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Lattice QCD calculations of leptonic decay constants have now reached subpercent precision so that
isospin-breaking corrections, including QED effects, must be included to fully exploit this precision in
determining fundamental quantities, in particular the elements of the Cabibbo-Kobayashi-Maskawa matrix,
from experimental measurements. A number of collaborations have performed, or are performing, such
computations. In this paper we develop a new theoretical framework, based on infinite-volume
reconstruction (IVR), for the computation of electromagnetic corrections to leptonic decay widths. In
this method, the hadronic correlation functions are first processed theoretically in infinite volume, in such a
way that the required matrix elements can be determined nonperturbatively from lattice QCD computations
with finite-volume uncertainties which are exponentially small in the volume. The cancellation of infrared
divergences in this framework is performed fully analytically. We also outline how this IVR treatment can
be extended to determine the QED effects in semileptonic kaon decays with a similar degree of accuracy.
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I. INTRODUCTION

Lattice QCD results for a number of physical quantities
have now reached the subpercent level, e.g. the 2021 review
by the Flavour Physics Lattice Averaging Group
(FLAG2021) [1] quotes the following values for the
leptonic decay constants f, and f Kl:

'"The decay constant f, is frequently used as part of the
calibration, including the determination of the lattice spacing, and
the value in Eq. (1) is obtained from simulations with Ny = 2 + 1
light-quark flavors. The values of fx and fy/f, are from N, =
2+ 1+ 1 computations.
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fr=130.2(8) MeV,

J% = 1.1932(21). (1)

/4

fx = 155.7(3) MeV,

The experimental results for the leptonic decay widths are
even more precise. In order to fully exploit the level of
precision in Eq. (1) for tests of the Standard Model of
particle physics and the determination of its parameters,
in particular the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, electromagnetic and strong iso-
spin-breaking corrections need to be included. The subject
of this paper is the theoretical extension of the infinite
volume reconstruction (IVR) method for the evaluation of
leptonic decay widths of pseudoscalar mesons in lattice
QCD computations on a finite Euclidean volume in such a
way that (i) the cancellation of infrared divergences is
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explicit and (ii) the finite-volume corrections are exponen-
tially small. The method is illustrated with the decay of a
pion, 7t — #*v,(y), where £ is a charged lepton, but
applies equally well to the decays of heavier mesons (K, D,
D,, B, and B, mesons).

Infinite volume reconstruction was first proposed in
Ref. [2] to avoid powerlike finite-volume uncertainties when
computing QED corrections to the hadronic spectrum in a
finite volume. It has since been used in studies including long-
distance contributions to neutrinoless double-f decay [3],
rare kaon decays [4], the width for the decay K —
Cu(£¢'7), where ¢ and ¢’ represent charged leptons [5],
the 77-7° mass splitting [6], the two-photon exchange
contribution to the muonic-hydrogen Lamb shift [7], and
the contribution from a light sterile neutrino to neutrinoless
double-f decay [8]. In these quantities there are no infrared
divergences in intermediate stages of the calculation, with
the exception of the two-photon exchange contribution to
the muonic-hydrogen Lamb shift where the infrared
divergence is regulated by the atomic binding energy [7].
By contrast, for leptonic decays the divergences at O(ay, )
are cancelled in T'(z" - ¢*v,) + T(z" - ¢*vey) [9] and
an important element of this work is to demonstrate that the
width can be computed using IVR after the complete
analytic removal of the infrared divergences.

Isospin breaking corrections to leptonic decay widths
have been studied in detail in Refs. [10-13] in the context
of the QEDy, treatment of the photon’s zero mode [14]. In
particular it was shown in Ref. [11] that the finite-volume
dependence of I'(zt — £*v,), the width for the decay
xt = ¢, takes the form

ci(rs)
m, L

)

Lzt — ¢ vp) = co(re) + 8o(rr) loglm, L] +

where r, = m,/m,, m,, and m, are the masses of the pion
and charged lepton respectively and the spatial volume
V = L3. The exhibited terms in Eq. (2) are universal, i.e.
independent of the structure of the pion, and can therefore
be evaluated in perturbation theory treating the pion as an
elementary meson. The coefficients ¢y, ¢y, and ¢; were
calculated in Ref. [11], and the corresponding finite-
volume effects subtracted from the nonperturbatively com-
puted width in the numerical studies of Refs. [12,13]. The
infrared divergence is manifest in the term containing
log[m,L],” so that L acts as the infrared regulator. In the
QEDy formulation the leading finite-volume effects which
depend on the structure of the decaying pion are therefore
of O(1/(m,L)?) and, together with higher order terms, are

