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Nonperturbative determinations of the renormalization group β function are essential to connect lattice
results to perturbative predictions of strongly coupled gauge theories and to determine the Λ parameter or
the strong coupling constant. The continuous β function is very well suited for this task because it is
applicable both in the weakly coupled deconfined regime as well as the strongly coupled confined regime.
Here we report on our results for the β function of the pure gauge SU(3) Yang-Mills theory in the gradient
flow scheme. Our calculations cover the renormalized coupling range g2GF ∼ 1.2–27, allowing for a direct
determination of

ffiffiffiffiffiffi
8t0

p
ΛMS in this system. Our prediction,

ffiffiffiffiffiffi
8t0

p
ΛMS ¼ 0.622ð10Þ, is in good agreement

with recent direct determinations of this quantity.
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I. INTRODUCTION

The renormalization group (RG) β function is defined as
the logarithmic derivative of the renormalized running
coupling g2 with respect to an energy scale μ

βðg2Þ ¼ μ2
dg2ðμÞ
dμ2

; ð1Þ

and describes the scale dependence of the renormalized
coupling of a four-dimensional gauge-fermion system.
Precise determination of the β function is essential to
understand the nonperturbative running of the gauge
coupling and to predict, e.g., the Λ parameter in quantum
chromodynamics (QCD)
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where g2ðμÞ is the renormalized coupling at the energy scale
μ and the constants b0 and b1 denote the universal 1- and

2-loop coefficients of the RG β function. Beyond 2-loop
coefficients the β function is scheme dependent, but it is
straightforward to connect theΛ parameter obtained using a
different scheme to the phenomenologically favored MS
scheme using the 1-loop perturbative relation between the
corresponding running couplings.
In the chiral limit of QCD, the Λ parameter sets the

physical scale. Its accurate determination allows the pre-
diction of the strong coupling constant αsðμÞ at μ ≥ MZ, the
mass of the Z boson [1,2]. Λ parameters of systems with
different flavor numbers can be connected by nonpertur-
bative decoupling relations. In particular, it is possible to
predict αsðMZÞ in Nf ¼ 3 QCD from the pure Yang-Mills
Λ parameter [3]. A precise calculation of theΛ parameter in
the pure Yang-Mills system is therefore desirable.
The RG transformation of an asymptotically free system

has an ultraviolet (UV) fixed point (FP) on the g20 ¼ 0

critical surface, where g20 denotes the (marginally) relevant
bare coupling. The UVFP and the renormalized trajectory
emerging from the UVFP describe continuum physics. The
renormalized gauge coupling in Eq. (1) “measures” the
flow along the renormalized trajectory. The gradient flow
(GF) transformation [4–6] is a particularly promising
choice to define a renormalization scheme, determine the
running coupling g2GFðμÞ, and calculate a nonperturbative β
function using lattice simulations. While on its own the GF
transformation does not describe an RG transformation
because it does not reduce the degrees of freedom of the
system, it can be modified to define a complete RG scheme
if a coarse-graining step is incorporated when defining
expectation values [7,8]. In this setup, the energy scale is
set asymptotically by the GF flow time t
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μ ∝ 1=
ffiffiffiffi
8t

p
: ð3Þ

For a generic RG flow, there is a one-to-one correspon-
dence between running renormalized coupling and local
observables that do not renormalize [9]. In the GF scheme
the renormalized coupling can be defined in terms of the
continuum flowed energy density EðtÞ as

g2GFðtÞ≡N ht2EðtÞi; ð4Þ

since EðtÞ has no anomalous dimension [6]. The normali-
zation factor N ¼ 128π2=ð3N2

c − 3Þ in Eq. (4) is chosen
such that the renormalized coupling g2GF matches the
renormalized coupling of the MS scheme at tree level.
The GF coupling offers a convenient low-energy had-

ronic scale 1=
ffiffiffiffiffiffi
8t0

p
, with the flow time t0 defined where the

GF coupling takes a specified value, g2GFðt0Þ≡N × 0.3
[6]. The t0 scale has been used extensively in simulations to
set the lattice scale and its continuum value is known in
Yang-Mills systems [6,10] and in QCD [1] with 2þ 1
flavors [11–13] and 2þ 1þ 1 flavors [14–16]. Further, we
can use g2GF to define the RG β function in the GF scheme
βGFðg2GFÞ. If βGF is determined up to g2GFðt0Þ ≈ 15.8, then
we can obtain

ffiffiffiffiffiffi
8t0

p
ΛGF by integrating Eq. (2) up to g2GFðt0Þ.

