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We analyze scaling functions in the 3D Zð2Þ, Oð2Þ, and Oð4Þ universality classes and their finite-size
dependence using Monte Carlo simulations of improved ϕ4 models. Results for the scaling functions
are fitted to the Widom-Griffiths form, using a parametrization also used in analytic calculations. We find
good agreement on the level of scaling functions and the location of maxima in the universal part of
susceptibilities. We also find that an earlier parametrization of the Oð4Þ scaling function, using 14
parameters, is well reproduced when using the Widom-Griffiths form with only three parameters. We
furthermore show that finite-size corrections to the scaling functions are distinctively different in the Zð2Þ
and OðNÞ universality classes and determine the volume dependence of the peak locations in order
parameter and mixed susceptibilities.
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I. INTRODUCTION

Universal critical behavior in the 3D Zð2Þ and OðNÞ
universality classes plays an important role in the analysis
of phase transitions in many statistical models as well as
quantum field theories. In the fundamental theory of strong
interactions, quantum chromodynamics (QCD), phase
transitions that occur at finite temperature and vanishing
as well as nonvanishing conserved charge chemical poten-
tials belong to these universality classes. The spontaneous
breaking of chiral symmetry in QCD is expected to exhibit
universal critical behavior in the 3D Oð4Þ universality
class [1], and the 3D Zð2Þ universality class is expected to
describe critical behavior at the so-called critical end point,
a yet to be discovered second-order phase transition that is
expected to occur in QCD with nonzero quark mass values
and nonvanishing baryon chemical potential. A second-
order phase transition in the Zð2Þ universality class also
occurs in QCD at nonvanishing, imaginary values of
chemical potentials at the so-called Roberge-Weiss end
point [2]. Also, the Oð2Þ universality class plays a role
in the studies of the phase diagram of QCD, as many
calculations are performed in a discretized version of the
theory, using so-called staggered fermions, in which only
this smaller symmetry is realized.

Numerical studies of the phase structure of statistical
models, and, in particular, of complicated theories such
as QCD, are being performed on finite lattices. A good
understanding of finite-size effects, thus, is generally of
importance. In the limit of small external symmetry-
breaking fields and large volumes also these finite-size
effects are universal, i.e., characteristic for a given univer-
sality class. For this purpose, a powerful renormalization
group framework has been developed in statistical physics
which leads to a detailed finite-size scaling theory for
critical behavior [3,4]. This framework has been used
to analyze finite-size scaling behavior of systems in the
3D Zð2Þ and OðNÞ universality classes. The finite-size
dependence of thermodynamic observables in 3D OðNÞ
spin models has been examined using Monte Carlo sim-
ulations [5–7], and finite-size scaling functions have been
derived using the functional renormalization group
approach [8]. For the Oð4Þ universality class, we provided
an updated parametrization for the infinite volume scaling
functions [9] and presented a parametrization of the finite-
size scaling functions fGðz; zLÞ and fχðz; zLÞ [10], which
describe finite volume corrections to the singular behavior
of the order parameter and its susceptibility. In this
work, we will extend these studies and provide finite-size
scaling functions also for the Zð2Þ and Oð2Þ universality
classes, by performing Monte Carlo simulations with
improved Hamiltonians [11–13], which have been con-
structed to suppress contributions from corrections-to-
scaling and, thus, allow for easier access to the desired
scaling functions. We furthermore present a parametriza-
tion of the infinite volume scaling functions, determined
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from Monte Carlo simulations, using the Widom-Griffiths
(WG) form [14–17] of these scaling functions. In the
Zð2Þ [18] and Oð2Þ [7] universality classes, the relevant
parameters entering this analytic form have been deter-
mined previously using ϵ expansion and other field
theoretic methods applied directly in 3D.
This paper is organized as follows. In the next section,

we introduce the Zð2Þ and OðNÞ models for which we
present new Monte Carlo results and define the basic
observables studied by us. In Sec. III, we introduce basic
relations for finite-size scaling functions. Section IV is
devoted to the determination of the infinite volume scaling
functions for the Zð2Þ, Oð2Þ, and Oð4Þ models, using
a parametrization based on the Widom-Griffiths form.
Here, we also determine the nonuniversal parameters for
the improved Zð2Þ and Oð2Þ models that are needed to
introduce the scaling variables z and zL. In Sec. V, we
present our results for the finite-size scaling functions. We
give our conclusions in Sec. VI. In Appendix A, we discuss
the determination of the two nonuniversal scales H0 and
L0, and in Appendix B, we give explicit expressions for the
expansion coefficients d−1 and d−2 appearing in the scaling
function fGðz; zL ¼ 0Þ at asymptotically large, negative
arguments.

II. LATTICE SETUP AND OBSERVABLES

We discuss here universal scaling properties for three-
dimensional, N-component ϕ4 models, i.e., spin models in
the 3D Zð2Þ (N ¼ 1, Ising model), Oð2Þ (XY model), and
Oð4Þ universality classes described by the Hamiltonian

H ¼ −J
X
hx;yi

ΦxΦy þ
X
x

½Φ2
x þ λðΦ2

x − 1Þ2� −H
X
x

ϕx;1;

ð1Þ

with Φx ≡ ϕx;1 for the 3D Zð2Þ spin model, ðx; yÞ denoting
nearest-neighbor sites on the lattice, and Φx ≡
ðϕx;1;…;ϕx;NÞ for the 3D OðNÞ spin models. For specific
choices of λ, the above Hamiltonian is called “improved”
since the quartic coupling λ appearing in the potential term
of the spin models has been optimized to reduce the effect
of contributions from subleading relevant scaling variables
to universal scaling behavior of these models [11]. We use
the parameters λ ¼ 1.1 [12] in the case of Zð2Þ and λ ¼ 2.1
for Oð2Þ spin models [13], respectively. In the Oð4Þ case,
we use the standard, unimproved Hamiltonian, correspond-
ing to λ ¼ ∞. The temperature T is defined as the inverse
of the coupling J, i.e., T ≡ 1=J, and the external field
coupling H controls explicit symmetry breaking in the
Hamiltonian. We introduce this symmetry-breaking term
such that it couples only to the first component of the spin
variable Φx, defined on the sites x of a three-dimensional
lattice of size L3.

