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We numerically study the phase structure of the two-flavor Schwinger model with matrix product states,
focusing on the (1þ 1)-dimensional analog of the CP-violating Dashen phase in QCD. We simulate the
two-flavor Schwinger model around the point where the positive mass of one fermion flavor corresponds to
the negative mass of the other fermion flavor, which is a sign-problem afflicted regime for conventional
Monte Carlo techniques. Our results indicate that the model undergoes a CP-violating Dashen phase
transition at this point, which manifests itself in abrupt changes of the average electric field and the analog
of the pion condensate in the model. Studying the scaling of the bipartite entanglement entropy as a
function of the volume, we find clear indications that this transition is not of first order.
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I. INTRODUCTION

Monte Carlo (MC) methods have shown unparalleled
success for exploring static properties of lattice gauge
theories, such as mass spectra [1–3] and phase diagrams
[4]. However, conventional MC methods cease to work
in certain parameter regimes, in which the Euclidean
lattice action of the theory becomes negative or complex.
This prevents an efficient MC sampling, and is generally
referred to as sign problem.
A prominent example is quantum chromodynamics

(QCD) in the presence of a large topological θ-term.
Here, a particularly interesting point in parameter space is
θ ¼ π, where a CP-violating phase transition has been
predicted in early works by Dashen using current algebra
arguments [5] and later using anomaly matching tech-
niques (see Ref. [6] and references therein). Going beyond
QCD, the Dashen phase transition also plays a crucial role
in several models beyond the Standard Model of particle
physics (see, e.g., Refs. [7,8]).

The origin of the Dashen phase transition can be easily
understood by noting that θ ¼ π corresponds to a negative
quark mass, due to the chiral anomaly. Following Refs. [9–
12], let us consider QCD with only the lightest two fermion
flavors, i.e., the up- and the down-quark. The low-lying
hadronic spectrum is given by the pseudoscalar mesons,
i.e., the pions and the two-flavor analog of the η0 meson.
Neglecting electromagnetic effects, chiral perturbation
theory predicts that the pion mass squared, M2

π , is propor-
tional tomu þmd, wheremu (md) is the bare mass of the up
(down) quark. Due to corrections ∝ ðmu −mdÞ2 [13,14],
the neutral pion π0 has a slightly smaller mass than the
charged pions π� (see Fig. 1). Choosing a fixed positive
value of the down-quark mass, md > 0, the neutral pion
mass is positive as long asmu ≳ −md, and hence the theory
is gapped in this regime. When decreasing mu further, the
neutral pion mass vanishes and eventually becomes com-
plex, thus indicating the onset of the Dashen phase
transition, as illustrated in Fig. 1. At the transition, the
pion condenses and acquires a nonzero vacuum expectation
value. This transition spontaneously breaks the CP sym-
metry, because the pion is a CP-odd particle [9–12].
The order of the Dashen phase transition depends on an

unknown sign in the effective action for the two-flavor
case. Reference [9] argued that a series of first-order
transition lines should exist along the md-axis, which
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end in second-order transitions. However, this conjecture
has not been verified numerically.
In this paper, we numerically study the Dashen phase

transition in the two-flavor Schwinger model [15–17],
which is a model that shares many properties with QCD
and has therefore been adopted as a benchmark model for
testing new numerical methods aimed at QCD applications.
Our study is an extension of our previous preliminary
investigation of the Dashen phase transition in Ref. [18].
In our study, we adopt a Hamiltonian lattice formulation
with Kogut-Susskind staggered fermions and simulate the
model with matrix product states (MPS), a particular kind of
tensor network (TN).WithMPS, the spectrum of the single-
flavor Schwinger model has already been successfully
computed [19–30], and the model has been studied with
a nonzero θ term [29,31–34], a nonzero chemical potential
[26,27,35], a nonzero temperature [30,36–40], and for real-
time problems [23,41]. The MPS approach allows us to
compute the electric field and the analog of the pion
condensate in a regime that is inaccessiblewith conventional
MC methods. Moreover, MPS allow for direct access to the
entanglement structure in the state, which allows us to
characterize the Dashen phase transition in terms of the
scaling of the correlations, thus obtaining insights into the
order of the transition.
The paper is structured as follows. In Sec. II, we briefly

introduce the Hamiltonian lattice formulation with stag-
gered fermions for multiple flavors. Furthermore, we
explain the numerical MPS techniques that we use to
compute the ground state of the Hamiltonian and to measure
observables. In Sec. III, we present our results of the phase
structure of themodel.Wediscuss these results andprovide a
conclusion Sec. IV.

II. MODEL AND METHODS

In the following, we briefly introduce the Hamiltonian
lattice formulation of the Schwinger model, which

describes quantum electrodynamics in (1þ 1) dimensions,
with multiple fermion flavors and staggered fermions.
Subsequently, we discuss the TN methods that we use to
compute the ground state of the lattice Hamiltonian.