The finite volume step-scaling function [10,17,18] is a
commonly applied method to determine the β function.
However, it requires that the lattice size is the only
dimensionful quantity of the system, preventing its appli-
cation in the confining, chirally broken regime of QCD.
Since the t0 scale corresponds to a low energy hadronic
scale in the confining regime, the step-scaling method
cannot determine the β function at strong enough gauge
couplings to directly predict the Λ parameter at the t0 scale.
An alternative approach is to determine the infinite volume
continuous β function as described in Refs. [19–21]. While
this method requires separate infinite volume and con-
tinuum limit extrapolations, it is applicable in the confining
regime.
In this paper, we report on our findings on the continuous

β function up to and even beyond the renormalized gauge
coupling g2GFðt0Þ in the pure gauge SU(3) Yang-Mills
theory. Using the continuous β function method we are
able to determine the scale dependence of the running
coupling in the confining regime. We do not need any other
hadronic observable to determine the Λ parameter at the t0
scale. We compare our value of the Λ parameter to other
determinations from Refs. [10,22] and values reported in
the FLAG 2021 review [1]. Preliminary results of our work
were reported in Ref. [23]. A similar calculation of the
continuous β function of SU(3) Yang-Mills theory reports
preliminary results in Ref. [22].
This paper is organized as follows. In Sec. II we

summarize the details of our numerical simulations and
explain our determination of the continuous β function in

Sec. III. In the subsequent section we discuss the deter-
mination of the Λ parameter and close by discussing our
results in Sec. V.

II. NUMERICAL DETAILS

Our study is based on simulations performed using the
tree-level improved Symanzik (Lüscher-Weisz) gauge
action [24,25]. We consider 19 bare gauge couplings
and generate configurations with periodic boundary con-
ditions (BCs) in all four directions using the hybrid
Monte Carlo (HMC) update algorithm [26] as implemented
in GRID [27,28]. We set the trajectory length to τ ¼ 2
molecular dynamics units (MDTUs) and save configura-
tions every 10 trajectories (20 MDTUs). Subsequently, we
use QLUA [29,30] to perform gradient flow measurements.
Table I lists the number of thermalized configurations

analyzed for each bare coupling and volume as well as
the HMC acceptance rates which all range between 70%
and 90%. In the strong coupling regime1 (βb ≤ 4.9) we
have four volumes, [ðL=aÞ4 ¼ 204; 244; 284; 324], while at
weaker couplings (βb ≥ 5.0) we add a fifth, 484 volume.2

The Polyakov loop expectation value in Fig. 1 shows that
most ensembles for βb ≥ 5.50 are in the deconfined phase,
while most βb ≤ 5.0 ensembles are confining.3 Since
βb ¼ 5.30 sits in the transition region, we discard it from
our main analysis but use it to check for systematic effects
later on. We study the autocorrelation of the renormalized
coupling g2GF using the Γ method [31] and typically find
integrated autocorrelation times of less than four measure-
ments (80 MDTUs). However, near the transition from
the deconfined to the confined regime, the integrated
autocorrelation times increase up to 15 measurements
(300 MDTUs).
While simulations in the deconfined regime have zero

topological charge, nonzero topological charges are
expected in the confined region. As we decrease βb for
a fixed volume, we indeed observe that nonzero topological
charges arise and that their fluctuations increase. We study
the effect of nonzero topological charge on g2GF by “filter-
ing” configurations according to topological sectors and
compare the corresponding values of g2GF. Our data suggest
that for the fast-running pure gauge system, the β function

1To better distinguish between the RG β function and the bare
gauge coupling, we refer to the latter as βb ≡ 6=g20.2Although L=a ¼ 20 ensembles were generated for all βb, our
analysis uses L=a ¼ 20 only for βb ≤ 5.00.

3Note that this apparent phase transition is only a finite volume
effect. Our simulations are performed at zero temperature using
symmetric ðL=aÞ4 volumes. The transition of the Polyakov loop
indicates when the system size becomes comparable to the
deconfinement length scale and transits from the small volume
ε-regime to the large volume p regime. In the limit of infinite
volume, the pure Yang-Mills system is confining at all values of
the bare gauge coupling.
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is sufficiently large that the impact of nonzero topological
charges is not statistically resolved.4

III. GF COUPLING AND THE RG β FUNCTION

A. Definition of the GF coupling and β function

We define the finite volume gradient flow coupling on
the lattice [6,18] as

g2GFðt;L; g20Þ≡ N
Cðt; LÞ ht

2EðtÞi; ð5Þ

where g20 ¼ 6=βb is the bare gauge coupling. The term
Cðt; LÞ ¼ 1þ δðt; LÞ corrects for the zero modes caused
by the periodic BC of the gauge fields [18]. The energy
density hEðtÞi can be approximated by local gauge observ-
ables. In general, g2GFðt;L; g20Þ also depends on the gauge
action, the gradient flow, and the operator chosen to
approximate hEðtÞi. In this work we use Symanzik
improved gauge action and consider two different gradient
flow transformations, Wilson (W) and Zeuthen (Z) flow.
We determine the Wilson plaquette (W), the clover (C), and
the tree-level improved Symanzik operator (S) to estimate

hEðtÞi. It is possible to calculate the tree-level lattice
corrections to g2GFðt;L; g20Þ for a given action-flow-operator
combination and include those in Cðt; LÞ [33]. In our
analysis, we consider Cðt; LÞ with and without tree-level
corrections, and we refer to the former as “tree-level
normalization” (tln). We use a shorthand notation to
distinguish the different flow-operator combinations, e.g.,
ZS refers to Zeuthen flow and the Symanzik operator.
When using tln in the definition of g2GFðt;L; g20Þwe prepend
“n,” i.e., nZS refers to tln improved Zeuthen flow and
Symanzik operator. In the continuum limit, the RG β

FIG. 1. The expectation value of the Polyakov loop on our
ensembles. We measure the Polyakov loop at flow time
t=a2 ¼ ðL=aÞ2=32, and average the absolute values over all four
directions.

