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Lattice QCD calculations of leptonic decay constants have now reached subpercent precision so that
isospin-breaking corrections, including QED effects, must be included to fully exploit this precision in
determining fundamental quantities, in particular the elements of the Cabibbo-Kobayashi-Maskawa matrix,
from experimental measurements. A number of collaborations have performed, or are performing, such
computations. In this paper we develop a new theoretical framework, based on infinite-volume
reconstruction (IVR), for the computation of electromagnetic corrections to leptonic decay widths. In
this method, the hadronic correlation functions are first processed theoretically in infinite volume, in such a
way that the required matrix elements can be determined nonperturbatively from lattice QCD computations
with finite-volume uncertainties which are exponentially small in the volume. The cancellation of infrared
divergences in this framework is performed fully analytically. We also outline how this IVR treatment can
be extended to determine the QED effects in semileptonic kaon decays with a similar degree of accuracy.
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I. INTRODUCTION

Lattice QCD results for a number of physical quantities
have now reached the subpercent level, e.g. the 2021 review
by the Flavour Physics Lattice Averaging Group
(FLAG2021) [1] quotes the following values for the
leptonic decay constants fπ and fK

1:

fπ ¼ 130.2ð8Þ MeV; fK ¼ 155.7ð3Þ MeV;

fK
fπ

¼ 1.1932ð21Þ: ð1Þ

The experimental results for the leptonic decay widths are
even more precise. In order to fully exploit the level of
precision in Eq. (1) for tests of the Standard Model of
particle physics and the determination of its parameters,
in particular the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, electromagnetic and strong iso-
spin-breaking corrections need to be included. The subject
of this paper is the theoretical extension of the infinite
volume reconstruction (IVR) method for the evaluation of
leptonic decay widths of pseudoscalar mesons in lattice
QCD computations on a finite Euclidean volume in such a
way that (i) the cancellation of infrared divergences is
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1The decay constant fπ is frequently used as part of the
calibration, including the determination of the lattice spacing, and
the value in Eq. (1) is obtained from simulations with Nf ¼ 2þ 1
light-quark flavors. The values of fK and fK=fπ are from NF ¼
2þ 1þ 1 computations.
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explicit and (ii) the finite-volume corrections are exponen-
tially small. The method is illustrated with the decay of a
pion, πþ → lþνlðγÞ, where lþ is a charged lepton, but
applies equally well to the decays of heavier mesons (K,D,
Ds, B, and Bc mesons).
Infinite volume reconstruction was first proposed in

Ref. [2] to avoid powerlike finite-volume uncertainties when
computing QED corrections to the hadronic spectrum in a
finitevolume. It has since been used in studies including long-
distance contributions to neutrinoless double-β decay [3],
rare kaon decays [4], the width for the decay K →
lνðl0þl0−Þ, where l and l0 represent charged leptons [5],
the πþ-π0 mass splitting [6], the two-photon exchange
contribution to the muonic-hydrogen Lamb shift [7], and
the contribution from a light sterile neutrino to neutrinoless
double-β decay [8]. In these quantities there are no infrared
divergences in intermediate stages of the calculation, with
the exception of the two-photon exchange contribution to
the muonic-hydrogen Lamb shift where the infrared
divergence is regulated by the atomic binding energy [7].
By contrast, for leptonic decays the divergences at OðαemÞ
are cancelled in Γðπþ → lþνlÞ þ Γðπþ → lþνlγÞ [9] and
an important element of this work is to demonstrate that the
width can be computed using IVR after the complete
analytic removal of the infrared divergences.
Isospin breaking corrections to leptonic decay widths

have been studied in detail in Refs. [10–13] in the context
of the QEDL treatment of the photon’s zero mode [14]. In
particular it was shown in Ref. [11] that the finite-volume
dependence of Γðπþ → lþνlÞ, the width for the decay
πþ → lþνl, takes the form

Γðπþ → lþνlÞ ¼ c0ðrlÞ þ c̃0ðrlÞ log½mπL� þ
c1ðrlÞ
mπL

þ � � �

ð2Þ

where rl ¼ ml=mπ , mπ, and ml are the masses of the pion
and charged lepton respectively and the spatial volume
V ¼ L3. The exhibited terms in Eq. (2) are universal, i.e.
independent of the structure of the pion, and can therefore
be evaluated in perturbation theory treating the pion as an
elementary meson. The coefficients c0, c̃0, and c1 were
calculated in Ref. [11], and the corresponding finite-
volume effects subtracted from the nonperturbatively com-
puted width in the numerical studies of Refs. [12,13]. The
infrared divergence is manifest in the term containing
log½mπL�,2 so that L acts as the infrared regulator. In the
QEDL formulation the leading finite-volume effects which
depend on the structure of the decaying pion are therefore
of Oð1=ðmπLÞ2Þ and, together with higher order terms, are

represented by the ellipsis in Eq. (2). The Oð1=ðmπLÞ2Þ
nonperturbative effects were recently estimated in
Ref. [15], together with a perturbative calculation of the
terms of Oð1=ðmπLÞ3Þ obtained by treating the meson as a
pointlike particle (see also Ref. [16]). It was found that
while the structure-dependent terms at Oð1=ðmπLÞ2Þ are
small, the Oð1=ðmπLÞ3Þ terms corresponding to a pointlike
pion are significant. The structure-dependent terms at
Oð1=ðmπLÞ3Þ are unknown however, and difficult to
estimate without repeating computations at different vol-
umes at the same lattice spacings and quark masses.
The primary aim of the present paper is to develop a

framework, based on IVR, in which the finite-volume
effects decrease exponentially in the volume and in
which the cancellation of infrared divergences is fully
controlled. In this approach, in contrast to other imple-
mentations of QCDþ QED in lattice computations, the
decay amplitude is not fully computed in a finite volume.
Instead, as will be discussed in detail below, the infinite-
volume amplitude is organized in such a way that effects
related to the long-distance propagation of the photon are
calculated analytically and the only nonperturbative QCD
input which is required is a nonlocal hadronic matrix
element which is obtained with exponentially small finite-
volume corrections.
A number of issues which are necessary for the evalu-

ation of leptonic decay widths are generic, and hence are
common to the QEDL and IVR frameworks. These were
discussed in Refs. [10–13] and we do not add further to that
discussion here, beyond briefly recalling the main points as
follows.
The Effective Lagrangian and determination of the

Fermi Constant.—Lattice calculations are generally per-
formed with an inverse lattice spacing of the order
of a few GeV (e.g. a−1 ≃ 2–4 GeV) and, even with
techniques such as step-scaling, direct computations in
the Standard Model, which contain scales of OðMWÞ, are
not possible at present. Instead, weak decay amplitudes are
evaluated in an effective theory in which the heavy degrees
of freedom, and in particular the W and Z bosons are
integrated out. The amplitudes are therefore written in
terms of the Fermi constant, GF, which is conventionally
determined from the muon lifetime. At OðαemÞ and
neglecting higher order terms in m2

e=m2
μ, the lifetime τμ

is given by the expression [17,18]

1

τμ
¼ G2

Fm
5
μ

192π3

�
1 −

8m2
e

m2
μ

��
1þ αem

2π

�
25

4
− π2

��
; ð3Þ

leading to the value GF ¼ 1.16634 × 10−5 GeV−2. (For an
extension of Eq. (3) to Oðα3Þ and the inclusion of higher
powers of ρ≡ ðme=mμÞ2 see Sec. 10.2.1 of the 2022
edition of the Particle Data Group’s review [19].

2We have chosen to write the infrared divergent term here as
log½mπL�. It can, of course, be written instead as log½mlL�
together with the corresponding redefinition of c0ðrlÞ.
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The authors quote the corresponding value of the Fermi
constant to be GF ¼ 1.1663787ð6Þ × 10−5 GeV−2.)
The evaluation of the amplitude for the process πþ →

lνl up to OðαemÞ can be performed in the effective theory
with the effective Lagrangian [20,21]

Leff ¼
GFffiffiffi
2

p V�
ud

�
1þ αem

π
log

MZ

MW

�
× ðd̄γμð1 − γ5ÞuÞðν̄lγμð1 − γ5ÞlÞ ð4Þ

and with the Feynman-gauge photon propagator in the
W-regularization [22], i.e. with 1=k2 replaced by
M2

W=k
2ðM2

W − k2Þ where k is the four-momentum of the
photon. Since αem=π logðMZ=MWÞ ≃ 2.9 × 10−4 we drop
this term in the remainder of this paper. It can readily be
included if necessary.
Renormalisation of the lattice operator(s).—From the

previous paragraphs we note that the matrix elements of
bare lattice operator(s) determined in a lattice computation
need to be converted into the W-regularization scheme.
This is a short-distance issue and, given the large scale
MW , in practice this requires some perturbation theory.
For the Wilson action for both the fermions and gluons,
the conversion was performed entirely in perturbation
theory at OðαemÞ in Ref. [10] [see Eq. (10) of this
reference]. [Note that the lack of chiral symmetry
with Wilson fermions implies that the current-current
operator in Eq. (4) is a linear combination of 5 four-
fermion lattice operators.] The precision of the calculation
was subsequently improved from OðαemαsðaÞÞ to
OðαemαsðMWÞÞ in Ref. [23].
The discussion in this paper is independent of the choice

of the lattice discretization of QCD. Whichever choice is
made in the computation of the decay width, the bare lattice
operators will need to be matched to those in the W-
regularization, either using a combination of nonperturba-
tive renormalization and perturbation theory or entirely in
perturbation theory.
Quark and meson mass shifts.—Electromagnetic effects

induce a shift in the masses of quarks and hadrons.
Computations of hadron masses in the full theory, i.e.
including electromagnetic and strong isospin breaking
effects, are now performed by a number of groups
[6,24–32]. The hadron masses in the full QCDþ QED
theory are of course unambiguous and the computed
quantities reproduce their physical values, up to statistical
and systematic uncertainties. On the other hand, at OðαemÞ
computed quantities in QCD (without QED) are convention
dependent, i.e. they depend on the criteria used to deter-
mine the input bare quark masses and lattice spacing. For a
detailed discussion of this point, see Sec. II in Ref. [13],
where a number of possible conventions for the definition
of QCD are reviewed. In the present paper we will not
discuss strong isospin breaking, since it does not present

significant conceptual difficulties, such as the cancellation
of infrared divergences and finite-volume effects which are
not exponentially small. The presentation in this paper does
not depend on the convention chosen to define QCD and so
we generically label the mass of the charged pion in QCD
by m0

π and that in the full theory by mπ ¼ m0
π þ δmπ. The

mass shift δmπ is obtained from the time behavior of the
correlation functions as explained in Sec. II B. Our focus,
instead, is on the determination of the decay width, which is
obtained from the correlation functions after the subtraction
of the term proportional to the mass shift.
While the nonperturbative QCD effects will necessarily

be determined from hadronic correlations functions com-
puted on finite Euclidean volumes, the discussion in this
paper is presented in an infinite four-dimensional volume.
We identify the nonperturbative hadronic elements which
need to be calculated and define and process the correlation
functions from which they can be determined. We then
organize the calculation in such a way that the hadronic
matrix elements contributing to the width can subsequently
be determined from a finite-volume computation with only
exponentially small finite-volume corrections.
The correlation functions studied in Sec. II all include an

interpolating operator to create the pion at rest at time −tπ
and the hadronic weak current which annihilates the meson
at the four-dimensional origin. In an infinite space-time
volume tπ can be chosen to be arbitrarily large. In
Euclidean space the Feynman-gauge photon propagator
is given in Eq. (A7):

Sμνγ ðx; yÞ ¼ δμν

4π2jx − yj2 ; ð5Þ

where x and y are the positions of the two electromagnetic
currents in diagrams A, B, and C (see Fig. 1). In the absence
of infrared divergences, one can therefore, at arbitrarily large
temporal separations, e.g. jx4 − y4j ≳ tπ , factor the ampli-
tude, writing it as the product of source, sink, and propaga-
tion contributions. Infrared divergences are present however,
and without an additional infrared cutoff it is tπ which acts as
the cutoff, with terms proportional to log½mπtπ� present.
Instead, we organize the discussion by implicitly introducing
a separate cutoff, e.g. a mass for the photon mγ , with
tπmγ ≫ 1, so that contributions from jx4 − y4j≳ tπ , where
the photon propagator joins the source and sink factors, can
now legitimately be neglected. The cancellation of the
infrared divergences, which are now proportional to
logðmπ=mγÞ, will be handled analytically and IVR will be
applied to the finite terms to ensure that the finite-volume
corrections are exponentially small. While the logic of the
discussion requires us to take the limits in the order
limmγ→0 limtπ → ∞, this limit is taken before the lattice
calculations, which are therefore independent ofmγ and free
of infrared divergences.
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We stress that the cancellation of infrared divergences is
performed fully analytically, with no lattice uncertainties.
This is different for example, from the computations in
QEDL in which an analytic expression containing the
infrared divergence, which is of the form log½mπL�, is
subtracted from the amplitude computed numerically.
In the following sections we present the implementation

of the IVR method in leptonic decays in detail, but we now
introduce the main ideas. The introduction of radiative
corrections, with a photon which can propagate over large
distances, results in the presence of both infrared diver-
gences and finite-volume corrections which potentially
only decrease slowly with the volume (as inverse powers
of L, the spacial extent of the volume). The fundamental
idea of the IVR method is that there is a time interval ts ≲ L
such that the only hadronic state which contributes sig-
nificantly to correlation functions when propagating over
times greater than ts is the pion; contributions from states
with larger masses are exponentially suppressed. To illus-
trate the method, consider the hadronic matrix element

Hðx⃗;−tÞ≡ hfjT½O2ð0ÞO1ðx⃗;−tÞ�jπð0⃗Þi; ð6Þ

where O1;2 are local operators, T represents time-ordering,

and the initial state jπð0⃗Þi is a pion at rest (i.e. with three-

momentum 0⃗). For our specific study of leptonic decays we
show in Fig. 1 the diagram without electromagnetism and
the five diagrams which include electromagnetism and
contribute to the πþ → lþνlðγÞ decay amplitude [we
include electromagnetic corrections up to OðαemÞ in the
decay width]. For diagrams B and D, the final state jfi ¼
j0i and O1 and O2 are electromagnetic and weak currents
respectively. For diagram A, both O1 and O2 are electro-
magnetic currents and if −t < 0 and the time at which the
weak current is inserted, tW , is sufficiently large and
positive so the propagation of states other than the pion
between O2ð0Þ and the weak current at tW is suppressed,
then jfi ¼ jπð0⃗Þi. In the evaluation of the diagrams,
Hðx⃗;−tÞ is a factor in the integrand of integrals of the
generic form Z

d4xHðxÞfðxÞ; ð7Þ

where fðxÞ encodes nonhadronic x-dependent elements
such as the photon and lepton propagators. We now
demonstrate that for t > ts, Hðx⃗;−tÞ can be determined
analytically in terms of Hðx⃗;−tsÞ. It is therefore unneces-
sary to perform nonperturbative computations of Hðx⃗;−tÞ
for t > ts. By the assumption that only pion intermediate
states propagate between ðx⃗;−tsÞ and the origin we have

FIG. 1. Diagram D0 contributes to the amplitude for the decay πþ → lþνl in the absence of electromagnetism. The remaining 5
connected diagrams contribute to the OðαemÞ electromagnetic corrections to the width of the leptonic decay of a pion. Diagrams A–C
correspond to the decay πþ → lþνl and diagrams D and E to the decay πþ → lþνlγ. As explained in Sec. II, each of the five diagrams
should be viewed as representing a class of diagrams at the quark and lepton level, without regard for the time ordering suggested by the
representatives shown.
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Hðx⃗;−tsÞ ¼
Z

d3p
ð2πÞ3

1

2Eπðp⃗Þ
× hfjO2ð0Þjπðp⃗Þihπðp⃗ÞjO1ðx⃗;−tsÞjπð0⃗Þi

¼
Z

d3p
ð2πÞ3

1

2Eπðp⃗Þ
× hfjO2ð0Þjπðp⃗Þihπðp⃗ÞjO1ð0Þjπð0⃗Þi
× e−ðEπðp⃗Þ−mπÞtse−ip⃗·x⃗; ð8Þ

where Eπðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

π

p
. Performing the inverse

Fourier transform we obtain

1

2Eπðp⃗Þ
hfjO2ð0Þjπðp⃗Þihπðp⃗ÞjO1ð0Þjπð0⃗Þi

¼
Z

d3xHðx⃗;−tsÞeðEπðp⃗Þ−mπÞtseip⃗·x⃗: ð9Þ

For values of t > ts following the same steps as in Eq. (8)
we have

Hðx⃗;−tÞjt>ts ¼
Z

d3p
ð2πÞ3

1

2Eπðp⃗Þ
× hfjO2ð0Þjπðp⃗Þihπðp⃗ÞjO1ð0Þjπð0⃗Þi
× e−ðEπðp⃗Þ−mπÞte−ip⃗·x⃗ ð10Þ

¼
Z

d3p
ð2πÞ3

Z
d3x0 Hðx⃗0;−tsÞ

× e−ðEπðp⃗Þ−mπÞðt−tsÞe−ip⃗·ðx⃗−x⃗0Þ: ð11Þ

We see therefore that Hðx⃗;−tÞjt>ts can be determined from
the knowledge of Hðx⃗;−tsÞ, which is now the nonpertur-
bative input into the evaluation of the decay amplitude. The
discussion here is infinite volume, but we envisage that the
nonperturbative determination of Hðx⃗;−tsÞ will ultimately
be performed in a finite-volume lattice QCD computation.
The long-distance behavior of the correlation function in
Eq. (10) is of the form exp½−mπð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx⃗j2 þ t2

p
− tÞ� with

prefactors which include negative powers of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx⃗j2 þ t2

p
.