A. Lattice Schwinger model

For our study, we adopt a Hamiltonian formulation of the
Schwinger model. In the continuum, it reads

H¼
Z

dx

�X
f

½−iψ̄fð∂1− igA1Þψfþmfψ̄fψf�þ
1

2
E2

�
;

ð1Þ

where ψf is a two-component spinor describing a fermion
of flavor f, Aμ is the U(1) gauge field, and we have chosen
temporal gauge, A0 ¼ 0. The parameter g is the bare
coupling, andmf is the bare mass for flavor f. The operator
E ¼ − _A1 represents the electric field, and we have used the
convention γ0 ¼ σz and γ1 ¼ iσy for the Dirac matrices
with σy;z the usual Pauli matrices. In addition, physical
states have to fulfill Gauss law

∂1E ¼ g
X
f

ψ̄fγ
0ψf: ð2Þ

In order to numerically simulate the model with
MPS, we work with a lattice version of the continuum
Hamiltonian in Eq. (1). While it has been recently shown
how tackle the lattice discretization using Wilson fermions
with MPS [33], we choose to work with staggered fermions
that have been widely used in previous numerical simu-
lations with TN [19,21,25,26,29,32,42–44]. On a lattice
with spacing a and N sites, the lattice Hamiltonian for F
fermion flavors reads [45]

H ¼ −
i
2a

XN−2

n¼0

XF−1
f¼0

�
ϕ†
n;fe

iθnϕnþ1;f − H:c:
�

þ
XN−1

n¼0

XF−1
f¼0

ð−1Þnmfϕ
†
n;fϕn;f þ

g2a
2

XN−2

n¼0

L2
n: ð3Þ

Here, the operators ϕn;f describe a single-component
fermionic field of flavor f on site n, and Ln corresponds
to the (dimensionless) electric field operator acting on the
link between sites n and nþ 1. The operator θn is the
canonical conjugate of Ln with ½θn; Ln0 � ¼ iδnn0 , and θn is
restricted to ½0; 2πÞ, as we choose to work with a compact
formulation. The exponential of θn, eiθn , acts as a lowering
operator for the electric flux on the link joining the sites n
and nþ 1. On the lattice, the Gauss law constraint from
Eq. (2) translates to

Ln − Ln−1 ¼ Qn; ð4Þ

FIG. 1. Illustration of the low-lying hadronic spectrum of two-
flavor QCD. Fixing the down-quark mass md to a positive value
and decreasing the up-quark mass mu to negative values, the
neutral pion mass M2

π0 ∝ mu þmd eventually becomes complex,
which indicates the onset of the Dashen phase transition. The
transition is expected to happen for values of mu slightly larger
than −md because of corrections ∝ ðmu −mdÞ2 to the neutral
pion mass.
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where Qn ¼
P

F−1
f¼0 ðϕ†

n;fϕn;f − 1
2
½1 − ð−1Þn�Þ is the stag-

gered fermionic charge.
For open boundary conditions, a recursive application

of Eq. (4) allows us to reconstruct the electric field
purely from the fermionic charge content, after fixing
the value l−1 of the electric field on the left boundary,
Ln ¼

P
k≤n Qk þ l−1. Inserting this into the Hamiltonian in

Eq. (3) and applying a residual gauge transformation allows
us to fully remove the gauge fields. After making the
resulting expression dimensionless, we obtain the final
dimensionless lattice Hamiltonian [19,26,27,32]

W ¼ −ix
XN−2

n¼0

XF−1
f¼0

�
ϕ†
n;fϕnþ1;f − H:c:

�

þ
XN−1

n¼0

XF−1
f¼0

ð−1Þnμfϕ†
n;fϕn;f þ

XN−2

n¼0

�Xn
k¼0

Qk

�
2

; ð5Þ

where the dimensionless constant x ¼ 1=ðagÞ2 corresponds
to the inverse lattice spacing squared in units of the
coupling, and μf ¼ 2

ffiffiffi
x

p
mf=g is proportional to the mass

in units of the coupling.
In order to investigate the Dashen phase in the

Schwinger model, we focus on the simplest nontrivial
setup and restrict ourselves to two fermion flavors. In the
case of QCD with two fermion flavors, the onset of the
Dashen phase is characterized by the formation of a pion
condensate, given by hψ̄ðxÞγ5τ3ψðxÞi in the continuum
theory. Here, ψðxÞ is a spinor having both flavor and Dirac
indices, and τ3 acts on flavor space and corresponds to the
Pauli matrix σz. The lattice analog of the pion condensate in
the Schwinger model with the staggered fermion formu-
lation reads

C ¼ i
ffiffiffi
x

p
N

XN−2

n¼0

X1
f¼0

ð−1Þnþf
�
ϕ†
n;fϕ

†
nþ1;f − H:c:

�
ð6Þ

in units of the coupling. Furthermore, in our study we
compute the average electric field, which is given by

F̄ ¼ 1

k

XN=2þk=2

n¼N=2−k=2þ1

Ln; ð7Þ

where we sum over k sites in the center of the system to
avoid boundary effects [46].