*We have chosen to write the infrared divergent term here as
log[m,L]. Tt can, of course, be written instead as log[m,L]
together with the corresponding redefinition of c((r,).

represented by the ellipsis in Eq. (2). The O(1/(m,L)?)
nonperturbative effects were recently estimated in
Ref. [15], together with a perturbative calculation of the
terms of O(1/(m,L)*) obtained by treating the meson as a
pointlike particle (see also Ref. [16]). It was found that
while the structure-dependent terms at O(1/(m,L)?) are
small, the O(1/(m,L)*) terms corresponding to a pointlike
pion are significant. The structure-dependent terms at
O(1/(m,L)?) are unknown however, and difficult to
estimate without repeating computations at different vol-
umes at the same lattice spacings and quark masses.

The primary aim of the present paper is to develop a
framework, based on IVR, in which the finite-volume
effects decrease exponentially in the volume and in
which the cancellation of infrared divergences is fully
controlled. In this approach, in contrast to other imple-
mentations of QCD + QED in lattice computations, the
decay amplitude is not fully computed in a finite volume.
Instead, as will be discussed in detail below, the infinite-
volume amplitude is organized in such a way that effects
related to the long-distance propagation of the photon are
calculated analytically and the only nonperturbative QCD
input which is required is a nonlocal hadronic matrix
element which is obtained with exponentially small finite-
volume corrections.

A number of issues which are necessary for the evalu-
ation of leptonic decay widths are generic, and hence are
common to the QED; and IVR frameworks. These were
discussed in Refs. [10-13] and we do not add further to that
discussion here, beyond briefly recalling the main points as
follows.

The Effective Lagrangian and determination of the
Fermi Constant.—Lattice calculations are generally per-
formed with an inverse lattice spacing of the order
of a few GeV (e.g. a”!~2-4 GeV) and, even with
techniques such as step-scaling, direct computations in
the Standard Model, which contain scales of O(My), are
not possible at present. Instead, weak decay amplitudes are
evaluated in an effective theory in which the heavy degrees
of freedom, and in particular the W and Z bosons are
integrated out. The amplitudes are therefore written in
terms of the Fermi constant, G, which is conventionally
determined from the muon lifetime. At O(a.,) and
neglecting higher order terms in m?2/m3, the lifetime 7,
is given by the expression [17,18]

1 Gim, 8m? Aemn (25
— = -1 +=2(==22)|, (3
7 19271'3{ mﬁ}[ +277.'<4 ”>} ®)

leading to the value Gy = 1.16634 x 10~ GeV~2. (For an
extension of Eq. (3) to O(a?) and the inclusion of higher
powers of p=(m,/m,)* see Sec. 10.2.1 of the 2022
edition of the Particle Data Group’s review [19].
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The authors quote the corresponding value of the Fermi
constant to be G = 1.1663787(6) x 107> GeV~2.)

The evaluation of the amplitude for the process z —
£vg up to O(aey) can be performed in the effective theory
with the effective Lagrangian [20,21]

‘Ceff = & * <1 +aem10
b2

My
V2 gM_W)
X (dy*(1 = )u) Dy, (1 = 7°)?) (4)

and with the Feynman-gauge photon propagator in the
W-regularization [22], i.e. with 1/k* replaced by
M3, /k* (M3, — k*) where k is the four-momentum of the
photon. Since agy,/7log(M;/My) ~2.9 x 10~* we drop
this term in the remainder of this paper. It can readily be
included if necessary.

Renormalisation of the lattice operator(s)—From the
previous paragraphs we note that the matrix elements of
bare lattice operator(s) determined in a lattice computation
need to be converted into the W-regularization scheme.
This is a short-distance issue and, given the large scale
My, in practice this requires some perturbation theory.
For the Wilson action for both the fermions and gluons,
the conversion was performed entirely in perturbation
theory at O(a.,) in Ref. [10] [see Eq. (10) of this
reference]. [Note that the lack of chiral symmetry
with Wilson fermions implies that the current-current
operator in Eq. (4) is a linear combination of 5 four-
fermion lattice operators.] The precision of the calculation
was subsequently improved from O(a.,a4(a)) to
O(demay(My)) in Ref. [23].

The discussion in this paper is independent of the choice
of the lattice discretization of QCD. Whichever choice is
made in the computation of the decay width, the bare lattice
operators will need to be matched to those in the W-
regularization, either using a combination of nonperturba-
tive renormalization and perturbation theory or entirely in
perturbation theory.