Using the Hamiltonian introduced in Eq. (1), the
partition functions of the 3D Zð2Þ and OðNÞ models are
given by

ZðT;H; LÞ ¼
Z Y

x

dΦxe−H: ð2Þ

From this, one obtains the free energy density in units
of temperature T: fðT;H; LÞ ¼ −L−3 lnZðT;H; LÞ. The
derivative of the free energy density with respect to the
external field H defines the order parameter M for
spontaneous symmetry breaking:

MðT;H; LÞ ¼ −
∂f
∂H

: ð3Þ

The (longitudinal) susceptibility χh and the mixed suscep-
tibility χt are obtained as derivatives of the order parameter
with respect to H and J, respectively:

χhðT;H; LÞ ¼ ∂M
∂H

; ð4Þ

χtðT;H; LÞ ¼ ∂M
∂J

¼ −T2
∂M
∂T

: ð5Þ

In the absence of explicit symmetry breaking (H ¼ 0),
the Zð2Þ and OðNÞ spin models undergo second-order
phase transitions at critical temperatures Tc ≡ 1=Jc.
The critical temperatures of the 3D improved Zð2Þ [12],
Oð2Þ [7], and unimproved Oð4Þ [19] spin models, with
couplings λ, as introduced above, are well determined. We
give the critical temperatures together with other universal
and nonuniversal model parameters in Table I.
In the case of the Oð4Þ spin model, we do not perform

new MC calculations, but reparametrize results for scaling
functions already obtained in Ref. [9]. We therefore give in
Table I the parameters actually used in that calculation.
They are consistent with analytic results [18] but differ
somewhat from recent MC results [22].
For H ≠ 0 as well as for finite lattice sizes L < ∞,

pseudocritical temperatures Tpc;oðH;LÞ, with o ¼ h or t,
can be defined as locations of maxima in the susceptibilities
χh and χt.
Monte Carlo simulations have been performed by us for

the improved Zð2Þ and Oð2Þ models. For our calculations
we use a code which has been developed and used
previously in simulations of Zð2Þ and Oð2Þ models.1 The
statistics collected in calculations with the Zð2Þ and Oð2Þ
models on different size lattices is given in Tables II–IV.

1We use a cluster update [23,24] code developed in the group
of Jürgen Engels. The algorithm and its implementation are
described in more detail in Ref. [21].
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III. SCALING FUNCTIONS

In order to analyze universal critical behavior in the
vicinity of the second-order phase transitions occurring in
the 3D Zð2Þ and OðNÞ spin models, the free energy is split

in a singular and regular contribution, respectively:

fðT;H; LÞ ¼ fsðT;H; LÞ þ fregðT;H; LÞ: ð6Þ

The scaling behavior of, e.g., the order parameterM and the
susceptibilities χh and χt is derived from the renormaliza-
tion group analysis of the singular part of the free energy:

fsðt; h; l;…Þ ¼ b−dfsðbytt; byhh; bl;…Þ; ð7Þ

where b is a free scale parameter and yt and yh are two
relevant critical exponents.2 In Eq. (7), we introduced the
reduced temperature (t), external field (h), and finite
volume (l) scaling variables:

t ¼ 1

t0

T − Tc

Tc
; h ¼ H

H0

; l ¼ L0

L
: ð8Þ

They are normalized by nonuniversal scale parameters t0,
H0, and L0, respectively. The exponents yt and yh define
the two independent critical exponents of the universality
class under consideration:

yt ¼ 1=ν; yh ¼ βδ=ν: ð9Þ

Here β, δ, and ν are critical exponents which are related to
each other through the hyperscaling relation δ ¼ dν=β − 1.
In our current analysis, we use results for the exponents β
and δ as basic input. These critical exponents are well
determined for the 3D Zð2Þ and OðNÞ universality classes.
We use here the Zð2Þ results obtained in Ref. [18] and the
Oð2Þ values from Ref. [20]. They are given in Table I. In
the Oð4Þ case, we use critical exponents and nonuniversal
parameters that have also been used in a previous analysis
of scaling functions [9].
Choosing the scale parameter b ¼ h−1=yh, we obtain for

the free energy density

fðT;H; LÞ ¼ H0h1þ1=δffðz; zLÞ þ fregðT;H; LÞ; ð10Þ

TABLE II. Number of configurations generated per parameter
set ðJ;HÞ on lattices of size L3 for J ≠ Jc. Data generated on the
largest (L ¼ 120) lattices were used for consistency checks but
were not used in the final fits.

L ¼ 48 L ¼ 96 L ¼ 120

Zð2Þ 200 000 100 000 � � �
Oð2Þ 200 000 200 000 24 000

TABLE III. Number of configurations generated per parameter
set ðJc;HÞ, i.e., at the infinite volume critical temperature, on
lattices of size L3. These datasets were used for the determination
of the scale parameters H0 and L0, discussed in Appendix A. The
data sets generated on the L ¼ 96 lattice were also used in finite-
size fits discussed in Sec. V.

L ¼ 48 L ¼ 96 L ¼ 120

Zð2Þ 200 000 350 000 150 000
Oð2Þ 200 000 100 000 84 000

TABLE I. Critical exponents in the 3D Zð2Þ, Oð2Þ and Oð4Þ
universality classes and nonuniversal parameters for the im-
proved Hamiltonians used in our simulations. Zð2Þ critical
exponents are taken from Zinn-Justin [18], and the Oð2Þ values
are taken from Ref. [20]. Exponents used for the Oð4Þ case are
taken from Ref. [19]. Other critical exponents are obtained using
the hyperscaling relations. The critical temperature (Tc ¼ 1=Jc)
of the Zð2Þmodel with λ ¼ 1.1 is taken from Ref. [12], and Tc for
the Oð2Þ model with λ ¼ 2.1 is taken from Ref. [7]. All other
nonuniversal parameters have been obtained in this study. For the
Zð2Þ model, we find results for the scales t0 and H0 that are in
good agreement with previous results obtained in Ref. [21];
t0 agrees to better than 1%, and the result for H0 is smaller by
about 2%. In the Oð4Þ case, we give critical exponents and non-
universal parameters used also in a previous analysis of scaling
functions [9] (see the text for further references).

Zð2Þ Oð2Þ Oð4Þ
Universal parameter

β 0.3258(14) 0.34864(7) 0.380(2)
δ 4.805(15) 4.7798(5) 4.824(9)

Nonuniversal parameter

λ 1.1 2.1 ∞

Tc 2.665980(3) 1.964055(23) 1.06849(11)
L0 1.0262(18) 0.97917(55) 0.7686
H0 0.79522(17) 1.36632(28) 4.845(66)
t0 0.303376(45) 0.4540(11) 1.023(16)

TABLE IV. Number of configurations generated per parameter
set ðJ;HÞ on lattices of size L3 in the region z < −2. These data
have been primarily used for the determination of the scale
parameter t0 obtained together with the determination of the
infinite volume scaling functions discussed in Sec. IV.

L ¼ 96 L ¼ 120 L ¼ 160 L ¼ 200

Zð2Þ 76 000 38 000 18 000 � � �
Oð2Þ � � � 480 000 184 000 120 000

2We ignore here possible contributions from corrections-to-
scaling terms and irrelevant scaling fields. The former are
suppressed in our analysis due to the use of an optimized
Hamiltonian, and the latter are irrelevant for the scaling analysis.