B. Matrix product states

In order to numerically explore the phase structure of the
Schwinger model Hamiltonian in Eq. (5), we use MPS
techniques. MPS are a family of entanglement-based
ansätze for the wave function of a (strongly-correlated)
quantum many-body system. For open boundaries and N
sites, the ansatz is given by

jχi ¼
X

i0;…;iN−1

Mi0
0 …MiN−1

N−1ji0i ⊗ � � � ⊗ jiN−1i; ð8Þ

where fjikigd−1k¼0 is a local basis for the Hilbert space of site
k,Mik

k are complexD ×Dmatrices for 0 < k < N − 1, and
Mi0

0 (MiN
N ) is a D-dimensional row (column) vector. The

size of the matrices Mik
k , called the bond dimension of

the MPS, determines the number of parameters in the
ansatz. For a fixed value of the bond dimension, an MPS
approximation for the ground state can be obtained
variationally by iteratively optimizing the parameters until
convergence [47–49]. After obtaining the ground state from
the variational procedure, we can measure the electric field
and the pion condensate. Furthermore, MPS allow for easy
access to the reduced density operator ρsub describing a
contiguous subsystem of the entire system [47–49]. In turn,
this allows for easy access to the von Neumann entropy
S ¼ −trðρsub log ρsubÞ, which is a measure for the quantum
correlations between the subsystem and its environment.
For convenience, we choose to translate the fermionic

degrees of freedom in Eq. (5) to spins using a Jordan-
Wigner transformation [19,26,32,50,51]. We note that MPS
and more general TN are, however, able to directly deal
with fermionic degrees of freedom with essentially no
additional cost in the algorithm [52,53].
Numerical techniques based on MPS and more

general TN do not suffer from the sign problem, and
allow for reliable computations in parameter regimes
which are inaccessible with MC methods (see, e.g.,
Refs. [33,43,44,54,55]). In particular, we can access the
Schwinger model in the regime of negative fermion mass
(or equivalently in the regmine of a topological θ-term with
θ ¼ π), which allows us to explore the Dashen phase
transition in the two-flavor Schwinger model.

III. RESULTS

In order to investigate the Dashen phase in the two-
flavor Schwinger model, we fix the bare mass of the first
flavor, m0=g, to a positive value of 0.25 and scan the bare
mass of the second flavor, m1=g, around −m0=g. Note that
this parameter regime would in general lead to a sign
problem for MC methods. In our study, we use fixed
dimensionless physical volumes N=

ffiffiffi
x

p
ranging from 10 to

25, with lattice spacings corresponding to x ∈ ½60; 100�.
Moreover, we focus on the sector of vanishing total
charge,

P
n Qn ¼ 0 [56]. In order to estimate the error

due to the finite bond dimension in our numerical simu-
lations, we repeat the computation for every combination
of ðN=

ffiffiffi
x

p
; x; m0=g;m1=gÞ for multiple values of D ∈

½20; 300� and extrapolate to the limit D → ∞ following
Ref. [32].
Figure 2 shows our results after this extrapolation for the

average electric field, the pion condensate and the von
Neumann entropy for various lattice spacings. Focusing on
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the average electric field hF̄i, Figs. 2(a)–(c) demonstrate
that hF̄i increases as we decrease the value of m1=g
from above to below −m0=g. While for our smallest
volume, N=

ffiffiffi
x

p ¼ 10, this change is somewhat continuous,
it becomes sharper with increasing volume. For the largest
volume of N=

ffiffiffi
x

p ¼ 25, we observe two plateaus; for
large values of m1=g ≫ m0=g, the average electric field
hF̄i approaches zero, while for small values of m1=g ¼
−0.5 ≪ m0=g, the average electric field saturates at around
0.22. Comparing the results with different lattice spacings,
we do not observe a strong dependence on x throughout
the entire parameter regime we study. In particular, the
values for the average electric field obtained for x ¼ 80 and
x ¼ 100 are essentially the same, as shown in Figs. 2(b)
and 2(c).
Due to the chiral anomaly, a negative fermion mass is

equivalent to the presence of a topological θ-term with
θ ¼ π. The Schwinger model with a single fermion flavor is
known to undergo a phase transition at this point, provided
that the bare fermion mass is above a critical value given by
ðm=gÞc ≈ 0.33 in the continuum [29,31]. Previous numeri-
cal studies observed that the electric field vanishes for mass
values below the phase transition point, whereas the electric
field acquires a nonvanishing value after the transition

occurs [29,31]. Our results for the two-flavor case are
compatible with this observation, and the drop in the
average electric field hints towards a phase transition
at m1=g ≈ −m0=g.
The results for the pion condensate hCi in Figs. 2(c)–(f)

show a qualitatively similar picture. For large values of
m1=g, the value of the condensate is close to zero. When
decreasing the value of m1=g, we see a decrease in hCi as
we approach −m0=g. Upon further lowering the value of
m1=g, the pion condensate eventually approaches a con-
stant value. Also for this observable, the lattice effects are
small, and there is virtually not dependence on the value of
x throughout the parameter regime we consider. Compared
to the electric field, we observe slightly larger finite-volume
effects, especially in the region where m1=g is larger than
−m0=g. In particular, the expectation value of the pion
condensate becomes closer to zero with increasing N=

ffiffiffi
x

p
but does not reach zero for the volumes we study.
Our observations for the pion condensate are compatible

with the theoretical expectation for the Dashen phase in
QCD with two fermion flavors, as presented in Sec. I and
Fig. 1. Away from the Dashen phase, i.e., as long as
m1=g ≫ −m0=g, the values for the pion condensate are
close to zero. Approaching the point m1=g ≈ −m0=g, at