TABLE I. The number of gauge field configurations analyzed and HMC acceptance rates for each bare coupling βb and volume
ðL=aÞ4. Configurations are separated by 20 MDTUs. All ensembles with βb > 5.5 are in the deconfined phase, while most with
βb ≤ 5.50 either transition between confined and deconfined or are confined. The values for βb ¼ 5.30 are set in italics because these
ensembles are not part of the main analysis and are only used to estimate systematic effects.

L=a

20 24 28 32 48

βb Acceptance No. Acceptance No. Acceptance No. Acceptance No. Acceptance No.

4.30 87.9% 451 86.6% 467 85.3% 297 80.7% 165 � � � � � �
4.35 86.5% 451 84.8% 458 82.0% 277 78.8% 171 � � � � � �
4.40 86.6% 451 80.8% 460 83.7% 272 82.3% 167 � � � � � �
4.50 85.1% 451 84.2% 501 86.2% 1391 81.0% 250 � � � � � �
4.60 86.1% 451 85.2% 490 83.3% 1040 84.9% 202 � � � � � �
4.70 84.2% 451 84.1% 490 80.5% 681 82.1% 201 � � � � � �
4.80 86.5% 451 88.0% 469 80.5% 681 78.9% 140 � � � � � �
4.90 85.0% 451 85.3% 491 82.7% 701 83.4% 163 � � � � � �
5.00 82.6% 451 85.5% 456 81.0% 772 77.3% 211 80.8% 124
5.30 84.4% 451 88.3% 534 82.9% 911 78.4% 656 81.8% 139
5.50 83.6% 451 87.6% 456 81.8% 701 77.8% 608 78.2% 149
6.00 84.4% 451 84.6% 476 84.6% 661 79.2% 472 76.8% 227
6.50 81.1% 451 80.7% 486 82.8% 661 85.0% 563 77.4% 233
7.00 81.3% 451 79.2% 461 81.7% 701 84.6% 527 74.7% 241
7.50 82.6% 451 81.3% 466 80.5% 661 83.7% 489 73.6% 224
8.00 81.3% 451 78.3% 456 76.1% 701 85.0% 487 73.3% 211
8.50 78.8% 451 77.4% 461 79.5% 661 81.6% 462 74.6% 211
9.00 78.2% 451 76.8% 581 78.0% 524 81.6% 531 71.7% 208
9.50 77.4% 621 77.5% 481 77.7% 547 81.7% 541 69.2% 208

4The situation is quite different for (near)-conformal simu-
lations with many dynamical flavors, where the β function runs
slow and any topology can significantly alter the final result [32].
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function is independent of the bare action, GF trans-
formation or operator choice, and the comparison of the
different combinations can serve to estimate systematic
effects. Continuum extrapolations on the lattice are more
stable when lattice artifacts are small, and we chose the nZS
combination as our preferred analysis.
From the GF coupling in Eq. (5), we derive the GF β

function

βGFðt;L; g20Þ ¼ −t
d
dt
g2GFðt;L; g20Þ ð6Þ

in finite volume by discretizing the flow-time derivative
d=dt with a five-point stencil. The interval of the time
derivative is set by the time step ϵ used to integrate
the gradient flow equation for the gauge field. We choose
ϵ ¼ 0.04 and explicitly verified that this choice has no
impact on our analysis by repeating the GF measurements
using ϵ ¼ 0.01 for selected ensembles.
Our numerical analysis starts by determining the renor-

malized couplings g2GFðt;L; g20Þ at all flow times for our
three operators. We determine g2GFðt;L; g20Þ for both data-
sets obtained with Zeuthen and Wilson flow, respectively,
and for our entire set of gauge field ensembles. Next, we
numerically calculate the derivative as specified in Eq. (6).
The uncertainties are propagated using standard correlated
error propagation techniques implemented in the software
packages GVAR [34] and LSQFIT [35].
The analysis of the RG β function proceeds by first

taking the infinite volume limit a=L → 0 of both
g2GFðt;L; g20Þ and βGFðt;L; g20Þ independently at fixed βb
and t=a2. This is followed by an interpolation of βGFðt; g20Þ
in g2GFðt; g20Þ at fixed t=a2. The last step of our analysis is to
take the a2=t → 0 continuum limit at fixed g2GF. These steps
are detailed in the rest of this section.

B. Infinite volume extrapolation

In a four-dimensional gauge-fermion system the volume
is a relevant parameter, and the RG equation in finite
volume includes a term describing its effect on the running
of the renormalized coupling. We prefer to avoid compli-
cations arising from this a priori unknown quantity and
define the RG β function in the infinite volume limit. This
requires first extrapolating to infinite volume before con-
sidering the continuum limit.
Since the energy density hEðtÞi is a dimension-four

operator, the finite volume corrections of g2GF are expected
to be Oðða=LÞ4Þ at leading order. We independently
extrapolate both the GF coupling g2GFðt;L; g20Þ and GF β
function βGFðt;L; g20Þ linearly in ða=LÞ4 → 0 for each fixed
bare gauge coupling βb and lattice flow time t=a2. This
analysis strategy was first outlined in Ref. [23]. Alternative
methods are discussed, e.g., in Refs. [19,20,36,37].

