center symmetry enables lattice gauge theories to couple with the ZN 2-form gauge field as a
simple lattice integer field, and to reproduce the Kapustin-Seiberg prescription in the continuum limit. Our
construction is also applied to analyzing the higher-group structure in the SUðNÞ gauge theory with the
instanton-sum modification.
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I. INTRODUCTION AND BRIEF REVIEW
OF COUPLING TO HIGHER-FORM

GAUGE FIELDS

To study the dynamics of gauge fields has been a
profound problem for a long time. A traditional gauge
principle arises from the localization process of a global
symmetry for phases (or elements of group) of matters
[1]; this procedure is called gauging. A global symmetry
in quantum field theory may be gauged as a probe, and
then there is an ’t Hooft anomaly when such a gauge
symmetry is anomalous [2]. The ’t Hooft anomalies in
low and high energies should be matched because of its
invariance under the renormalization group flow, which
restricts the phase structure of strongly coupled gauge
theories.
In the last decade, the concept of symmetry has been

generalized [3,4]. This so-called generalized global sym-
metry has been vigorously studied in not only particle
physics but also condensed matter physics [5–7]. The
important ingredients are as follows:

(i) higher-form symmetry: when a theory has sym-
metries acting on not only local operators but also a
p-dimensional charged object, such a symmetry is
called the p-form symmetry;

(ii) higher-group symmetry: a categorical structure
between some higher-form symmetries is realized
[8,9], where each symmetry cannot be gauged
individually1;

(iii) noninvertible symmetry: a symmetry, which cannot
be represented by a symmetry group, is given by
a fusion rule between topological defects [11–16]2
so that there exist no inverse topological operators;

etc. The recent developments in line with these symmetries
provide a quite different paradigm.
It is well known that the SUðNÞ gauge theory has the

ZN 1-form center symmetry. In order for non-Abelian
gauge theories to couple with ZN 2-form gauge fields
associated with such 1-form symmetries, we can use the
following procedure byKapustin and Seiberg [3,4,22]: Let a
topological field theory be described by aZN p-form gauge
field. To represent this explicitly, introducing a (p − 1)-form
compact scalar Bðp−1Þ which satisfies Bðp−1Þ ∼ Bðp−1Þ þ 2π,
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1E.g., for 0-form and 1-form symmetries, the 2-form gauge
field associated to the 1-form symmetry transforms under not
only the 1-form gauge transformation but also the 0-form gauge
transformation. If those symmetries are continuous, this is
nothing but the Green-Schwarz mechanism [10].

2For recent works related to our approach in this paper, see also
Refs. [17–21].
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a Uð1Þ p-form field BðpÞ, and a Lagrange multiplier χ, we
write the Lagrangian3

χ ∧ ðNBðpÞ − dBðp−1ÞÞ: ð1:1Þ

The corresponding charged object behaves as

e
i
R
p-cycle

BðpÞ ¼ e
i
N

R
p-cycle

dBðp−1Þ
∈ ZN: ð1:2Þ

Thus, theZN gauge field is written by the pair (BðpÞ,Bðp−1Þ).
Note that the SUðNÞ gauge field A is blind to such a ZN

2-form gauge field (Bð2Þ, Bð1Þ) because A (also the field
strength F) is traceless. Now, let us promote A to a UðNÞ
gauge fieldA. In the sameway above, we constrain itsUð1Þ
part as

χ0 ∧ ðTrF − dBð1ÞÞ: ð1:3Þ

This indicates that Uð1Þ is broken to ZN , that is, UðNÞ ¼
SUðNÞ×Uð1Þ

ZN
→ SUðNÞ. Further, by replacing F → F − Bð2Þ,

the SUðNÞ gauge field can couple to the ZN 2-form gauge
field; we have the SUðNÞ=ZN gauge theory.
This recent prescription based on higher-form symmetries

could be described equivalently by the SUðNÞ=ZN gauge
theory where the SUðNÞ gauge fields obey the twisted
boundary condition with the ’t Hooft flux [23]. It is then
known that the topological charge becomes fractional; in
terms of the 2-form gauge field Bð2Þ, we see easily

Z
d4xTrðF − Bð2ÞÞ ∧ ðF − Bð2ÞÞ

¼
Z

d4xTrF ∧ F − N
Z

d4xBð2Þ ∧ Bð2Þ; ð1:4Þ

where the first term gives rise to an integer in the topological
charge, and the second term can provide a fractional part
because

R
2-cycle B

ð2Þ ∈ 2π
N Z. The proof of the fractionality

under the twisted boundary condition was done by van
Baal [24], where the author constructs the transition function
with the ZN-center-valued cocycle condition and then
identifies the topological classification of the SUðNÞ prin-
cipal bundle structure.
Lüscher proved [25] that the SUðNÞ principal bundle can

be constructed from the SUðNÞ lattice gauge theory (see
also Refs. [26,27]), while the topological structure on the
lattice is nontrivial because the discretization of the
spacetime breaks its continuity. We can recover this
“continuity” by Lüscher’s construction, and then, classify
the integer topological charges. Recall that quantum field

theory, a physical system with an infinite number of
degrees of freedom, would be mathematically not well-
defined as it stands, and the lattice regularization is the most
well-developed nonperturbative framework. This work is
quite awesome since it provides a solid foundation on our
understanding of topological classifications, which enrich
the nontrivial dynamics of gauge fields (e.g., the index
theorem [28,29] and so on).
Recently, in Refs. [30,31], by generalizing this, the

nonsimply connected Uð1Þ=ZN or SUðNÞ=ZN principal
bundle has been constructed in the lattice theory coupled
with the ZN 2-form gauge field, and the fractionality of the
topological charge on the lattice is proved. These studies
have achieved the fully regularized framework on the
modern viewpoint of quantum field theories with general-
ized symmetries.
The proof in Ref. [31] is given in a sophisticated way

based on the principle of the locality, SUðNÞ gauge
invariance, and ZN 1-form gauge invariance, while this
idea looks different from that for the Uð1Þ case in Ref. [30]
and the construction is quite complicated. Thus, from the
analytical viewpoint in lattice gauge theory, it may be hard
to explicitly demonstrate the traditional knowledge on the ’t
Hooft twisted boundary condition, and recent develop-
ments of non-Abelian gauge theories with higher-form
symmetries. Also the relation between the Kapustin–
Seiberg prescription by the Uð1Þ fields and the lattice
construction by the 2-form integer lattice field is not
obvious; it is puzzling how to take the continuum limit
of an integer field on the lattice so that its field configu-
ration is smooth.
In this paper, we reconstruct the SUðNÞ=ZN principal