SCALING FUNCTIONS OF THE THREE-DIMENSIONAL … PHYS. REV. D 108, 014505 (2023)

014505-3



where we have introduced the finite-size scaling function
ffðz; zLÞ:

ffðz; zLÞ ¼ H−1
0 fsðt=h1=βδ; 1; l=hν=βδÞ; ð11Þ

with arguments ðz; zLÞ defined as

z ¼ t=h1=βδ; zL ¼ l=hν=βδ: ð12Þ

Using Eqs. (3) and (10), we obtain the order parameter M:

MðT;H; LÞ ¼ h1=δfGðz; zLÞ þ reg ð13Þ

and its susceptibilities

χhðT;H; LÞ ¼ H−1
0 h1=δ−1fχðz; zLÞ þ reg; ð14Þ

χtðT;H; LÞ ¼ −
T2

t0Tc
hðβ−1Þ=βδf0Gðz; zLÞ þ reg ð15Þ

with scaling functions fGðz; zLÞ, f0Gðz; zLÞ, and fχðz; zLÞ
defined, respectively, as

fGðz; zLÞ ¼ −
�
1þ 1

δ

�
ffðz; zLÞ þ

z
βδ

∂ffðz; zLÞ
∂z

þ ν

βδ
zL

∂ffðz; zLÞ
∂zL

; ð16Þ

f0Gðz; zLÞ ¼
∂fGðz; zLÞ

∂z
; ð17Þ

fχðz; zLÞ ¼
1

δ

�
fGðz; zLÞ −

z
β
f0Gðz; zLÞ

�

−
ν

βδ
zL

∂fGðz; zLÞ
∂zL

: ð18Þ

The finite-size scaling functions can be deter-
mined in the vicinity of the critical point ðt; h; lÞ ¼
ð0; 0; 0Þ, where regular contributions to the order para-
meter and its susceptibilities, given in Eqs. (13)–(15), are
negligible3:

fGðz; zLÞ ¼ h−1=δMðT;H; LÞ; ð19Þ

f0Gðz; zLÞ ¼ −
t0Tc

T2
hð1−βÞ=βδχtðT;H; LÞ; ð20Þ

fχðz; zLÞ ¼ H0h1−1=δχhðT;H; LÞ: ð21Þ

The nonuniversal scale parameters t0 and H0 are fixed
by the following conditions on the order parameter at

infinite volume:

Mðt ¼ 0; h; l ¼ 0Þ ¼ h1=δ;

Mðt < 0; h ¼ 0; l ¼ 0Þ ¼ ð−tÞβ; ð22Þ

or, equivalently, in terms of the scaling function

fGð0; 0Þ ¼ 1; lim
z→−∞

fGðz; 0Þ
ð−zÞβ ¼ 1: ð23Þ

The scale L0 is obtained using a normalization condition
for the finite-size scaling function fGð0; zLÞ. We define
zL ¼ 1 as the point at which the order parameter, evaluated
at Tc, is 30% smaller than its infinite volume value, i.e.,

fGð0; 1Þ
fGð0; 0Þ

¼ 0.7: ð24Þ

This differs from the choice used in Ref. [10] but has the
advantage of allowing better comparison of finite-size
scaling functions obtained in different universality classes.
In the following two sections, we will discuss results for

the infinite and finite volume scaling functions, respec-
tively. In order to judge which lattice sizes and external
field parameters are needed to get close to the infinite
volume, universal scaling regime, we first analyzed the zL
dependence of the scaling functions at some fixed values of
z on different size lattices. The three scaling functions
fGðz; zLÞ, f0Gðz; zLÞ, and fχðz; zLÞ have been calculated
at a few values of z as functions of zL. Using z and zL as
variables, of course, does require the determination of the
nonuniversal scales ðt0; H0; L0Þ which we are going to
discuss in the next section and in Appendix A.
Results from the calculations of the scaling functions for

some fixed values of z, performed on lattices of size L3 with
L ¼ 48 and 96, are shown in Fig. 1. As can be seen, the
finite-size effects in all three scaling functions are almost
negligible for zL < 0.4. This is consistent with findings
obtained in calculations with the standard Oð4Þ model [10]
and can also be concluded from Fig. 8, shown in
Appendix A, where we compare results for fGðz ¼ 0; zLÞ
in different universality classes.
In the following, we thus use our numerical results for

zL < 0.4 as approximation for infinite volume limit results.

IV. INFINITE VOLUME SCALING FUNCTIONS

In our discussion of scaling functions in the infinite
volume limit zL ¼ 0, we suppress the second argument of
the scaling functions; i.e., we introduce fGðzÞ≡ fGðz; 0Þ
and similarly for f0GðzÞ and fχðzÞ. These scaling functions
have been determined previously using ϵ expansions [25]
and perturbative field theoretic approaches applied directly
in three dimensions [7,18,26], as well as in Monte Carlo
(MC) simulations [5,6,21]. For the Zð2Þ universality class,

3To arrive at Eqs. (19)–(21), one actually takes the limit
(H → 0; L → ∞) at fixed zL.
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it has been shown that the scaling functions, obtained
in MC calculations, are in good agreement with the
Widom-Griffiths form [14,15] using a resummed pertur-
bative series for the order parameter obtained in 3D [18].
However, no parametrization based on MC results has been

given. The previous determination of the Oð2Þ scaling
functions, using the WG Ansatz [6], has been performed
using an unimproved Oð2Þ Hamiltonian and, thus, had to
take care of corrections to scaling, which, in particular,
made the determination of scaling functions in the

FIG. 1. Finite-size scaling functions fGðz; zLÞ (top), f0Gðz; zLÞ (middle), and fχðz; zLÞ (bottom) in the 3D Zð2Þ (left) and Oð2Þ (right)
universality classes. Shown are results for several fixed values z ∈ ½−1.0∶2.0�, obtained from calculations on lattices of size L3, with
L ¼ 48 (green circles) and 96 (purple squares), in the range zL ∈ ½0.1; 1.2�. The light blue lines show results of joined fits to all three
scaling functions performed in the interval zL ∈ ½0.4∶1� (see Sec. V). As the values for z and zL have been fixed a posteriori, before
nonuniversal scale parameters have been determined in the fits, we have labeled the different panels with approximate z values. Their
actual values are (from lowest to highest) Zð2Þ: z ¼ −0.979;−0.490, 0, 0.490, 0.979, 1.469, 1.958 and Oð2Þ: z ¼ −1.051;−0.526, 0,
0.526, 1.051, 1.577, 2.010.
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symmetry-broken regime difficult. Scaling functions for
the Oð4Þ model, using Monte Carlo results obtained with
the standard, unimproved Hamiltonian (corresponding to
λ ¼ ∞), have been presented in Ref. [9]. In none of these
cases has a parametrization ofOðNÞ scaling functions been
presented, which uses the WG form with only three free
parameters.