In Fig. 2 we show typical infinite volume extrapolations
for g2GFðt;L; g20Þ and βGFðt;L; g20Þ at relatively weak cou-
pling (βb ¼ 6.0), at intermediate couplings (βb ¼ 4.9 and
5.50), and in the strong coupling regime (βb ¼ 4.35). Each
panel shows the ða=LÞ4 extrapolation at five different
lattice flow time values that cover the range we use in
the continuum limit extrapolation (cf. Sec. III E). In the
strong coupling regime, we observe very mild volume
dependence. This is consistent with the expectation that
below the confinement scale μconf , i.e., at renormalized
couplings stronger than g2GFðμconfÞ, the confinement scale
provides an infrared cutoff and the volume dependence is
suppressed. Thus we find it sufficient to use volumes with
L=a ¼ f20; 24; 28; 32g in this regime. At renormalized
couplings that correspond to energy scales above the
confinement scale, the volume dependence is more sig-
nificant, as the only infrared cutoff is due to the finite
volume. Here we drop the L=a ¼ 20 ensembles and add
484 lattices in the infinite volume extrapolation. At βb ¼
5.5 and 6.0 volumes L=a ≤ 32 appear deconfined, while
L=a ¼ 48 is transitioning to deconfined at βb ¼ 6.0 and is
confined at βb ¼ 5.5. Similarly the L=a ¼ 32 at β ¼ 5.5
ensemble is transitioning and exhibits very long autocor-
relation times. Likely these long autocorrelations result in
underestimated statistical errors causing the 2σ deviation.
At βb ¼ 5.0 the Polyakov loop expectation value shows
that volumes L=a ≥ 28 are confining, while L=a ¼ 20 and
24 are in the transition region. L=a ¼ 24 shows especially
large autocorrelation times. Nevertheless, at βb ¼ 5.0 we
use all five volumes in the infinite volume extrapolation,
though it is dominated by the larger volumes. We always
perform the infinite volume extrapolation using a linear fit
ansatz in ða=LÞ4. For flow times 2.0≲ t=a2 ≲ 4.0 contrib-
uting to the continuum extrapolations in Sec. III E, most fits
have good p values (≳10%). Notable exceptions are βb ¼
5.0 and 5.5, where large autocorrelations make it difficult to
estimate the errors correctly. When adding βb ¼ 5.3 to our
analysis, the infinite volume extrapolations have vanishing
p values. The situation did not improve despite extending
the Monte Carlo simulations and using larger thermal-
ization cuts. We therefore conclude that βb ¼ 5.3 suffers
from sitting in the transition region and discard it from our
main analysis.

C. Different flows, operators, and tree-level
improvement

In Figs. 3 and 4 we show the infinite volume extrapolated
GF coupling g2GFðt; g20Þ as a function of the gradient flow
time t=a2 with and without tln improvement at βb ¼ 6.0
and 4.35, respectively. We consider both Zeuthen and
Wilson flow and all three operators. In the continuum
limit the different flows and operators must agree, so any
difference between them at finite bare coupling points to
cutoff effects. Figure 3 showcases the improvement due to
tln at weak coupling. As the left panels show, there are
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significant differences between the three operators even at
flow time t=a2 ¼ 4.0. Comparing the top and bottom
panels on the left, large differences for g2GFðt; g20Þ between
Zeuthen (top) and Wilson (bottom) flow can be seen. Both
the operator and flow dependence are largely removed by
tln normalization, which is demonstrated in the panels on
the right.
Figure 4 shows the same quantities at a strong bare

coupling, βb ¼ 4.35. The gauge coupling runs fast and the
same flow time range covers nearly 20 times the range of

g2GF at βb ¼ 4.35 compared to βb ¼ 6.0. While the different
operators and flows without tln correction may appear to be
closer at βb ¼ 4.35 than at βb ¼ 6.0, the absolute difference
is much larger. Tree-level correction works similarly in the
strong coupling, removing most flow and operator depend-
ence. The somewhat larger spread after tln suggests that the
perturbatively motivated improvement is not as effective in
the strong coupling regime as at weak coupling. The
effect of tln improvement at strong coupling was recently
studied in the context of gradient flow scale setting for the

FIG. 2. Examples of infinite volume extrapolation of g2GFðt;L; g20Þ (left) and βGFðt;L; g20Þ (right) at βb ¼ 6.00, 5.50, 4.90, and 4.35 (top
to bottom). Each color corresponds to a fixed lattice flow time between t=a2 ¼ 2.0 (yellow) to t=a2 ¼ 4.0 (red). Black symbols indicate
data points that are included in the infinite volume extrapolation, whereas symbols shown in gray are not included and just shown for
reference.
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case of 2þ 1 flavor gauge field configurations generated
with Iwasaki gauge action and Shamir domain-wall
fermions [38]. That work also showed that tln removed
most flow and operator dependence, but the improved
predictions still had significant cutoff effects. However,