Thus, in the region of large t, increasing jx⃗j has little effect
until jx⃗j2mπ becomes of the order of t. Furthermore,
contributions from regions of large t ≫ jx⃗j2mπ are only
suppressed by powers of t. Consequently, in a finite-
volume lattice calculation, the omission of the large jx⃗j
region at large t from the integral in Eq. (7), where fðxÞ
contains the photon propagator, results in power law, finite-
volume errors. However, as is shown in Eq. (11), IVR
allows the contribution from this troublesome region of
large t to be determined analytically in infinite volume from
the calculation of hadronic matrix elements at, for example,
a fixed value of t ¼ ts. The exponential decrease for large
jx⃗j at fixed ts ensures exponentially vanishing corrections

as the volume used in the lattice calculation grows.
Moreover, no finite-volume effects are introduced by the
momentum integration on the right-hand side of Eq. (11),
since this is always performed in infinite volume. In the
following sections we exploit the IVR technique illustrated
above to develop a complete procedure for the computation
of electromagnetic corrections to the leptonic decay widths
of pseudoscalar mesons.
In the previous paragraph, in order to illustrate the

method, we demonstrated that performing the computa-
tions on lattices of increasing volumes with a fixed value of
ts led to exponentially small finite-volume effects. There
also exist other possibilities to achieve this, although the
rate of decrease of the exponentially falling finite volume
effects will be different in each case. For example, we can
increase ts as the volume increases while keeping the ratio
ts=L fixed, with ts ≲ L. Increasing ts in this way, enables us
to combine the reduction of finite-volume effects with a
decrease of any possible contamination from contributions
of excited states at t ¼ ts.
The plan for the remainder of the paper is as follows. In

the next section we discuss the evaluation of the diagrams.
The terms containing the infrared divergences are separated
from the finite terms. The analytic cancellation of the
infrared divergences in the width between diagrams with a
virtual photon (diagrams A, B, and C) and those with a real
photon (diagrams D and E) is demonstrated in Sec. III. We
collect all the terms contributing to the final result for the
decay width in Sec. IV and discuss the implementation of
the method in lattice QCD computations. In Sec. V we
present a brief summary and our conclusions.
There are three appendices: in Appendix A we present

the conventions we use in Minkowski and Euclidean space.
In the main body of the paper we identify the terms which
lead to infrared divergences in the widths. While the
cancellation of infrared divergences is manifest, finite
terms remain after the addition of the individually divergent
terms. These residual finite terms are derived in
Appendix B and only require knowledge of the decay
constant and the matrix element of the interpolating
operator of the pion. Finally, in Appendix C we sketch
how IVR can be implemented in Kl3 decays.

II. EVALUATION OF THE DIAGRAMS

The five diagrams which contribute to the πþ → lþνlðγÞ
decay amplitudes are illustrated in Fig. 1. They indicate
whether the photon is attached to the hadronic or leptonic
components of the electromagnetic current(s) [see Eq. (17)
below]. Thus, for example, in diagram A the photon is
emitted and absorbed on quark propagators, whereas in
diagram B it is emitted from a quark propagator and
absorbed by the charged lepton. We stress that the diagrams
are a representation of QCDþ QED, and that their evalu-
ation in lattice computations is to be performed in a
discretization of QCD at the quark and gluon level. The
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diagrams are not to be interpreted as corresponding to some
effective theory. “Disconnected” diagrams, i.e. those in
which the photon is emitted and/or absorbed from a closed
quark loop which is connected to the remainder of the
diagram only by gluons, are implicitly included in the
diagrams of Fig. 1. While it is generally more difficult to
compute such disconnected diagrams numerically, they are
included in the framework presented in this paper. At
OðαemÞ there are no diagrams in which a photon is attached
to a closed lepton loop.
Below we discuss the evaluation of the diagrams of Fig. 1

which contribute to the πþ → lþνlðγÞ decay amplitudes.
More precisely, we define the correlation functions corre-
sponding to each of the diagrams and organize them so the
hadronic matrix elements which contribute to the amplitudes
can ultimately be computed on a finite Euclidean lattice with
only exponentially small finite-volume effects. Infrared
divergent contributions are identified and the cancellation
of the divergences is performed analytically, so that the
matrix elements which need to be computed are all indi-
vidually infrared finite. The numerical evaluation of the
matrix elements is postponed to a future study.
We start by defining the fundamental ingredients in the

computation of the amplitude, and in particular the had-
ronic matrix elements and leptonic factors. Since the
energy-momentum exchanges in this decay are much
smaller than the mass of the W-boson, the weak vertex
is rewritten as a local four-fermion interaction as in Eq. (4)

Leff ¼
GFffiffiffi
2

p V�
udgμνJ

μ
WðxÞ½ν̄lðxÞγνð1 − γ5ÞlðxÞ�; ð12Þ

where the weak hadronic current JμW ¼ d̄γμð1 − γ5Þu.
Throughout this paper, we take the initial pion to be at

rest, denoting the corresponding QCD eigenstate by jπð0⃗Þi,
and define the hadronic matrix elements as follows:

Hμ
0 ¼ h0jJμWð0Þjπð0⃗Þi; ð13Þ

Hμν
1 ðxÞ ¼h0jT½JνemðxÞJμWð0Þ�jπð0⃗Þi; ð14Þ

Hμνρ
2 ðx; yÞ ¼h0jT½JνemðxÞJρemðyÞJμWð0Þ�jπð0⃗Þi; ð15Þ

Hνρ
2sðzÞ ¼hπð0⃗ÞjT½Jνemð0ÞJρemðzÞ�jπð0⃗Þi: ð16Þ

We use the normalization conventions hπðp⃗Þjπðp⃗0Þi ¼
ð2πÞ32Eπδðp⃗ − p⃗0Þ for the state jπðp⃗Þi. In the above
equations JμW is the weak hadronic current and Jνem is
the electromagnetic current

Jνem ¼
X
f

Qfq̄fγνqf −
X
l

l γνl; ð17Þ

where the charges are Qf ¼ þ 2
3
for uplike quarks, − 1

3
for

downlike ones and −1 for the leptons l. The appearance of
H0 in diagrams D0, C, and E,H1 in diagrams B and D, and

H2 in diagram A can be readily understood. Wewill explain
the appearance of H2s when discussing the evaluation of
diagram A.
Diagrams A–C contain the propagator of a photon

which, in position space with the photon propagating
between x and y, we denote by Sγμνðx; yÞ where μ, ν are
Lorentz indices. We denote the four-momenta of the final
state charged lepton and neutrino by pl ¼ ðEl; p⃗lÞ and
pν ¼ ðjp⃗νj; p⃗νÞ, and for this two-body πþ → lþνl decay
El and jp⃗lj are fixed by the masses of the pion and lepton.
Diagrams D and E have a real photon in the final state and
we denote its polarization vector by ϵνλðkÞ, where k is the
momentum of the photon and λ labels its polarization. We
denote the four-momenta of the final state charged
lepton, neutrino and photon in diagrams D and E by pl ¼
ðEl; p⃗lÞ, pν ¼ ðjp⃗νj; p⃗νÞ and k ¼ ðjk⃗j; k⃗Þ respectively.
In all the diagrams, the energy of the final state lepton

is given by El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗lj2 þm2

l

q
.

The hadronic matrix elements in Eqs. (13)–(16) are
combined with the photon propagator Sγμν or polarization
vectors ϵνλ and the corresponding leptonic factors

Lμ
0 ¼ ūðpνlÞγμð1 − γ5ÞvðplÞ; ð18Þ

Lμν
1 ðxÞ ¼ ūðpνlÞγμð1 − γ5ÞSlð0; xÞγνvðplÞe−ipl·x; ð19Þ

Lμνρ
2 ðxÞ ¼ ūðpνlÞγμð1 − γ5ÞSlð0; xÞγνSlðx; yÞγρvðplÞ

× e−ipl·y ð20Þ

and subsequently integrated over x and y as appropriate.
In the following we start by writing down the contribu-

tion from each diagram to the decay amplitude with all
quantities, and in particular the γ-matrices and photon’s
polarization vector, in Minkowski space as presented in
Appendix A 1. The earlier expressions in this section, from
Eq. (12) to Eq. (20) were all written in terms of these
Minkowski-space quantities. Since the hadronic matrix
elements are eventually to be evaluated in lattice compu-
tations in a finite Euclidean volume we rewrite and process
these contributions in terms of Euclidean quantities as
defined in Appendix A 2. We stress however, that the
expressions in both cases are exactly equivalent. An
important point to recall is that the discussion in this
section is in infinite volume (both temporal and spatial). We
will identify the hadronic elements which need to be
calculated and organize them in such a way that they
can be computed on a finite lattice with only exponentially
small finite-volume corrections.

A. The amplitude in QCD without QED

The amplitude for the leptonic decay πþ → lþνl in pure
QCD, i.e. neglecting electromagnetism, is represented by
diagram D0 in Fig. 1 and is simply given by
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M0 ¼
GFffiffiffi
2

p V�
udH

μ
0L

ν
0gμν ¼ −

GFffiffiffi
2

p V�
udH

0
0L

0
0; ð21Þ

where we recall that we are using the metric gμν ¼
diagð−1; 1; 1; 1Þ and that we take the meson in the initial
state to be at rest so that only the time component of Hμ

0 is
not zero. Rewriting this expression in terms of Euclidean γ-
matrices as defined in Sec. A 2 we have

M0 ¼ −
GFffiffiffi
2

p V�
udH

4
0EL

4
0E; ð22Þ

where the subscript E is included to indicate that the γ-
matrices are in Euclidean space, distinguishing the expres-
sion from Eq. (21) where they are in Minkowski space.
Nevertheless the two expressions are identical of course.
The matrix element H4

0E is obtained from the following
lowest order QCD (without QED) correlation functions with
quark masses corresponding to a πþ meson with mass m0

π:

C0
ϕϕðtπÞ¼

Z
d3xh0jϕð0Þϕ†ð−tπ; x⃗Þj0i¼ jZ0j2

e−m
0
π tπ

2m0
π
þ��� ;

ð23Þ

C0
JWϕðtπÞ ¼

Z
d3x h0jJ4Wð0Þϕ†ð−tπ; x⃗Þj0i

¼ H4
0EZ0

e−m
0
π tπ

2m0
π

þ � � � ; ð24Þ

where tπ > 0,ϕ† is an interpolating operatorwhich can create
the pion from the vacuum and the QCD matrix element Z0 is
defined as Z0 ¼ hπð0⃗Þjϕ†ð0Þj0i evaluated in QCD without
QED.3 The superscript 0 onm0

π indicates that this is the pion
mass evaluated in QCD, before the shift in quark masses
induced by electromagnetic interactions. It is assumed that tπ
is sufficiently large that the correlation functions are domi-
nated by the propagationof a single pionat rest and the ellipsis
represent the contributions from the excited states. Thesewill
be assumed to be negligible and in the following presentation
we drop the ellipsis. The hadronic matrix element H4

0E is
obtained by combining Eqs. (23) and (24):

H4
0E ¼ ½2m0

π�12
C0
JWϕ

ðtπÞh
C0
ϕϕðtπÞe−m

0
π tπ
i1
2

: ð25Þ

Since throughout the discussion below the initial pion is
at rest, in the following we will use the shorthand notation
for ϕ†ð−tπÞ (i.e. ϕ† with a single variable):

ϕ†ð−tπÞ≡
Z

d3xϕ†ð−tπ; x⃗Þ: ð26Þ

The correlation functions from which the contributions to
the decay amplitudes from each of the diagrams in Fig. 1
are determined are defined in the following sections.
The contribution to the decay width in the absence of

QED is given by

Γ0ðπþ → lþνlÞ ¼
G2

FjVudj2f2π
8π

mπm2
l

�
1 −

m2
l

m2
π

�
2

; ð27Þ

where the leptonic decay constant fπ is obtained
from jH4

0Ej2 ¼ m2
πf2π.

B. Contribution to the amplitude from diagram A

Diagram A contributes at OðαemÞ to both the mass of the
pion and to the decay amplitude; the latter through the wave
function renormalization of the pion and a correction to the
weak interaction vertex. The leptonic factor L4

0E is common
to both M0 and the contribution from diagram A and we
define the Euclidean correlation function corresponding to
diagram A as

CA
JWϕðtπÞ ¼ −

e2

2

Z
d4x

Z
d4yh0jT½J4Wð0ÞJμemðxÞ

× JνemðyÞϕ†ð−tπÞ�j0iSμνγ ðx; yÞ; ð28Þ

where the 1
2
is the standard combinatorial factor and the

superscript A indicates the contribution of diagram A. As
the discussion in this subsection is presented entirely in
Euclidean space, we do not include an explicit subscript E
to denote Euclidean. Combining CA

JWϕ with C0
JWϕ [defined

in Eq. (24)] gives

C0
JWϕðtπÞ þ CA

JWϕ
ðtπÞ ¼

H4
fullZfull

2ðm0
π þ δmπÞ

e−ðm0
πþδmπÞtπ ; ð29Þ

where H4
full ≡ h0jJ4Wð0Þjπð0⃗Þifull, Zfull ¼ hπð0⃗Þjϕ†ð0Þj0ifull

and the label “full” implies that the matrix element is
defined in QEDþ QCD up toOðαemÞ. At this order we can
write

C0
JWϕ

ðtπÞ þ CA
JWϕðtπÞ ¼ ð−δmπtπÞ

H4
0Z0

2m0
π
e−m

0
π tπ

þ H4
fullZfull

2ðm0
π þ δmπÞ

e−m
0
π tπ ; ð30Þ

so that the mass-shift δmπ can be obtained from a study of
the tπ behavior of the correlation function.

3Note that our definition of Z0 differs from the conventionffiffiffiffiffi
Z0

p ¼ hπð0⃗Þjϕ†ð0Þj0i frequently used in the normalization of
quantum fields.

RADIATIVE CORRECTIONS TO LEPTONIC DECAYS USING … PHYS. REV. D 108, 014501 (2023)

014501-7



Similarly, defining

CA
ϕϕðtπÞ≡ −

e2

2

Z
d4x

Z
d4y h0jT½ϕð0ÞJμemðxÞ

× JνemðyÞϕ†ð−tπÞ�j0iSμνγ ðx; yÞ; ð31Þ

and following the same steps we obtain

C0
ϕϕðtπÞ þ CA

ϕϕðtπÞ ¼
jZfullj2

2ðm0
π þ δmπÞ

e−ðm0
πþδmπÞtπ

¼ ð−δmπtπÞ
Z2
0

2m0
π
e−m

0
π tπ

þ jZfullj2
2ðm0

π þ δmπÞ
e−m

0
π tπ : ð32Þ

The mass-shift δmπ is obtained from the coefficient of tπ
in Eqs. (30) and (32). In order to simplify the notation in the
later discussion we define

C̃A
JWϕðtπÞ ¼ CA

JWϕðtπÞ − ð−δmπtπÞC0
JWϕðtπÞ; ð33Þ

C̃A
ϕϕðtπÞ ¼ CA

ϕϕðtπÞ − ð−δmπtπÞC0
ϕϕðtπÞ; ð34Þ

so that C̃A
JWϕðtπÞ and C̃A

ϕϕðtπÞ are the contributions to the
correlation functions after the subtraction of the linear term in
tπ which is proportional to the mass shift. It is from these
subtracted correlation functions that the contribution to the
decay amplitude is obtained. Thus by studying the tπ
dependence of C0

JWϕ
ðtπÞþCA

JWϕðtπÞ and C0
ϕϕðtπÞþCA

ϕϕðtπÞ,
the matrix element H4

full ≡ h0jJ4Wð0Þjπð0⃗Þifull can be deter-
mined:

H4
full ¼ 2ðm0

πþδmπÞ
ðC0

JWϕðtπÞþ C̃A
JWϕ

ðtπÞÞem0
π tπ

Zfull

¼
h
2ðm0

πþδmπÞ
i1
2

C0
JWϕ

ðtπÞþ C̃A
JWϕðtπÞh

ðC0
ϕϕðtπÞþ C̃A

ϕϕðtπÞÞe−m0
π tπ
i1
2

≃ ½2m0
π�12

2
64�1þ δmπ

2m0
π

�
C0
JWϕ

ðtπÞh
C0
ϕϕðtπÞe−m

0
πtπ
i1
2

þ C̃A
JWϕðtπÞh

C0
ϕϕðtπÞe−m

0
π tπ
i1
2

−
1

2

C̃A
ϕϕðtπÞh

C0
ϕϕðtπÞe−m

0
π tπ
i1
2

H4
0

Z0

3
75 ð35Þ

≡H4
0 þH4

A; ð36Þ

where H4
0 is given in Eq. (25).