Quark and meson mass shifts.—Electromagnetic effects
induce a shift in the masses of quarks and hadrons.
Computations of hadron masses in the full theory, i.e.
including electromagnetic and strong isospin breaking
effects, are now performed by a number of groups
[6,24-32]. The hadron masses in the full QCD + QED
theory are of course unambiguous and the computed
quantities reproduce their physical values, up to statistical
and systematic uncertainties. On the other hand, at O(a.,)
computed quantities in QCD (without QED) are convention
dependent, i.e. they depend on the criteria used to deter-
mine the input bare quark masses and lattice spacing. For a
detailed discussion of this point, see Sec. II in Ref. [13],
where a number of possible conventions for the definition
of QCD are reviewed. In the present paper we will not
discuss strong isospin breaking, since it does not present

significant conceptual difficulties, such as the cancellation
of infrared divergences and finite-volume effects which are
not exponentially small. The presentation in this paper does
not depend on the convention chosen to define QCD and so
we generically label the mass of the charged pion in QCD
by m? and that in the full theory by m, = m® + ém,. The
mass shift ém, is obtained from the time behavior of the
correlation functions as explained in Sec. II B. Our focus,
instead, is on the determination of the decay width, which is
obtained from the correlation functions after the subtraction
of the term proportional to the mass shift.

While the nonperturbative QCD effects will necessarily
be determined from hadronic correlations functions com-
puted on finite Euclidean volumes, the discussion in this
paper is presented in an infinite four-dimensional volume.
We identify the nonperturbative hadronic elements which
need to be calculated and define and process the correlation
functions from which they can be determined. We then
organize the calculation in such a way that the hadronic
matrix elements contributing to the width can subsequently
be determined from a finite-volume computation with only
exponentially small finite-volume corrections.

The correlation functions studied in Sec. II all include an
interpolating operator to create the pion at rest at time —z,
and the hadronic weak current which annihilates the meson
at the four-dimensional origin. In an infinite space-time
volume ¢, can be chosen to be arbitrarily large. In
Euclidean space the Feynman-gauge photon propagator
is given in Eq. (A7):

5/41./
Sﬂy b - —7
Y ()C y) 47[2|X—y|2

(5)
where x and y are the positions of the two electromagnetic
currents in diagrams A, B, and C (see Fig. 1). In the absence
of infrared divergences, one can therefore, at arbitrarily large
temporal separations, e.g. |x* — y*| > 1., factor the ampli-
tude, writing it as the product of source, sink, and propaga-
tion contributions. Infrared divergences are present however,
and without an additional infrared cutoff it is 7, which acts as
the cutoff, with terms proportional to log[m,?,] present.
Instead, we organize the discussion by implicitly introducing
a separate cutoff, e.g. a mass for the photon m,, with
tzm, > 1, so that contributions from |x* — y*| > 7., where
the photon propagator joins the source and sink factors, can
now legitimately be neglected. The cancellation of the
infrared divergences, which are now proportional to
log(m,/m,), will be handled analytically and IVR will be
applied to the finite terms to ensure that the finite-volume
corrections are exponentially small. While the logic of the
discussion requires us to take the limits in the order
limmy_,o lim, — oo, this limit is taken before the lattice

calculations, which are therefore independent of m, and free
of infrared divergences.

014501-3



CHRIST, FENG, JIN, SACHRAJDA, and WANG

PHYS. REV. D 108, 014501 (2023)

FIG. 1.

Diagram DO contributes to the amplitude for the decay z* — £"v, in the absence of electromagnetism. The remaining 5

connected diagrams contribute to the O (e, ) electromagnetic corrections to the width of the leptonic decay of a pion. Diagrams A—C
correspond to the decay ™ — #*v, and diagrams D and E to the decay #t — ¢'v,y. As explained in Sec. II, each of the five diagrams
should be viewed as representing a class of diagrams at the quark and lepton level, without regard for the time ordering suggested by the

representatives shown.

We stress that the cancellation of infrared divergences is
performed fully analytically, with no lattice uncertainties.
This is different for example, from the computations in
QED;, in which an analytic expression containing the
infrared divergence, which is of the form log[m,L], is
subtracted from the amplitude computed numerically.