here we study the pure-gauge system where no effect due to
fermion loops can spoil the improvement and, furthermore,
we use the perturbatively improved Symanzik gauge action
in comparison to Iwasaki gauge action. In Sec. III E we will
show that in our case tln improvement not only reduces the
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FIG. 3. Infinite volume extrapolated gradient flow coupling without tln (left) and with tln (right) as a function of t=a2 at βb ¼ 6.0.
Different colors correspond to different operators. The energy density is obtained for Zeuthen flow in the top and Wilson flow in the
bottom panels.
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FIG. 4. Infinite volume extrapolated gradient flow coupling without tln (left) and with tln (right) as a function of t=a2 at βb ¼ 4.35.
Different colors correspond to different operators. The energy density is obtained with Zeuthen flow in the top and Wilson flow in the
bottom panels.
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difference between different flows and operators but also
reduces cutoff effects.
Based on the improvement from tln, we designate the

tree-level improved Zeuthen flow with Symanzik operator
combination (nZS) as our preferred analysis. In the
remainder of this paper we therefore concentrate on
analyzing this combination. Other tln improved flow-
operator combinations are consistent within uncertainties
and considered as part of our discussion on systematic
uncertainties in Sec. III G. Moreover, we repeat our
analysis without tln improvement, which increases discre-
tization errors. Within these more sizeable uncertainties, the
unimproved combinations are consistent with our preferred
nZS prediction.

D. Interpolation of βGFðg2GFÞ vs g2GF

The last task before we can take the a2=t → 0 continuum
limit is the identification of fβGFðt; g20Þ; t=a2g pairs at fixed
g2GFðt; g20Þ. We achieve this by interpolating βGFðt; g20Þ in
terms of g2GFðt; g20Þ at fixed values of lattice flow times t=a2.
Our interpolating form has to be able to describe

the weak coupling regime where we expect perturbative
behavior βðg2GFÞ ∼ −b0g4GF þOðg6GFÞ as well as the
strong coupling regime where it appears that βGFðg2GFÞ≈
c0 þ c1g2GF. A polynomial is not appropriate to cover both
regimes. Instead, we choose a form that is similar to the
ratio of polynomials used in Padé approximations

INðg2GFÞ≡ −p0g4GFð1þ
P

N
i¼1 pig2iGFÞ

1þPNþ1
j¼1 qjg

2j
GF

; ð7Þ

such that we enforce the leading order βGFðg2GFÞ ∼ g4GF
behavior. Since cutoff effects can change even the asymp-
totic behavior of the β function, this ansatz could constrain
the lower limit on the flow time t=a2 used in the analysis.
However with N ¼ 4 we find that INðg2GFÞ provides a good
description with p values between 17%–32% for flow
times 2.0≲ t=a2 ≲ 4.0.
The two panels of Fig. 5 illustrate the interpolation at

various flow times in the range t=a2 ∈ ½2.0; 4.0�. The
colored data points on both panels correspond to infinite
volume limit ðg2GF; βGFÞ pairs at each bare coupling and five
selected flow time values. For reference we show the
universal 1- and 2-loop and the GF 3-loop [39] perturbative
lines in gray using dashed, dotted, and dash-dotted lines,
respectively. The colored bands describe the interpolation
according to Eq. (7) with N ¼ 4. The top panel of Fig. 5
shows βGF vs g2GF in the entire range of our data. The data
points at different bare couplings and flow times form a
smooth curve, indicating that cutoff effects are mild. The
corresponding interpolating curves basically overlap, cre-
ating the purple-hued band. This plot also illustrates that the
β function is approximately linear in the strong coupling
regime. We will discuss this feature further in Sec. III H.

In the insert of the top panel we enlarge the weak coupling
regime. To enhance the small g2GF behavior, we plot
βGFðg2GFÞ=g4GF vs g2GF on the bottom panel. At large flow
times and small couplings, βGFðg2GFÞ has to be consistent
with the perturbative predictions. As the panel shows, both
the data and the interpolating forms are close to the
perturbative values in our selected flow time range, though
we do not constraint the intercept of βGFðg2GFÞ=g4GF.

E. Continuum limit extrapolation

To obtain the continuous β function in the continuum
limit, we need to perform one last step, the a2=t → 0
continuum extrapolation. We use a linear extrapolation in
a2=t → 0 and the flow time t=a2 has to be chosen large
enough for the RG flow to reach the renormalized trajectory
where a linear extrapolation describes the remnant cutoff
effects (within statistical uncertainties). We also have to
limit the maximum flow time because the infinite volume
extrapolation is reliable only when the finite volume
corrections follow the leading order t2=L4 scaling form.
In practice, we vary tmin=a2 and tmax=a2 and monitor the
quality of the linear extrapolation. In Fig. 6 we show
examples of the continuum extrapolation from our weakest
available coupling of g2GF up to the t0 scale of g2GFðt0Þ ¼
0.3N ≈ 15.8. In all cases, we use t=a2 ∈ ½2.0; 4.0� but
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FIG. 5. Interpolation of βGF in terms of g2GF at fixed flow times.
Different colored symbols correspond to (g2GF, βGF) pairs at flow
times t=a2 ¼ 2.0—4.0. The colored bands are the interpolating
functions based on ratios of polynomials given in Eq. (7). In the
lower panel, we plot βGFðg2GFÞ=g4GF to enhance the weak coupling
regime.
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show additional data points both at smaller and larger flow
times to illustrate the linear behavior in t=a2.
It is worth pointing out that the flow time is technically a

continuous variable and the corresponding βGFðg2GFÞ values
are highly correlated. We obtain the final continuum limit
prediction by selecting a discrete set of t=a2 values. For this
set we perform an uncorrelated fit and estimate its statistical
uncertainty by repeating this fit using the central values
shifted by �1σ. This avoids the complication of inverting a
poorly conditioned correlation matrix and ensures we are
not underestimating the statistical uncertainty.