A. Widom-Griffiths form of scaling functions

We present here a determination of the Zð2Þ and OðNÞ
(N ¼ 2, 4) scaling functions from Monte Carlo simula-
tions. From our new Monte Carlo results and those
obtained in Ref. [9], we determine the parameters entering
a parametrization of scaling functions using the WG form
of the order parameter scaling function [14,15]:

M ¼ m0Rβθ; ð25Þ

t ¼ Rð1 − θ2Þ; ð26Þ

h ¼ h0RβδhðθÞ; ð27Þ

where (R,θ) represents an alternate coordinate frame
corresponding to the (t, h) plane [16,17]. Aside from the
normalization constants m0 and h0, this parametrization
depends on a function hðθÞ, which needs to be determined.
For the case of Zð2Þ, it seems that a Taylor series expansion
up to Oðθ5Þ is sufficient4 [18], while in the case of OðNÞ,
one needs to take care explicitly of the presence of Gold-
stone modes in the symmetry-broken phase. This requires
that hðθÞ has a double zero at some θ0 > 1 [7,27]. We, thus,
use the Ansatz proposed in Refs. [7,18]:

hðθÞ ¼ ðθ þ h3θ3 þ h5θ5Þ
�
1; for Zð2Þ:
ð1 − θ2=θ20Þ2; for OðNÞ:

ð28Þ

The normalization constants m0 and h0 are determined
from the conditions in Eq. (22), which gives us

m0 ¼
ðθ20 − 1Þβ

θ0
; h0 ¼

mδ
0

hð1Þ ; ð29Þ

where θ0 is the first positive zero of hðθÞ in the Zð2Þ
universality class and the double zero of hðθÞ in the OðNÞ
case. Using Eqs. (12) and (19) and the above relations for
the normalization constants m0 and h0, one can establish
the relation between the WG form of the scaling function
fG and the relation between the scaling variables, z ¼
t=h1=βδ and θ:

fGðzÞ≡ fGðθðzÞÞ ¼ θ

�
hðθÞ
hð1Þ

�
−1=δ

; ð30Þ

zðθÞ ¼ 1 − θ2

θ20 − 1
θ1=β0

�
hðθÞ
hð1Þ

�
−1=βδ

: ð31Þ

Obviously, θ ¼ 1 corresponds to z ¼ 0 and θ ¼ θ0 corre-
sponds to z ¼ −∞, and these, respectively, correspond to
the normalization conditions for the scaling function fG in
Eq. (23). Finally, θ ¼ 0 corresponds to z ¼ ∞. Using
Eqs. (30) and (31), we also obtain f0GðzÞ as

f0GðzÞ≡ dfGðθðzÞÞ
dz

¼ dfG
dθ

=
dz
dθ

: ð32Þ

The presence of Goldstone modes in the symmetry-
broken (z < 0) phase ofOðNÞ symmetric models gives rise
to a distinctively different behavior of the Zð2Þ and OðNÞ
model scaling function fG in the z → −∞ limit:

fGðzÞ
ð−zÞβ ¼

�
1þ d−1 ð−zÞ−βδ þ d−2 ð−zÞ−2βδ þOðð−zÞ−3βδÞ; for Zð2Þ;
1þ d−1 ð−zÞ−βδ=2 þ d−2 ð−zÞ−βδ þOðð−zÞ−3βδ=2Þ; for OðNÞ: ð33Þ

One can arrive at the above asymptotic form for fG using
Eqs. (30) and (31) with the Ansatz for hðθÞ in Zð2Þ and
OðNÞ universality classes given in Eq. (28). Explicit
expressions for d−1 and d−2 in terms of the WG parameters
h3, h5, and θ0 are given in Appendix B.

B. Representation of Oð4Þ scaling functions using
the Widom-Griffiths form

Although earlier parametrizations of the Oð4Þ scaling
function fGðzÞ, determined in Monte Carlo simulations [5],
made use of the Widom-Griffiths form, this was done only
to establish the behavior of fGðzÞ at large jzj. The region
around z ¼ 0 has been parametrized using polynomial
Ansätze. A recent parametrization of the Oð4Þ scaling
function used different fits in the small and large z regions
and obtained a parametrization that uses 14 parameters [9].

4Note that hðθÞ needs to be an odd function in θ. Using the
normalization constant h0, one can assure that the coefficient of
the leading-order term is unity.
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In order to establish the validity of the WG form using an
Ansatz for the function hðθÞ as suggested in Ref. [7], we
reparametrized the fit results presented in Ref. [9]. We used
the WG form for the Oð4Þ scaling functions as given in the
previous subsection and determined optimal parameters
ðθ0; h3; h5Þ in an interval around z ¼ 0; i.e., we do not
make use of the large z behavior of the scaling function
given in Eq. (33). The structure of this asymptotic form
is implemented already in the Widom-Griffiths Ansatz,
and the expansion parameters d−1 and d−2 are determined
directly from ðθ0; h3; h5Þ (see Appendix B), which can
be determined from any set of z values. We determined
these parameters in several intervals ½−zmax∶ zmax� with
1 ≤ zmax ≤ 6. The resulting parameters are given in
Table V, where the errors quoted there reflect the spread
of results for (θ0, h3, h5) obtained when varying zmax. In
Fig. 2, we compare the scaling functions fGðzÞ, f0GðzÞ, and
fχðzÞ, obtained with theWG Ansatz using parameters given
in Table V, to that obtained in Ref. [9]. As can be seen, we
find excellent agreement.
Even though the scaling functions themselves are in

good agreement and as such give consistent results for the

positions zt and zp of the maxima of −f0GðzÞ and fχðzÞ, we
find different asymptotic behavior at large, negative z as
shown for the case of fGðzÞ in the inset in Fig. 3 (right). In
Ref. [9], the subleading asymptotic correction d−2 has been
found to vanish within errors, while we find d−2 ∼ 0.1. This
difference, however, may not be too surprising, as the
earlier results for the asymptotic expansion parameters d−1
and d−2 have been obtained from fits in the interval
z ∈ ½−10;−1�. We will show in the next subsection that
in the Oð2Þ case the asymptotic form is not yet valid in this
z range.
Given the good agreement between the WG parametri-

zation of the Oð4Þ scaling functions and the earlier results
based on a 14-parameter fit to MC data, we find it
encouraging to analyze also the new Monte Carlo simu-
lation results, obtained for the 3D Zð2Þ and Oð2Þ models
using a parametrization based on the WG Ansatz.