In the following sections we present the implementation
of the IVR method in leptonic decays in detail, but we now
introduce the main ideas. The introduction of radiative
corrections, with a photon which can propagate over large
distances, results in the presence of both infrared diver-
gences and finite-volume corrections which potentially
only decrease slowly with the volume (as inverse powers
of L, the spacial extent of the volume). The fundamental
idea of the IVR method is that there is a time interval #;, < L
such that the only hadronic state which contributes sig-
nificantly to correlation functions when propagating over
times greater than 7, is the pion; contributions from states
with larger masses are exponentially suppressed. To illus-
trate the method, consider the hadronic matrix element

H(F,—1) = (f|T[0,(0)0 (%, -1)]|x(0)), (6

where O, , are local operators, T represents time-ordering,
and the initial state |7r(6)> is a pion at rest (i.e. with three-

momentum 6). For our specific study of leptonic decays we
show in Fig. 1 the diagram without electromagnetism and
the five diagrams which include electromagnetism and
contribute to the 7zt — £Tv,(y) decay amplitude [we
include electromagnetic corrections up to O(aey) in the
decay width]. For diagrams B and D, the final state |f) =
|0) and O, and O, are electromagnetic and weak currents
respectively. For diagram A, both O; and O, are electro-
magnetic currents and if —¢# < 0 and the time at which the
weak current is inserted, t, is sufficiently large and
positive so the propagation of states other than the pion
between 0,(0) and the weak current at ty, is suppressed,

then |f) = |z(0)). In the evaluation of the diagrams,
H(X,—t) is a factor in the integrand of integrals of the
generic form

/ & H() f(x). (7)

where f(x) encodes nonhadronic x-dependent elements
such as the photon and lepton propagators. We now
demonstrate that for ¢ > t,, H(X,—t) can be determined
analytically in terms of H(X, —1,). It is therefore unneces-
sary to perform nonperturbative computations of H (X, —1)
for ¢ > t,. By the assumption that only pion intermediate
states propagate between (X, —t,) and the origin we have
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&Pp 1

a / (27)* 2E,(p)

x (£102(0)|=(5)) (=(7)|0 (0) (0))
x ¢~ (Ex(P)=my)t; p=ip'X (8)

where E,(p) = +/|p|* +m2. Performing the inverse
Fourier transform we obtain

1 4 - N
3505 V10:(0)1a(7) a(5)|01 0) ()

—/dBXH()_C" _ts)e(Eﬂ(ﬁ)_’nﬂ>tseiﬁ'z. (9)

For values of t > ¢, following the same steps as in Eq. (8)
we have

H(x, —[)|t>t.\ _/Wm

% (£104(0)|2(5)) ((5)] 0, (0) |z (0))

X e_(En(ﬁ>_mn)fe_iﬁ' (10)
&*p
= d*x H(¥ , —t,
[ o [ b
X e_(Eﬂ(ﬁ>_mn>(l_tx)e_iﬁ'(;_’?/)_ (11)

We see therefore that H(X, —t)],., can be determined from
the knowledge of H (X, —f,), which is now the nonpertur-
bative input into the evaluation of the decay amplitude. The
discussion here is infinite volume, but we envisage that the
nonperturbative determination of H (X, —t,) will ultimately
be performed in a finite-volume lattice QCD computation.
The long-distance behavior of the correlation function in

Eq. (10) is of the form exp[—m,(+/|X|* + > — )] with
prefactors which include negative powers of \/|X|* + 2.
Thus, in the region of large ¢, increasing |X| has little effect
until |X]>m, becomes of the order of t. Furthermore,
contributions from regions of large 7> |X|*m, are only
suppressed by powers of 7. Consequently, in a finite-
volume lattice calculation, the omission of the large |X|
region at large 7 from the integral in Eq. (7), where f(x)
contains the photon propagator, results in power law, finite-
volume errors. However, as is shown in Eq. (11), IVR
allows the contribution from this troublesome region of
large ¢ to be determined analytically in infinite volume from
the calculation of hadronic matrix elements at, for example,
a fixed value of ¢ = ¢,. The exponential decrease for large
|X| at fixed ¢, ensures exponentially vanishing corrections

as the volume used in the lattice calculation grows.
Moreover, no finite-volume effects are introduced by the
momentum integration on the right-hand side of Eq. (11),
since this is always performed in infinite volume. In the
following sections we exploit the IVR technique illustrated
above to develop a complete procedure for the computation
of electromagnetic corrections to the leptonic decay widths
of pseudoscalar mesons.