F. The nonperturbative βGF function

Figure 7 shows our result for the nonperturbative βGF
function for pure gauge SU(3) Yang-Mills in the gradient
flow scheme with statistical errors only. In addition to the
continuum limit prediction shown with a salmon-colored
band, the plot also shows the infinite volume extrapolated

nZS lattice data at flow times t=a2 ∈ ½2.0; 4.0� where, for
better visibility, we “thin” the data and only show every
fifth data point, i.e., flow time values are separated by
Δt=a2 ¼ 0.2. The nZS combination shows very little cutoff
dependence and the raw lattice data sits on top of the
continuum extrapolated value. Overall, our results span
the coupling range from g2GF ≳ 1.2 up to g2GF ≲ 27, well into
the confining regime of the system.

G. Systematic uncertainties of the βGF function

In addition to the statistical uncertainties shown for the
final result of our βGF function in Fig. 7, we check for
systematic effects by considering variations of our pre-
ferred nZS analysis. We discuss the different variations
below and show the outcome as relative changes with our
nZS analysis in Fig. 9:
(1) For the interpolation in g2GF we use a ratio of

polynomials similar to Padé approximation. We alter
the functional form by changing the order of the
polynomials in Eq. (7) from N ¼ 4 to N ¼ 2 or 6,
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FIG. 6. Continuum a2=t → 0 extrapolation between g2GF ¼ 1.2
to 15.8. The results are shown in two separate panels to
accommodate the increasingly faster running of the coupling.
In all cases, we show all three operators with Zeuthen flow after
tln improvement, though the different operators overlap and are
barely distinguishable in the plot. The open symbols are not
included in the extrapolation fit. They are shown to illustrate the
linear behavior of the data even outside the region used in the fit.
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FIG. 7. The predicted βGF function (salmon colored band)
overlayed with the infinite volume extrapolated data at different
bare coupling βb (colored data points) for our main analysis based
on nZS for flow times t=a2 ∈ ½2.0; 4.0�, separated by
Δt=a2 ¼ 0.2. The insert magnifies the weak coupling region.
The nZS combination shows very little cutoff dependence and the
raw lattice data sit on top of the continuum extrapolated value.
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but we find that this is only a subleading effect on
our resulting βGF function. In Fig. 9 we show the
(larger) effect by taking the absolute difference
between interpolations based on N ¼ 4 and N ¼ 2.

(2) Our simulations at βb ¼ 5.30 sit right at the decon-
fined/confined transition and we observe poor p
values when performing the infinite volume extra-
polation at this bare gauge coupling. We therefore
discarded βb ¼ 5.30 from our main analysis, but we
use it now to check for systematic effects by
including it as an additional data point in a sensitive
region of the βGF function. As expected, the impact
of adding βb ¼ 5.30 is largest around g2GF ∼ 5.

(3) To validate our infinite volume extrapolation, we
consider two variations:
(a) We drop the smallest volume and perform a

linear fit to our three largest volumes.
(b) We note that in Fig. 2 our largest volume L=a ¼

32 (L=a ¼ 48) for βb < 5.00 (βb ≥ 5.00) is very
close to the extrapolated infinite volume value.
Therefore we simply repeat our analysis using
only the largest volumes.

Both variations result in comparable uncertainties,
but just using the largest volumes has a slightly
larger effect. Hence we use the latter to estimate
finite volume effects. As can be seen in Fig. 9 this
could be our dominant systematic uncertainty for
strong couplings g2GF ≳ 11.

(4) We test the continuum limit extrapolation by varying
the range of the flow times entering the linear fit in
a2=t at fixed values of g2GF. Keeping tmax=a2 ¼ 4.0
fixed, we vary tmin=a2 from 1.52 to 2.0. Similarly,
we vary tmax=a2 from 4.0 to 5.0 while tmin=a2 ¼ 2.0
is kept fixed. Comparing these to our preferred
analysis we see at most a variation of Oð0.3%Þ in
the central value of our βGF function. We show the
maximum of these variations as “fit range” uncer-
tainty in Fig. 9. Further, we repeat the fits using our
preferred fit range but reduce the number of data
points fitted by increasing the separation in flow
time. As expected this variation results only in
minuscule changes and can be neglected.

(5) In the continuum limit different flows and operators
should predict the same renormalized βGF function.
Qualitatively this is the case, as Fig. 8 demonstrates.
There we show six different tln improved flow-
operator combinations to determine βGF which all sit
on top of each other forming nearly a single band.
Looking at the relative changes in Fig. 9 we do,
however, see deviations of Oð0.8%Þ. Since for
couplings in the range 7≲ g2GF ≲ 11 that effect is
larger than other systematic effects, we conserva-
tively include these variations when obtaining our
systematic uncertainty.

(6) We further check for consistency by analyzing our
data without using tln improvement. We find that
removing the tln improvement increases the discre-
tization errors noticeably, but within the larger
uncertainties, the results are consistent with our
preferred analysis.