C. Representation of Zð2Þ and Oð2Þ scaling functions
using the Widom-Griffiths form

In order to use Eqs. (30) and (31) in determination of the
scaling functions fG, f0G, and fχ from MC results, as given
in Eqs. (19)–(21), one still needs to determine the nonuni-
versal scale parameters ðt0; H0; L0Þ. The nonuniversal
scales H0 and L0 can be determined from the finite-size
dependence of fGðz; zLÞ at Tc, i.e., at z ¼ 0. We present a
determination of these two scales in Appendix A. Once
they have been determined from our results on different
size lattices, the scale parameter t0 can be determined from
the asymptotic behavior of fGðzÞ in the limit z → −∞.
Using Eq. (13), the second normalization condition in
Eq. (22), and writing z ¼ z0zb with z0 ¼ H1=βδ

0 =t0, we
obtain t0 from

t−β0 ¼ lim
zb→−∞

ð−zbÞ−βH−1=δMðT;H;∞Þ: ð34Þ

As this equation relates the scale t0 to observables
calculated in the infinite volume limit, its determination
can directly be incorporated into fits which we perform in the

TABLE V. Fit parameters h3, h5, and θ0 for Oð4Þ infinite
volume scaling functions in the Widom-Griffiths form appearing
in the function hðθÞ introduced in Eq. (28). In the lower part of
the table, we give results for several universal constants com-
putable from the WG parametrization.

Oð4Þ
Monte Carlo Monte Carlo

WG fit to Ref. [9] Engels-Karsch [9]

h3 0.306(34) � � �
h5 −0.00338ð25Þ � � �
θ0 1.359(10) � � �
d−1 0.2481(20) 0.2737(29)
d−2 0.1083(50) 0.0036(49)
zt 0.732(10) 0.74(4)
zp 1.347(9) 1.374(30)

FIG. 2. The Oð4Þ infinite volume scaling functions. The WG parameters have been obtained from a fit to fG, while f0G and fχ have
been obtained from there. Dashed red lines show results from previous calculations [9].

SCALING FUNCTIONS OF THE THREE-DIMENSIONAL … PHYS. REV. D 108, 014505 (2023)

014505-7



infinite volume limit for the determination of the scaling
functions. We obtain t0 and the parameters ðh3; h5; θ0Þ
defining hðθÞ using simultaneous fits to the scaling func-
tions fGðzÞ, f0GðzÞ, and fχðzÞ defined in Eqs. (19)–(21).
While in the parametrization ofZð2Þ scaling functions θ0 is a
function of ðh3; h5Þ, it is an additional free parameter in the
OðNÞ case.
Goldstone modes dominate finite-size effects at large,

negative values of z, which are quite different in OðNÞ
universality classes from those in the Zð2Þ case. In theOð2Þ
universality class, finite-size effects grow rapidly with
decreasing values of z. This is evident from Fig. 3, where
we show results for ð−zÞ−βfGðzÞ in the region z < −2. The
figure shows that we had to perform MC calculations on
rather large lattices to extract the scale parameter t0 from
the asymptotic behavior of the order parameter in the
symmetry-broken phase. In our simulations of the Oð2Þ
model, lattices of size L3 with L ¼ 200 were needed to
reach the region z ≤ −10 without suffering from finite-size
effects. In the case of Zð2Þ, lattices with L ¼ 96 were
already sufficient to perform calculations in a region down
to values z ≃ −20without observing a significant finite-size
dependence in our results.
For z > −2, it was sufficient to perform calculations

on lattices with L ¼ 48–120. For z < −2, however, we
also performed calculations with L ¼ 160 and 200 for
the Oð2Þ model and L ¼ 160 in the case of Zð2Þ. The
statistics collected in all parameter ranges are given in
Tables II–IV.

Our Monte Carlo results obtained for the 3D Zð2Þ and
Oð2Þ models in the large volume limit, zL ≤ 0.35, are
shown in Fig. 4. We performed joint fits using data in the
region zL ≤ 0.35 as approximation for the infinite volume
limit. All three scaling functions have then been obtained
from joint fits to the WG form in the range z ∈ ½−23∶2� for
Zð2Þ and z ∈ ½−12∶2� for the Oð2Þ model.5

We summarize results for the nonuniversal scale param-
eters ðt0; H0; L0Þ, determined by us, in Table I. In Table VI,
we give all universal fit parameters entering the definition
of hðθÞ and compare with results obtained in 3D analytic
calculations [7,18]. In the top section of the two tables,
we give the parameters ðh3; h5Þ, entering fits performed
for scaling functions in the Zð2Þ universality class and
ðθ0; h3; h5Þ in the Oð2Þ case. Results for the nonuniversal
fit parameter t0, obtained in the same fits, are given in
Table I. The bottom part of the tables gives some universal
constants derived from the Widom-Griffiths form of the
scaling functions by using, on the one hand, the results
from fits to our MC data and, on the other hand, the
perturbative results for hðθÞ and θ0 as input.
Aside from the parameters d−1 and d−2 controlling the

asymptotic behavior of fGðzÞ at large, negative z [Eq. (33)],
we also give there the universal constants zp and zt, which
are the z values at the maxima of fχðz; 0Þ and −f0Gðz; 0Þ,
respectively.

FIG. 3. The scaling function fGðzÞ in the Zð2Þ (left) and Oð2Þ (right) universality classes obtained from the order parameter M using
Eq. (19) in the region of large, negative values of z. Monte Carlo data have been obtained in simulations using the 3D Zð2Þ model with
λ ¼ 1.1 and the Oð2Þ model with λ ¼ 2.1. All data are from simulations at T=Tc ¼ 0.99. The large negative z region of the Oð4ÞfGðzÞ
scaling function, obtained from our fit to results in Ref. [9], is shown in the inset in the right figure. Solid lines shown in the figures are
based on fits using the Widom-Griffiths form of the scaling functions and use also data outside the parameter range shown here (see the
text). For Oð2Þ, we also show an error band to the WG ansatz obtained from a bootstrap analysis. The green dashed lines show the
analytic results obtained in the Zð2Þ [18] andOð2Þ [7] universality classes and MC fit results obtained in theOð4Þ [9] universality class,
respectively. The dashed red line shows the asymptotic expansion given in Eq. (33).