In the previous paragraph, in order to illustrate the
method, we demonstrated that performing the computa-
tions on lattices of increasing volumes with a fixed value of
t, led to exponentially small finite-volume effects. There
also exist other possibilities to achieve this, although the
rate of decrease of the exponentially falling finite volume
effects will be different in each case. For example, we can
increase f as the volume increases while keeping the ratio
t,/L fixed, with ¢, < L. Increasing ¢ in this way, enables us
to combine the reduction of finite-volume effects with a
decrease of any possible contamination from contributions
of excited states at ¢t = t,.

The plan for the remainder of the paper is as follows. In
the next section we discuss the evaluation of the diagrams.
The terms containing the infrared divergences are separated
from the finite terms. The analytic cancellation of the
infrared divergences in the width between diagrams with a
virtual photon (diagrams A, B, and C) and those with a real
photon (diagrams D and E) is demonstrated in Sec. III. We
collect all the terms contributing to the final result for the
decay width in Sec. IV and discuss the implementation of
the method in lattice QCD computations. In Sec. V we
present a brief summary and our conclusions.

There are three appendices: in Appendix A we present
the conventions we use in Minkowski and Euclidean space.
In the main body of the paper we identify the terms which
lead to infrared divergences in the widths. While the
cancellation of infrared divergences is manifest, finite
terms remain after the addition of the individually divergent
terms. These residual finite terms are derived in
Appendix B and only require knowledge of the decay
constant and the matrix element of the interpolating
operator of the pion. Finally, in Appendix C we sketch
how IVR can be implemented in K .3 decays.

II. EVALUATION OF THE DIAGRAMS

The five diagrams which contribute to the 7t — £v,(y)
decay amplitudes are illustrated in Fig. 1. They indicate
whether the photon is attached to the hadronic or leptonic
components of the electromagnetic current(s) [see Eq. (17)
below]. Thus, for example, in diagram A the photon is
emitted and absorbed on quark propagators, whereas in
diagram B it is emitted from a quark propagator and
absorbed by the charged lepton. We stress that the diagrams
are a representation of QCD + QED, and that their evalu-
ation in lattice computations is to be performed in a
discretization of QCD at the quark and gluon level. The
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diagrams are not to be interpreted as corresponding to some
effective theory. “Disconnected” diagrams, i.e. those in
which the photon is emitted and/or absorbed from a closed
quark loop which is connected to the remainder of the
diagram only by gluons, are implicitly included in the
diagrams of Fig. 1. While it is generally more difficult to
compute such disconnected diagrams numerically, they are
included in the framework presented in this paper. At
O(aey,) there are no diagrams in which a photon is attached
to a closed lepton loop.

Below we discuss the evaluation of the diagrams of Fig. 1
which contribute to the z* — £Tv,(y) decay amplitudes.
More precisely, we define the correlation functions corre-
sponding to each of the diagrams and organize them so the
hadronic matrix elements which contribute to the amplitudes
can ultimately be computed on a finite Euclidean lattice with
only exponentially small finite-volume effects. Infrared
divergent contributions are identified and the cancellation
of the divergences is performed analytically, so that the
matrix elements which need to be computed are all indi-
vidually infrared finite. The numerical evaluation of the
matrix elements is postponed to a future study.

We start by defining the fundamental ingredients in the
computation of the amplitude, and in particular the had-
ronic matrix elements and leptonic factors. Since the
energy-momentum exchanges in this decay are much
smaller than the mass of the W-boson, the weak vertex
is rewritten as a local four-fermion interaction as in Eq. (4)

Car = ZEV: g0 Ty (@B, (1 = )W), (12)

\/E u

where the weak hadronic current J%, = dy*(1 — y°)u.

Throughout this paper, we take the initial pion to be at
rest, denoting the corresponding QCD eigenstate by |z(0)),
and define the hadronic matrix elements as follows:

HYy = (0174,(0)|2(0)), (13)

HYY (x) =(0| T[4 (x) 73 (0)]2(0)),  (14)

HY (x, y) =(0 T[Tt ()7 () 13, (0)]| (D)) (15)
HY(2) =(2(0)| T[/4n(0)Zom(2)]|2(0)).  (16)
oG o e e T e e

equations Ji, is the weak hadronic current and J%, is
the electromagnetic current

Jem = ;Qf‘?ﬂ/DQf_;?yyf’ (17)

where the charges are Q; = +3 for uplike quarks, —1 for
downlike ones and —1 for the leptons #. The appearance of
H in diagrams DO, C, and E, H, in diagrams B and D, and

H, in diagram A can be readily understood. We will explain
the appearance of H,, when discussing the evaluation of
diagram A.