The corresponding contribution to the amplitude is the
extension of Eq. (22) to OðαemÞ:

MA ¼ −
GFffiffiffi
2

p V�
udH

4
AL

4
0: ð37Þ

In the evaluation of the correlation functions CA
JWϕðtπÞ

and CA
ϕϕðtπÞ we exploit the symmetry under x ↔ y and

consider only the contribution from the region x4 > y4 and
introduce a factor of 2. We also divide the time integrations
into 4 regions Ri, i ¼ 1 − 4,

R1∶ x4 > −ts; y4 > −tπ þ ts;

R2∶ x4 < −ts; y4 > −tπ þ ts;

R3∶ x4 < −ts; y4 < −tπ þ ts;

R4∶ x4 > −ts; y4 < −tπ þ ts; ð38Þ

where ts > 0 is sufficiently large that the propagation of
excited hadronic states can be neglected for time intervals
greater than ts. In principle, the limits on y4 defining the
four regions in Eq. (38) could be −tπ þ t0s, with t0s ≠ ts but
still sufficiently large for the contribution of excited states
to be negligible for time intervals greater than t0s. For the
remainder of this paper, however, we simply set t0s ¼ ts as
in Eq. (38).
In region R4 the photon propagates for a time interval of

at least tπ − 2ts. In an infinite volume with infinite time
extent, the situation being considered in the current dis-
cussion, tπ can be set to be arbitrarily large and hence the
contribution to the correlation functions from this region
can be made arbitrarily small. This term can therefore be
neglected.
We now write the expressions for the correlation function

CA
JWϕðtπÞ and CA

ϕϕðtπÞ in each of the three remaining
regions in a way which will be useful for the discus-
sion below:

CA
JWϕ;R1

ðtπÞ ¼ −e2
Z

∞

−ts
dx4

Z
x4

−tπþts

dy4

Z
d3x

Z
d3y h0jT½J4Wð0ÞJμemðxÞJνemðyÞ�ϕ†ð−tπÞj0iSμνγ ðx; yÞ

¼ −e2
Z0

2m0
π
e−m

0
π tπ

Z
∞

−ts
dx4

Z
x4

−tπþts

dy4

Z
d3x

Z
d3yh0jT½J4Wð0ÞJμemðxÞJνemðyÞ�jπð0⃗ÞiSμνγ ðx; yÞ; ð39Þ
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CA
JWϕ;R2

ðtπÞ ¼ −e2
Z

−ts

−tπþts

dx4

Z
x4

−tπþts

dy4

Z
d3x

Z
d3yh0jJ4Wð0ÞJμemðxÞJνemðyÞϕ†ð−tπÞj0iSμνγ ðx; yÞ

¼ −e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
−ts

−tπþts

dx4

Z
x4

−tπþts

dy4

Z
d3z hπð0⃗ÞjJμemðx4; 0⃗ÞJνemðy4; z⃗Þjπð0⃗ÞiSμνγ ððx4; 0⃗Þ; ðy4; z⃗ÞÞ; ð40Þ

CA
JWϕ;R3

ðtπÞ ¼ −e2
Z

−tπþts

−∞
dy4

Z
−ts

y4

dx4

Z
d3x

Z
d3yh0jJ4Wð0ÞT½JμemðxÞJνemðyÞϕ†ð−tπÞ�j0iSμνγ ðx; yÞ

¼ −e2
H4

0

2m0
π

Z
−tπþts

−∞
dy4

Z
−ts

y4

dx4

Z
d3z hπð0⃗ÞjT½Jμemðx4; 0⃗ÞJνemðy4; z⃗Þϕ†ð−tπÞ�j0iSμνγ ððx4; 0⃗Þ; ðy4; z⃗ÞÞ: ð41Þ

The corresponding expressions for the CA
ϕϕ;Ri

ðtπÞ, i ¼ 1, 2,
3, are obtained from those in Eqs. (39)–(41) by replacing
H4

0 by Z0 and J4Wð0Þ by ϕð0Þ.
Note that the integrals in Eqs. (40) and (41) are common

to both CA
JWϕ;Ri

ðtπÞ and the corresponding CA
ϕϕ;Ri

ðtπÞ
(i ¼ 2, 3) so that

C̃A
JWϕ;Ri

ðtπÞ ¼ C̃A
ϕϕ;Ri

ðtπÞ
H4

0

Z0

ði ¼ 2; 3Þ ð42Þ

which leads to a partial cancellation in Eq. (35). We shall
show in the following subsections that Eq. (42) together
with the observation that CA

ϕϕ∶R1
ðtπÞ ¼ CA

ϕϕ∶R3
ðtπÞ, leads to

considerable simplifications, specifically that to obtain H4
A

it is sufficient to compute the OðαemÞ correlation functions
C̃JWϕ;R1

ðtπÞ and C̃JWϕ;R2
ðtπÞ [see Eq. (75) below].

The infrared divergent terms in CA
JWϕðtπÞ and CA

ϕϕðtπÞ, as
well as the shift in the pion mass, come from region R2

defined in Eq. (38). We therefore start the discussion of
these correlation functions by considering the contributions
from region R2 in Sec. II B 1. Although the contributions
from regions R1 and R3 are infrared finite, they do allow for
the propagation of a single pion over large (i.e. > ts) time
intervals which in a finite volume would lead to large,
nonexponential, finite-volume effects. These are eliminated
by the use of IVR as explained in Secs. II B 2 and II B 3.

1. Contribution from region R2

The infrared divergences, as well as terms which would
potentially lead to nonexponential finite-volume effects in a
finite-volume computation of the correlation functions,
come from the propagation of a single pion together with
the photon over large time separations x4 − y4. We there-
fore rewrite CA

JWϕ;R2
ðtπÞ as the sum of two terms

CA
JWϕ;R2

ðtπÞ ¼ CAL
JWϕ;R2

ðtπÞ þ CAS
JWϕ;R2

ðtπÞ; ð43Þ

where the indices L and S represent long and short temporal
separations between the insertions of the two currents respec-
tively. Specifically, we define regions L and S as correspond-
ing tox4 − y4 ≥ ts andx4 − y4 < ts respectively and take ts to
be the same as in the definition of the four regions in Eq. (38).
This is a convenient choice but not a necessary one; all that is
required is that the only significant contribution in region L
corresponds to a single pion and photon propagating between
the two currents. The infrared divergence is contained in
CAL
JWϕ;R2

ðtπÞ whereas CAS
JWϕ;R2

ðtπÞ is infrared finite. We now
consider these in turn, starting with the contribution from the
short temporal separation, CAS

JWϕ;R2
ðtπÞ.

The infrared-convergent contribution CAS
JWϕ;R2

ðtπÞ is
given by

CAS
JWϕ;R2

ðtπÞ¼−e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
−ts

−tπþts

dx4

Z
x4

maxðx4−ts;−tπþtsÞ
dy4

Z
d3zhπð0⃗ÞjJμemðx4; 0⃗ÞJνemðy4; z⃗Þjπð0⃗ÞiSμνγ ððx4; 0⃗Þ;ðy4; z⃗ÞÞ:

ð44Þ
It can be evaluated in lattice computations with exponentially small finite-volume corrections. The term proportional to tπ
contributes to the mass shift and is subtracted as in Eq. (33) and the difference is denoted by C̃AS

JWϕ;R2
ðtπÞ.

It is instructive to consider CAS
JWϕ;R2

ðtπÞ in a little more detail. Note that the integrand in Eq. (44) is only a function of the
difference z4 ≡ x4 − y4 and z⃗. Thus one time integration can be eliminated:

Z
−ts

−tπþts

dx4

Z
x4

maxðx4−ts;−tπþtsÞ
dy4

Z
d3zhπð0⃗ÞjJμemðx4;0⃗ÞJνemðy4;z⃗Þjπð0⃗ÞiSμνγ ððx4;0⃗Þ;ðy4;z⃗ÞÞ

¼ðtπ−2tsÞ
Z

ts

0

dz4

Z
d3zhπð0⃗ÞjJμemðzÞJνemð0Þjπð0⃗ÞiSμνγ ðz;0Þ−

Z
ts

0

dz4

Z
d3zz4hπð0⃗ÞjJμemðzÞJνemð0Þjπð0⃗ÞiSμνγ ðz;0Þ; ð45Þ
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where z ¼ ðz4; z⃗Þ and we have used translation invariance.
The factor of tπ − 2ts in front of the first term on the right-
hand side is a reflection of the fact that the temporal range
in region R2 for y4 ¼ x4 is tπ − 2ts. From this region,
therefore, we would expect a factor of δmπðtπ − 2tsÞ.

Regions R1 and R3 both have temporal extent ts and hence
contributions which cancel the term proportional to −2ts in
the first term on the right-hand side of Eq. (45). We
therefore only subtract the term proportional to tπ as in
Eq. (33) so that

C̃AS
JWϕ;R2

ðtπÞ ¼ e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

�
2ts

Z
ts

0

dz4

Z
d3z hπð0⃗ÞjJμemðzÞJνemð0Þjπð0⃗ÞiSμνγ ðz; 0Þ

þ
Z

ts

0

dz4

Z
d3z z4hπð0⃗ÞjJμemðzÞJνemð0Þjπð0⃗ÞiSμνγ ðz; 0Þ

�
: ð46Þ

When the contribution from regions R1, R2, and R3 are combined the ts dependence is eliminated leaving both δmπ and the
contribution to the amplitude independent of ts.
We now consider the contribution CAL

JWϕ;R2
ðtπÞ which contains the infrared divergence:

CAL
JWϕ;R2

ðtπÞ ¼ −e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
−ts

−tπþ2ts

dx4

Z
x4−ts

−tπþts

dy4

Z
d3z hπð0⃗ÞjJμemðx4; 0⃗ÞJνemðy4; z⃗Þjπð0⃗Þi

× Sμνγ ððx4; 0⃗Þ; ðy4; z⃗ÞÞ: ð47Þ

In order to organize the cancellation of infrared divergences we further manipulate CAL
JWϕ;R2

ðtπÞ:

CAL
JWϕ;R2

ðtπÞ ¼ −e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
−ts

−tπþ2ts

dx4

Z
x4−ts

−tπþts

dy4

Z
d3z

Z
d3p
ð2πÞ3

1

2Eπðp⃗Þ
Z

d3k
ð2πÞ3

1

2Eγ

× hπð0⃗ÞjJμemðx4; 0⃗Þjπðp⃗Þihπðp⃗ÞjJμemðy4; z⃗Þjπð0⃗Þie−Eγðx4−y4Þeik⃗·z⃗

¼ −e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
−ts

−tπþ2ts

dx4

Z
x4−ts

−tπþts

dy4

Z
d3k
ð2πÞ3

1

ð2EγÞð2Eπðk⃗ÞÞ
× hπð0⃗ÞjJμemð0Þjπðk⃗Þihπðk⃗ÞjJμemð0Þjπð0⃗Þie−ðEπðk⃗ÞþEγ−m0

πÞðx4−y4Þ; ð48Þ

where for three-momentum q⃗, Eπðq⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ ðm0

πÞ2
p

and Eγ ¼ jk⃗j.4 Performing the time integrations we obtain

CAL
JWϕ;R2

ðtπÞ ¼ −e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
d3k
ð2πÞ3

1

2Eγ2Eπðk⃗Þ
hπð0⃗ÞjJμemð0Þjπðk⃗Þihπðk⃗ÞjJμemð0Þjπð0⃗Þi

×

�
e−ðEπðk⃗ÞþEγ−m0

πÞts

Eπðk⃗Þ þ Eγ −m0
π

ðtπ − 3tsÞ −
e−ðEπðk⃗ÞþEγ−m0

πÞts − e−ðEπðk⃗ÞþEγ−m0
πÞðtπ−2tsÞ

ðEπðk⃗Þ þ Eγ −m0
πÞ2

�
: ð49Þ

In Eq. (49) the term in braces which is proportional to tπ corresponds to a contribution to the pion’s electromagnetic mass
shift and the remaining terms to a contribution to the amplitude. The ts dependence in the terms proportional to tπ in
Eqs. (49) and (45) cancel leaving δmπ independent of ts. The second contribution in braces can readily be seen to be infrared
divergent by noting that for small jk⃗j, Eπðk⃗Þ þ Eγ −m0

π ¼ Oðjk⃗jÞ and so the (tπ-independent) term in the integrand is

Oð1=jk⃗j3Þ. Note that, as explained in the Introduction, we assume that an infra-red cutoff, such as a mass for the photon, has

been introduced so that e−ðEπðk⃗ÞþEγ−m0
πÞtπ → 0 as tπ → ∞ and the term containing this factor in the integrand does not

contribute to the amplitude.

4We write Eγ because when regulating the infrared divergences below we could envisage introducing a photon mass mγ so that

Eγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2 þm2

γ

q
.
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Using Eq. (9) with f ¼ jπð0⃗Þi and with electromagnetic currents for the two operators O1;2, i.e.

1

2Eπ ð⃗pÞ
hπð⃗0ÞjJμemð0Þjπð⃗pÞihπð⃗pÞjJνemð0Þjπð⃗0Þi ¼

Z
d3x Hμν

2s ð⃗x; −tsÞ eðEπ ð⃗pÞ−mπÞts ei⃗p·⃗x; ð50Þ

the term contributing to the amplitude in Eq. (49) can be rewritten in the form

C̃AL
JWϕ;R2

ðtπÞ ¼ e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
d3k
ð2πÞ3

1

2Eγ

Z
d3zHμμ

2s ðz⃗;−tsÞeik⃗·z⃗
�
3ts

e−Eγts

Eπðk⃗Þ þ Eγ −m0
π

þ e−Eγts

ðEπðk⃗Þ þ Eγ −m0
πÞ2

�
: ð51Þ

The tilde on the left-hand side of Eq. (51) indicates that the term proportional to tπ has been subtracted as explained in the
discussion around Eq. (33).
In order to organize the cancellation of the infrared divergences it is convenient to separate C̃AL

JWϕ;R2
ðtπÞ into a divergent

and convergent contribution

C̃AL
JWϕ;R2

ðtπÞ ¼ C̃ALdiv
JWϕ;R2

ðtπÞ þ C̃ALcon
JWϕ;R2

ðtπÞ; ð52Þ

where

C̃ALdiv
JWϕ;R2

ðtπÞ ¼ e2Z0H4
0e

−m0
π tπ

Z
d3k
ð2πÞ3

1

2Eγ

e−Eγts

ðEπðk⃗Þ þ Eγ −m0
πÞ2

; ð53Þ

C̃ALcon
JWϕ;R2

ðtπÞ ¼ e2
Z0H4

0

ð2m0
πÞ2

e−m
0
π tπ

Z
d3k
ð2πÞ3

1

2Eγ

Z
d3zHμμ

2s ðz⃗;−tsÞ
�

3tseik⃗·z⃗e−Eγ ts

Eπðk⃗Þ þ Eγ −m0
π

þ ðeik⃗·z⃗ − 1Þ e−Eγts

ðEπðk⃗Þ þ Eγ −m0
πÞ2

�
:

ð54Þ
Collecting up all the terms we have

C̃A
JWϕ;R2

ðtπÞ ¼ C̃ALdiv
JWϕ;R2

ðtπÞ þ C̃ALcon
JWϕ;R2

ðtπÞ þ C̃AS
JWϕ;R2

ðtπÞ; ð55Þ

where C̃ALdiv
JWϕ;R2

ðtπÞ is given in Eq. (53), C̃ALcon
JWϕ;R2

ðtπÞ in Eq. (54), and C̃AS
JWϕ;R2

ðtπÞ in Eq. (44) after subtraction of the term linear
in tπ .
From Eq. (40) we see that the expression for the correlation function CA

ϕϕ;R2
ðtπÞ is simply obtained from CA

JWϕ;R2
ðtπÞ with

the replacement of H4
0 by Z0. Therefore, recalling the expression in Eq. (35), the contribution to H4

full from region R2 is

½2m0
π�12
"

C̃A
JWϕ;R2

ðtπÞ
½C0

ϕϕðtπÞe−m
0
πt�12 −

1

2

C̃A
ϕϕ;R2

ðtπÞ
C0
ϕϕðtπÞ

C0
JWϕðtπÞ

½C0
ϕϕðtπÞe−m

0
π t�12

#
¼ 1

2
½2m0

π�12
C̃A
JWϕ;R2

ðtπÞ
½C0

ϕϕðtπÞe−m
0
π t�12 : ð56Þ

The divergent contribution to H4
full from diagram A is

therefore

H4div
A ¼ e2

H4
0

2

Z
d3k
ð2πÞ3

1

2Eγ

e−Eγts

ðEπðk⃗Þ þ Eγ −m0
πÞ2

ð57Þ

and for later use we define

Mdiv
A ¼ −

GFffiffiffi
2

p V�
udH

4div
A L4

0: ð58Þ

The factor e−Eγ ts in the integrand ensures that H4div
A is

ultraviolet convergent.