Using the information compiled in Fig. 9, we obtain the
total uncertainty of our βGF function by adding our
statistical error and the largest systematic effect at each
g2GF value in quadrature. Our final result for the βGF
function for the range of g2GF relevant to determineffiffiffiffiffiffi
8t0

p
ΛGF (see below) is shown in Fig. 10.5

H. βGF in the strong coupling regime

As can be seen in particular in Fig. 8, the βGF function in
the strong coupling regime (g2GF ≳ 13) is approximately
linear. Studying the derivative dβGF=dg2GF, we observe a
plateau within errors in the range 20≲ g2GF ≲ 27. In that
range we can approximate βGFðg2GFÞ ≈ c0 þ c1g2GF with
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5Our final result for βGF is also provided as an ASCII file [40].
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c0 ¼ 5.8ð3Þ, c1 ¼ −1.32ð1Þ. This is very different from the
perturbative prediction that would suggest a polynomial
form with terms of g4GF and higher order. Clearly, non-
perturbative effects are at play here. We may use the above
observation to predict the flow time dependence of the
flowed energy density ht2EðtÞi ∼ a0 þ a1ðt=t̃Þ−c1, where
a0 ¼ −c0=c1 ≈ 4.4ð2Þ and t̃ is an integration constant. We
do not have a physical explanation for this behavior, though
it is tempting to think that the form of hEðtÞi as t → ∞ is
related to instantons, the only objects in the vacuum after
UV fluctuations are removed by the flow. We mention that
Refs. [41–44] hypothesize that, in confining systems, the
RG β function is linear in the confining, strongly coupled
regime. References [41,42] attempt to solve the strong CP
problem by connecting hEðtÞi to the instanton density at
large flow time. However, this work considers only one
bare gauge coupling, does not take the continuum limit, and
uses much larger flow times than we do on similar volumes.
While our results are consistent with a linear β function in
the strong coupling range, our slope c1 ¼ −1.32ð1Þ is
significantly smaller than -1 obtained in Refs. [41,42].
Moreover, we observe a nonzero intercept. It would be
interesting to understand the nonperturbative origin of the
linearity of the βGF function in the strong coupling
confining region both in pure Yang-Mills systems and, if
it persists, with dynamical fermions.

IV. THE Λ PARAMETER

A. Matching the perturbative regime

In order to determine theΛ parameter according to Eq. (2),
we need to know βGFðg2GFÞ down to g2GF ¼ 0. In the weak
coupling regime we expect to recover the perturbatively
predicted β function. In Fig. 11 we show βGF=g4GF to
emphasize theweak coupling behavior of our nonperturbative
result. The numerical data, shown by the salmon-colored
band, is close to the 3-loop GF perturbative curve at our
weakest gauge coupling g2GF ≈ 1.2, but it does not yet

connect smoothly. To remedy this limitation we extend
our numerically determined βGF function to the region
below our weakest coupling data point (g2GF ≈ 1.2) using
the parametrization

β4ðg2GFÞ≡ −g4GFðb0 þ b1g2GF þ b2g4GF þ bpg6GFÞ; ð8Þ

where b0, b1, b2 are the 1-, 2-, and 3-loop GF perturbative
coefficients fromRef. [39] andbp is free.We determinebp by
integrating the inverse β function

Z
g2f

g2i

dx β−1ðxÞ; ð9Þ

using both our numerically determined βGF function and also
using β4 parametrized by bp for βðxÞ. We determine bp by
equating these two values. The integration limits are set to
cover the regimewherewe attempt tomatchβGF and β4. In the
example shown in Fig. 11, we choose to match in the range
g2i ¼ 1.4, g2f ¼ 1.8. In Fig. 12we demonstrate that varying g2i
and g2f has negligible impact on our value of

ffiffiffiffiffiffi
8t0

p
ΛMS. To

account for the combined statistical and systematic uncer-
tainty of our nonperturbative βGF function, we repeat the
matching shifting the central values by �1σ. That way
we obtain the purple bands resulting in the upper and lower
end of the blue band connecting our nonperturbative result
to g2GF ¼ 0.

B. Calculating the Λ parameter

The final step of this analysis is to calculate
ffiffiffiffiffiffi
8t0

p
ΛGF by

integrating Eq. (2) using the combination of our non-
perturbative βGFðg2GFÞ for g2GF ≥ 1.4 and the matched
β4ðg2GFÞ function for g2GF < 1.4. The upper integration limit
is set according to g2GFðt0Þ ≈ 15.8. Our prediction is
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FIG. 10. Final result for βGF as a function of g2GF for the
coupling range relevant to determine the Λ parameter. The yellow
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ffiffiffiffiffiffi
8t0

p
ΛGF ¼ 1.164ð19Þ; ð10Þ

where the error accounts for the uncertainty of our βGF
function as well as the uncertainty encountered due to
the matching procedure. As a last step, we convert our
prediction to the MS scheme using the exact 1-loop relation
and find

ffiffiffiffiffiffi
8t0

p
ΛMS ¼ 0.622ð10Þ: ð11Þ

C. Comparison of
ffiffiffiffiffiffi
8t0

p
ΛMS determinations

The Yang-Mills Λ parameter has been studied previously
using different approaches. Only the recent gradient flow
studies in Refs. [10,22] directly predict the combinationffiffiffiffiffiffi
8t0