bundle from the lattice SUðNÞ gauge theory with the
twisted boundary condition. First, we start from the
continuum theory following van Baal [24], on which the
construction of the Uð1Þ=ZN principal bundle [30] is
based. We can make his discussions much simpler owing
to the extension of SUðNÞ to UðNÞ like as the Kapustin-
Seiberg prescription. Actually, the original proof seems to
be incompatible with interpolated transition functions
written by lattice SUðNÞ gauge fields, but the above
description is applicable to both continuum and lattice.
Next, we give the lattice realization of it, by using the
generalized Lüscher’s construction [31]. We can then show
how to establish an equivalence between the constructions
in this paper and Refs. [30,31]. The distinguishing feature
is that our construction provides concrete expressions forF
and Bð2Þ defined on the lattice while those are not defined in
Ref. [31]. That is, this point is not necessary to prove the
fractionality of the topological charge, but we can see the
fractional structure as an explicit form and apply this
construction to some related issues.
As an important perspective from our construction, we

perform the Uð1Þ 1-form gauge transformation, to which
the gauged ZN 1-form center symmetry is promoted.

3We can regard χ as the vacuum expectation value (VEV) of a
charge-N Higgs field H, and the compact scalar as the phase of
H. If we take the χ → ∞ limit (or infinite Higgs VEV), we have
the same structure.
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We then directly reproduce the Kapustin-Seiberg prescrip-
tion in terms of lattice fields. Also we apply our expressions
to analyzing the higher-group structure in the SUðNÞ gauge
theory with the so-called instanton-sum modification [32],
which is a restriction of the topological sectors to the
instanton numbers characterized by an integer without
violating the locality [33–36]. We expect that the procedure
in this paper is applicable broadly as an underlying fully
regularized framework.

II. A REVISION OF THE SUðNÞ GAUGE
THEORY WITH TWISTED
BOUNDARY CONDITION

At first, we review how the topological charge becomes
fractional in the SUðNÞ gauge theory with a twisted
boundary condition on a torus. The original proof by
van Baal [24] is modified in a simpler way, in accordance
with the recent viewpoint on non-Abelian gauge theories
coupled with ZN gauge fields [22].
A four-dimensional periodic torus with the size L is

give by

T4 ≡ fx ∈ R4j0 ≤ xμ < L for all μg ð2:1Þ

with the identification xμ þ L ∼ xμ, where μ runs over 1, 2,
3, and 4. We impose the twisted boundary condition for the
gauge field AμðxÞ ∈ suðNÞ,

Aμðxν þ L; xλ≠νÞ ¼ hνðxÞ−1AμðxÞhνðxÞ
− ihνðxÞ−1∂μhνðxÞ; ð2:2Þ

with the ZN-relaxed cocycle condition

hμðxμ ¼ 0; xν ¼ L; xλ≠μ;νÞ−1hνðxμ ¼ xν ¼ 0; xλ≠μ;νÞ−1
× hμðxμ ¼ xν ¼ 0; xλ≠μ;νÞhνðxμ ¼ L; xν ¼ 0; xλ≠μ;νÞ

¼ exp
�
2πi
N

zμν

�
∈ ZN: ð2:3Þ

Here zμν ∈ Z, which is antisymmetric as zμν ¼ −zνμ, stands
for the ’t Hooft flux [23].
The topological charge is specified by the transition

function hμðxÞ. We see the Lemma proved by van Baal and
Lüscher [24,25] as follows:
Lemma. Subject to the twisted boundary condition

(2.3) (or the periodic one with zμν ¼ 0), the topological
charge is written, in terms of hμðxÞ, by

Q ¼ 1

32π2

Z
T4

d4x
X
μ;ν;ρ;σ

ϵμνρσTr½FμνðxÞFρσðxÞ�

¼ −
1

24π2
X
μ;ν;ρ;σ

ϵμνρσ

�
3

Z
dxρdxσTr½ðhμ∂ρh−1μ Þxμ¼xν¼0

ðh−1ν ∂σhνÞxμ¼L;xν¼0�

þ
Z

dxνdxρdxσTr½ðh−1μ ∂νhμÞðh−1μ ∂ρhμÞðh−1μ ∂σhμÞ�xμ¼0

�
: ð2:4Þ

If we have no twists (zμν ¼ 0), Q ∈ Z characterizes the
homotopy type π3ðSUðNÞÞ ¼ Z. On the other hand, turn-
ing on zμν, we can see that Q becomes fractional by
considering an appropriate fiber bundle structure due to the
first homotopy group π1ðSUðNÞ=ZNÞ ¼ ZN on T4. To see
this, for simplicity, we consider the bundle structure of T2

as depicted in Fig. 1. Letting Ui with ϵ > 0 and δ > 0

be a covering of T2, hij and gij are transition functions at
x ∈ Ui ∩ Uj such that AμðUiÞ → AμðUjÞ in the positive
and negative x directions, respectively. In the limit of ϵ → 0
and δ → 0, the patches Ui≠0 shrink and the nontrivial
transition indicates that AμðU0Þ → AμðUνÞ → AμðU0Þ,
that is, Aμðxν þ L; xλ≠νÞ ↦ AμðxÞ. Therefore, on T4,
we have hμ ¼ h0μg−10μ with an appropriate assignment of
indices.
Now, following the van Baal’s prescription [24], we

introduce the loop factor ς̃μðxÞ in terms of the Cartan
subalgebra of SUðNÞ,

ς̃μðxÞ≡ exp

�
−
2πi
N

X
ν>μ

zμνxν
L

T1

�
; ð2:5Þ

where T1 is a generator of SUðNÞ,

T1 ≡ diagð1; 1;…; 1;−N þ 1Þ: ð2:6Þ

Then we find

ς̃μðxμ ¼ 0; xν ¼ L; xλ≠μ;νÞ−1ς̃νðxμ ¼ xν ¼ 0; xλ≠μ;νÞ−1
× ς̃μðxμ ¼ xν ¼ 0; xλ≠μ;νÞς̃νðxμ ¼ L; xν ¼ 0; xλ≠μ;νÞ