2. Contribution from region R1

The contributions to MA from region R1 is infrared
convergent and in this subsection we present the corre-
sponding expression. We start with a discussion of the
correlation function in region R1 presented in Eq. (39)
which we rewrite here for convenience:

CA
JWϕ;R1

ðtπÞ ¼ −e2
Z0

2m0
π
e−m

0
π tπ

Z
∞

−ts
dx4

Z
x4

−tπþts

dy4

Z
d3x

×
Z

d3y h0jT½J4Wð0ÞJμemðxÞJνemðyÞ�jπð0⃗Þi

× Sμνγ ðx; yÞ: ð59Þ
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We now subdivide R1, where x4 > −ts and y4 > −tπ þ ts,
into subregions in which either the contributions to
CA
JWϕ;R1

ðtπÞ can be computed directly or the IVR procedure
is implemented:

R1a∶ x4 < 0; x4 − y4 ≥ ts;

R1b∶ x4 > 0; y4 ≤ −ts;

R1c∶ x4 < 0; x4 − y4 < ts;

R1d∶ x4 > 0; y4 > −ts;

and in each case it is to be implicitly understood that x4 >
−ts and y4 > −tπ þ ts with x4 > y4, which is the definition
of region R1. In region R1a the temporal separation
between the two electromagnetic currents is greater
than ts and hence the correlation function is dominated
by the propagation between these currents of states which

consist of a single pion and a photon. Similarly in region
R1b the temporal separation between the electromagnetic
current at y and the weak current is greater than ts and
again the correlation function is dominated by the
propagation of a single pion and photon between these
currents. We envisage that when lattice computations are
performed of the contributions from both these regions,
IVR will be implemented to avoid finite-volume correc-
tions which are not exponentially small. In regions R1c
and R1d there are no contributions corresponding to the
propagation of a single pion and photon over distances
greater than ts and hence the finite-volume effects are
exponentially small. The contributions from these two
regions can therefore be computed directly in a finite
volume.
We start by considering the contribution from

region R1a:

CA
JWϕ;R1a

ðtπÞ ¼ −e2
Z0

2m0
π
e−m

0
π tπ

Z
0

−ts
dx4

Z
x4−ts

−tπþts

dy4

Z
d3x

Z
d3y h0jJ4Wð0ÞJμemðxÞJνemðyÞjπð0⃗ÞiSμνγ ðx; yÞ

¼ −e2
Z0

2m0
π
e−m

0
π tπ

Z
0

−ts
dx4

Z
x4−ts

−tπþts

dy4

Z
d3z

Z
d3y h0jJ4Wð0ÞJμemðx4; z⃗þ y⃗ÞJνemðy4; y⃗Þjπð0⃗Þi

× Sμνγ ððx4 − y4; z⃗Þ; 0ÞÞ: ð60Þ

In the third line of Eq. (60) we have noted that for any ðx; yÞ the photon propagator only depends on x − y so that
Sμνγ ðx; yÞ ¼ Sμνγ ðx − y; 0Þ. It is now convenient to consider the hadronic component separately and to define

HR1a
ðx4; y4; z⃗Þ≡

Z
d3y h0jJ4Wð0ÞJμemðx4; z⃗þ y⃗ÞJνemðy4; y⃗Þjπð0⃗Þi ð61Þ

¼
Z

d3y
Z

d3p
ð2πÞ3

1

2Eπðp⃗Þ
h0jJ4Wð0ÞJμemðx4; y⃗Þjπðp⃗Þihπðp⃗ÞjJνemðy4; y⃗ − z⃗Þjπð0⃗Þi

¼
Z

d3y
Z

d3p
ð2πÞ3

1

2Eπðp⃗Þ
eip⃗·z⃗e−ðEπðp⃗Þ−m0

πÞðx4−y4−tsÞh0jJ4Wð0ÞJμemðx4; y⃗Þjπðp⃗Þi

× hπðp⃗ÞjJνemðx4 − ts; y⃗Þjπð0⃗Þi; ð62Þ

where we recall that Eπðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þ ðm0

πÞ2
p

. Taking the inverse Fourier transform at y4 ¼ x4 − ts we obtain

Z
d3z0HR1a

ðx4; x4 − ts; z⃗0Þe−ip⃗·z⃗0 ¼
1

2Eπðp⃗Þ
Z

d3yh0jJ4Wð0ÞJμemðx4; y⃗Þjπðp⃗Þihπðp⃗ÞjJνemðx4 − ts; y⃗Þjπð0⃗Þi: ð63Þ

Inserting Eq. (63) into Eq. (62) gives

HR1a
ðx4; y4; z⃗Þ ¼

Z
d3z0HR1a

ðx4; x4 − ts; z⃗0Þ
Z

d3p
ð2πÞ3 e

ip⃗·ðz⃗−z⃗0Þe−ðEπðp⃗Þ−m0
πÞðx4−y4−tsÞ: ð64Þ

Thus for sufficiently large ts it is enough to compute HR1a
ðx4; y4; z⃗Þ at x4 − y4 ¼ ts and to use Eq. (64) to obtain

HR1a
ðx4; y4; z⃗Þ at values of x4 − y4 > ts. It is not necessary to compute HR1a

ðx4; y4; z⃗Þ directly in a finite volume
for x4 − y4 > ts.
The calculation in region R1b follows a similar procedure with only a single pion and photon propagating between JνemðyÞ

and the weak current. The hadronic matrix element is now
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HR1b
ðx4; y4; z⃗Þ≡

Z
d3y h0jJμemðx4; z⃗þ y⃗ÞJ4Wð0ÞJνemðy4; y⃗Þjπð0⃗Þi ð65Þ

¼
Z

d3z0 HR1b
ðx4;−ts; z⃗0Þ

Z
d3p
ð2πÞ3 e

ip⃗·ðz⃗−z⃗0ÞeðEπðp⃗Þ−m0
πÞðy4þtsÞ: ð66Þ

We see that also in this case we don’t have to compute directly in a finite volume the matrix element
for −tπ þ ts < y4 < −ts.
The contributions from regions R1c and R1d do not have on-shell single-pion states propagating over long time

separations and hence do not have nonexponential finite-volume corrections. Collecting up the terms from the four
subregions, the correlation function in region R1 can be written as:

CA
JWϕ;R1

ðtπÞ ¼ CA
JWϕ;R1a

ðtπÞ þ CA
JWϕ;R1b

ðtπÞ þ CA
JWϕ;R1c

ðtπÞ þ CA
JWϕ;R1d

ðtπÞ; ð67Þ

where

CA
JWϕ;R1a

ðtπÞ ¼ −e2
Z0

2m0
π
e−m

0
πtπ

Z
0

−ts
dx4

Z
x4−ts

−tπþts

dy4

Z
d3z

Z
d3z0 HR1a

ðx4; x4 − ts; z⃗0Þ

×
Z

d3p
ð2πÞ3 e

ip⃗·ðz⃗−z⃗0Þe−ðEπðp⃗Þ−m0
πÞðx4−y4−tsÞSμνγ ðx4 − y4; z⃗Þ; ð68Þ

CA
JWϕ;R1b

ðtπÞ ¼ −e2
Z0

2m0
π
e−m

0
π tπ

Z
∞

0

dx4

Z
−ts

−tπþts

dy4

Z
d3z

Z
d3z0HR1b

ðx4;−ts; z⃗0Þ

×
Z

d3p
ð2πÞ3 e

ip⃗·ðz⃗−z⃗0ÞeðEπðp⃗Þ−m0
πÞðy4þtsÞSμνγ ðx4 − y4; z⃗Þ; ð69Þ

CA
JWϕ;R1c

ðtπÞ ¼ −e2
Z0

2m0
π
e−m

0
π tπ

Z
0

−ts
dx4

Z
x4

x4−ts
dy4

Z
d3x

Z
d3y h0jJ4Wð0ÞJμemðxÞJνemðyÞjπð0⃗ÞiSμνγ ðx; yÞ; ð70Þ

CA
JWϕ;R1d

ðtπÞ ¼ −e2
Z0

2m0
π
e−m

0
πtπ

Z
∞

0

dx4

Z
x4

−ts
dy4

Z
d3x

Z
d3y h0jJμemðxÞT½J4Wð0ÞJνemðyÞ�jπð0⃗ÞiSμνγ ðx; yÞ: ð71Þ

The derivation and results for the correlation function CA
ϕϕ;R1

ðtπÞ follows in precisely the same way with the weak current
J4W replaced by the annihilation operator ϕ. However, as we shall see in the following subsection CA

ϕϕ;R1
ðtπÞ can be

combined with CA
ϕϕ;R3

ðtπÞ to cancel the contribution of CA
JWϕ;R3

ðtπÞ. The latter therefore does not have to be computed.

3. Contribution from region R3

The contribution to the correlation function from region R3 is presented in Eq. (41) and we rewrite it here for
convenience:

CA
JWϕ;R3

ðtπÞ ¼ −e2
H4

0

2m0
π

Z
−tπþts

−∞
dy4

Z
−ts

y4

dx4

Z
d3zhπð0⃗ÞjT½Jμemðx4; 0⃗ÞJνemðy4; z⃗Þϕ†ð−tπÞ�j0iSμνγ ððx4 − y4;−z⃗Þ; 0Þ: ð72Þ

The evaluation of the correlation function CA
JWϕ;R3

ðtπÞ follows in a similar way to that from region R1. However CA
JWϕ;R3

ðtπÞ
is not needed to obtain the result for H4

A as we now explain. The expression for CA
ϕϕ;R3

ðtπÞ is the same as for CA
JWϕ;R3

ðtπÞ in
Eq. (72) withH4

0 replaced by Z0. We see from Eqs. (35) and (36) that the contribution toH4
A contains a term proportional to

1

½C0
ϕϕðtπÞe−m

0
π tπ �12

�
C̃A
JWϕ;R3

ðtπÞ −
1

2
C̃A
ϕϕ;R3

ðtπÞ
C0
JWϕ

ðtπÞ
C0
ϕϕðtπÞ

�
¼ 1

½C0
ϕϕðtπÞe−m

0
π tπ �12

1

2
C̃A
JWϕ;R3

ðtπÞ; ð73Þ

i.e. the second term in braces on the left-hand side cancels half of the first term. This can readily be understood as in both
cases the electromagnetic currents are well separated in time (by at least ts) from the pion creation operator. Moreover, note
also that CA

ϕϕ;R1
ðtπÞ ¼ CA

ϕϕ;R3
ðtπÞ so that
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1

½C0
ϕϕðtπÞe−m

0
πtπ �12

�
C̃A
JWϕ;R3

ðtπÞ −
1

2
ðC̃A

ϕϕ;R1
ðtπÞ

þ C̃A
ϕϕ;R3

ðtπÞÞ
C0
JWϕðtπÞ
C0
ϕϕðtπÞ

�
¼ 0: ð74Þ

It is therefore not necessary to compute C̃A
JWϕ;R3

and

C̃A
ϕϕ;R1

¼ C̃A
ϕϕ;R3

.

4. Summary of the contribution to the amplitude
from diagram A

Since the discussion in this subsection has been lengthy
we collect here all the different contributions:

H4
A¼

δmπ

2m0
π
H4

0þ
�

2m0
π

Z0e−m
0
π tπ

��
C̃A
JWϕ;R1

ðtπÞþ
1

2
C̃A
JWϕ;R2

ðtπÞ
�
;

ð75Þ

where C̃A
JWϕ;R1

ðtπÞ ¼ CA
JWϕ;R1

ðtπÞ [since CA
JWϕ;R1

ðtπÞ does
not contain terms proportional to tπ] is given in Eqs. (67)–
(71) and C̃A

JWϕ;R2
ðtπÞ is presented in Eq. (55) together with

Eqs. (44), (53), and (54) after taking care to subtract the
term proportional to tπ .

C. Contribution to the amplitude from diagram B

The contribution to the amplitude for the decay πþ →
lþνl from diagram B is

MB ¼ e2
GFffiffiffi
2

p V�
udgμμ0

Z
d4xHμν

1 ðxÞ
Z

d4yLμ0ν0
1 ðyÞSγνν0 ðx;yÞ;

ð76Þ

where all quantities are in Minkowski space as in
Appendix A 1. Rewriting MB in terms of Euclidean
quantities defined in Appendix A 2 (including the lepton
propagator in L1E) we obtain

MB ¼ −e2
GFffiffiffi
2

p V�
ud

Z
d4xHμν

1EðxÞ
Z

d4yLμν0
1EðyÞSγνν0Eðx; yÞ;

ð77Þ

where the subscript E denotes Euclidean. Since the entire
discussion in the remainder of this subsection is presented
in terms of Euclidean space quantities, in order to simplify
the notation we now drop the subscript E.
As anticipated in the Introduction we divide the inte-

gration over x4 into two regions, labeled L for long, i.e.
x4 ≤ −ts, and S for short, i.e. x4 > −ts. The hadronic
matrix elementHμν

1 ðxÞ in region S can be computed directly
using lattice methods with only exponentially suppressed
finite-volume corrections

MS
B ¼ −e2

GFffiffiffi
2

p V�
ud

Z
∞

−ts
dx4

Z
d3xHμν

1 ðxÞ

×
Z

d4yLμν0
1 ðyÞSγνν0 ðx; yÞ: ð78Þ

For the long-distance contribution we exploit Eq. (11) in
order to avoid computing Hμν

1 ðxÞ directly at large time
separations between the weak and electromagnetic currents
and hence introducing finite-volume corrections which
decrease only as inverse powers of the volume,

ML
B ¼ −e2

GFffiffiffi
2

p V�
ud

Z
−ts

−∞
dx4

Z
d3xHμν

1 ðxÞ

×
Z

d4yLμν0
1 ðyÞSγνν0 ðx; yÞ

¼ −e2
GFffiffiffi
2

p V�
ud

Z
−ts

−∞
dx4

Z
d3x

Z
d3p
ð2πÞ3

×
Z

d3x0 Hμν
1 ðx⃗0;−tsÞeðEπðp⃗Þ−m0

πÞðx4þtsÞe−ip⃗·ðx⃗−x⃗0Þ

×
Z

d4yLμν0
1 ðyÞSγνν0 ðx; yÞ

¼ −e2
GFffiffiffi
2

p V�
ud

Z
−ts

−∞
dx4

Z
d4yLμν

1 ðyÞ

×
Z

d3xHμν
1 ðx⃗;−tsÞ

Z
d3k
ð2πÞ3

1

2Eγ
eðEπðk⃗Þ−m0

πÞðx4þtsÞ

× e−Eγ jy4−x4je−ik⃗·ðx⃗−y⃗Þ; ð79Þ
where we recall that, up to an infrared cutoff, Eγ ¼ jk⃗j and
Eπðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þ ðm0

πÞ2
p

for any three-momentum q⃗. We
have used Eq. (A7) for the photon propagator in
Euclidean space.
For notational convenience we rewrite ML

B in the form

ML
B ¼−e2

GFffiffiffi
2

p V�
ud½ūðpνlÞγμð1− γ5Þ�αNμν

αβ½γνvðplÞ�β; ð80Þ

where α, β are spinor indices and

Nμν
αβ ¼

Z
−ts

−∞
dx4

Z
d4y

Z
d4p
ð2πÞ4 S̃lαβðpÞe

−iðpþplÞ·y

×
Z

d3xHμν
1 ðx⃗;−tsÞ

×
Z

d3k
ð2πÞ3

1

2Eγ
eðEπðk⃗Þ−m0

πÞðx4þtsÞe−Eγ jy4−x4je−ik⃗·ðx⃗−y⃗Þ

¼
Z

−ts

−∞
dx4

Z
d3k
ð2πÞ3

1

2Eγ

Z
dy4

×
Z

dp4

2π
S̃lαβðp4;−ðp⃗l − k⃗ÞÞe−ip4y4eEly4

×
Z

d3xHμν
1 ðx⃗;−tsÞ

× eðEπðk⃗Þ−m0
πÞðx4þtsÞe−Eγ jy4−x4je−ik⃗·x⃗; ð81Þ
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where p⃗l is the momentum of the final-state lepton and El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
l þm2

l

q
. The infrared divergence arises from the region in

which y4 > 0 and so we start by considering this region:

Nμν
αβjy4>0 ¼

Z
−ts

−∞
dx4

Z
d3k
ð2πÞ3

eEγx4

2Eγ

Z
∞

0

dy4

�Z
dp4

ð2πÞ S̃lαβðp4;−ðp⃗l − k⃗ÞÞe−ip4y4

�
eðEl−EγÞy4

Z
d3xHμν

1 ðx⃗;−tsÞ

× eðEπðk⃗Þ−m0
πÞðx4þtsÞe−ik⃗·x⃗

¼
Z

−ts

−∞
dx4

Z
d3k
ð2πÞ3

eEγx4

2Eγ

Z
∞

0

dy4
ð−E0

lð−k⃗Þγ4 þ iðp⃗l − k⃗Þ · γ⃗ þmlÞαβ
2E0

lð−k⃗Þ
e−ðE

0
lð−k⃗ÞþEγ−ElÞy4

×
Z

d3xHμν
1 ðx⃗;−tsÞeðEπðk⃗Þ−m0

πÞðx4þtsÞe−ik⃗·x⃗

¼
Z

−ts

−∞
dx4

Z
d3k
ð2πÞ3

eEγx4

2Eγ

ð−E0
lð−k⃗Þγ4 þ iðp⃗l − k⃗Þ · γ⃗ þmlÞαβ

2E0
lð−k⃗Þ

1

E0
lð−k⃗Þ þ Eγ − El

×
Z

d3xHμν
1 ðx⃗;−tsÞeðEπðk⃗Þ−m0

πÞðx4þtsÞe−ik⃗·x⃗;

¼
Z

d3k
ð2πÞ3

e−Eγ ts

2Eγ

ð−E0
lð−k⃗Þγ4 þ iðp⃗l − k⃗Þ · γ⃗ þmlÞαβ

2E0
lð−k⃗ÞðE0

lð−k⃗Þ þ Eγ − ElÞðEπðk⃗Þ þ Eγ −m0
πÞ

Z
d3xHμν

1 ðx⃗;−tsÞe−ik⃗·x⃗; ð82Þ

where E0
lð−k⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗l − k⃗Þ2 þm2

l

q
. As expected the right-hand side of Eq. (82) is infrared divergent; each of the factors

Eγ , E0
lð−k⃗Þ þ Eγ − El and Eπðk⃗Þ þ Eγ −m0

π in the denominator of the integrand is Oðjk⃗jÞ at small k⃗. In order to obtain an

expression for the inclusive decay rate which is free from infrared divergences it is convenient to rewrite the factor e−ik⃗·x⃗ as

1þ ðe−ik⃗·x⃗ − 1Þ and to separate ML
B into divergent and convergent contributions:

ML
B ¼ MLdiv

B þMLcon
B ; ð83Þ

where

MLdiv
B ¼ −

GFffiffiffi
2

p V�
udH

4
0

Z
d3k
ð2πÞ3 e

−Eγts

�
ūðpνlÞγ4ð1 − γ5Þð−E0

lð−k⃗Þγ4 þ iðp⃗l − k⃗Þ · γ⃗ þmlÞγ4vðplÞ
4EγE0

lð−k⃗ÞðE0
lð−k⃗Þ þ Eγ − ElÞðEπðk⃗Þ þ Eγ −m0

πÞ

�
ð84Þ

and

MLcon
B ¼ −

GFffiffiffi
2

p V�
ud

Z
d3k
ð2πÞ3 e

−Eγts

�
ūðpνlÞγμð1 − γ5Þð−E0

lð−k⃗Þγ4 þ iðp⃗l − k⃗Þ · γ⃗ þmlÞγνvðplÞ
4EγE0

lð−k⃗ÞðE0
lð−k⃗Þ þ Eγ − ElÞðEπðk⃗Þ þ Eγ −m0

πÞ

�

×
Z

d3xHμν
1 ðx⃗;−tsÞðe−ik⃗·x⃗ − 1Þ − GFffiffiffi

2
p V�

ud

Z
−ts

−∞
dx4

Z
d3k
ð2πÞ3

1

4EγE0
lð−k⃗Þ

×
Z

0

−∞
dy4 e

ðElþE0
lð−k⃗ÞÞy4

�
ūðpνlÞγμð1 − γ5ÞðE0

lð−k⃗Þγ4 þ iðp⃗l − k⃗Þ · γ⃗ þmlÞγνvðplÞ
�

×
Z

d3xHμν
1 ðx⃗;−tsÞeðEπðk⃗Þ−m0

πÞðx4þtsÞe−Eγ jy4−x4je−ik⃗·x⃗: ð85Þ

1. Summary of the contribution to the amplitude from diagram B

In summary, the contribution to the amplitude from diagram B is

MB ¼ MS
B þML div

B þML con
B ; ð86Þ

where MS
B, M

Ldiv
B and ML con

B are given in Eqs. (78), (84), and (85), respectively.
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D. Contribution to the amplitude from diagram C

The hadronic element in the contribution of diagram C to
the amplitude is simply H4

0 and the wave function renorm-
alization of the final state electron can be calculated in QED
perturbation theory. In evaluating the width it is natural to
combine the result from the interference of diagrams C and
D0 with that of diagram E with itself. The result of this
perturbative calculation is reported in Sec. III C below [10].