5Note that the exact fit range is determined only a posteriori,
once the scale parameter t0 has been obtained in our fits.
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For the ratio of zp and zt, determining pseudocritical temperatures in the Zð2Þ and OðNÞ universality classes, we find

zp
zt

¼
8<
:

2.21ð1Þ; Zð2Þ;
2.09ð2Þ; Oð2Þ;
1.84ð1Þ; Oð4Þ:

ð35Þ

FIG. 4. The Zð2Þ (left column) andOð2Þ (right column) infinite volume scaling functions. Shown are Monte Carlo results obtained on
lattices of size L3 with L ¼ 96 for jzj ≤ 2.1, L ¼ 96, 120, 160 [Zð2Þ, only L ¼ 160 is shown], and L ¼ 200 [Oð2Þ] for z < −2.5. All fits
are joint fits to data for fG, f0G, and fχ , close to z ¼ 0 and in the large, negative z regime. The gray data were not included in the fit.
Green lines in the insets show results from analytic calculations [18] [Zð2Þ, left] and [7] [Oð2Þ, right].
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In Fig. 3, we compared the MC results for fGðzÞ at large,
negative values of z, i.e., for z < −2, with the WG form of
the scaling function, given in Eq. (30), as well as with the
asymptotic form given in Eq. (33). As can be seen, in the
Zð2Þ universality class, the asymptotic expansion using
the first two subleading corrections gives a good approxi-
mation to the full WG form, in almost the entire region,
z < −2. In the Oð2Þ and Oð4Þ universality classes, how-
ever, the first two subleading corrections agree with the full
WG form only for z < −ð8–10Þ as can be seen in Fig. 3
(right) for theOð2Þ case and in the inset in Fig. 3 (right) for
the Oð4Þ case.
Also shown in Fig. 3 are the results obtained from the

3D analytic calculations [18,27]. While in the Zð2Þ case
differences are insignificant, they clearly are visible in the
Oð2Þ case. However, in the asymptotic regime both para-
metrizations of the WG form differ by less than 1%. We
observed the largest differences in the vicinity of the
maximum of −f0GðzÞ, where deviations between the ana-
lytic and MC calculation amount to about 5%. This is
apparent from the insets shown in Fig. 4.

V. FINITE-SIZE SCALING FUNCTIONS

We now want to determine corrections to the infinite
volume scaling functions in the 3D Zð2Þ and Oð2Þ

universality classes arising in a finite volume at small
external field H. These corrections are universal when
taking the limit (H → 0, L → ∞) at fixed zL as introduced
in Eq. (12).
In the limit of small H and in the vicinity of Tc, we

obtain the scaling functions ðfGðz;zLÞ;f0Gðz;zLÞ;fχðz;zLÞÞ
from the order parameter M and the two susceptibilities χh
and χt using Eqs. (19)–(21).
We focus here on the region in the vicinity of Tc and the

pseudocritical temperatures Tpc;h and Tpc;t, determined
from the maxima of the susceptibilities χh and χt, respec-
tively. It is this region where correlation lengths are large
and where it is of particular importance to get control over
finite-size effects in the determination of pseudocritical
and critical temperatures in many models belonging to the
Zð2Þ and OðNÞ universality classes. For this reason, we
determine finite-size scaling functions with parameter sets
ðJ;HÞ corresponding to the interval z ∈ ½−1∶2�. A similar
calculation has been performed previously for finite-size
scaling functions in the Oð4Þ universality class [10].
In our analysis of finite-size effects, we use a polynomial

Ansatz for the scaling functions which has also been used
previously for calculations in the 3D Oð4Þ universality
class [10]:

fGðz; zLÞ ¼ fGðz; 0Þ þ
Xnu
n¼0

Xmu

m¼ml

anmznzmL : ð36Þ

For the infinite volume scaling function fGðz; 0Þ≡ fGðzÞ,
we use the parametrization determined in the previous
section. Here, ðnu;ml; muÞ denote the lower and upper
limits of the sum over the polynomial in powers of z and zL,
respectively. We take the leading-order finite-size correc-
tion to be inversely proportional to the volume Oð1=L3Þ,
i.e., ml ¼ 3. The upper limits nu and mu are optimized in
our fits, using the Bayesian information criterion. We fix
a0ml

¼ 0 in both universality classes; additionally, we
constrain the fit parameters to janmj < 10.
From the Ansatz used for fGðz; zLÞ, one also obtains the

parametrization of f0Gðz; zLÞ, which controls the scaling
behavior of χt:

f0Gðz; zLÞ ¼ f0Gðz; 0Þ þ
Xnu
n¼1

Xmu

m¼ml

nanmzn−1zmL ; ð37Þ

and fχðz; zLÞ, which controls the scaling behavior of χh:

fχðz; zLÞ ¼ fχðz; 0Þ þ
Xnu
n¼0

Xmu

m¼ml

�
1

δ
−
nþmν

βδ

�
anmznzmL :

ð38Þ
Using these polynomial Ansätze, we again perform joint fits
to the MC data for the three scaling functions (fG; f0G; fχ) in
the interval z ∈ ½−1∶2� and for zL ∈ ½0.4∶1.0�. The data for
zL < 0.4 have been excluded from these fits, as they have

TABLE VI. Top: fit parameters h3 and h5 for Zð2Þ infinite
volume scaling functions in the Widom-Griffiths form appearing
in the function hðθÞ introduced in Eq. (28). Bottom: fit param-
eters h3, h5, and θ0 for Oð2Þ infinite volume scaling functions in
the Widom-Griffiths form appearing in the function hðθÞ intro-
duced in Eq. (28). In the lower part of both tables, we give results
for several universal constants computable from the WG para-
metrization.

Zð2Þ
Monte Carlo
(this work)

3D perturbative
expansion [18]

h3 −0.6274ð26Þ −0.76201ð36Þ
h5 0.05360(12) 0.00804(11)

θ0 1.3797(24) 1.15369(17)
d−1 0.33553(83) 0.348329(13)
d−2 −0.2466ð71Þ −0.368672ð53Þ
zt 0.8961(10) 0.8578(3)
zp 1.9770(23) 1.9863(3)

Oð2Þ
Monte Carlo
(this work)

3D improved high-T
expansion [7]

h3 0.162(20) 0.0758028
h5 −0.0226ð18Þ 0
θ0 1.610(14) 1.71447

d−1 0.0969(38) 0.04870
d−2 0.2925(61) 0.36632
zt 0.7991(96) 0.8438
zp 1.6675(68) 1.7685
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been used already to determine the parameters of the infinite
volume scaling functions, as discussed in the previous
section.
Results obtained for the finite-size scaling functions in

the 3D Zð2Þ and Oð2Þ universality classes for some fixed
values of z have been shown already in Fig. 1. In Fig. 5, we
show results for the scaling functions as functions of z for

several fixed values of zL. The fit parameters obtained with
the polynomial fit Ansatz [Eq. (36)] are given in Table VII
for the case of Zð2Þ and in Table VIII for the case of Oð2Þ.
These fits provide a good interpolation for our data in the
range zL ∈ ½0.4∶1.0�. However, due to the large number
of parameters involved, we cannot give significance to
individual parameters entering the polynomial Ansatz.