¼ exp

�
2πi
N

zμν

�
∈ ZN: ð2:7Þ

This cocycle condition is identical to that of hμðxÞ (2.3),
and thus, ς̃μðxÞ possesses the same nontrivial “winding”
modulo 1 as the original system.
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Theorem. Given ∀ hμðxÞ, we can write

hμðxÞ ¼ h0μg−10μ ¼ ĥ0μς̃μĝ−10μ ; ð2:8Þ

where we have introduced

ς̃μ ¼ h̃0μg̃−10μ ; ĥ0μ ¼ h0μh̃
−1
0μ ; g0μ ¼ g0μg̃−10μ ; ð2:9Þ

and ĥ0μ, ĝ0μ are defined in terms of the transition function
ĥμðxÞ ¼ ĥ0μĝ−10μ obeying the periodic boundary condition.
Corollary. Let Q½·� be a mapping from a transition

function to the topological charge given by the above
Lemma. Then, we have

Q½h� ¼ Q½ς̃� þQ½ĥ�: ð2:10Þ

The proof being given in Ref. [24], we can then show that
Q½ς̃� ∈ 1

NZ andQ½ĥ� ∈ Z. Thus the total topological charge
on the SUðNÞ=ZN principal bundle can be fractional.
The above original construction is quite complicated

because its description enjoys the SUðNÞ structure at any
stage of computations. Also, lattice gauge theory as we will
describe later seems to be incompatible with the above theo-
rem. If such a difficulty of SUðNÞ keeps us in mind of the
recent development about the generalized symmetry [22],

one may begin with the loop factor ςμðxÞ ∈ Uð1Þ rede-
fined by

ςμðxÞ≡ exp

�
−
2πi
N

X
ν>μ

zμνxν
L

�
; ð2:11Þ

and the UðNÞ structure which is combined with ςμðxÞ
into SUðNÞ-valued results. This definition of ςμðxÞ
again satisfies the cocycle condition (2.7). By using
ςμðxÞ ∈ Uð1Þ, let us define

ȟμðxÞ≡ ςμðxÞ−1hμðxÞ ∈ UðNÞ: ð2:12Þ
Then, we immediately find that

ȟμðxμ ¼ 0; xν ¼ L; xλ≠μ;νÞ−1ȟνðxμ ¼ xν ¼ 0; xλ≠μ;νÞ−1
× ȟμðxμ ¼ xν ¼ 0; xλ≠μ;νÞȟνðxμ ¼ L; xν ¼ 0; xλ≠μ;νÞ ¼ 1:

ð2:13Þ

ȟμðxÞ denotes the transition function of the “UðNÞ principal
bundle” with an integer 2nd Chern number.
Substituting hμðxÞ ¼ ςμðxÞȟμðxÞ to the expression of the

topological charge, and using the integer topological charge
Q̌ by ȟμðxÞ instead of hμðxÞ in the above expression of Q,4

we have

Q ¼ 1

8N

X
μ;ν;ρ;σ

ϵμνρσzμνzρσ −
i

4πN

X
μ;ν;ρ>μ;σ

ϵμνρσ
zμρ
L

Z
dxρdxσTr½ðȟ−1ν ∂σȟνÞxμ¼L;xν¼0 − ðȟν∂σȟ−1ν Þxμ¼xν¼0� þ Q̌

¼ −
1

8N

X
μ;ν;ρ;σ

ϵμνρσzμνzρσ þ Q̌: ð2:14Þ

FIG. 1. The structure of the fiber bundle of the base space T2. fUig is a set of patches of T2, whereU0 is the main region,Uμ is near the
boundary at xμ ¼ L, and U3 is the corner.

4This integer topological charge for the UðNÞ gauge field, R TrF ∧ F, is somewhat different from the definition of the 2nd Chern
class,

R ðTrF ∧ F − TrF ∧ TrFÞ, up to integers.
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In the last line, we have used, for μ < ν,

0 ¼ Trðh−1μ ∂νhμÞ ¼ −2πi
zμν
L

þ Trðȟ−1μ ∂νȟμÞ: ð2:15Þ

The first term in Q is fractional, that is, it is proved that
Q ∈ 1

NZ; the fractional part and Q̌ ∈ Z are naturally
decomposed.

III. LATTICE SUðNÞ GAUGE THEORY WITH
TWISTED BOUNDARY CONDITION

A. Setup as a lattice formulation

It would be difficult to consider the topological structure
in lattice gauge theories, where the spacetime is discretized
into a set of lattice points and then its continuity is broken.
We can recover this feature by the Lüscher’s construction of
the SUðNÞ principal bundle from the lattice SUðNÞ gauge
theory [25]. Quite recently, this construction has been
generalized to non-Abelian gauge theories coupled with
ZN gauge fields [31]. Let us demonstrate the SUðNÞ=ZN
principal bundle in line with the van Baal’s proof in the
previous section.
The lattice Λ,

Λ≡ fn ∈ Z4j0 ≤ nμ < L for all μg; ð3:1Þ

divides T4 into hypercubes cðnÞ as

cðnÞ≡ fx ∈ R4j0 ≤ ðxμ − nμÞ ≤ 1 for all μg: ð3:2Þ

We also define the boundary of two hypercubes, called
the face,

fðn; μÞ≡ fx ∈ cðnÞjxμ ¼ nμg ¼ cðn − μ̂Þ ∩ cðnÞ; ð3:3Þ

where μ̂ is a unit vector in the positive μ direction, and
a two-dimensional plaquette as the intersection of four
hypercubes, cðnÞ, cðn − μ̂Þ, cðn − ν̂Þ, and cðn − μ̂ − ν̂Þ:

pðn;μ;νÞ≡fx∈ cðnÞjxμ ¼ nμ;xν¼ nνg ðμ≠ νÞ: ð3:4Þ

Our lattice setup is summarized in Fig. 2.
Suppose that the link variable Uðn; μÞ ∈ SUðNÞ, which

lives on the link connecting n and nþ μ̂, obeys the twisted
boundary condition,

Uðnþ Lν̂; μÞ ¼ gνðnÞ−1Uðn; μÞgνðnþ μ̂Þ: ð3:5Þ

The cocycle condition is given by

gμðnþ Lν̂Þ−1gνðnÞ−1gμðnÞgνðnþ Lμ̂Þ

¼ exp

�
2πi
N

zμν

�
∈ ZN: ð3:6Þ

This represents the ’t Hooft flux on the lattice.
To rewrite the link variable Uðn; μÞ in terms of the

periodic one, we assume that Uðn; μÞ is defined on
0 ≤ nν≠μ ≤ L and 0 ≤ nμ ≤ L − 1. We then define the
periodic variable Ǔðn; μÞ by

Uðn; μÞ ¼
�
Ǔðn; μÞgμðnÞ for nμ ¼ L − 1;

Ǔðn; μÞ otherwise:
ð3:7Þ

One can find that

gμðnν ¼ L − 1ÞUðnμ ¼ L; nν ¼ L − 1; νÞ
×Uðnμ ¼ L − 1; nν ¼ L; μÞ−1gνðnμ ¼ L − 1Þ−1