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Average electric field (first row), pion condensate (second row) and entropy (third row) as a function of the bare massm1=g of
the second fermion flavor, for m0=g ¼ 0.25, x ¼ 60 (first column), x ¼ 80 (second column), and x ¼ 100 (third column). Different
markers indicate data for different volumes with N=

ffiffiffi
x

p ¼ 10 (blue dots), 12.5 (orange triangles), 15 (green squares), 17.5 (red
diamonds), 20 (purple upside-down triangle), and 25 (brown hexagons). The error bars arise from the extrapolation in the bond
dimension D. The dashed vertical line indicates the point where m2=g reaches −m1=g. To compute the average electric field, we use
k ¼ 4 sites in the center of the system, according to Eq. (7).
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which we expect the onset of the Dashen phase, the
values of the condensate abruptly decrease. When contin-
uing to decrease the mass of the second flavor until
m1=g ≪ −m0=g, we eventually reach a point where hCi
is roughly constant. Thus, the behavior of the condensate
provides a strong indication for the occurrence of the
Dashen phase transition at m1=g ≈ −m0=g.
Finally, we compute the von Neumann entropy S, as

shown in Figs. 2(g)–(i). Similar to the average electric
field and the pion condensate, the entropy also shows a
feature of the phase transition in form of a peak around
m1=g ≈ −0.225. Comparing the results for S to the other
observables, we see that both finite-lattice and finite-
volume effects are significantly stronger, especially around
the point m1=g ≈ −m0=g. The dependence of the peak
value of the entropy on the volume is expected for a phase
transition of second or higher order. The von Neumann
entropy is a direct measure for the correlation length in the
system, which in turn shows a logarithmic divergence as
one approaches the phase transition point (for a system in
the thermodynamic limit) [57–59]. As we consider finite
volumes, the system size bounds the correlation length

from above. Thus, for a fixed value of x, we expect the
entropy to scale as S ∝ logðN=

ffiffiffi
x

p Þ at the transition point.
In contrast, as one goes away from the critical point, the
correlation length is finite, and S should approach a
constant value, as soon as the volume is significantly
larger than the correlation length.
With our MPS data for the entropy, we can examine this

behavior. Figure 3 shows the entropy at fixed values of
m1=g as a function of the volume, N=

ffiffiffi
x

p
. Focusing on the

left column in the figure, which corresponds to our largest
mass, m1=g ¼ −0.05, we see that the entropy essentially
reaches a constant value, independent of the volume, as
expected. Looking at the opposite limit, m1=g ¼ −0.5, as
shown in the right column in Fig. 3, our data for the entropy
seems to be compatible with a logarithmic divergence at
first sight. However, a closer look reveals that this is not the
case. Inspecting the results for our coarsest lattice spacing,
corresponding to x ¼ 60, in Fig. 3(c), for which our
numerical data are most precise, we observe that the
entropy changes its scaling behavior around volumes
12.5 and 20, where at the latter value it shows a trend
towards saturating. Fitting our data to a logarithmic

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Entropy as a function of the volume for x ¼ 60 (top row), x ¼ 80 (middle row), and x ¼ 100 (bottom row). The different
columns correspond tom1=g ¼ −0.05 (first column), m1=g ¼ −0.225 (middle column), andm1=g ¼ −0.5 (right column). Note that the
x-axes are in logarithmic scale. The blue dashed lines in panels (a), (d), and (g) correspond to a constant fit, whereas in on all other panels
it corresponds to a fit SðN=

ffiffiffi
x

p Þ ¼ c1 logðN=
ffiffiffi
x

p Þ þ c2 with constants c1, c2. The insets show the reduced χ2d:o:f: of the fit, which
demonstrate that the data are compatible with the fit function in all cases except for panels (c), (f), and (i). Error bars come from the
extrapolation in D.
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divergence, we obtain a large value for χ2d:o:f:, thus con-
firming that our data is not compatible with this functional
form. This indicates that the correlation length is finite and,
upon reaching large enough volumes to accommodate the
correlation length, the entropy eventually saturates. Going
to finer lattice spacings corresponding to x ¼ 80 and
x¼ 100, we see a similar behavior, as Figs. 3(f) and 3(i)
reveal. Again, we observe a change in scaling behavior
around the volumes 12.5 and 20. For these finer lattice
spacings, we do not see the saturation effect as clearly as
before. This can be explained by the fact that for finer
lattice spacings, the correlation length in units of the lattice
spacing increases; thus, one needs larger volumes to see the
saturation effect. Fitting our data to a logarithmic diver-
gence as before, the values of χ2d:o:f: are again significantly
larger than 1, hence showing that the data is incompatible
with the fit function.
Turning to m1=g ¼ −0.225, which is approximately the

value for the mass at which the entropy showed a
pronounced peak for all values of x we study, we observe
that S clearly follows a logarithmic divergence in the
volume, as the central column of Fig. 3 demonstrates. In
particular, compared to the previous cases, there is no
noticeable change in the scaling behavior throughout the
entire range of volumes we study, and the data is well
described by a logarithmic divergence for all our lattice
spacings. This is also confirmed by fitting our results to a
function of the form SðN=