E. Contribution to the amplitude from diagram D

The contribution to the amplitude for the decay πþ →
lþνlγ from diagram D, written in terms of Minkowski
space quantities is

MD ¼ ie
GFffiffiffi
2

p V�
udgμμ0gνν0ϵ

ν
λðkÞLμ

0

Z
d4xHμ0ν0

1 ðxÞe−ik·x;

ð87Þ
where k is the momentum of the final state photon and λ its
polarization with polarization vector ϵνλðkÞ. The charge e is
that of the positron. Rewriting the right-hand side in terms
of Euclidean space quantities we have

MD¼−ie
GFffiffiffi
2

p V�
udϵ

ν
λEðkÞLμ

0E

Z
dx4

Z
d3xHμν

1EðxÞeEγx4e−ik⃗·x⃗;

ð88Þ
where again the subscript E reminds us that all γ-matrices
and ϵλ are in Euclidean space as defined in Appendix A 2.
Again, since the remainder of this subsection is presented in
Euclidean space, for notational convenience we now drop
the label E.
The corresponding Euclidean hadronic correlation func-

tion from which Hμν
1 ðxÞ is determined is

Cμν
H1
ðtπ; xÞ ¼ h0jT½JμWð0ÞJνemðxÞϕ†ð−tπÞ�j0i ð89Þ

and with the assumption that tπ is sufficiently large

Cμν
H1
ðtπ; xÞ ¼

Z0

2m0
π
Hμν

1 ðxÞe−m0
π tπ : ð90Þ

Thus a computation ofCμν
H1
ðtπ; xÞ together with the values of

m0
π and Z0 obtained from C0

ϕϕðtπÞ in Eq. (23) allows us to
determineHμν

1 ðxÞ. As in the previous subsections, we divide
the integration over x4 in Eq. (88) into two regions, labelledL
for long, i.e. x4 ≤ −ts, and S for short, i.e. x4 > −ts.
The hadronic matrix element Hμν

1 ðxÞ in region S is
obtained directly from the correlation function Cμν

H1
ðtπ; xÞ,

which can be computed in finite volume with only
exponentially suppressed finite volume errors, so that

MS
D ¼−ie

GFffiffiffi
2

p V�
udϵ

ν
λðkÞLμ

0

Z
∞

−ts
dx4

Z
d3xHμν

1 ðxÞeEγx4e−ik⃗·x⃗

ð91Þ

is evaluated directly using the computed values of Hμν
1 ðxÞ.

In region L on the other hand we use IVR to writeZ
−ts

−∞
dx4

Z
d3xHμν

1 ðxÞeEγx4e−ik⃗·x⃗

¼
Z

−ts

−∞
dx4

Z
d3x

Z
d3p
ð2πÞ3

Z
d3x0Hμν

1 ðx⃗0;−tsÞ

× eðEπðp⃗Þ−m0
πÞðx4þtsÞe−ip⃗·ðx⃗−x⃗0ÞeEγx4e−ik⃗·x⃗

¼ eðEπðk⃗Þ−m0
πÞts

Z
−ts

−∞
dx4

Z
d3xHμν

1 ðx⃗;−tsÞ

× eðEπðk⃗ÞþEγ−m0
πÞx4e−ik⃗·x⃗

¼ e−Eγ ts

ðEπðk⃗Þ þ Eγ −m0
πÞ

Z
d3xHμν

1 ðx⃗;−tsÞe−ik⃗·x⃗: ð92Þ

We now write e−ik⃗·x⃗ ¼ 1þ ðe−ik⃗·x⃗ − 1Þ and separate the
term which leads to the infrared divergence in the rate from
the convergent term

ML
D ¼ ML div

D þML con
D ; ð93Þ

where

ML div
D ¼ −ie

GFffiffiffi
2

p V�
udϵ

4
λðkÞL4

0H
4
0

e−Eγts

ðEπðk⃗Þ þ Eγ −m0
πÞ

ð94Þ

and

ML con
D ¼ ie

GFffiffiffi
2

p V�
udϵ

ν
λðkÞLμ

0

e−Eγ ts

ðEπðk⃗Þ þ Eγ −m0
πÞ

×
Z

d3xHμν
1 ðx⃗;−tsÞð1 − e−ik⃗·x⃗Þ: ð95Þ

Collecting up the three contributions in Eqs. (94), (95), and
(91), the result for this diagram is

MD ¼ ML div
D þML con

D þMS
D: ð96Þ

F. Contribution to the amplitude from diagram E

The contribution to the amplitude for the decay πþ →
lþνlγ from diagram E is

ME ¼ −ie
GFffiffiffi
2

p V�
udgμμ0gνν0ϵ

ν
λðkÞHμ

0

Z
d4xLμ0ν0

1 ðxÞe−ik·x:

¼ −ie
GFffiffiffi
2

p V�
udgμμ0gνν0ϵ

ν
λðkÞHμ

0fūðpνlÞγμ
0 ð1 − γ5Þgα

×
Z

d4x Sαβð0; xÞe−iðkþplÞ·xfγν0vðplÞgβ; ð97Þ

wherek andpl are the four-momenta of the final state photon

and lepton respectively and E0
lðk⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗l þ k⃗Þ2 þm2

l

q
.
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Note that the subscript E denotes diagram E and not
Euclidean. We start by presenting the discussion in
Minkowski space. The x integration can be performed as
follows:

Z
d4x Sαβð0; xÞe−iðkþplÞ·x

¼ i
Z

d4x
Z

d4p
ð2πÞ4

ðp0γ0 − p⃗ · γ⃗ þmlÞαβ
p2
0 − p⃗2 −m2

l þ iϵ
e−iðpþkþplÞ·x

¼ i
Z

dx0

Z
dp0

2π

ðp0γ0 þ ðp⃗l þ k⃗Þ · γ⃗ þmlÞαβ
p2
0 − E0

lðk⃗Þ2 þ iϵ

× eiðp0þEγþElÞx0

¼ −i
1

2E0
lðk⃗Þ

�ð−E0
lðk⃗Þγ0 þ ðp⃗l þ k⃗Þ · γ⃗ þmlÞαβ

E0
lðk⃗Þ − Eγ − El

þ ðE0
lðk⃗Þγ0 þ ðp⃗l þ k⃗Þ · γ⃗ þmlÞαβ

E0
lðk⃗Þ þ Eγ þ El

�
: ð98Þ

Note that from the third line of Eq. (98) one could have
performed the x0 integration, obtaining δðp0 þ El þ kÞ so
that

Z
d4xSαβð0; xÞe−iðkþplÞ·x

¼ i
ð−ðEl þ EγÞγ0 þ ðp⃗l þ k⃗Þ · γ⃗ þmlÞαβ

ðEl þ EγÞ2 − E0
lðk⃗Þ2

; ð99Þ

which is equal to the final expression in Eq. (98). However,
as will become apparent in Sec. III, for the implementation
of the IVR framework, it is convenient to write the result in
the form of the final expression in Eq. (98). The first term in
braces is the result from the integration over positive values
of x0 and the denominator vanishes in the limit of the
photon’s momentum k⃗ → 0⃗. This leads to an infrared
divergence in the πþ → lþνlγ decay rate. The second
term is the contribution from the integration over x0 < 0
and does not lead to an infrared divergence. The two terms
will therefore be treated separately.
Until now the discussion has been presented entirely in

Minkowski space. Since the evaluation of the hadronic
matrix elements is necessarily performed in Euclidean
space, we now rewriteME in terms of Euclidean γ-matrices
and polarization vectors [see Eq. (A9)]:

ME ¼ Mdiv
E þMcon

E ð100Þ

where

Mdiv
E ¼ ie

1

2E0
lðk⃗Þ

GFffiffiffi
2

p V�
udϵ

ν
λðkÞH4

0

ūðpνlÞγ4ð1 − γ5Þð−E0
lðk⃗Þγ4 þ iðp⃗l þ k⃗Þ · γ⃗ þmlÞγνvðplÞ
E0
lðk⃗Þ − Eγ − El

; ð101Þ

Mcon
E ¼ ie

1

2E0
lðk⃗Þ

GFffiffiffi
2

p V�
udϵ

ν
λðkÞH4

0

ūðpνlÞγ4ð1 − γ5ÞðE0
lðk⃗Þγ4 þ iðp⃗l þ k⃗Þ · γ⃗ þmlÞγνvðplÞ
E0
lðk⃗Þ þ Eγ þ El

: ð102Þ

In order not to overcomplicate the notation we have not
included labels to denote explicitly that the γ-matrices and
polarization vector in Eqs. (101) and (102) are the Euclid-
ean ones as defined in Sec. A 2.

III. CANCELLATION OF INFRARED
DIVERGENCES

In Sec. II we have presented expressions for the con-
tributions from each of the diagrams in Fig. 1 to the
amplitude for the process πþ → lþνlðγÞ in terms of the
hadronic matrix elements Hi, the leptonic factors Li (in
both cases i ¼ 0, 1, 2), and the photon propagator Sγ. In this
section we demonstrate how to handle the well-known
problem of the cancellation of infrared divergences. At
OðαemÞ these divergences cancel between the rate for the
decay πþ → lþνl with the propagator of a virtual photon
and that for the process πþ → lþνlγ with a real photon in

the final state [9]. When calculating the decay rates we
perform integrals over the two-body (Φ2) or three-body
(Φ3) phase space of the schematic formZ

dΦ2hπþjT†jlþνlihlþνljTjπþi andZ
dΦ3hπþjT†jlþνlγihlþνlγjTjπþi: ð103Þ

We will take the virtual photon to be in the Feynman gauge
and Eq. (A5) for the sum over polarizations of the real
photon.
The cancellation of the infrared divergences occurs

between subsets of the diagrams in Fig. 1. The subsets
are shown in Table I in which the cancellation occurs
between the contributions in each of the three rows. Thus
the infrared divergence from the two body phase-space
integral of the contribution of diagram A to the amplitude T
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and the lowest order diagram D0 to T† (and vice versa)
cancels that from the three-body phase-space integral in
which the contribution from diagram D is taken in both T
and T†. Similarly for the remaining two rows. We therefore
consider the subsets of diagrams in each of the three rows
separately in Secs. III A–III C respectively.

A. IR cancellation for diagram A and DD

In this subsection we consider the cancellation of infra-
red divergences between the contribution of the interfer-
ence of diagrams D0 and A to the decay width of the
process πþ → lþνl and the contribution to the square of
diagram D to the width of the decay πþ → lþνlγ (see the
first of the final three rows of Table I).
The OðαemÞ infrared divergent contribution to the decay

width from the interference of the QCD diagram D0 and
diagram A is given by

Γdiv
0A ¼ 1

2mπ

Z
dΦ2ðpπ;pl; pνlÞ2Re½Mdiv

A M†
0�; ð104Þ

where Φ2ðpπ;pl; pνlÞ is the phase space of the two-body
final state consisting of the charged lepton l and its
neutrino νl, with pl þ pνl ¼ pπ ¼ ðmπ; 0⃗Þ and Mdiv

A is
defined in Eq. (58). Combining Eqs. (22), (37), and (57) we
rewrite Γdiv

0A as

Γdiv
0A ¼ e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2

×
Z

d3k
ð2πÞ3

1

2Eγ

e−Eγ ts

ðEπðk⃗Þ þ Eγ −m0
πÞ2

×
Z

dΦ2ðpπ;pl; pνlÞjL4
0ðpl; pνÞj2 ð105Þ

and a sum over the polarizations of the final-state leptons is
implicit.
The infrared divergent contribution to the decay width

for the process πþ → lþν̄γ from the square of diagram D is

Γdiv
DD ¼ 1

2mπ

Z
dΦ3ðpπ;pl; pνl ; kÞjMdiv

D j2

¼ −
e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2

×
Z

d3k
ð2πÞ3

1

2Eγ

e−2Eγts

ðEπðk⃗Þ þ Eγ −m0
πÞ2

×
Z

dΦ2ðpπ − k;pl; pνlÞjL4
0ðpl; pνÞj2; ð106Þ

where Φ3ðpπ;pl; pνl ; kÞ is the phase space of the three-
body final state consisting of the charged lepton l, its
neutrino νl, and a photon, with pl þ pνl þ k ¼ pπ ¼
ðmπ; 0⃗Þ and Mdiv

D is given in Eq. (94). In the sum of
diagrams D and E only photons with physical polarizations
contribute of course. However in order for the infrared
divergences to cancel separately in the three rows of
Table I, we exploit the electromagnetic Ward identity
and define the diagrams with a virtual photon (diagrams
A, B, and C) to be in the Feynman gauge and take for the
sum over the photon polarizations

P
λ ϵ

μ
λðkÞϵν�λ ðkÞ ¼ gμν in

both diagrams D and E so that
P

λ jϵ4λðkÞj2 ¼ −1. The sum
over the lepton polarizations is again implicit in Eq. (106).
As k → 0, the integrands in Eqs. (105) and (106) become

equal and opposite so that Γdiv
0A þ Γdiv

DD is infrared finite. The
finite terms can be determined without any lattice calcu-
lations (beyond the evaluation of H4

0 in QCD) as explained
in detail in Appendix B 1. Thus, by using the analytic
control of the long-distance portion of the electromagnetic
corrections given by IVR, we are able to realize the usual
cancellation of infrared divergences before any lattice
calculation is undertaken.

B. IR cancellation in diagrams D0, B, D, and E

In this subsection we consider the second of the three
rows in Table I and demonstrate the cancellation of the
infrared divergences between the contributions from the
interference of diagrams D0 and B to the decay width for
the process πþ → lþνl (we denote this contribution by
Γ0B) and the interference of diagrams D and E to the decay
width for the process πþ → lþνlγ (denoted by ΓDE).
We start by considering Γ0B which can be written in the

form

Γ0B ¼ 1

2mπ

Z
dΦ2ðpπ;pl; pνlÞ2Re½MBM

†
0�; ð107Þ

where Φ2ðpl; pνlÞ is the phase space of the two-body
final state consisting of the charged lepton l and its
neutrino νl, with pl þ pνl ¼ pπ ¼ ðmπ; 0⃗Þ. The infrared
divergent contribution comes from the componentML div

B in
MB, presented in Eq. (84) and here we focus on this
contribution:

TABLE I. The infrared divergences cancel between the phase-
space integrals of the contributions to the matrix elements of T
and its conjugate T† from the diagrams in each of the final three
rows separately.

πþ → lþνl πþ → lþνlγ

T T† T T†

A D0 D D
B D0 D E
C D0 E E
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Γdiv
0B¼

1

2mπ

Z
dΦ2ðpπ;pl;pνlÞ2Re½MLdiv

B M†
0�

¼ e2

mπ

G2
F

2
jVudj2jH4

0j2
Z

dΦ2ðpπ;pl;pνlÞL4†
0

Z
d3k
ð2πÞ3

e−Eγts

2Eγ

�
ūðpνlÞγ4ð1−γ5Þð−E0

lð−k⃗Þγ4þiðp⃗l−k⃗Þ· γ⃗þmlÞγ4vðplÞ
2E0

lð−k⃗ÞðE0
lð−k⃗ÞþEγ−ElÞðEπðk⃗ÞþEγ−m0

πÞ

�
;

ð108Þ

where ML div
B is given in Eq. (84).

The contribution to the decay width from the interference of diagrams D and E can be written in the form

ΓDE ¼ 1

2mπ

Z
dΦ3ðpπ;pl; pνl ; kÞ 2Re½M†

DME�; ð109Þ

where Φ3ðpπ;pl; pνl ; kÞ is the phase space of the three-body final state consisting of the charged lepton l, the neutrino νl
and the photon γ with pl þ pνl þ k ¼ pπ ¼ ðmπ; 0⃗Þ. The infrared divergent term in the width comes from the ML div

D

contribution to MD [see Eq. (94)] and the Mdiv
E contribution to ME [see Eq. (101)] and is given by

Γdiv
DE ¼ 1

2mπ

Z
dΦ3ðpπ;pl; pνl ; kÞ2Re½ML div†

D Mdiv
E �

¼ e2

mπ

G2
F

2
jVudj2jH4

0j2
Z

dΦ3ðpπ;pl; pνl ; kÞL4†
0 e−Eγts

× ūðpνlÞγ4ð1 − γ5Þ
� ð−E0

lðk⃗Þγ4 þ iðp⃗l þ k⃗Þ · γ⃗ þmlÞ
2E0

lðk⃗ÞðE0
lðk⃗Þ − Eγ − ElÞðEπðk⃗Þ þ Eγ −m0

πÞ

�
γ4vðplÞ; ð110Þ

where the sum of the photon polarizations has been
performed. ML div

D and Mdiv
E are given in Eqs. (94) and

(101) respectively.
Both Γdiv

0B and Γdiv
DE are infrared divergent, with the

integrand over k⃗ proportional to 1=k3 at small k. Noting
however that at small k

E0
lð�k⃗Þ ≃ El �

p⃗l · k⃗
El

ð111Þ

we see that

E0
lð−k⃗Þ þ Eγ − El ≃ Eγ −

p⃗l · k⃗
El

≃ −ðE0
lðk⃗Þ − Eγ − ElÞ

ð112Þ

so that Γdiv
0B þ Γdiv

DE is indeed infrared convergent. We
explain the evaluation of the finite terms in Γdiv

0B þ Γdiv
DE

in Appendix B 2. Again, this does not require any lattice
calculations beyond the determination of H4

0.