¼ exp

�
−
2πi
N

zμν

�
Ǔðnμ ¼ 0; nν ¼ L − 1; νÞ

× Ǔðnμ ¼ L − 1; nν ¼ 0; μÞ−1: ð3:8Þ

This shows that, as depicted in Fig. 2, the plaquette
Pðn; μ; νÞ,

Pðn; μ; νÞ≡ Uðn; μÞUðnþ μ̂; νÞUðnþ ν̂; μÞ−1Uðn; νÞ−1;
ð3:9Þ

FIG. 2. Lattice setup and plaquettes for the twisted and periodic link variables. To illustrate generic variables, we use a lattice field
zμνðnÞ ¼ zμνδnμ;L−1δnν;L−1 as we will define later.
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can be written by Pðn; μ; νÞ ¼ e−
2πi
N zμνP̌ðn; μ; νÞ up to gauge

functions if this Wilson loop passes the corner of the lattice,
where P̌ðn; μ; νÞ is the plaquette constructed by Ǔðn; μÞ;
otherwise, Pðn; μ; νÞ ¼ P̌ðn; μ; νÞ. In what follows, we
simply say Pðn; μ; νÞ ¼ e−

2πi
N zμνP̌ðn; μ; νÞ as this meaning.

B. SUðNÞ=ZN principal bundle and fractionality
on the lattice

Let us apply the Lüscher’s construction of the transition
function to Uðn; μÞ and Ǔðn; μÞ, whose transition functions
are denoted by vn;μðxÞ and v̌n;μðxÞ, respectively. We aim to
write vn;μðxÞ in terms of v̌n;μðxÞ. A transition function
gn;μðu; xÞ for a link variable uðn; μÞ at ∀ x ∈ fðn; μÞ is
defined by, in terms of the Lüscher’s interpolation function
Smn;μðu; xÞ [25] (for explicit formulas, see the Appendix),

gn;μðu; xÞ≡ Sn−μ̂n;μ ðu; xÞ−1gn;μðu; nÞSnn;μðu; xÞ
¼ Sn−μ̂n;μ ðu; xÞ−1wn−μ̂ðu; nÞwnðu; nÞ−1Snn;μðu; xÞ;

ð3:10Þ

where the standard parallel transporter wnðu; xÞ at the
corners of fðn; μÞ is given by

wnðu; xÞ ¼ uðn; 4Þy4uðnþ y44̂; 3Þy3uðnþ y44̂þ y33̂; 2Þy2
× uðnþ y44̂þ y33̂þ y22̂; 1Þy1
for yμ ≡ xμ − nμ ¼ 0 or 1: ð3:11Þ

Then, we naively define vn;μðxÞ ¼ gn;μðU; xÞ and v̂n;μðxÞ ¼
gn;μðǓ; xÞ. vn;μðxÞ obeys the twisted boundary condition,

vn;μðxþ Lν̌Þ ¼ gνðn − μ̂Þ−1vn;μðxÞgμðnÞ; ð3:12Þ

while v̌n;μðxÞ is periodic.
To obtain the well-defined interpolation Smn;μðU; xÞ, we

should impose an admissibility condition. Here, for sim-
plicity, we consider the SUð2Þ gauge theory (we can
generalize discussions below to any compact gauge
group).5 First note that, to make the lattice action density
small, the plaquette P is in a neighborhood of 1, and P̌ is
e
2πi
N zμν or 1. Smn;μðU; xÞ is a function with respect to the

plaquettes P, and has a structure such as Py with 0 ≤ y ≤ 1
(see the Appendix). Then, P ¼ −1 is ill-defined and so
such configurations are called exceptional. Supposing all
combinations in Smn;μðU; xÞ are well defined, we have the
admissibility condition

Tr½1 − P� < ε: ð3:13Þ

In Ref. [31], it is proved that there exists ε > 0 for ∀N. On
the other hand, for Smn;μðǓ; xÞ, the situation is more
complicated because we cannot easily choose a branch
of ðP̌Þy ∼ ðe2πi

N zμνÞy. To this end, let us construct Smn;μðǓ; xÞ
from Smn;μðU; xÞ. That is, since P can be rewritten as

e−
2πi
N zμνP̌, we can define

ðe−2πi
N zμνP̌Þy ¼ e−

2πi
N ðzμνþNMμνÞyðe2πiMμνP̌Þy; ð3:14Þ

where

�
0 ≤ zμν þ NMμν < N for μ < ν;

zμν þ NMμν ¼ −zνμ − NMνμ for μ > ν:
ð3:15Þ

Also for a product of k plaquettes,

�Yk
l¼1

e−
2πi
N zlP̌l

�y

¼ e−
2πi
N

P
k
l¼1

ðzlþNMlÞy
�
e2πi

P
k
l¼1

Ml
Yk
l¼1

P̌l

�y

; ð3:16Þ

where zl¼zμlνl with Eq. (3.15). Note that jPlðzl þ
NMlÞj < Nk. In what follows, we redefine zμν þ NMμν

as zμν so that 0 ≤ zμν < N for μ < ν. Again, P̌ ¼ e
2πi
N zμν ×

ð−1Þ is not defined, and thus we have the same admis-
sibility condition given by

Tr½1 − e−
2πi
N zμνP̌� < ε: ð3:17Þ

We should mention that v̌n;μðxÞ is an element of UðNÞ.
This is because ðP̌Þy ∼ e

2πi
N zμνy ∈ Uð1Þ. On lattice sites, that

is, at y ¼ 0 or 1, this factor becomes ZN so v̌n;μ ∈ SUðNÞ.
When we write vn;μðxÞ in terms of v̌n;μðxÞ, the extra factor
of zμν in vn;μðxÞ appears from Eqs. (3.14) and (3.16), which
is similar to ςμðxÞ in the continuum theory. This factor,

e−
2πi
N zμνy, is also an element of Uð1Þ. These Uð1Þ factors,

ðP̌Þy and e−
2πi
N zμνy, cancel out by construction, that is,

1 ∼ e−
2πi
N zμνyðP̌Þy ¼ Py ∈ SUðNÞ; so vn;μðxÞ ∈ SUðNÞ is

kept intact.
Following the above construction, we can rewrite the

transition function vn;μðxÞ in terms of a zμν dependent factor
and v̌n;μðxÞ. We obtain the transition function by, for
x ∈ fðn; μÞ,

vn;μðxÞ¼
�
ωn;μðxÞv̌n;μðxÞgμðn− μ̂Þ for nμ¼L;