ffiffiffi
x

p Þ ¼ c1 logðN=
ffiffiffi
x

p Þ þ c2,
which yields values for χ2d:o:f: below one, thus showing
that the data is following the expected scaling behavior for
a phase transition of second or higher order [57–59].
Our data for the entropy corroborate the picture obtained

from the electric field and the pion condensate. We observe
clear indications for the occurrence of a second or higher-
order phase transition, manifesting itself in a distinct peak
in the entropy. While the electric field and the pion
condensate only give an indication for the regime of the
mass values in which the transition occurs, the peak in the
entropy is a lot sharper and allows us to clearly determine
the location of the transition within our resolution at
m1=g ≈ −0.225. Interestingly, this value of the bare fer-
mion mass is slightly larger than −m0=g, which is in
accordance with the theoretical expectation for the two-
flavor QCD presented in Sec. I, see Fig. 1. This shift of the
critical mass away from −m0=g does not change when
varying the lattice spacing or the volume for sufficiently
large volumes (see Fig. 2), which indicates that the shift is a
physical effect just as in QCD.

IV. DISCUSSION AND OUTLOOK

In this study, we used numerical techniques based on
MPS to explore the Dashen phase in the Schwinger model
with two fermion flavors. Fixing the first bare fermion mass
m0=g to a positive value and scanning the value of the

second bare fermion massm1=g around −m0=g, we explore
a regime in which conventional MC methods suffer from
the sign problem. Our numerical results indicate the
existence of phase transition, which manifests itself in a
sudden change in the value of the electric field as well as
the formation of a pion condensate as we decrease m1=g
below −m0=g. The formation of the CP-violating con-
densate confirms that the transition is the analog of the
CP-violating Dashen phase transition in QCD, and our
results are compatible with the qualitative picture for QCD
with two fermion flavors [9–12].
With our MPS approach, we have direct access to

the bipartite entanglement in the system. Studying the
von Neumann entropy, we observe a clear peak in the
entropy for a value of m1=g ≈ −0.225 slightly larger than
−m0=g ¼ −0.25, indicating that the transition occurs
slightly before the point where the absolute values of both
masses are equal. This is again in agreement with the two-
flavor QCD picture, for which corrections ∝ ðmu −mdÞ2
shift the Dashen phase transition to larger values of the
down-quark mass [9–14].
In addition, the scaling behavior of the entanglement

entropy allows for obtaining insights into the order of the
transition. Studying the scaling with the volume at a fixed
value of the lattice spacing, we observe a logarithmic
divergence at m1=g ¼ −0.225, whereas away from the
transition point the entanglement entropy does not follow
this behavior. These results suggest that the observed
transition is of second (or higher) order, in agreement with
the theoretical prediction for QCD that two first-order
transition lines with second-order end points should exist
along the md axis [9], which has not been verified with
numerical simulations so far.
In our study, we focused on negative masses, which are

equivalent to having a topological θ term with θ ¼ π. This
regime can also be addresses with TN [29,31–33] and could
provide an alternative route to explore the Dashen phase
transition. Moreover, with recent developments for TN in
(3þ 1) dimensions [44], it might be possible to directly
study QCD with two fermion flavors with TN techniques in
the future. In addition, our results can also serve as a
benchmark for recent efforts to simulate lattice gauge
theories on quantum hardware [60–63].

ACKNOWLEDGMENTS

S. K. acknowledges financial support from the Cyprus
Research and Innovation Foundation under projects
“Future-proofing Scientific Applications for the
Supercomputers of Tomorrow (FAST)”, Contract
No. COMPLEMENTARY/0916/0048 and “Quantum
Computing for Lattice Gauge Theories”, Contract
No. EXCELLENCE/0421/0019. L. F. is partially supported
by the U.S. Department of Energy, Office of Science,
National Quantum Information Science Research Centers,
Co-design Center for Quantum Advantage (C2QA) under

LENA FUNCKE, KARL JANSEN, and STEFAN KÜHN PHYS. REV. D 108, 014504 (2023)

014504-6



Contract No. DE-SC0012704, by the DOE QuantiSED
Consortium under Contract No. 675352, by the National
Science Foundation under Cooperative Agreement
No. PHY-2019786 (The NSF AI Institute for Artificial

Intelligence and Fundamental Interactions, [64]), and by
the U.S. Department of Energy, Office of Science, Office of
Nuclear Physics under Grants No. DE-SC0011090 and
No. DE-SC0021006.

[1] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann,
S. D. Katz, S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K.
Szabo, and G. Vulvert, Ab initio determination of light
hadron masses, Science 322, 1224 (2008).

[2] C. Alexandrou, Hadron properties from lattice QCD,
J. Phys. Conf. Ser. 562, 012007 (2014).

[3] G. S. Bali, S. Collins, P. Georg, D. Jenkins, P. Korcyl, A.
Schäfer, E. E. Scholz, J. Simeth, W. Söldner, and S.
Weishäupl, Scale setting and the light baryon spectrum in
nf ¼ 2þ 1 QCD with Wilson fermions, J. High Energy
Phys. 05 (2023) 035.