C. IR cancellation for diagram C and EE

The hadronic matrix element which contributes to dia-
grams C and E with the initial pion at rest is H4

0 which is
readily obtained from two-point correlation functions in
Eqs. (23) and (24) with only exponentially small finite-

volume corrections. Once H4
0, or equivalently the decay

constant fπ , have been computed, the contributions to the
decay width from these diagrams only requires OðαemÞ
calculations within QED. These have been performed
in Ref. [10].
The contribution to the decay width from the interference

of diagrams D0 and the wave-function renormalization
of the lepton from diagram C in the Feynman gauge is
given by

Γ0C ¼ αem
4π

Γ0

�
log

�
m2

l

M2
W

�
− 2 log

�
m2

γ

m2
l

�
−
9

2

�
; ð113Þ

where we use the W-regularization for the ultra-violet
divergences and have introduced a mass mγ for the photon
in order to regulate the infrared divergences.
The contribution to the decay width from the square of

diagram E, with photon energies integrated up to ΔE in the
pion rest frame is

ΓEE ¼ αem
4π

Γ0ðREE1 þ REE2Þ; ð114Þ

where
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REE1 ¼ 2 log

�
m2

γ

4ΔE2

�
− 2

1þ r2l
1 − r2l

logðr2lÞ;

REE2 ¼
r2E − 1þ ð4rE − 6Þr2l

ð1 − r2lÞ2
logð1 − rEÞ

−
rEðrE þ 4r2lÞ
ð1 − r2lÞ2

logðr2lÞ þ
rEð6 − 3rE − 20r2lÞ

2ð1 − r2lÞ2
;

ð115Þ

where rl ¼ ml=mπ and rE ¼ 2ΔE=mπ . The contribution
to the total rate is obtained by setting ΔE to its maximum
value of mπ=2ð1 − r2lÞ. Here we introduce the familiar
photon energy cutoff ΔE in the pion’s rest frame in order to
write a simple explicit formula. As is described in Sec. IV
below, this simple cutoff can be replaced as needed by
energy or angle cuts dictated by a particular experimen-
tal setup.
The infrared divergences explicitly cancel in the sum Γ0C

and ΓEE and the remaining infrared finite terms are given in
Eqs. (113)–(115).

IV. FINAL RESULT

The final result for the OðαemÞ contributions to Γðπþ →
lþνlÞ þ Γðπþ → lþνlγÞ consists of a large number of
terms presented in different sections and subsections of this
paper and we now collect them all together here. We start
by writing

Γðπþ → lþνlÞ þ Γðπþ → lþνlγÞ
¼ Γ0 þ ðΓ0A þ ΓDDÞ þ ðΓ0B þ ΓDEÞ þ ðΓ0C þ ΓEEÞ;

ð116Þ

where Γ0, given in Eq. (27), is the width without electro-
magnetic corrections, and the remaining six terms represent
the interference of the amplitudes indicated in the sub-
scripts; thus for example, Γ0A is the contribution from the
interference of the Oðα0emÞ diagram D0 and the OðαemÞ
diagram A, integrated over phase space. The six contribu-
tions at OðαemÞ have been grouped into three pairs, each of
which is infrared convergent. We now present the results
for each of these three pairs in turn, without rewriting all the
expressions, but pointing instead to the equations in the text
where they can be found.
For the two-body decay πþ → lþνl the integration over

the two-body final-state phase space is fixed. For the three-
body decay πþ → lþνlγ, it may be appropriate to compute
a partial width by introducing cuts on the kinematical
variables, such as the energy of the photon or the angle
between the photon and the charged lepton, in order to
match the theoretical prediction to experimental measure-
ments. The cancellation of infrared divergences is unaf-
fected, but the remaining finite terms depend on the cuts.
Below we do not specify whether any such cuts have been

imposed and simply write the three-body phase-space
integral as

R
dΦ3ðpπ;pl; pν; kÞ.

A. Γ0A +ΓDD

Using the notation of this paper, the result for Γ0A can be
written in the form

Γ0A ¼ Γ0

�
δmπ

m0
π
þ 2m0

π

Z0e−m
0
π tπH4

0

�
2C̃A

JWϕ;R1
ðtπÞ þ C̃AS

JWϕ;R2
ðtπÞ

þ C̃ALdiv
JWϕ;R2

ðtπÞ þ C̃ALcon
JWϕ;R2

ðtπÞ
��

ð117Þ

where C̃A
JWϕ;R1

ðtπÞ ¼ CA
JWϕ;R1

ðtπÞ is given in Eqs. (67)–(71),
CAS
JWϕ;R2

ðtπÞ in Eq. (46) [or equivalently Eq. (44) after

subtraction of the term proportional to tπ], C̃
ALdiv
JWϕ;R2

ðtπÞ in

Eq. (53), and C̃ALcon
JWϕ;R2

ðtπÞ inEq. (54). The infrared divergence
is contained in the term proportional to C̃ALdiv

JWϕ;R2
ðtπÞ, i.e. Γdiv

0A

given in Eqs. (104) and (105), and this is treated separately in
Appendix B 1. The remaining terms are infrared finite. The
new nonperturbative input into these calculations are the
Hμν

2sðx⃗; tÞ for values of jtj ≤ ts.
ΓDD is given by

ΓDD ¼ 1

2mπ

Z
dΦ3ðpπ;pl; pν; kÞjMDj2

¼ 1

2mπ

Z
dΦ3ðpπ;pl; pν; kÞjMS

D þML div
D þML con

D j2

¼ 1

2mπ

Z
dΦ3ðpπ;pl; pν; kÞ

�
jMS

Dj2 þ jML div
D j2

þ jML con
D j2 þ 2Re½MS

DðML div
D Þ†�

þ 2Re½MS
DðML con

D Þ†� þ 2Re½ML con
D ðML div

D Þ†�
�
;

ð118Þ

whereMS
D is given in Eq. (91),MLdiv

D in Eq. (94) andML con
D

in Eq. (95). The infrared divergence is contained in the term
with jML div

D j2 in the integrand and is treated separately in
Appendix B 1. The remaining 5 terms are all infrared
convergent. Note that the only nonperturbative ingredient,
which needs ultimately to be computed using lattice QCD,
is Hμν

1 ðx⃗; tÞ for time separations between the weak and
electromagnetic current which are smaller than or equal to
ts, jtj ≤ ts.
The finite terms which remain after the cancellation of

the infrared divergences in Γdiv
0A þ Γdiv

DD depend on the three-
body phase space over which jML div

D j2 is integrated. In
Appendix B 1 we evaluate the finite terms obtained after
integrating over the full three-body phase space.
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B. Γ0B +ΓDE

The procedure for Γ0B þ ΓDE is very similar to the
above. We write

Γ0B ¼ 1

2mπ

Z
dΦ2ðpπ;pl; pνÞ2Re½MBM

†
0�

¼ 1

2mπ

Z
dΦ2ðpπ;pl; pνÞ

× 2Re
h
ðMS

B þML div
B þML con

B ÞM†
0

i
; ð119Þ

whereMS
B,M

L div
B andML con

B are given in Eqs. (78), (84), and
(85) respectively and M0 is given in Eq. (22). The infrared
divergence is contained in the termwithML div

B in the integrand
of Eq. (119) and is treated separately in Appendix B 2. The
remaining2 terms areboth infrared convergent.Again theonly
nonperturbative ingredient, which needs ultimately to be
computed using lattice QCD, isHμν

1 ðx⃗; tÞ for time separations
between the weak and electromagnetic current which are
smaller than or equal to ts.
The expression for ΓDE is

ΓDE ¼ 1

2mπ

Z
dΦ3ðpπ;pl; pν; kÞ2Re½MDM

†
E�

¼ 1

2mπ

Z
dΦ3ðpπ;pl; pν; kÞ

× 2Re
h
ðMS

D þML div
D þML con

D ÞðMdiv
E þMcon

E Þ†
i
;

ð120Þ

whereMS
D is given in Eq. (91),ML div

D in Eq. (94),ML con
D in

Eq. (95) Mdiv
E in Eq. (101) and Mcon

E in Eq. (102). The
infrared divergence is contained in the term with
Re½ML div

D Mdiv†
E � in the integrand and is treated separately

in Appendix B 2. The remaining 5 terms are all infrared
convergent. There are no nonperturbative QCD ingredients
in Mdiv

E and Mcon
E (beyond the lowest order H4

0), and we
repeat that the only nonperturbative ingredient in MD,
which needs ultimately to be computed using lattice QCD,
is Hμν

1 ðx⃗; tÞ for time separations between the weak and
electromagnetic current which are smaller than or equal to
ts, jtj ≤ ts.
The finite terms which remain after the cancellation of

the infrared divergences in Γdiv
0B þ Γdiv

DE depend on the three-
body phase space over which 2Re½ML div

D Mdiv†
E � is inte-

grated. In Appendix B 2 we evaluate the finite terms
obtained after integrating over the full three-body
phase space.

C. Γ0C +ΓEE

For Γ0C þ ΓEE there is no hadronic input beyond the
lowest order H4

0. As above, the result depends on the

three-body phase space over which jMEj2 is integrated. In
Eqs. (113)–(115), we present the results corresponding to an
upper cutoffΔE on the energy of the final state photon in the
rest frame of the pion but integrating over the remaining
variables [10]. The total rate is obtained by setting ΔE to its
maximum value ΔEmax ¼ mπ=2ð1 −m2

l=m
2
πÞ.

D. Lattice QCD implementation

In this section we briefly discuss the further steps needed
to use the results presented in this paper to carry out a
complete lattice QCD calculation of the electromagnetic
corrections to the rates of leptonic decays of pseudoscalar
mesons. Such a calculation is a combination of analytic and
numerical parts. As is evident from the presentation above,
the analytic portion of this calculation is considerably more
complex than is the case for more typical calculations that
involve lattice QCD. This is to be expected since the
perturbative nature of electromagnetism and the analytic
treatment of pion propagation enabled by the IVR method
permit a larger fraction of the calculation to be carried out
analytically.
In the preceding sections this analytic component of the

calculation has been derived and specific formulas pre-
sented for each diagram. However, additional evaluation is
needed before these analytic formulas can be used in an
actual lattice calculation. For some of these analytic factors
additional explicit integrations can be performed. However,
in nearly all cases there are remaining integrals which must
be performed numerically and the results tabulated. These
numerically integrated analytic functions are evaluated in
position space and must be multiplied by the nonperturba-
tive lattice QCD Green’s function H0, H1, H2, and H2s
defined in Eqs. (13)–(16), also determined in position
space. The required position space sums are then per-
formed. Performing these remaining analytic integrations
and developing an efficient numerical integration strategy
is a significant component in the next step of this
calculation, but is beyond the scope of the present paper.
We should emphasize that up to this stage of the calculation
the results are universal, i.e. these numerical factors are
independent of how the matrix elements are determined
and, in particular, are applicable to any lattice discretization
of QCD. We therefore anticipate that the results presented
here will be generally useful in future computations of
leptonic widths.
An important final step in the determination of the

numerically integrated analytic factors is the efficient
exploitation of possible freedom in the choice of these
factors. In similar calculations, for example the calculation
of the hadronic light-by-light scattering (HLbL) contribu-
tion to the muon’s anomalous magnetic moment [33], it is
possible to modify these functions in a way that adds only a
total derivative to the final space-time summations and
therefore does not change the result. One can then use this
freedom to choose a factor which gives a smaller weight to

RADIATIVE CORRECTIONS TO LEPTONIC DECAYS USING … PHYS. REV. D 108, 014501 (2023)

014501-21



the noisy long-distance parts and/or reduces the contribu-
tion from the short-distance part of the sum, thereby
reducing the size of the discretization errors. These choices
do depend on the noise properties of the lattice Green’s
functions and may not be universal. They may also depend
on whether the lattice Green’s functions contain conserved
or local currents.
Fortunately, the second, nonperturbative component of the

calculation involving the hadronic matrix elements H0, H1,
H2, and H2s is no more difficult than more standard lattice
calculations of similar two-, three- and four-point Green’s
functions. In fact, the use of IVR and the introduction of a
maximum separation ts between pairs of operators will result
in a required localization of the operator products that are
evaluated, offering some simplification.
In addition to the HLbL calculation mentioned above,

similar combinations of complex analytic factors and lattice
QCD amplitudes have been successfully evaluated in many
projects as can be found for example in Refs. [6,7,34–36].
The presence in the required lattice QCD four-point function
calculations of as many as four temporal separations that
must be sufficiently large that only the exchange of a single
pion will contribute may be an unusual requirement forcing
the use of lattice volumes with a large time extent. However,
this requirement in the πþ − π0 mass difference calculation
[6] did not cause an essential difficulty. Thus, the remaining
parts of the proposed lattice QCD calculation of the electro-
magnetic corrections to the rates of leptonic decays of
pseudoscalar mesons do not appear to be more challenging
than those found in earlier lattice calculations. In fact, such a
calculation by members of the RBC and UKQCD
Collaborations forKl2 and πl2 decays is nowwell underway.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a framework, based on
infinite volume reconstruction for the evaluation of electro-
magnetic corrections, at OðαemÞ, to the leptonic decay
widths of pseudoscalar mesons. Although we have used the
decays of a πþ to illustrate the method, it can be applied
identically to the decays of other pseudoscalar mesons. The
IVR technique is based on the observation that for
sufficiently large time separations (t > ts ≲ L say) between
the electromagnetic currents or between an electromagnetic
and hadronic weak current, the only significant contribu-
tion comes from the propagation of a single pion and a
photon. As has been explained in detail in Secs. II and III
this allows the computations of the hadronic matrix
elements to be limited to time separations ≤ ts. We
underline two important consequences of the IVR method:

(i) The computation of hadronic effects in the electro-
magnetic corrections to the leptonic decay widths is
organized in such a way that infrared divergences are
not present. The cancellation of infrared divergences
between the contributions to Γðπþ → lþνlÞ and
Γðπþ → lþνlγÞ at OðαemÞ [9] is demonstrated

analytically (see Sec. III), so that all the terms which
need to be computed to determine Γðπþ → lþνlÞ þ
Γðπþ → lþνlγÞ are individually infrared finite.

By contrast, in the QEDL method of Ref. [10] the
cancellation of infrared divergences is achieved by
subtracting the contribution to the decay amplitudes
obtained perturbatively by treating the pseudoscalar
meson as a pointlike particle from the nonperturba-
tively computed infrared divergent amplitudes [the
divergences appear in the form logðmπLÞ]. The
method has been successfully implemented in
Refs. [12,13]. It remains to be seen whether, and
by how much, the uncertainties will be reduced by
avoiding the subtraction of an analytic perturbative
expression (the pointlike contribution to the ampli-
tude) from a nonperturbatively computed term (the
finite-volume infrared-divergent amplitude in QCD).

(ii) The implementation of this method, as described in
this paper, results in finite-volume effects which are
exponentially small in L as compared to the
Oð1=ðmπLÞ2Þ structure-dependent finite-volume
corrections present with the QEDL approach [11].
The impact on the numerical precision of this
remains to be investigated.

Finally, in Appendix C we have outlined an
additional application of IVR to the calculation of
the OðαemÞ corrections to the more complex decay
process K → πlνl. Here also a complete lattice
calculation is possible with all infrared singularities
treated analytically and all finite volume effects
vanishing exponentially in L.
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APPENDIX A: NOTATION AND CONVENTIONS

We begin our discussion of the diagrams contributing to
the physical amplitudes and decay rates in Minkowski
space-time, before demonstrating that they can be deter-
mined in finite-volume lattice computations in Euclidean
space. In this appendix we briefly summarize our notation
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and the conventions which we use in the main text of this
paper, in both Minkowski and Euclidean space-times.

1. Minkowski space-time

In Minkowski space-time we use the metric gμν ¼
diagð−1; 1; 1; 1Þ and Dirac matrices which satisfy the
anticommutation relations fγμ; γνg ¼ −2gμν. The electro-
magnetic current is given by

Jμem ¼
X
f

Qfq̄fγμqf −
X
l

l γμl; ðA1Þ

where the charges Qf ¼ þ 2
3
for uplike quarks, − 1

3
for

downlike ones and −1 for the leptons l.
The discussion in this paper is presented for the decay

πþ → νlþðγÞ but its generalization to the decays of other
pseudoscalar mesons, including those containing bottom
and/or charm quarks, is totally straightforward with the
natural replacement of the quark fields and CKM matrix
elements. The hadronic weak current for the decay of a πþ

meson is JμW ¼ d̄γμð1 − γ5Þu and the corresponding
Lagrangian density is

LWðxÞ ¼
GFffiffiffi
2

p V�
udgμνJ

μ
WðxÞ½ν̄lðxÞγνð1 − γ5ÞlðxÞ�: ðA2Þ

The photon and lepton propagators are given respectively by

Sμνγ ðx; yÞ ¼
Z

d4k
ð2πÞ4

−igμν

k2 − iϵ
e−ik·ðx−yÞ ðFeynman gaugeÞ;

ðA3Þ

Slðx; yÞ ¼ i
Z

d4p
ð2πÞ4

pμγ
μ −ml

p2 þm2
l − iϵ

eip·ðx−yÞ: ðA4Þ

For decays with a real photon in the final state coupled to the
conserved electromagnetic current, we take for the sum over
polarizations λ: X

λ

ϵμλðk⃗Þϵ�νλ ðk⃗Þ ¼ gμν: ðA5Þ

2. Euclidean space

Following the continuation to Euclidean space,
tM → −itE, x⃗M → x⃗E we relate the Dirac matrices in
Euclidean and Minkowski spaces by5

γ4E ¼ γ0M; γ⃗E ¼ −iγ⃗M: ðA6Þ

The photon propagator in the Feynman gauge is given by

Sμνγ ðx; yÞ ¼
Z

d4k
ð2πÞ4

δμν

k2
e−ik·ðx−yÞ

¼
Z

d3k
ð2πÞ3

δμν

2jk⃗j
e−jk⃗jjtx−tyje−ik⃗·ðx⃗−y⃗Þ

¼ δμν

4π2jx − yj2 ðA7Þ

and the lepton propagator is

Slðx; yÞ ¼
Z

d4p
ð2πÞ4

−ipμγμ þml

p2 þm2
l

eip·ðx−yÞ

≡
Z

d4p
ð2πÞ4 S̃lðpÞe

ip·ðx−yÞ: ðA8Þ

For the polarizationvector in Euclidean space it is convenient
to take ϵ�0λM ¼ −iϵ�4λE and ϵ�iλM ¼ ϵ�iλE (i ¼ 1, 2, 3) so that

gμνϵ
�μ
λMγ

ν
M ¼ iϵ�μλEγ

μ
E: ðA9Þ

APPENDIX B: CANCELLATION OF INFRARED
DIVERGENCES—THE FINITE TERMS

In Sec. III we have shown that the infrared divergences
cancelled separately in Γdiv

0A þ Γdiv
DD [see Eqs. (105) and

(106)], in Γdiv
0B þ Γdiv

DE [see Eqs. (108) and (110) and
subsequent discussion] and in Γdiv

0C þ Γdiv
EE [see

Eqs. (113)–(115)]. Although the infrared divergences
cancel separately in these three pairs, there remain finite-
terms. For Γdiv

0C þ Γdiv
EE the finite terms are presented in

Eqs. (113)–(115) as a function of the maximum photon
energy ΔE. The results depend on the three-body phase
space over which the widths for the decay πþ → lþνlγ are
integrated. In this section we calculate the residual finite
terms in Γdiv

0A þ Γdiv
DD and Γdiv

0B þ Γdiv
DE obtained by integrating

over the full three-body phase space, in which the photon
energy is integrated up to its maximum value
kmax ¼ mπ=2ð1 −m2

l=m
2
πÞ. If instead the maximum photon

energy is to be taken to be ΔE, then the expressions below
should be modified by replacing kmax by ΔE. If partial
widths are studied by imposing kinematical cuts on the
lepton momenta then the derivation below should be
modified accordingly.
In this appendix we simplify the notation in two ways.