ωn;μðxÞv̌n;μðxÞ otherwise;
ð3:18Þ

where the loop factor ωn;μðxÞ is defined by

5Admissible configurations should be close to those at the
minimum in the classical continuum limit. Thus, such configu-
rations are topologically on a disk. Since SUð2Þ is topologically a
sphere, removing simply one point on it, we have a desired
admissibility.
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ωn;μðxÞ≡
8<
:

exp
�
2πi
N

P
ν>μ

zμνyνδnν;L−1
�

for xμ ¼ 0mod L;

1 otherwise:

ð3:19Þ
The transition functions provide the cocycle condition
given by, at x ∈ pðn; μ; νÞ,

vn−ν̂;μðxÞvn;νðxÞvn;μðxÞ−1vn−μ̂;νðxÞ−1 ¼ 1; ð3:20Þ
v̌n−ν̂;μðxÞv̌n;νðxÞv̌n;μðxÞ−1v̌n−μ̂;νðxÞ−1 ¼ 1; ð3:21Þ

ωn−ν̂;μðxÞωn;νðxÞωn;μðxÞ−1ωn−μ̂;νðxÞ−1

¼
8<
:

exp
�
2πi
N zμν

�
xμ ¼ xν ¼ 0mod L;

1 otherwise:
ð3:22Þ

Note that vn;μðxÞ is nontrivial because of the ZN

twisted boundary condition of it (3.12) though its cocycle
condition is not relaxed by ZN. If one use ṽn;μðxÞ ¼
ωn;μðxÞv̌n;μðxÞ obeying the periodic boundary condition,
we find

ṽn−ν̂;μðxÞṽn;νðxÞṽn;μðxÞ−1ṽn−μ̂;νðxÞ−1

¼
8<
:

exp
�
2πi
N zμν

�
xμ ¼ xν ¼ 0mod L;

1 otherwise:
ð3:23Þ

Substituting vn;μðxÞ into the topological chargeQ [24,25]

Q ¼ −
1

24π2
X
n∈Λ

X
μ;ν;ρ;σ

ϵμνρσ

�
3

Z
pðn;μ;νÞ

d2xTr½ðvn;μ∂ρv−1n;μÞðv−1n−μ̂;ν∂σvn−μ̂;νÞ�

þ
Z
fðn;μÞ

d3xTr½ðv−1n;μ∂νvn;μÞðv−1n;μ∂ρvn;μÞðv−1n;μ∂σvn;μÞ�
�
; ð3:24Þ

we have

Q ¼ −
1

8N

X
μ;ν;ρ;σ

ϵμνρσzμνzρσ þ Q̌; ð3:25Þ

where Q̌ is the topological charge with respect to the
periodic variable Ǔ, and we have used the similar identity
to Eq. (2.15) for the cross terms. The first term is a
fractional part with 1

NZ, and one finds Q̌ ∈ Z thanks to the
cocycle condition (3.21).

C. Remarks on the relation with other constructions

We make remarks on other constructions based on
different ideas from ours: vn;μðxÞ is similar to the transition
function ṽn;μðxÞ defined in Ref. [31] when we consider a
specific ’t Hooft flux at the corner. The different point is
that ṽn;μðxÞ is periodic. Thus, vn;μðxÞ ¼ ṽn;μðxÞgμðn − μ̂Þ
for nμ ¼ L.
Our definition of v̌n;μðxÞ cannot be realized as gn;μðǓ; xÞ

any longer without any other information. Actually, it is
not necessary to be based on the underlying periodic variable
Ǔðn; μÞ. As an alternative way, we can define v̌n;μðxÞ as
vn;μðxÞ divided by the loop factor at theminimum, as defined
in the continuum by ςμðxÞ in Sec. II. The discussions in the
paper can be also considered in this sense.
We ask how the definition of v̌n;μðxÞ is related to that

defined for the Uð1Þ lattice gauge theory in Ref. [30].
The idea is, as an other prescription, to replace the plaquette

by it to the Nth power; that is, P̌y → ðPNÞy=N to impose the
ZN 1-form gauge symmetry as we will define later. This
simple prescription removes the branch ambiguity above,
but is quite subtle and in fact not rigorous. We first
recognize that, because ðe−2πi

N zμνP̌ÞN ¼ P̌N , we lose any
information on the ZN center, and then v̌n;μðxÞ ¼ vn;μðxÞ
with the “stronger” admissibility ε=N. On the contrary, it
looks like e−

2πi
N zμνyðP̌NÞy=N , and then, the information on the

branch would be guessed from the first factor thanks to the
ZN 1-form gauge invariance. Therefore, though this pre-
scription is not a sure way, it could hold up on a robust
principle of the 1-form gauge symmetry.

IV. 1-FORM GAUGE INVARIANCE
ON THE LATTICE

A. Gauging the ZN 1-form symmetry on the lattice

We have started with the similar procedure to that in the
continuum by van Baal, and obtained the fractional
topological charge with the ’t Hooft flux at the corner of
Λ. Actually, it is known that the structure of the SUðNÞ=ZN
principal bundle from lattice theories is much more general
and robust, whose most important principle is based on the
locality, SUðNÞ gauge invariance, and ZN 1-form gauge
invariance. In this section, let us consider the ZN 1-form
gauge invariance [3,8,22], which plays a crucial role in this
robustness [31].
From the constant flux zμν, we introduce a lattice field

zμνðnÞ, as a ZN 2-form gauge field,
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zμνðnÞ≡ zμνδnμ;L−1δnν;L−1: ð4:1Þ

The loop factor is then given by

ωn;μðxÞ ¼ exp

�
2πi
N

X
ν>μ

zμνðn − μ̂Þyν
	
; ð4:2Þ

and the twisted cocycle condition is

vn−ν̂;μðxÞvn;νðxÞvn;μðxÞ−1vn−μ̂;νðxÞ−1

¼ exp

�
2πi
N

zμνðn − μ̂ − ν̂Þ
	
: ð4:3Þ

We give the ZN 1-form gauge transformation:

Ǔðn; μÞ ↦ exp

�
2πi
N

zμðnÞ
	
Ǔðn; μÞ

zμðnÞ ∈ Z; 0 ≤ zμðnÞ < N: ð4:4Þ

Moreover, we assume

zμνðnÞ ↦ zμνðnÞ þ ΔμzνðnÞ − ΔνzμðnÞ þ NMμνðnÞ; ð4:5Þ

where we have defined the forward difference,
ΔμfðnÞ≡ fðnþ μ̂Þ − fðnÞ, and MμνðnÞ is required to
restrict the 2-form gauge field zμνðnÞ to