p
ΛMS. In addition, we compare our value to determi-

nations of r0ΛMS listed by the flavor lattice averaging group
(FLAG) [1] to meet the quality criteria to enter the average.
These determinations are obtained using Schrödinger func-
tional step-scaling methods [45,46], Wilson loops [47,48],
or the short distance potential [49]. We use the values
quoted by FLAG 2021 for r0ΛMS and convert them toffiffiffiffiffiffi
8t0

p
ΛMS using

ffiffiffiffiffiffi
8t0

p
=r0 ¼ 0.948ð7Þ [6] (open symbols) orffiffiffiffiffiffi

8t0
p

=r0 ¼ 0.9414ð90Þ [10] (filled symbols). Following
the FLAG convention, we refer to the different results in
Fig. 13 using either the name of the first author or, if
applicable, the name of the collaboration and the two-
digit year.
Given the spread in the values of

ffiffiffiffiffiffi
8t0

p
ΛMS, further

scrutiny and understanding are needed before obtaining an
average. We note, however, that the three most recent
predictions are all mutually consistent. The high-precision
result of Ref. [10] was re-affirmed in Ref. [50] using an
alternative approach with better control over the continuum
extrapolation. The estimate given in Ref. [42] is also
consistent with these predictions. A possible source of
difference to the older determinations is the conversion of
r0 to

ffiffiffiffiffiffi
8t0

p
.

D. Nonperturbative matching of different schemes

In our analysis, a considerable systematic uncertainty
arises from the weak coupling limit g2GF ≲ 1.4. Our gradient
flow setup is not efficient at weak coupling. It would be
more economical to use data from existing calculations,
e.g., the high precision Schrödinger functional data of
Ref. [10] in the 0 < g2GF < 1.4 regime and match it non-
perturbatively to our data.
Such a matching requires finding the relation between

our g2GF coupling and the coupling g2S of another scheme S
expressed as g2GF ¼ ϕðg2SÞ. The relation of the correspond-
ing β functions can be obtained using the chain rule applied
to the derivative of g2GF with respect to μ2, which leads to
the simple relation

βGFðϕðg2SÞÞ
ϕ0ðg2SÞ

¼ βSðg2SÞ; ð12Þ

where ϕ0ðg2SÞ≡ dϕðg2SÞ=dg2S. Parametrizing ϕ as a
polynomial

ϕðxÞ ≈ xþ x2
XNp−1

n¼0

cixi; ð13Þ

turns Eq. (12) into a straightforward fitting problem with
Np undetermined coefficients. The only constraint is to
identify and use the renormalized coupling range in the fit
where the two schemes overlap. Such a nonperturbative
matching and combination of different schemes could lead
to a significantly improved prediction. Although we do not
explore this method in the present analysis, it is worth
considering in the future.
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V. DISCUSSION

In this paper, we present a nonperturbative determination
of the renormalization group β function for the pure gauge
Yang-Mills action. Using the gradient flow based continu-
ous RG β function, we present results for a wide range of
values of the renormalized running coupling. Our results
span the range of the perturbative weak coupling region
g2GF ≈ 1.2 up to the strongly coupled regime at g2GF ≈ 27.
This showcases the advantage of the continuous RG β
function because the continuous infinite volume β function
can be extended without limitation to the confining region.
We also demonstrate the effectiveness of tree-level
improvement of the gradient flow even in the strong
coupling regime.
We investigate various sources of systematical uncer-

tainties. For most of the g2GF range covered, our statistical
uncertainties are around 0.6%. In the weak coupling region,
statistical and systematic errors are of similar size. At
intermediate to strong coupling, we observe an increase in
the systematic error to approximately 1.5% due to
enhanced finite volume effects.
While in the weak coupling our results are close to the

perturbative values, we observe in the confining regime that
the GF β function depends approximately linearly on the
running coupling, implying a scaling relation of the flowed
energy density ht2EðtÞi ∼ a0 þ a1ðt=t̃Þ−c1 with exponent
c1 ≈ −1.32ð1Þ. This observation could be related to the
topological structure of the vacuum, a possibility that
warrants further investigation.
In the weak coupling regime, we are able to match our

numerical results to the 3-loop GF β function by
extending the perturbative expression with a single
g10GF term. This matching allows us to predict the Λ
parameter in the GF scheme. Using the perturbatively
determined relation of the GF coupling g2GF and the MS
coupling, we obtain

ffiffiffiffiffiffi
8t0

p
ΛMS ¼ 0.622ð10Þ, where the

error combines statistical and systematic uncertainties.

This value is in good agreement with recent direct
determinations of

ffiffiffiffiffiffi
8t0

p
ΛMS [10,22].

A significant source of the systematic uncertainties in
determining

ffiffiffiffiffiffi
8t0

p
ΛMS arises from the weak coupling

regime. We outline a nonperturbative matching procedure
to combine existing high-precision data in the weak
coupling and our nonperturbative βGF function that extends
into the confining regime even beyond g2GFðt0Þ. Such a
combined determination could lead to a sizable reduction of
the uncertainties on

ffiffiffiffiffiffi
8t0

p
ΛMS.
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