FIG. 5. Fits to data for scaling functions of in the Zð2Þ (left column) andOð2Þ (right column) universality class. All fits are joint fits to
data for fG, f0G, and fχ , done in the intervals z ∈ ½−1.0; 2.0� and zL ∈ ½0.4; 1.0� on lattices of size L ¼ 48 (circle) and 96 (squares). Also
shown are the infinite volume lines for zL ¼ 0. Green crosses in the upper row mark the normalization condition fGð0; 1Þ ¼ 0.7.
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We, therefore, quote our fit result without assigning errors
to the fit parameters.
As can be seen, the general zL dependence of scaling

functions fGðz; zLÞ and fχðz; zLÞ is similar in the Zð2Þ and
Oð2Þ universality classes. However, it is apparent from the
upper row in Fig. 5 that finite-size effects are larger in the
Oð2Þ case than for Zð2Þ. In the latter case, results for
fGðz; zLÞ are indistinguishable from the infinite volume
results already for zL < 0.6, whereas in the Oð2Þ case at
zL ¼ 0.6, deviations from the infinite volume values
amount to about 3% at z ¼ −1 and increase to 4% at z ¼ 1
(see also the discussion of Fig. 8 in Appendix A).
Furthermore, qualitative differences are evident in the zL
dependence of the scaling function f0Gðz; zLÞ. In the Zð2Þ
case, the approach to the infinite volume limit is non-
monotonic for zL < 0. A pronounced peak shows up in the
symmetry-broken regime (z ≤ 0) at finite zl, and the
asymptotic infinite volume limit is approached from above.
In the case of theOð2Þ universality class, f0Gðz; zLÞ seems to
approach the infinite volume limit result from below for all z.
In the case of fχðz; zLÞ, the approach to the infinite

volume limit is nonmonotonic for z values below the
pseudocritical scale z < zp. As can be seen in Fig. 1, this
is the case in the Zð2Þ as well as in the Oð2Þ universality
class. This nonmonotonic behavior is not that prominently
visible in Fig. 5, as it sets in only at rather large values of zL,
i.e., for zL > 1. This regime is not covered in Fig. 5.
While the finite-size effects seen in the scaling functions

are generally larger in the OðNÞ than in the Zð2Þ

universality class, this is not the case for the location of
maxima in the scaling functions −f0Gðz; zLÞ and fχðz; zLÞ.
These maxima are controlled by universal functions ztðzLÞ
and zpðzLÞ, respectively. We determined them from the
polynomial obtained from the finite-size scaling fits for
Zð2Þ and Oð2Þ. In the case of Oð4Þ, we have used the
finite-size fit given in Ref. [10]. Results are shown in Fig. 6.

TABLE VII. Parameters of the polynomial fit Ansatz for the Zð2Þ finite-size scaling functions ðfG; f0G; fχÞðz; zLÞ
with nu ¼ 4, ml ¼ 3, and mu ¼ 11. The fit was restricted to z ∈ ½−1∶2� and zL ∈ ½0.4; 1.0�.
anm n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

m ¼ 3 0 −0.948309 0.717317 −0.162262 0.077211
m ¼ 4 −1.626176 5.613893 −3.665684 0.705625 −0.389709
m ¼ 5 7.182912 −9.594472 4.926683 −1.015233 0.782710
m ¼ 6 −7.151294 0.244453 0.803864 0.708351 −0.624599
m ¼ 7 −6.583527 7.559574 −3.189855 0.340024 −0.444347
m ¼ 8 7.641469 2.794132 −1.881236 −1.199165 0.834052
m ¼ 9 7.510637 −4.712291 1.481824 −0.473266 0.548429
m ¼ 10 −9.932439 −4.460071 2.132431 2.098657 −1.309965
m ¼ 11 2.658208 3.544670 −1.293838 −1.003939 0.524142

TABLE VIII. Parameters of the polynomial fit Ansatz for the Oð2Þ finite-size scaling function ðfG; f0G; fχÞðz; zLÞ
with nu ¼ 5, ml ¼ 3, and mu ¼ 8. The fit was restricted to z ∈ ½−1∶2� and zL ∈ ½0.4; 1.0�.
anm n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

m ¼ 3 0 −0.740936 0.198298 0.020480 −0.219484 0.096802
m ¼ 4 −0.735344 4.506235 −0.871942 −0.015341 1.377204 −0.676093
m ¼ 5 4.031332 −9.950240 0.340937 −0.456753 −3.161604 1.800423
m ¼ 6 −9.769988 9.634183 2.604256 1.621876 3.397707 −2.365422
m ¼ 7 8.841449 −3.490053 −3.497933 −1.908686 −1.770614 1.560082
m ¼ 8 −2.670471 0.113312 1.259727 0.735997 0.371330 −0.414748

FIG. 6. Finite-size dependence of the location of maxima in the
scaling functions fχðz; zLÞ and −f0Gðz; zLÞ. Shown are the
universal functions zpðzLÞ and ztðzLÞ for the 3D Zð2Þ and
OðNÞ universality classes. Dashed lines show simple polynomial
approximations [Eq. (39)] with parameters as given in the figure.
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It is clearly seen that the finite-size dependence of the
maxima in χh is stronger than that of χt in the OðNÞ
universality classes and vice versa in the Zð2Þ case.
Moreover, the finite-size dependence of zt and zp is stronger
in the Zð2Þ universality class than in theOðNÞ cases. Over a
wide range of zL values, the deviations from the infinite
volume limit result are described well with Ansatz

zXðzLÞ ¼ zXð0Þð1 − aXz
bX
L Þ; X ¼ p; t; ð39Þ

with bp ≃ 4.5 and bt ≃ 5.5 as shown in Fig. 6.

VI. CONCLUSIONS

We determined the infinite volume scaling functions in
the 3D Zð2Þ, Oð2Þ, and Oð4Þ universality classes using a
two- or three-parameter parametrization based on the
analytic Widom-Griffiths scaling form. We find good
agreement of the Oð4Þ parametrization with an earlier
parametrization that usedOð10Þ parameters [9]. In the Zð2Þ
case, we find excellent agreement between our parametri-
zation based on Monte Carlo results and the analytic result
obtained from a perturbative, field theoretic approach [18].
The largest differences between our Monte Carlo results
and analytic calculations [7] we find, in particular, for the
scaling function f0GðzÞ, which controls the scaling behavior
of mixed susceptibilities.
We determined the finite-size dependence of the scaling

functions and showed that qualitative differences between
the Zð2Þ and OðNÞ cases show up most prominently in the
scaling function f0Gðz; zLÞ which controls pseudocritical
and critical behavior of the mixed susceptibilities. We could
show that the location of the pseudocritical temperature,
corresponding to zt, is less affected by finite-size effects
than the pseudocritical temperature determined by the
maximum of the order parameter susceptibility (χh) at zp.
This difference is particularly striking in the Oð4Þ univer-
sality class. The comparison of the finite-size dependence
of the scaling functions among different universality classes
has been possible with our proposed normalization con-
dition for the nonuniversal scale parameter L0.
We furthermore find zp=zt ≃ 2, i.e., at nonzero values

of the symmetry-breaking parameter H deviations of the
pseudocritical temperature Tpc;t from the phase transition
temperature Tc are about a factor of 2 smaller than that of
Tpc;h. All data presented in the figures of this paper can be
found in Ref. [28].
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APPENDIX A: DETERMINATION OF H0 AND L0