�
0 ≤ zμνðnÞ < N for μ < ν;

zμνðnÞ ¼ −zνμðnÞ for μ > ν:
ð4:6Þ

Under this 1-form transformation, P̌↦e−
2πi
N ðΔμzν−ΔνzμþNMμνÞP̌

by our choice of the branch.
As shown in Appendix A of Ref. [30], the consistency of

transition functions among the intersection of eight hyper-
cubes6 leads us to the flatness of the ZN 2-form gauge field
zμνðnÞ. We can see that zμνðnÞ satisfies the modulo N
flatness condition,

1

2

X
ν;ρ;σ

ϵμνρσΔνzρσðnÞ ¼ 0 mod N: ð4:7Þ

Therefore, we find that, under the ZN 1-form gauge
transformation,

v̌n;μðxÞ ↦ exp

�
−
2πi
N

X
ν>μ

½Δμzνðn − μ̂Þ − Δνzμðn − μ̂Þ

þ NMμνðn − μ̂Þ�yν
�
exp

�
2πi
N

zμðn − μ̂Þ
	
v̌n;μðxÞ:

ð4:8Þ

The first factor can be canceled against the transformation
of ωn;μðxÞ, which depends on the gauge field zμνðnÞ, so
we have

vn;μðxÞ ↦ exp

�
2πi
N

zμðn − μ̂Þ
	
vn;μðxÞ: ð4:9Þ

The fractional topological charge Q

Q¼−
1

8N

X
n∈Λ

X
μ;ν;ρ;σ

ϵμνρσzμνðnÞzρσðnþ μ̂þ ν̂Þþ Q̌ ð4:10Þ

is invariant under the ZN 1-form gauge transformation,
while Q̌ is not. The shift of Q̌ should vanish owing to the
shift of the first term (see Appendix A in Ref. [30]).

B. Reproducing the Kapustin–Seiberg prescription

To compare some properties between the lattice and
continuum theories [22], one may construct the
SUðNÞ=ZN principal bundle from the lattice UðNÞ gauge
theory. Starting from the above construction by the lattice
SUðNÞ gauge theory, we perform the Uð1Þ 1-form trans-
formation given by7

Ǔðn; μÞ ↦ exp ½iλμðnÞ�Ǔðn; μÞ ∈ UðNÞ
λμðnÞ ∈ R; 0 ≤ λμðnÞ < 2π: ð4:11Þ

Now we define the Uð1Þ 2-form gauge field

λμνðnÞ≡ 2π

N
zμνðnÞ þ ΔμλνðnÞ − ΔνλμðnÞ

þ 2πKμνðnÞ; ð4:12Þ

where KμνðnÞ ∈ Z is required to restrict λμνðnÞ to
�
0 ≤ λμνðnÞ < 2π for μ < ν;

λμνðnÞ ¼ −λνμðnÞ for μ > ν:
ð4:13Þ

After successive Uð1Þ 1-form transformations, a generic
λμνðnÞ transforms as

6In the usual context of the fiber bundle, the cocycle condition
for the transition functions is consistency at the boundary of three
patches; the flatness condition is at the quadruple overlap [37].
On the other hand, for the square lattice, the former is defined in
the intersection of four hypercubes; the latter is in the intersection
of eight hypercubes.

7This procedure is analogous to the construction of weak
higher-groups from strict higher-groups. See Ref. [38] for the
Uð1Þ gauge theory or Sec. V for the SUðNÞ gauge theory.
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λμνðnÞ↦ λμνðnÞþΔμλνðnÞ−ΔνλμðnÞþ2πKμνðnÞ: ð4:14Þ

Then, the transition function vn;μðxÞ ∈ UðNÞ trans-
forms as

vn;μðxÞ ↦ exp ½iλμðn − μ̂Þ�vn;μðxÞ; ð4:15Þ

and satisfies the cocycle condition

vn−ν̂;μðxÞvn;νðxÞvn;μðxÞ−1vn−μ̂;νðxÞ−1
¼ exp ½iλμνðn − μ̂ − ν̂Þ�: ð4:16Þ

We have the topological charge

Q ¼ −
N

32π2
X
n∈Λ

X
μ;ν;ρ;σ

ϵμνρσλμνðnÞλρσðnþ μ̂þ ν̂Þ þ Q̌:

ð4:17Þ

This is, in fact, Uð1Þ 1-form invariant, and thus, takes the
same fractional value as before. This means that we can
regard λμνðnÞ as a field strength in the lattice Uð1Þ=ZN

gauge theory; as already shown in Ref. [30], one can show
that the first term in Q is N × 1

N2 Z.
The field strength is defined by

FμνðnÞ≡ 1

i
ln ½Pðn; μ; νÞ�; ð4:18Þ

and F̌μνðnÞ by P̌ðn; μ; νÞ, in the range (or branch) that those
satisfy the admissibility condition (3.17). From Pðn; μ; νÞ ¼
e−iλμνðnÞP̌ðn; μ; νÞ ∈ SUðNÞ, Fμν ¼ F̌μν − λμν ∈ suðNÞ and
F̌μν ∈ uðNÞ; we have

TrF̌μνðnÞ ¼ NλμνðnÞ: ð4:19Þ

Also under the Uð1Þ 1-form gauge transformation, the field
strength FμνðnÞ is invariant, and F̌μνðnÞ transforms as

F̌μνðnÞ ↦ F̌μνðnÞ þ ΔμλνðnÞ − ΔνλμðnÞ
þ 2πKμνðnÞ: ð4:20Þ

These expressions provide good agreement with those in the
continuum theory by theKapustin–Seiberg prescription [22].
Therefore, our fully-regularized construction can naturally
reproduce non-Abelian gauge theories with discrete higher-
form symmetries in the continuum limit.
We make some comments here: First, in the more

sophisticated and minimal construction given in
Ref. [31], we can define the 1-form invariant FμνðnÞ only,
and so the relation with the coupling with higher-form
gauge fields in the continuum is not obvious. Also, if we
use the ZN 2-form gauge field zμνðnÞ, its continuum limit
seems to be puzzling because of no smooth and integer

fields in the continuum description. This difficulty reminds
us that there is a certain procedure required for such a
coupling with a ZN field in the continuum, which would be
described by a pair ofUð1Þ gauge fields. We can describe it
by the lattice gauge field λμνðnÞ.
On the other hand, lattice gauge theories can be coupled

quite simply with lattice integer fields, while there are
subtleties in the continuum theory since cohomological
operations are needed such as the Pontryagin square [8,22].
The Kapusitin-Seiberg prescription gives a simplified
explanation for discrete gauge fields by embedding it to
Uð1Þ. Thus, we see the de Rham cohomology but not the
Čech cohomology; to circumvent this issue, the wedge
product in expressions as a result should be replaced by the
Pontryagin square. Such issues make some studies in
continuum apparently difficult.