[4] J. N. Guenther, Overview of the QCD phase diagram, Eur.
Phys. J. A 57, 136 (2021).

[5] R. Dashen, Some features of chiral symmetry breaking,
Phys. Rev. D 3, 1879 (1971).

[6] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, time reversal and temperature, J. High Energy Phys.
05 (2017) 091.

[7] P. Di Vecchia, G. Rossi, G. Veneziano, and S. Yankielowicz,
Spontaneous CP breaking in QCD and the axion potential:
An effective Lagrangian approach, J. High Energy Phys. 12
(2017) 104.

[8] G. Perez and A. Shalit, High quality Nelson-Barr solution to
the strong CP problem with θ ¼ π, J. High Energy Phys. 02
(2021) 118.

[9] M. Creutz, Quark masses and chiral symmetry, Phys. Rev. D
52, 2951 (1995).

[10] M. Creutz, Quark masses, the Dashen phase, and
gauge field topology, Ann. Phys. (Amsterdam) 339, 560
(2013).

[11] M. Creutz, Chiral symmetry and lattice fermions, Proc. Sci.
QCD-TNT-III2014 (2014) 009.

[12] M. Creutz, CP violation in QCD, Proc. Sci. Confine-
ment2018 (2019) 171.

[13] J. Gasser and H. Leutwyler, On the low energy structure of
QCD, Phys. Lett. B 125B, 321 (1983).

[14] J. Gasser and H. Leutwyler, Chiral perturbation theory to
one loop, Ann. Phys. (N.Y.) 158, 142 (1984).

[15] J. Schwinger, Gauge invariance and mass. II, Phys. Rev.
128, 2425 (1962).

[16] S. Coleman, R. Jackiw, and L. Susskind, Charge shielding
and quark confinement in the massive Schwinger model,
Ann. Phys. (N.Y.) 93, 267 (1975).

[17] S. Coleman, More about the massive Schwinger model,
Ann. Phys. (N.Y.) 101, 239 (1976).

[18] L. Funcke, K. Jansen, and S. Kühn, CP-violating
Dashen phase transition in the two-flavor Schwinger
model: A study with matrix product states, Proc. Sci.
LATTICE2021 (2022) 552.

[19] M. Bañuls, K. Cichy, K. Jansen, and J. I. Cirac, The mass
spectrum of the Schwinger model with matrix product
states, J. High Energy Phys. 11 (2013) 158.

[20] M. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,
Matrix product states for lattice field theories, Proc. Sci.
LATTICE2013 (2014) 332, https://pos.sissa.it/187/332/.

[21] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde,
and F. Verstraete, Matrix Product States for Gauge Field
Theories, Phys. Rev. Lett. 113, 091601 (2014).

[22] S. Kühn, J. I. Cirac, and M. Bañuls, Quantum simulation of
the Schwinger model: A study of feasibility, Phys. Rev. A
90, 042305 (2014).

[23] B. Buyens, J. Haegeman, K. Van Acoleyen, and F.
Verstraete, Matrix product states for Hamiltonian lattice
gauge theories, Proc. Sci. LATTICE2014 (2014) 308,
https://pos.sissa.it/214/308.

[24] B. Buyens, J. Haegeman, F. Verstraete, and K. Van
Acoleyen, Tensor networks for gauge field theories,
Proc. Sci. LATTICE2015 (2016) 280, https://pos.sissa.it/
251/280/.

[25] B. Buyens, J. Haegeman, H. Verschelde, F. Verstraete, and
K. Van Acoleyen, Confinement and String Breaking for
QED2 in the Hamiltonian Picture, Phys. Rev. X 6, 041040
(2016).

[26] M. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and S. Kühn,
Density Induced Phase Transitions in the Schwinger Model:
A Study with Matrix Product States, Phys. Rev. Lett. 118,
071601 (2017).

[27] M. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, S. Kühn, and H.
Saito, The multi-flavor Schwinger model with chemical
potential—Overcoming the sign problem with matrix prod-
uct states, Proc. Sci. LATTICE2016 (2016) 316.

[28] K. Zapp and R. Orús, Tensor network simulation of QED on
infinite lattices: Learning from (1þ 1) d, and prospects for
(2þ 1) d, Phys. Rev. D 95, 114508 (2017).

[29] B. Buyens, S. Montangero, J. Haegeman, F. Verstraete, and
K. Van Acoleyen, Finite-representation approximation of
lattice gauge theories at the continuum limit with tensor
networks, Phys. Rev. D 95, 094509 (2017).

[30] M. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and S. Kühn,
Tensor networks and their use for lattice gauge theories,
Proc. Sci. LATTICE2018 (2019) 022.

[31] T. M. R. Byrnes, P. Sriganesh, R. J. Bursill, and C. J. Hamer,
Density matrix renormalization group approach to the
massive Schwinger model, Phys. Rev. D 66, 013002
(2002).

[32] L. Funcke, K. Jansen, and S. Kühn, Topological vacuum
structure of the Schwinger model with matrix product states,
Phys. Rev. D 101, 054507 (2020).