Firstly since the diagrams are of OðαemÞ we can replace m0
π

by mπ and secondly, since we have shown that the infrared
divergences cancel explicitly we replace Eγ by k ¼ jk⃗j
where k⃗ is the three-momentum of the photon.

1. Γdiv
0A +Γdiv

DD

In this section we evaluate Γdiv
0A þ Γdiv

DD. For convenience
we rewrite Eqs. (105) and (106) here:

5The suffices E and M denote Euclidean and Minkowski
spaces respectively.
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Γdiv
0A ¼ e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2
Z

d3k
ð2πÞ3

1

2k
e−kts

ðEπðk⃗Þ þ k −mπÞ2
Z

dΦ2ðpπ;pl; pνlÞjL4
0ðpl; pνÞj2

≡ e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2I0A; ðB1Þ

Γdiv
DD ¼ −

e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2
Z

d3k
ð2πÞ3

1

2k
e−2kts

ðEπðk⃗Þ þ k −mπÞ2
Z

dΦ2ðpπ − kγ;pl; pνlÞjL4
0ðpl; pνÞj2

≡ e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2IDD: ðB2Þ

We recall that Eπðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
where k≡ jk⃗j and

below we denote the four-momentum of the photon by
kγ ¼ ðk; k⃗Þ. Since we will show explicitly that the infrared
divergences cancel in I0A þ IDD we denote the energy of
the photon by Eγ by k.
While the cancellation of the infrared divergences in

I0A þ IDD is manifest, there are a number of sources of
residual finite terms, the evaluation of which is the subject
of this section:

(i) There is a factor of e−kts in the integrand of I0A and
e−2kts in IDD.

(ii) The sum over the lepton polarizations jL4
0ðpl; pνÞj2

is different depending on whether pl þ pν ¼ pπ as
in I0A or pl þ pν ¼ pπ − kγ as in IDD, where kγ is
the four-momentum of the photon.

(iii) Similarly the leptonic two-body phase space is
different in the two cases.

(iv) Finally the integral over jk⃗j runs from 0 to ∞ in I0A
and from 0 to kmax ¼ mπ=2ð1 −m2

l=m
2
πÞ in IDD.

Our result is written in the form

I0A þ IDD ¼ F1 þ F2 þ F3 þ F4; ðB3Þ

where the Fi are simple one- or two-dimensional
integrals which can readily be evaluated for any
choice of masses and ts. For the reader’s convenience
we collect all the results here and then proceed to
derive Eq. (B3):

F1¼
m2

l

8π3

�
1−

m2
l

m2
π

�
2
Z

∞

0

kdk
e−kts−e−2kts

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

π

p
þk−mπÞ2

; ðB4Þ

F2¼−
1

32π3

Z
kmax

0

dk
e−2kts

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

π

p
þk−mπÞ2

Z
pmax
ν

pmin
ν

dpν

Z
1

−1
dzfDDðk;pν;zÞδ

�
z−

m2
π −2mπk−2ðmπ −kÞpν−m2

l

2kpν

�
; ðB5Þ

F3 ¼
m4

l

4π3m2
π

�
1 −

m2
l

m2
π

�Z
kmax

0

k2 dk
e−2kts

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
þ k −mπÞ2

1

mπ − 2k
; ðB6Þ

F4 ¼
m2

l

8π3

�
1 −

m2
l

m2
π

�
2
Z

∞

kmax

k dk
e−2kts

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
þ k −mπÞ2

; ðB7Þ

where z is the cosine of the angle between p⃗ν and k⃗ (p⃗ν · k⃗ ¼ jp⃗νjkz)

kmax ¼
mπ

2

�
1 −

m2
l

m2
π

�
; pmin

ν ¼ m2
π − 2mπk −m2

l

2mπ
; pmax

ν ¼ m2
π − 2mπk −m2

l

2ðmπ − 2kÞ ; ðB8Þ

and

fDDðk; jp⃗νj; zÞ ¼ 4k2 −
4kð2mπ − kÞm4

l

m2
πðmπ − kÞ2 −

4ð2m2
l þ 2p⃗ν · k⃗þ k2Þð2p⃗ν · k⃗þ k2Þ

ðmπ − kÞ2 : ðB9Þ

Thequantitieskmax andp�
ν are thekinematical limits on the final state photon’s energy and jp⃗νj respectively. In order to simplify

the notation in Eqs. (B5) and (B9), we have replaced jp⃗νj by pν. In deriving these equations we have used
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jL4
0ðpl; pνÞj2 ¼ 4m2

l

�
1 −

m2
l

m2
π

�
ðB10Þ

when pl þ pν ¼ pπ as in I0A and

jL4
0ðpl; pνÞj2 ¼ 4m2

l

�
1 −

m2
l

m2
π

�
þ fDDðk; pν; zÞ ðB11Þ

when plþpν¼pπ−kγ as in Γdiv
DD. Since fDDð0;pν;zÞ¼0,

F2 is infrared convergent.
Another ingredient in the derivation of Eqs. (B4)–(B7) is

the integral over the phase space of the leptons. For I0A the
integrand is independent of the integration variables [see
Eq. (B10)] and

Z
dΦ2ðpπ;pl; pνÞ ¼

1

8π

�
1 −

m2
l

m2
π

�
: ðB12Þ

For IDD the integrand in general does depend on the
integration variables [see Eqs. (B11) and (B9)] so thatZ

dΦ2ðpπ − kγ;pl; pνÞfDDðk; pν; zÞ

¼ 1

8πk

Z
pmax
ν

pmin
ν

dpν

Z
1

−1
dz fDDðk; pν; zÞ

× δ

�
z −

m2
π − 2mπk − 2ðmπ − kÞpν −m2

l

2kpν

�
: ðB13Þ

When the integrand is independent of the integration
variables:

Z
dΦ2ðpπ −kγ;pl;pνÞ¼

1

8π

m2
π −2mπk−m2

l

m2
π −2mπk

: ðB14Þ

We now explain the origin of the Fi; ði ¼ 1–4Þ. F1 arises
because it is convenient to have the same factor e−2kts in the
numerator of the integrands in the infrared divergent terms
of both I0A and IDD and we therefore write

I0A ¼
m2

l

2π

�
1−

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

1

2k
e−2kts

ðEπðk⃗Þþk−mπÞ2
þF1:

ðB15Þ

Using Eqs. (B11), (B13), and (B14) we rewrite IDD in the
form

IDD¼−
m2

l

2πmπ

�
1−

m2
l

m2
π

�Z
d3k
ð2πÞ3

1

2k

×
e−2kts

ðEπðk⃗Þþk−mπÞ2
m2

π −2mπk−m2
l

mπ −2k
þF2 ðB16Þ

¼−
m2

l

2π

�
1−

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

1

2k
e−2kts

ðEπðk⃗Þþk−mπÞ2
þF2þF3:

ðB17Þ

Finally, we recall that the range of the k ¼ jk⃗j integration
in I0A is ð0;∞Þ and in IDD it is ð0; kmaxÞ so while the
integrands in the first terms on the right-hand sides of
Eqs. (B15) and (B17) are equal and opposite, the integrals
do not cancel exactly and the sum of the two integrals is F4.
We have therefore shown that

Γdiv
0A þΓdiv

DD¼ e2

2mπ

�
G2

FjVudj2
2

�
jH4

0j2ðF1þF2þF3þF4Þ;

ðB18Þ

where the Fi are simple finite one- or two-dimensional
integrals which can readily be evaluated numerically for
any choice of masses and ts.

2. Γdiv
0B +Γdiv

DE

We now repeat the evaluation of the finite-terms remain-
ing after the cancellation of infrared divergences in
Γdiv
0B þ Γdiv

DE. Again the cancellation of infrared divergences
is manifest, but there are a number of finite terms remaining
which are the subject of this section.
We start be rewriting the integral expressions for these

two terms, i.e. Eqs. (108) and (110)

Γdiv
0B ¼ e2G2

F

2mπ
jVudj2jH4

0j2
Z

dΦ2ðpl; pνlÞL4†
0

Z
d3k
ð2πÞ3

e−kts

2k

×

�
ūðpνlÞγ4ð1 − γ5Þð−E0

lðk⃗Þγ4 þ iðp⃗l þ k⃗Þ · γ⃗ þmlÞγ4vðplÞ
2E0

lðk⃗ÞðE0
lðk⃗Þ þ k − ElÞðEπðk⃗Þ þ k −mπÞ

�

≡ e2G2
F

2mπ
jVudj2jH4

0j2I0B ðB19Þ
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and

Γdiv
DE ¼ e2G2

F

2mπ
jH4

0j2jVudj2
Z

dΦ3ðpl; pνl ; kÞL4†
0 e−kts

× ūðpνlÞγ4ð1 − γ5Þ
� ð−E0

lðk⃗Þγ4 þ iðp⃗l þ k⃗Þ · γ⃗ þmlÞ
2E0

lðk⃗ÞðE0
lðk⃗Þ − k − ElÞðEπðk⃗Þ þ k −mπÞ

�
γ4vðplÞ

≡ e2G2
F

2mπ
jH4

0j2jVudj2IDE: ðB20Þ

We recall that El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
l þm2

l

q
, E0

lðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗l þ k⃗Þ2 þm2

l

q
, k ¼ jk⃗j and Eπðk⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
. In Eq. (B19) we have

changed variables k⃗ → −k⃗ so that the lepton trace, written in terms of the momenta and energies, is the same in both cases.
We write the lepton trace as L0B ¼ LDE ¼ Ldiv

0B þ Lcon
0B where

Ldiv
0B ¼ Ldiv

DE ¼ −16EνE2
l − 16Elp⃗l · p⃗ν; ðB21Þ

Lcon
0B ¼ Lcon

DE ¼ −8ðΔElðk⃗ÞÞElEν − 8ðΔElðk⃗ÞÞp⃗l · p⃗ν − 8Elðp⃗ν · k⃗Þ − 8Eνðp⃗l · k⃗Þ; ðB22Þ

where ΔElðk⃗Þ ¼ E0
lðk⃗Þ − El. At small photon momenta Lcon

0B ¼ OðkÞ and there is then no infrared divergence. The
integrals can readily be performed numerically as we explain towards the end of this section.
We now start by considering the contributions from the divergent terms. For the two-body decay for which Γ0B

contributes to the width, El and jp⃗lj are fixed, El ¼ ðm2
π þm2

lÞ=2mπ and jp⃗lj ¼ ðm2
π −m2

lÞ=2mπ and

Idiv0B ≡ 1

16π

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2k
1

ðEπðk⃗Þ þ k −mπÞ

Z
1

−1
dzl

−16EνE2
l − 16Elp⃗l · p⃗ν

2E0
lðk⃗ÞðE0

lðk⃗Þ þ k − ElÞ

¼ −
m2

l

4π

�
1 −

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

e−kts

2k
1

ðEπðk⃗Þ þ k −mπÞ

Z
1

−1
dzl

El

E0
lðk⃗ÞðE0

lðk⃗Þ þ k − ElÞ

¼ −
m2

l

4π

�
1 −

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

e−kts

2k
1

ðEπðk⃗Þ þ k −mπÞ

Z
1

−1
dzl

1

ðE0
lðk⃗Þ þ k − ElÞ

þ F1;0B

¼ −
m2

l

4π

�
1 −

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

e−kts

2k
1

ðEπðk⃗Þ þ k −mπÞ

Z
1

−1
dzl

1

kþ p⃗l·k⃗
El

þ F1;0B þ F2;0B; ðB23Þ

where zl is the cosine of the angle between k⃗ and p⃗l so that p⃗l · k⃗ ¼ jp⃗ljkzl and

F1;0B ¼ m2
l

4π

�
1 −

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

e−kts

2k
1

ðEπðk⃗Þ þ k −mπÞ

Z
1

−1
dzl

ΔElðk⃗Þ
E0
lðk⃗ÞðE0

lðk⃗Þ þ k − ElÞ
; ðB24Þ

F2;0B ¼ −
m2

l

4π

�
1 −

m2
l

m2
π

�
2
Z

d3k
ð2πÞ3

e−kts

2k
1

ðEπðk⃗Þ þ k −mπÞ

Z
1

−1
dzl

p⃗l·k⃗
El

− ΔElðk⃗Þ

ðΔElðk⃗Þ þ kÞ
�
kþ p⃗l·k⃗

El

� ðB25Þ

are finite integrals which can readily be evaluated numerically.
In the first term on the right-hand side of Eq. (B23) the zl integration can be performed to give

Z
1

−1
dzl

1

kþ p⃗l·k⃗
El

¼ El

plk
log

El þ pl

El − pl
¼ 1

k
m2

π þm2
l

m2
π −m2

l
log

m2
π

m2
l
; ðB26Þ

where pl ¼ jp⃗lj, so that
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Idiv0B ¼ −
m2

l

16π3

�
1 −

m2
l

m2
π

��
1þm2

l

m2
π

�
log

m2
π

m2
l

Z
∞

0

dk
e−kts

Eπðk⃗Þ þ k −mπ

þ F1;0B þ F2;0B: ðB27Þ

The two finite terms, F1;0B and F2;0B are simple two-dimensional integrals (over k and zl) which can readily be evaluated
numerically for any values of the masses and ts. The two-body phase-space integral of a general function fðk; pl; zlÞ,
where pl ¼ jp⃗lj can be reduced to

Z
dΦ2ðpπ;pl; pνlÞfðk; pl; zlÞ ¼

1

16π

�
1 −

m2
l

m2
π

�Z
1

−1
dzl fðk; pl; zlÞ: ðB28Þ

The finite contributions corresponding to Lcon
0B in the numerator are evaluated similarly.