V. APPLICATION: HIGHER-GROUP STRUCTURE
IN MODIFIED SUðNÞ GAUGE THEORY

As a simple application, let us consider the higher-group
structure in the SUðNÞ gauge theory modified as follows:
The insertion of the delta function in the path integral,

δðqðnÞ − pcðnÞÞ; ð5:1Þ

restricts the instanton number to integral multiples of
p ∈ Z [33–36]. Here we have defined Q ¼ P

n∈Λ qðnÞ,
and cμνρσðnÞ is the 4-form field strength of a compact Uð1Þ
3-form gauge field such that8

cμνρσðnÞ≡ ϵμνρσcðnÞ; ð5:2Þ

and
P

n∈Λ cðnÞ ∈ Z. Thus, perturbation theory is not
affected at all and the local nature is unchanged, while
globally or topologically speaking this modification pos-
sesses a quite nontrivial structure, called the higher-group
symmetry [32].9 This theory provides an application of our
construction of the SUðNÞ=ZN principal bundle.
Note that, to see this, it is important to introduce

a technique called the integral lift [8,22], as mentioned
in the case of the lattice Uð1Þ gauge theory with
restricted topological sectors [38].10 This is because the
fractional part of the topological charge Q possesses the

8It was proved [39] that there exists the Uð1Þ gauge potential
on the lattice such that FμνðnÞ ¼ ΔμAνðnÞ − ΔνAμðnÞ for
admissible gauge configurations. Here AμðnÞ is constructed
by aμðnÞ≡ 1

i lnUðn; μÞ and FμνðnÞ≡ 1
i lnPðn; μ; νÞ, where

FμνðnÞ − ΔμaνðnÞ þ ΔνaμðnÞ ∈ 2πZ. This can be immediately
generalized for Uð1Þ higher-form gauge fields.

9In topological lattice gauge theories, we can also observe
the higher-group structure; see Refs. [40,41].

10Recently, the definition of (higher-)cup products, from which
the Pontryagin square can be constructed, on the hypercubic
lattice is given in Ref. [42]. For a torsion-free manifold, we can
also use the integral lift as another possible choice.
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noncommutativity,
P

n∈Λ
P

μ;ν;ρ;σ ϵμνρσzμνðnÞzρσðnþ μ̂þ ν̂Þ,
and naively seems to become 1

2N, but it is
1
N thanks to the

commutativity of the original form,
P

μ;ν;ρ;σ ϵμνρσzμνzρσ.
Suppose that an integer field z̄μνðnÞ is defined by zμνðnÞ ¼
z̄μνðnÞ mod N so that

P
ν;ρ;σ ϵμνρσΔνz̄ρσðnÞ ¼ 0. Then,

replacing zμνðnÞ by z̄μνðnÞ, we have the desired Q ∈ 1
NZ

for a generic z̄μνðnÞ.
Again, let us consider the constraint,

qðnÞ − pcðnÞ ¼ 0: ð5:3Þ

At first sight, any nontrivial configuration of z̄μνðnÞ is
forbidden, so gauging theZN 1-form symmetry seems to be
impossible. Now, by introducing the Zp 3-form symmetry
and gauging these two symmetries simultaneously, we have
a nontrivial theory with the 4-group structure. This can be
immediately realized by the replacement as c → c − 1

Np w̄,
where a 4-form field w̄ðnÞ ∈ Z; then

qðnÞ − pcðnÞ þ 1

N
w̄ðnÞ ¼ 0: ð5:4Þ

Because all fractional contributions from qðnÞ by z̄μνðxÞ
can be absorbed into w̄ðnÞ, one can obtain nontrivial
configurations of z̄μνðnÞ. Note that, by construction, we
see the 3-form gauge symmetry,

w̄ðnÞ↦ w̄ðnÞþ 1

3!

X
μ;ν;ρ;σ

ϵμνρσΔμwνρσðnÞþNpM̄ðnÞ; ð5:5Þ

cðnÞ↦ cðnÞþ 1

Np
1

3!

X
μ;ν;ρ;σ

ϵμνρσΔμwνρσðnÞþ M̄ðnÞ: ð5:6Þ

Here we assume that wμνλðnÞ ∈ Z satisfies
1
3!

P
n∈Λ

P
μ;ν;ρ;σ ΔμwνρσðnÞ ∈ NpZ and 0 ≤ wμνλðnÞ <

Np for μ < ν < λ; M̄ðnÞ is an integer field.
Now, we define wðnÞ ∈ Z as wðnÞ ¼ w̄ðnÞ mod N and

0 ≤ wðnÞ < Np. A new fieldMðnÞ ∈ Z instead of M̄ðnÞ is
introduced for wðnÞ to be 0 ≤ wðnÞ < Np under the 3-form
gauge transformation (5.5) for wðnÞ. That is, w̄ðnÞ is the
integral lift of wðnÞ. wðnÞ should be regarded as the ZNp

4-form gauge field, while the original 3-form symmetry is
Zp if one ignore z̄μνðnÞ and N. Thus, this is the (strict)
4-group structure.
As another perspective, we can consider the use of

ΩðnÞ ∈ R such that c → c − 1
NpΩ. Then, we have

qðnÞ − pcðnÞ þ 1

N
ΩðnÞ ¼ 0; ð5:7Þ

where we assume that
P

n∈Λ ΩðnÞ ∈ Z to remove the
fractionality in the first term. We now define Ω̃ðnÞ ∈ R by

Ω̃ðnÞ≡ 1

N
ΩðnÞ

−
1

8N

X
μ;ν;ρ;σ

ϵμνρσ z̄μνðnÞz̄ρσðnþ μ̂þ ν̂Þ; ð5:8Þ

where
P

n∈Λ Ω̃ðnÞ ∈ Z. Therefore, by using Q̌ ¼P
n∈Λ q̌ðnÞ, we find that the constraint becomes

q̌ðnÞ − pcðnÞ þ Ω̃ðnÞ ¼ 0: ð5:9Þ

From the definition of Ω̃ðnÞ (5.8), Ω̃ðnÞ is not invariant any
longer under the ZN 1-form gauge transformation, while
½q̌ðnÞ þ Ω̃ðnÞ� is invariant. One can find that, owing to the
integral lift,

P
n∈Λ Ω̃ðnÞ ∈ Z holds after we perform the

1-form gauge transformation.
Following the procedure given in Ref. [38], we can

compel Ω̃ðnÞ ∈ R to become ˜̄wðnÞ ∈ Z which is the
integral lift as w̃ðnÞ ¼ ˜̄wðnÞ mod p. This is always possible
since we can throw away the real or fractional part apart
from integers in Ω̃ðnÞ into the gauge redundancy of cðnÞ,
by using the continuum 3-form transformation,

Ω̃ðnÞ↦ Ω̃ðnÞþ 1

3!