EXPLORING THE CP-VIOLATING DASHEN PHASE IN THE … PHYS. REV. D 108, 014504 (2023)

014504-7

https://doi.org/10.1126/science.1163233
https://doi.org/10.1088/1742-6596/562/1/012007
https://doi.org/10.1007/JHEP05(2023)035
https://doi.org/10.1007/JHEP05(2023)035
https://doi.org/10.1140/epja/s10050-021-00354-6
https://doi.org/10.1140/epja/s10050-021-00354-6
https://doi.org/10.1103/PhysRevD.3.1879
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP12(2017)104
https://doi.org/10.1007/JHEP12(2017)104
https://doi.org/10.1007/JHEP02(2021)118
https://doi.org/10.1007/JHEP02(2021)118
https://doi.org/10.1103/PhysRevD.52.2951
https://doi.org/10.1103/PhysRevD.52.2951
https://doi.org/10.1016/j.aop.2013.10.003
https://doi.org/10.1016/j.aop.2013.10.003
https://doi.org/10.22323/1.193.0009
https://doi.org/10.22323/1.193.0009
https://doi.org/https://doi.org/10.22323/1.336.0171
https://doi.org/https://doi.org/10.22323/1.336.0171
https://doi.org/10.1016/0370-2693(83)91293-5
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1016/0003-4916(75)90212-2
https://doi.org/10.1016/0003-4916(76)90280-3
https://doi.org/10.22323/1.396.0552
https://doi.org/10.22323/1.396.0552
https://doi.org/10.1007/JHEP11(2013)158
https://pos.sissa.it/187/332/
https://pos.sissa.it/187/332/
https://pos.sissa.it/187/332/
https://doi.org/10.1103/PhysRevLett.113.091601
https://doi.org/10.1103/PhysRevA.90.042305
https://doi.org/10.1103/PhysRevA.90.042305
https://pos.sissa.it/214/308
https://pos.sissa.it/214/308
https://pos.sissa.it/214/308
https://pos.sissa.it/251/280/
https://pos.sissa.it/251/280/
https://pos.sissa.it/251/280/
https://pos.sissa.it/251/280/
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.1103/PhysRevLett.118.071601
https://doi.org/10.22323/1.256.0316
https://doi.org/10.1103/PhysRevD.95.114508
https://doi.org/10.1103/PhysRevD.95.094509
https://doi.org/10.22323/1.334.0022
https://doi.org/10.1103/PhysRevD.66.013002
https://doi.org/10.1103/PhysRevD.66.013002
https://doi.org/10.1103/PhysRevD.101.054507


[33] T. Angelides, L. Funcke, K. Jansen, and S. Kühn, Mass
renormalization of the Schwinger model with Wilson and
staggered fermions in the Hamiltonian lattice formulation,
Proc. Sci. LATTICE2022 (2023) 046.

[34] T. V. Zache, M. Van Damme, J. C. Halimeh, P. Hauke, and
D. Banerjee, Toward the continuum limit of a ð1þ 1ÞD
quantum link Schwinger model, Phys. Rev. D 106, L091502
(2022).

[35] M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, S. Kühn, and
H. Saito, Towards overcoming theMonte Carlo sign problem
with tensor networks, EPJ Web Conf. 137, 04001 (2017).

[36] H. Saito, M. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen,
The temperature dependence of the chiral condensate in the
Schwinger model with matrix product states, Proc. Sci.
LATTICE2014 (2014) 302, https://pos.sissa.it/214/302/.

[37] M. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito,
Thermal evolution of the Schwinger model with matrix
product operators, Phys. Rev. D 92, 034519 (2015).

[38] H. Saito, M. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen,
Thermal evolution of the one-flavour Schwingermodel using
matrix product states, Proc. Sci. LATTICE2015 (2015) 283,
https://pos.sissa.it/251/283/.

[39] B. Buyens, F. Verstraete, and K. Van Acoleyen, Hamiltonian
simulation of the Schwinger model at finite temperature,
Phys. Rev. D 94, 085018 (2016).

[40] M. Bañuls, K. Cichy, K. Jansen, and H. Saito, Chiral
condensate in the Schwinger model with matrix product
operators, Phys. Rev. D 93, 094512 (2016).

[41] B. Buyens, J. Haegeman, F. Hebenstreit, F. Verstraete, and
K. Van Acoleyen, Real-time simulation of the Schwinger
effect with matrix product states, Phys. Rev. D 96, 114501
(2017).

[42] P. Silvi, Y. Sauer, F. Tschirsich, and S. Montangero, Tensor
network simulation of an SU(3) lattice gauge theory in 1D,
Phys. Rev. D 100, 074512 (2019).

[43] T. Felser, P. Silvi, M. Collura, and S. Montangero, Two-
Dimensional Quantum-Link Lattice Quantum Electrody-
namics at Finite Density, Phys. Rev. X 10, 041040 (2020).

[44] G. Magnifico, T. Felser, P. Silvi, and S. Montangero, Lattice
quantum electrodynamics in (3þ 1)-dimensions at finite
densitywith tensor networks,Nat. Commun.12, 3600 (2021).