We now consider IdivDE. Following the corresponding steps to those in Eq. (B23) we have

IdivDE ¼
Z

d3k
ð2πÞ3

e−kts

2k

Z
dΦ2ðpπ − k;pl; pνlÞ

−16EνE2
l − 16Elp⃗ν · p⃗l

2E0
lðk⃗ÞðE0

lðk⃗Þ − k − ElÞðEπðk⃗Þ þ k −mπÞ

¼ −4m2
l

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

El

E0
lðk⃗ÞðE0

lðk⃗Þ − k − ElÞ
þ F1;DE

¼ −4m2
l

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

1

ðE0
lðk⃗Þ − k − ElÞ

þ F1;DE þ F2;DE

¼ 4m2
l

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

1

k − p⃗l·k⃗
El

þ F1;DE þ F2;DE þ F3;DE; ðB29Þ

where F1;DE, F2;DE, and F3;DE are infrared finite:

F1;DE ¼
Z

d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

×
8Elðð1 − m2

l
m2

π
Þm2

l − 4ðmπ − k − ElÞEl þmπðmπ − 2kÞ −m2
lÞ

2E0
lðk⃗ÞðE0

lðk⃗Þ − k − ElÞ
;

F2;DE ¼ 4m2
l

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

ΔElðk⃗Þ
E0
lðk⃗ÞðE0

lðk⃗Þ − k − ElÞ
;

F3;DE ¼ −4m2
l

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

ΔElðk⃗Þ − p⃗l·k⃗
Elðk⃗Þ�

k − p⃗l·k⃗
El

�
ðΔEl − kÞ

: ðB30Þ

The infrared divergence is contained in the first term on the right-hand side of Eq. (B29) and we now evaluate

Z
dΦ2ðpπ − k;pl; pνlÞ

El

Elk − p⃗l · k⃗
¼ −

m2
π þm2

l

2mπ

Z
dΦ2ðpπ − k;pl; pνlÞ

1

pl · k

þ
Z

dΦ2ðpπ − k;pl; pνlÞ
El −

m2
πþm2

l
2mπ

Elk − p⃗l · k⃗
: ðB31Þ

The second term on the right-hand side of Eq. (B31) is infrared convergent and we now focus on the first term. The
integrand is Lorentz invariant and so we can evaluate the integral in the rest frame of the lepton system

−
m2

π þm2
l

2mπ

Z
dΦ2ðpπ − k;pl; pνlÞ

1

pl · k
¼ 1

8πmπk
m2

π þm2
l

2mπ
log

E�
l þ p�

l

E�
l − p�

l
ðB32Þ
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where E�
l; p

�
l are the variables in the lepton rest frame:

E�
l ¼ m2

π þm2
l − 2mπk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − 2mπk
p ; p�

l ¼ m2
π −m2

l − 2mπk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − 2mπk
p : ðB33Þ

Thus we can write

IdivDE ¼ m2
l

16π3

�
1þm2

l

m2
π

��
1 −

m2
l

m2
π

�
log

m2
π

m2
l

Z
kmax

0

dk
e−kts

Eπðk⃗Þ þ k −mπ

þ FDE; ðB34Þ

where kmax ¼ mπ=2ð1 −m2
l=m

2
πÞ is the maximum value of k in the three-body decay and the finite term FDE is given by

FDE ¼
X5
i¼1

Fi;DE; ðB35Þ

F1;DE; F2;DE, and F3;DE are given in Eqs. (B30) and

F4;DE ¼ 4m2
l

�
1 −

m2
l

m2
π

�Z
d3k
ð2πÞ3

e−kts

2kðEπðk⃗Þ þ k −mπÞ

Z
dΦ2ðpπ − k;pl; pνlÞ

El −
m2

πþm2
l

2mπ

Elk − p⃗l · k⃗
;

F5;DE ¼ m2
l

8π

�
1 −

m2
l

m2
π

��
1þm2

l

m2
π

�Z
d3k
ð2πÞ3

e−kts

k2ðEπðk⃗Þ þ k −mπÞ
log

mπðmπ − 2kÞ
m2

π
: ðB36Þ

Thus finally we have

Idiv0B þ IdivDE ¼ −
m2

l

16π3

�
1 −

m2
l

m2
π

��
1þm2

l

m2
π

�
log

m2
π

m2
l

Z
∞

kmax

dk
e−kts

Eπðk⃗Þ þ k −mπ

þ F1;0B þ F2;0B þ FDE: ðB37Þ

All the terms on the right-hand side of Eq. (B37) are infrared finite.
The finite terms Fi;DE can also be readily evaluated numerically for any values of the masses and ts. F5;DE is a one-

dimensional integral whereas Fi;DE, i ¼ ð1–4), are two-dimensional integrals. In evaluating these it is natural to use the

mass-shell condition for the neutrino to determine zl, the cosine of the angle between p⃗ and k⃗:

zl ¼ m2
π þm2

l − 2mπk − 2Elðmπ − kÞ
2plk

; ðB38Þ

where pl ¼ jp⃗lj. The range of integration over pl ¼ jp⃗lj, or equivalently El, can then be determined from Eq. (B8):

El ≤ Emax
l ¼ mπ − k − pmin

ν ¼ m2
π þm2

l

2mπ
and pmax

l ¼ m2
π −m2

l

2mπ
; ðB39Þ

El ≥ Emin
l ¼ mπ − k − pmax

ν ¼ ðmπ − 2kÞ2 þm2
l

2ðmπ − 2kÞ and pmin
l ¼ ðmπ − 2kÞ2 −m2

l

2ðmπ − 2kÞ ðB40Þ

so that for a general function fðk; pl; zlÞZ
dΦ2ðpπ − k;pl; pνlÞfðk; pl; zlÞ ¼

1

8πk

Z
pmax
l

pmin
l

pldpl

El
fðk; pl; zlÞ

¼ 1

8πk

Z
Emax
l

Emin
l

dEl fðk; pl; zlÞ; ðB41Þ
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where zl is given in terms of the integration variable pl by
Eq. (B38). Note that the factor of 1=k in front of the
integrals in Eq. (B41) is compensated at small k by the
ranges of integration being of OðkÞ.
All the finite terms contributing to ΓDE listed above (with

the exception of F5;DE which is a simple one-dimensional
integral), including those with Lcon

DE in the numerator, can
readily be evaluated using Eq, (B41) for any specified
values of the masses and ts.

APPENDIX C: ELECTROMAGNETIC
CORRECTIONS TO Kl3 DECAYS

In the preceding sections of this paper we have devel-
oped a method using infinite-volume reconstruction to
calculate the radiative corrections to leptonic decays, such
as πl2 and Kl2, that promises greater precision than
approaches in which the amplitude is fully computed in
a finite volume, such as that based on the QEDL treatment
of electromagnetism. This refinement replaces power-law
finite-volume corrections with corrections which are expo-
nentially suppressed in the linear size of the finite volume.
The additional analytic control provided by the IVR
method also allows the analytic cancellation of infrared
divergences so that all expressions which are evaluated
numerically require no infrared regulator.
In this appendix we generalize this approach to treat the

electromagnetic corrections to the Kl3 decay, a process
where there is no alternative approach currently known that
permits a first-principles lattice calculation. The fundamen-
tal diagrams for the Kl3 process are similar to those in
Fig. 1 except that the initial meson is a kaon and a pion
emerges from the hadronic weak vertex. In this case
diagrams A and B in Fig. 1, where the photon is attached
to one or two quark lines, will now include the case where
one or more of these electromagnetic vertices appear on
quarks of the final-state meson. We show in Fig. 2 an
example of such a new type-B diagram in which the photon
propagator connects the lepton with a quark appearing in
the final-state pion.
Calculating the electromagnetic corrections toKl3 decays

involves two new difficulties not present in leptonic decays,
such asKl2 [37,38]. Both difficulties are associated with the
exchange of a photon between the two charged final-state
particles, the pion and the lepton as shown in Fig. 2.6 In the
final state, these two particles are noninteracting and each
carry the three momentum that is determined by the lattice
interpolating operator which annihilates them. Thus, the
total energy carried by the pion and lepton, Eπl, is also
determined. However, the intermediate state can also consist
of a pion and a lepton, where the individual particles

have spatial momenta that are different from those
of the final-state particles. This is illustrated in Fig. 2, by
the pion with momentum pπ − k and the lepton with
momentum pl þ k. The π − l intermediate state can there-
fore have an energy E0

πl which is lower than Eπl. This
creates a familiar difficulty in a Euclidean-space lattice
calculation since such a lower-energy pion-lepton inter-
mediate state will result in an exponentially growing term in
the h0jϕπðtÞϕlðtÞJμemðtxÞJνemðtyÞHWð0Þϕ†

KðtKÞj0i correla-
tion function, where ϕ†

K , ϕπ and ϕl are interpolating
operators used to create or annihilate the corresponding
particles and we have only exhibited the time dependences.
In this case the lower-energy pion-lepton intermediate
state will be favored because of its less-rapid exponentially
falling Euclidean-space-time dependence, leading to an
exponentially growing relative factor proportional to
eðEπl−E0

πlÞt. In a conventional Euclidean-space lattice cal-
culation such an unphysical term must be carefully iden-
tified and subtracted.
In the infinite-volume integration over the photon’s

momentum k, as E0
πl approaches Eπl a singular energy

denominator appears. Applying the Feynman prescription of
introducing the usual −iϵ in the denominators of the lepton
and photon propagators results in a complex amplitude. The
real part of this amplitude is obtained by a principal-part
recipe while the imaginary part comes from a delta function,
giving a result dictated by the standard optical theorem. A
finite-volume Euclidean calculation would miss this imagi-
nary contribution and the approximation of the principal part
by a discrete sum would introduce potentially large finite-
volume corrections [39].
These difficulties arise from the space-time region inwhich

the photon is exchanged between the pion and the lepton at
increasingly late times in the decay, i.e. with tx and ty close to
t. This is precisely the region that can be treated analytically
using IVR. In fact, using IVR a lattice QCD calculation can
treat the final state pion directly inMinkowski space avoiding
the difficulties described above. If we assume that other
possibleXl intermediate states with energyE0

Xl smaller than

FIG. 2. A new representative of a type B diagram identified in
Fig. 1 that can appear when computing the electromagnetic
corrections to Kl3 decay. Here the three-momenta carried by the
propagators have been labeled in a fashion consistent with
Eq. (C5) below.

6The difficulties are also present in the semileptonic decay of a
charged kaon, e.g. K− → π0l−ν̄l. In this case however, the
imaginary part of the amplitude in Minkowski space is not
infrared divergent.
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Eπl are unimportant, then this provides a complete treatment
of the radiative corrections to Kl3 decays. Here the most
important hadronic stateX is the two pion statewhose lack of
significance is suggested by the ratio of partial widths:
ΓðKL → πþπ0l−ν̄lÞ=ΓðKL → πþl−ν̄lÞ ≈ 10−4. In addi-
tion, if desired such two-pion intermediate states can be
further suppressed or avoided altogether by considering Kl3
decays in the kinematic region in which the neutrino carries
substantial energy.
A discussion of the radiative corrections to Kl3 decays

which is as detailed as that presented here for leptonic
decays is beyond the scope of this paper. However, given
the absence of other lattice approaches to the calculation of
these corrections and its value as a further example of the
methods developed in this paper, we present a broad outline
of this approach in this appendix. The critical step is the use
of IVR to determine the contribution of an intermediate
pion carrying a known spatial momentum. We begin with
the relevant hadronic matrix element expressed as a sum
over intermediate states:

hπðp⃗πÞjJμðxÞJWν ð0ÞjKð0⃗ÞiE
¼

X
n

hπðp⃗πÞjJμemðxÞjnihnjJνWð0ÞjKð0⃗ÞiE ðC1Þ

≃
Z

d3p0

2Eπðp⃗0Þ e
−x4ðEπðp⃗0Þ−EπÞhπðp⃗πÞjJμemðx⃗; 0Þjπðp⃗0Þi

× hπðp⃗0ÞjJνWð0ÞjKð0⃗Þi; ðC2Þ

where x4 > 0 and the subscript E has been introduced
when necessary to indicate a Euclidean-space amplitude.
For a generic momentum q⃗ we define Eπðq⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

π

p
,

and in order to simplify the notation we define Eπ to be
the energy of the external pion, Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
π þm2

π

p
. As

has already been extensively discussed, by taking the
Euclidean time x4 to be sufficiently large we can insure that
only the intermediate pion state contributes as described
by Eq. (C2).
Following the now familiar steps taken earlier, we can

Fourier transform Eq. (C2) to determine the pion contri-
bution Aπðp⃗; p⃗0; x0Þ to this amplitude at an arbitrary time
x0 in Minkowski space from our Euclidean lattice result:.

Aμν
π ðp⃗π; p⃗0;x0Þ≡ hπðp⃗πÞjJμemð0Þjπðp⃗0Þihπðp⃗0ÞjJνWð0ÞjKð0⃗Þi

×e−ix0ðEπðp⃗0Þ−EπÞ ðC3Þ

¼ hμρhνσ
Z

d3x eiðp⃗π−p⃗0Þ·x⃗eðts−ix0ÞðEπðp⃗0Þ−EπÞ

× hπðp⃗πÞjJρemðx⃗; tsÞJσWð0ÞjKð0⃗ÞiE; ðC4Þ

provided the real Euclidean time ts is sufficiently large and
positive. Here h ¼ diagð1; i; i; iÞ is introduced to take into
account that the currents in Eq. (C3) are defined in

Minkowski space whereas those in Eq. (C4) are defined
in Euclidean space using the conventions in Appendix A.
We have also replaced the variable x4 by ts to follow more
closely the conventions used earlier. Thus, the Minkowski-
space amplitude Aμν

π ðp⃗π; p⃗0; x0Þ can be determined directly
from a Euclidean lattice calculation. All finite-volume
errors will remain exponentially small in the size of the
spatial volume provided we keep ts ≲ L.
We can now use the amplitude Aμν

π ðp⃗π; p⃗0; x0Þ to avoid
both of the difficulties described above that are involved in
the calculation of the radiative correction to Kl3 decays.
Firstly, the amplitude Aμν

π ðp⃗π; p⃗0; x0Þ can be substituted
directly into the Minkowski-space calculation of the con-
tribution of the πl intermediate state to the Kl3 decay.
There will be no terms with exponentially growing time
dependence since the calculation is performed in
Minkowski space and the unwanted term that oscillates
at large times can be isolated in this analytic calculation and
dropped as was done in Ref. [4]. The resulting complex
amplitude will obey the optical theorem.7

An explicit expression for this Minkowski-space ampli-
tude coming from a single pion intermediate state can be
readily written down directly in terms of the underlying
lattice QCD amplitude:Z

∞

−∞
dk0

Z
d3ketsðEπðp⃗π−k⃗Þ−EπÞ

×
Z

d3x eix⃗·k⃗
hμρhνσhπðp⃗πÞjJρemðx⃗; tsÞJσWð0ÞjKð0⃗ÞiE

Eπ −Eπðp⃗π − k⃗Þ−k0þ iϵ

×
1

k2− iϵ

ūlðp⃗lÞγμðγ · ðplþkÞþmlÞγνð1− γ5Þvν̄ðp⃗ν̄Þ
ðplþkÞ2þm2

l− iϵ
:

ðC5Þ

The four-vector k is the Minkowski-space momentum
carried by the photon propagator, pl is the four-momentum
of the final-state lepton and pν̄ the four-momentum of the
final-state antineutrino. The routing of momenta adopted in
Eq. (C5) is shown in Fig. 2. This expression is independent
of the parameter ts when ts is sufficiently large that
intermediate states more massive than the pion can be
neglected.
As in our earlier derivations, the analytic integrals over

k0 and k⃗ can be performed at fixed x⃗ allowing the quantity
in Eq. (C5) to be expressed as the product of a Euclidean-
space, finite-volume lattice amplitude and an analytic

7Note, this result will contain a physical infrared divergence
that results from the logarithmic radial dependence of the
Coulomb wave functions. This divergence can be regulated by
adding a photon mass and removed by including screening effects
or evaluating a ratio in which these effects cancel. This diver-
gence contributes to the imaginary part of the amplitude and
hence does not enter theOðαemÞ correction to the decay rate being
considered here.
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kernel which in this case has both real and imaginary
parts. Equation (C5) isolates the contribution of the
pion intermediate state inserted between the currents
Jμemðx⃗; x4ÞJνWð0Þ for the case that x4 > 0. We should
recognize that all features of the electromagnetic interaction
of a physical pion are captured by this Euclidean-space

matrix element, including the pion’s electromagnetic form
factor.
The second step of the calculation targets the remaining

terms in the sum over intermediate states that appear in
Eq. (C1). These terms can be written in Minkowski space
using the notation introduced in Eqs. (C1), (C3), and (C5):

Ã≡
Z

∞

−∞

dk0
2π

Z
d3k
ð2πÞ3

Z
∞

0

dx0 e−ix0k0
�Z

d3x eix⃗·k⃗hπðp⃗πÞjJμemðx⃗; x0ÞJνWð0ÞjKð0⃗Þi −Aμν
π ðp⃗π; p⃗π − k⃗; x0Þ

�

×
1

k2 − iϵ

ūlðp⃗lÞγμðγ · ðpl þ kÞ −mlÞγνð1 − γ5Þvν̄ðp⃗ν̄Þ
ðpl þ kÞ2 þm2

l − iϵ
: ðC6Þ

This Minkowski amplitude is written as a product of a time-
ordered QCD matrix element multiplied by covariant
Feynman propagators for the photon and lepton. This
can of course be re-expressed as a conventional time-
ordered matrix element of one weak current and two
electromagnetic currents in which the photon and leptons
as well as the QCD degrees of freedom all appear as
intermediate states. By removing the contribution of the
single-pion state to these intermediate states and neglecting
the small contributions of two- and three-pion states, we
guarantee that no intermediate states appear in the right-
hand side of Eq. (C6) with lower energy than mK .
Under these circumstances, the same result for this

subtracted decay amplitude will be obtained in either
Minkowski or Euclidean space. Thus, Eq. (C6) can be
reexpressed as the product of a time-ordered QCD matrix
element multiplied by covariant Feynman propagators for
the photon and lepton, all expressed in Euclidean space.
The resulting amplitude will fall exponentially as the
separation between the hadronic weak and electromagnetic
currents increases, allowing the hadronic matrix element to
be computed in lattice QCD with only exponentially
suppressed finite volume errors.
In this appendix we have focussed on the region x0 > 0,

since this is where the difficulties discussed above, asso-
ciated with intermediate states with energies lower than
mK , appear. For x0 < 0 there are no such difficulties; the
Minkowski and Euclidean integrals over negative x0 and x4
respectively are equal, so that the corresponding contribu-
tion to the physical hadronic matrix element can also be
computed in lattice QCD with only exponentially sup-
pressed finite volume errors.

Finally we summarize the results of this appendix. We
have provided a further application of the IVR method to
treat the electromagnetic corrections to Kl3 decays. The
resulting approach has the same important features as the
treatment of the electromagnetic corrections to the decay of
a pseudoscalar meson into a lepton and neutrino which was
the main topic of this paper: (i) All errors resulting from the
finite volume in which the lattice QCD portions of the
calculation are performed fall exponentially with increasing
lattice volume. (ii) Infrared divergences appear only in the
analytic parts of the calculation, leaving the amplitudes to
be computed using lattice QCD infrared finite.
The electromagnetic corrections to Kl3 decays are

more complex than those needed for the leptonic decays
of a pseudo-scalar meson and have until now eluded a
treatment in lattice QCD. The most significant obstacle
to such a lattice calculation is the photon exchange
between the final-state pion and lepton. The difficulties
associated with this photon exchange contribution are
the infrared-singular imaginary part and the appearance
of intermediate pion-lepton states that are less energetic
than the final pion-lepton. Both difficulties can be
resolved analytically in the IVR approach allowing this
pion-lepton scattering contribution to be computed in a
finite-volume lattice calculation of the ϕ†

K − JW − Jem −
ϕπ four-point function as summarized in Eq. (C5). After
the contribution of this single-pion intermediate state has
been evaluated, the remaining contribution can be
directly evaluated from the lattice QCD calculation of
a finite-volume Euclidean-space amplitude as indicated
in Eq. (C6).
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