X
μ;ν;ρ;σ

ϵμνρσΔμΩ̃νρσðnÞþpM̃ðnÞ; ð5:10Þ

cðnÞ ↦ cðnÞ þ 1

p
1

3!

X
μ;ν;ρ;σ

ϵμνρσΔμΩ̃νρσðnÞ þ M̃ðnÞ; ð5:11Þ

where Ω̃μνλðnÞ ∈ R and M̃ðnÞ ∈ Z. The “ZN 1-form gauge
transformation” is redefined as the original 1-form gauge
transformation and such a 3-form transformation to be set
to integers. This theory possesses the modified “1-form”
and the discrete Zp 3-form gauge symmetries, that is, the
(weak) 4-group symmetry.

VI. CONCLUSION

We constructed the SUðNÞ=ZN principal bundle from the
SUðNÞ lattice gauge theory with the ’t Hooft twisted
boundary condition. This construction requires the appro-
priate admissibility, which is ensured by the proof based on
the principle of the locality, SUðNÞ gauge invariance, and the
ZN 1-form gauge invariance [31]. We provided the concrete
expressions for not only the twisted variables [e.g., vn;μðxÞ],
which can be equivalently described by those inRef. [31], but
also the periodic variables [e.g., v̌n;μðxÞ] and the ZN 1-form
gauge field zμνðnÞ. In our construction, the periodic variables
enjoy the structure of the UðNÞ principal bundle rather than
SUðNÞ as the continuum theory. This fact thus leads us to
explicitly reproduce the Kapustin-Seiberg prescription in
terms of the lattice fields, and quite naturally depict its
behavior in the continuum limit. Also, similarly to Ref. [31],
we can observe the mixed ’t Hooft anomaly for the ZN
1-form gauge symmetry and the θ periodicity, and so on.
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We further considered the instanton-summodified SUðNÞ
lattice gauge theory. It was first shown that naively gauging
theZN 1-form symmetry is impossible under the constraint of
the instanton numbers restricted to pZ. As the strict 4-group,
we introduced the ZNp 4-form gauge field wðnÞ ∈ Z asso-
ciated with the ZNp 3-form gauge symmetry to compensate
this difficulty. Also we showed the weak 4-group (Green-
Schwarz-type) structure such that the Zp 4-form gauge field
w̃ðnÞ ∈ Z transforms not only under the discrete Zp 3-form
gauge symmetry, but also under the “mixed 1-form” gauge
symmetry that includes the original ZN 1-form and the
continuum Zp 3-form gauge symmetries.
The noninvertible symmetry is still developing, and so

we hope to apply our approach to such recent develop-
ments. It is also interesting to consider the case with matter
fields, especially lattice fermions, whose construction is
quite nontrivial in lattice gauge theory. Also the index
theorem on the lattice is an attractive issue with the
consideration of an appropriate overlap Dirac operator.
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APPENDIX: LÜSCHER’S
INTERPOLATION FUNCTIONS

We summarize the Lüscher’s construction for the tran-
sition function [25,31]. First, we define new link variables
which are constructed, in terms of the parallel transport
functions wnðxÞ (3.11), by

� unxy ¼ wnðxÞUðx; μÞwnðyÞ if y ¼ xþ μ̂;

unxy ¼ ðunyxÞ−1 if y ¼ x − μ̂:
ðA1Þ

By these link variables, we can construct the transition
function at the corners of fðn; μÞ,

un−μ̂xy ¼ vn;μðxÞunxyvn;μðyÞ−1; ðA2Þ

vn;μ ≡ wn−μ̂ðxÞwnðxÞ−1: ðA3Þ

Next, in order to calculate the topological charge (3.24), we
interpolate the transition function to ∀ x ∈ fðn; μÞ. Then,
we need to define the interpolation function Smn;μ. We first
label the corners fsigi¼0;…;7 of fðn; μÞ as follows: letting α,
β, γ ∈ f1; 2; 3; 4gnfμg and α < β < γ,

s0 ¼ n; s1 ¼ nþ α̂; s2 ¼ nþ β̂; s3 ¼ nþ γ̂;

s4 ¼ nþ α̂þ β̂þ γ̂; s5 ¼ nþ α̂þ γ̂; s6 ¼ nþ α̂þ β̂;

s7 ¼ nþ β̂þ γ̂: ðA4Þ

Then, for m ¼ n, n − μ̂, we define the interpolation
functions,

fmn;μðxγÞ ¼ ðums3s0Þyγ ðums0s3ums3s7ums7s2ums2s0Þyγ
× ums0s2ðums2s7Þyγ ; ðA5Þ

gmn;μðxγÞ ¼ ðums5s1Þyγ ðums1s5ums5s4ums4s6ums6s1Þyγ
× ums1s6ðums6s4Þyγ ; ðA6Þ

hmn;μðxγÞ ¼ ðums3s0Þyγ ðums0s3ums3s5ums5s1ums1s0Þyγ
× ums0s1ðums1s5Þyγ ; ðA7Þ

kmn;μðxγÞ ¼ ðums7s2Þyγ ðums2s7ums7s4ums4s6ums6s2Þyγ
× ums2s6ðums6s4Þyγ ; ðA8Þ

lmn;μðxβ; xγÞ ¼ ½fmn;μðxγÞ−1�yβ
× ½fmn;μðxγÞkmn;μðxγÞgmn;μðxγÞ−1hmn;μðxγÞ−1�yβ
· hmn;μðxγÞ½gmn;μðxγÞ�yβ ; ðA9Þ

Smn;μðxα;xβ;xγÞ¼ðums0s3Þyγ ½fmn;μðxγÞ�yβ ½lmn;μðxβ;xγÞ�yα : ðA10Þ

Here, yλ ≡ xλ − nλ and 0 ≤ yλ ≤ 1 for λ ¼ α, β, γ.
We have constructed Smn;μðxα; xβ; xγÞ based on the link
variable Uðn; μÞ; we simply write it as Smn;μðU; xÞ ¼
Smn;μðxα; xβ; xγÞ½U� in Sec. III B.
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