[45] J. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[46] In the staggered formulation, the components of each Dirac
spinor are distributed to two distinct lattice sites, thus we
always choose even values for N. Without loss of generality
we also use even values for k, for odd values of k the
summation boundaries in Eq. (7) have to be adjusted
accordingly to obtain valid site indices.

[47] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (Amsterdam)
326, 96 (2011).

[48] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann.
Phys. (Amsterdam) 349, 117 (2014).

[49] J. C. Bridgeman and C. T. Chubb, Hand-waving and inter-
pretive dance: An introductory course on tensor networks,
J. Phys. A 50, 223001 (2017).

[50] C. J. Hamer, Z. Weihong, and J. Oitmaa, Series expansions
for the massive Schwinger model in Hamiltonian lattice
theory, Phys. Rev. D 56, 55 (1997).

[51] M. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and S. Kühn,
Efficient Basis Formulation for (1þ 1)-Dimensional SU(2)
Lattice Gauge Theory: Spectral Calculations with Matrix
Product States, Phys. Rev. X 7, 041046 (2017).

[52] C. Pineda, T. Barthel, and J. Eisert, Unitary circuits for
strongly correlated fermions, Phys. Rev. A 81, 050303
(2010).

[53] P. Corboz, R. Orús, B. Bauer, and G. Vidal, Simulation of
strongly correlated fermions in two spatial dimensions with
fermionic projected entangled-pair states, Phys. Rev. B 81,
165104 (2010).

[54] M. Bañuls and K. Cichy, Review on novel methods
for lattice gauge theories, Rep. Prog. Phys. 83, 024401
(2020).

[55] K. Nakayama, L. Funcke, K. Jansen, Y.-J. Kao, and
S. Kühn, Phase structure of the cpð1Þ model in the presence
of a topological θ-term, Phys. Rev. D 105, 054507
(2022).

[56] In our numerical computations, vanishing total charge is
imposed by adding a positive semidefinite penalty term
λðPn QnÞ2 to the Hamiltonian with sufficiently large
positive constant λ. For all our calculations, we checked
that the expected value of the total charge is zero to
numerical precision.

[57] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90,
227902 (2003).

[58] J. I. Latorre, E. Rico, and G. Vidal, Ground state entangle-
ment in quantum spin chains, Quantum Inf. Comput. 4, 48
(2004).

[59] P. Calabrese and J. Cardy, Entanglement entropy and
conformal field theory, J. Phys. A 42, 504005 (2009).

[60] G. Clemente, A. Crippa, and K. Jansen, Strategies for
the determination of the running coupling of (2þ 1)-
dimensional QED with quantum computing, Phys. Rev.
D 106, 114511 (2022).

[61] N. H. Nguyen, M. C. Tran, Y. Zhu, A. M. Green, C. H.
Alderete, Z. Davoudi, and N. M. Linke, Digital quantum
simulation of the Schwinger model and symmetry pro-
tection with trapped ions, PRX Quantum 3, 020324
(2022).

[62] L. Funcke, T. Hartung, K. Jansen, S. Kühn, M.-O. Pleinert,
S. Schuster, and J. von Zanthier, Exploring the phase
structure of the multi-flavor Schwinger model with quantum
computing, Proc. Sci. LATTICE2022 (2022) 020.

[63] S. Thompson and G. Siopsis, Quantum computation of
phase transition in the massive Schwinger model, Quantum
Sci. Technol. 7, 035001 (2022).

[64] http://iaifi.org/.

LENA FUNCKE, KARL JANSEN, and STEFAN KÜHN PHYS. REV. D 108, 014504 (2023)

014504-8

https://doi.org/10.22323/1.430.0046
https://doi.org/10.1103/PhysRevD.106.L091502
https://doi.org/10.1103/PhysRevD.106.L091502
https://doi.org/10.1051/epjconf/201713704001
https://pos.sissa.it/214/302/
https://pos.sissa.it/214/302/
https://pos.sissa.it/214/302/
https://doi.org/10.1103/PhysRevD.92.034519
https://pos.sissa.it/251/283/
https://pos.sissa.it/251/283/
https://pos.sissa.it/251/283/
https://doi.org/10.1103/PhysRevD.94.085018
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.100.074512
https://doi.org/10.1103/PhysRevX.10.041040
https://doi.org/10.1038/s41467-021-23646-3
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1103/PhysRevD.56.55
https://doi.org/10.1103/PhysRevX.7.041046
https://doi.org/10.1103/PhysRevA.81.050303
https://doi.org/10.1103/PhysRevA.81.050303
https://doi.org/10.1103/PhysRevB.81.165104
https://doi.org/10.1103/PhysRevB.81.165104
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.1103/PhysRevD.105.054507
https://doi.org/10.1103/PhysRevD.105.054507
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.26421/QIC4.1-4
https://doi.org/10.26421/QIC4.1-4
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevD.106.114511
https://doi.org/10.1103/PhysRevD.106.114511
https://doi.org/10.1103/PRXQuantum.3.020324
https://doi.org/10.1103/PRXQuantum.3.020324
https://doi.org/10.22323/1.430.0020
https://doi.org/10.1088/2058-9565/ac5f5a
https://doi.org/10.1088/2058-9565/ac5f5a
http://iaifi.org/
http://iaifi.org/