In order to extract scaling functions from numerical
simulations of the 3D Zð2Þ and Oð2Þ model using the
Hamiltonian given in Eq. (1), we need to determine the
nonuniversal scales ðt0; H0; L0Þ. In this appendix, we
discuss the determination of ðH0; L0Þ using the finite-size
dependence of the order parameter at Tc.
The critical temperature Tc has been determined with

great precision for the improved Zð2Þ [12] and Oð2Þ [7]
models, respectively. For the Zð2Þ model, also the scale H0

has been determined previously [21] on similar size lattices
as used in this study but using infinite volume scaling
Ansätze and lower statistics.
For the determination of H0, we make use of the

normalization conditions for the order parameter or, equiv-
alently, the scaling function fGðz; 0Þ as introduced in
Eq. (23). The scale L0 is obtained using the normalization
condition for the finite-size scaling function fGð0; zLÞ
introduced in Eq. (24).
For our determination of the scale parameters, we

introduce the (bare) scaling variables zb and zL;b through
z ¼ z0zb and zL ¼ z0;LzL;b, with

zb ¼
T − Tc

Tc
H−1=βδ; ðA1Þ

zL;b ¼
1

LHν=βδ ; ðA2Þ

and

z0 ¼ H1=βδ
0 =t0; z0;L ¼ L0H

ν=βδ
0 : ðA3Þ

To determine H0, using Eq. (23), we performed dedi-
cated calculations at Tc on lattices of size L ¼ 48, 96, and
120 and for several values of zL. The statistics collected
for each parameter set ðJc; LÞ is given in Table III.
We calculate the order parameter MðT;H; LÞ in the limit
ðH → 0; L → ∞Þ for several values of fixed zL;b and then
take the limit zL;b → 0 at T ≡ Tc:

H−1=δ
0 ¼ lim

zL;b→0
lim
H→0

ðH−1=δMðTc;H; 1=zL;bHν=βδÞÞ: ðA4Þ

Results from this calculation are shown in Fig. 7. The
intercept at zL;b ¼ 0 yields H−1=δ

0 . Also shown in the figure
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are results from polynomial fits

f̃GðzL;bÞ ¼ H−1=δ
0 þ

Xmu

m¼ml

bmzmL;b ðA5Þ

to the right-hand side of Eq. (A4) in different intervals
zL;b ∈ ½0.1∶zL;b;max�, with zL;b;max ∈ f1.1; 1.2; 1.3g. H0

and bm are then determined by bootstrapping fits with
different zL;b;max. The lower and upper limits ml and mu

are chosen differently from their finite-size counterparts:
We use ml ¼ 4 and mu ¼ 9 for Zð2Þ, while ml ¼ 3 and
mu ¼ 7 are used for Oð2Þ. This determines H0. Using
Eq. (24), we then obtain L0 from the value zL;b, which gives

H1=δ
0 f̃GðzL;bÞ ¼ 0.7. Using the fit results for f̃GðzL;bÞ, we

then obtain the normalization constants ðH0; L0Þ for the
Zð2Þ and Oð2Þ model, which are given in Table I.
The result obtained for H0 for the Zð2Þ model from our

finite-size scaling fit is about 2% smaller than the value
H0 ¼ 0.8150ð56Þ obtained in Ref. [21] from a fit of the
order parameter M at Tc, using the infinite volume scaling
Ansatz for M.
Using the scale parameters H0 and L0, we obtain the

scaling function fGðz; zLÞ at z ¼ 0 as a function of zL. A
comparison of results obtained in different universality
classes is shown in Fig. 8. This suggests that the finite-size
dependence of the order parameter is larger in the OðNÞ
universality classes than in the Zð2Þ universality class.

APPENDIX B: PARAMETRIZATION OF Zð2Þ
AND OðNÞ SCALING FUNCTIONS

We give here results for the two subleading expansion
coefficients d−1 and d−2 , appearing in the large, negative z
expansion of the infinite volume scaling functions fGðzÞ in

the 3D Zð2Þ and OðNÞ universality classes [cf. Eq. (33)].
We present explicit expressions in terms of the parameters
appearing in the definition of the function hðθÞ given in
Eq. (28) of scaling functions written in the Widom-Griffiths
form [14–17].
The coefficients in the asymptotic expansion for the Zð2Þ

scaling function are

d−1 ¼ −θδ−10

ð1þ ð2β − 1Þθ20Þ
ðθ20 − 1Þ

hð1Þ
h0ðθ0Þ

; ðB1Þ

FIG. 7. The rescaled order parameter H−1=δM versus the bare finite-size scaling variable zL;b at Tc. The left-hand figure shows results
for the 3D Zð2Þ model with λ ¼ 1.1, and the right-hand figure is for the Oð2Þ model with λ ¼ 2.1. The inset shows the region of small
zL;b that is used for the determination of the nonuniversal scale parameterH0. The green cross marks the value of zL;b that determines the
scale parameter L0 using the normalization condition given in Eq. (24).

FIG. 8. Comparison of the scaling function fGð0; zLÞ in differ-
ent 3D universality classes as a function of zL. The data for the
scaling function in the Oð4Þ universality class are taken from
Ref. [10]. For this purpose, the scaling variable zL has been
rescaled using L0 ¼ 0.7686 to be consistent with the normali-
zation condition [Eq. (24)] used for the Zð2Þ and Oð2Þ univer-
sality classes.
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d−2 ¼ −
θ2δ−10 hð1Þ2

2ðθ20 − 1Þ2h0ðθ0Þ3
ð2βθ0h0ðθ0Þð2δðð2β − 1Þθ20 þ 1Þ

−ð2β − 1Þθ20 − 3Þ − hð2Þðθ0Þðθ20 − 1Þ
× ðð2β − 1Þθ20 þ 1ÞÞ; ðB2Þ

and the corresponding expansion coefficients in the OðNÞ
case are

d−1 ¼ θδ=2−10

ð1þ ð2β − 1Þθ20Þ
ðθ20 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hð1Þ
hð2Þðθ0Þ

s
; ðB3Þ

d−2 ¼−
θδ−10 hð1Þ

3ðθ20−1Þ2hð2Þðθ0Þ2
ð6βθ0hð2Þðθ0Þðδðð2β−1Þθ20þ1Þ

−ð2β−1Þθ20−3Þ−hð3Þðθ0Þðθ20−1Þ
× ðð2β−1Þθ20þ1ÞÞ: ðB4Þ

It should be noted that θ0 is an independent parameter in
the parametric representation of OðNÞ universality class,
while it is a function of parameters h3 and h5 in the
Zð2Þ case.
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