Diagrams A-C contain the propagator of a photon
which, in position space with the photon propagating
between x and y, we denote by S}, (x,y) where u, v are
Lorentz indices. We denote the four-momenta of the final
state charged lepton and neutrino by p, = (E,, p,) and
p, = (|p.|, P,), and for this two-body zt — £"v, decay
E, and |p,| are fixed by the masses of the pion and lepton.
Diagrams D and E have a real photon in the final state and
we denote its polarization vector by €(k), where k is the
momentum of the photon and 4 labels its polarization. We
denote the four-momenta of the final state charged
lepton, neutrino and photon in diagrams D and E by p, =
(Efﬂﬁf)’ Py = (|ﬁu ’1_51/) and k = (|k|’k) respectively.
In all the diagrams, the energy of the final state lepton

is given by E, = /|ps* + m>.

The hadronic matrix elements in Egs. (13)—(16) are
combined with the photon propagator S, or polarization
vectors ¢ and the corresponding leptonic factors

Ly = a(p,, )r*(1 =7 )v(pe), (18)
L (x) = a(p,, )" (1 = y°)S,(0. x)rv(ps)e~'Pe,  (19)

L5 (x) = a(p,, )7 (1 = 7°)S4(0,x)7*S,(x. )y v(pes)
X e~ipey (20)

and subsequently integrated over x and y as appropriate.

In the following we start by writing down the contribu-
tion from each diagram to the decay amplitude with all
quantities, and in particular the y-matrices and photon’s
polarization vector, in Minkowski space as presented in
Appendix A 1. The earlier expressions in this section, from
Eq. (12) to Eq. (20) were all written in terms of these
Minkowski-space quantities. Since the hadronic matrix
elements are eventually to be evaluated in lattice compu-
tations in a finite Euclidean volume we rewrite and process
these contributions in terms of Euclidean quantities as
defined in Appendix A2. We stress however, that the
expressions in both cases are exactly equivalent. An
important point to recall is that the discussion in this
section is in infinite volume (both temporal and spatial). We
will identify the hadronic elements which need to be
calculated and organize them in such a way that they
can be computed on a finite lattice with only exponentially
small finite-volume corrections.

A. The amplitude in QCD without QED

The amplitude for the leptonic decay z7 — £ v, in pure
QCD, i.e. neglecting electromagnetism, is represented by
diagram DO in Fig. 1 and is simply given by

014501-6
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G G
< Sty e

where we recall that we are using the metric g, =
diag(—1,1,1,1) and that we take the meson in the initial
state to be at rest so that only the time component of Hj is
not zero. Rewriting this expression in terms of Euclidean y-
matrices as defined in Sec. A2 we have

My = V,‘;dH”L‘égW =

G
Mo — —75‘/*

where the subscript E is included to indicate that the y-
matrices are in Euclidean space, distinguishing the expres-
sion from Eq. (21) where they are in Minkowski space.
Nevertheless the two expressions are identical of course.

The matrix element Hg, is obtained from the following
lowest order QCD (without QED) correlation functions with

quark masses corresponding to a 7+ meson with mass m0:

oeLog- (22)

i) = [ = 0RO (10 9100 =122+
(23)
Cht) = [ @ (01340 (-1,.7)0)
— HY,Z, 2_ 0 TR (24)

where ¢, > 0, ¢ is an interpolating operator which can create
the pion from the vacuum and the QCD matrix element Z is

defined as Z, = (r(0)|¢"(0)|0) evaluated in QCD without
QED.3 The superscript 0 on m? indicates that this is the pion
mass evaluated in QCD, before the shift in quark masses
induced by electromagnetic interactions. It is assumed that 7,
is sufficiently large that the correlation functions are domi-
nated by the propagation of a single pion at rest and the ellipsis
represent the contributions from the excited states. These will
be assumed to be negligible and in the following presentation
we drop the ellipsis. The hadronic matrix element Hgy is
obtained by combining Egs. (23) and (24):

0 C9W¢ (tﬂ)

. (25)
[ Chatar)e]

Since throughout the discussion below the initial pion is

at rest, in the following we will use the shorthand notation
for ¢'(—t,) (i.e. ¢ with a single variable):

*Note that our definition of Z, differs from the convention

VZy = <7r(6)\qur (0)|0) frequently used in the normalization of
quantum fields.

#(~t,) = / Pt (~1,. 7). (26)

The correlation functions from which the contributions to
the decay amplitudes from each of the diagrams in Fig. 1
are determined are defined in the following sections.

The contribution to the decay width in the absence of
QED is given by

G2 \% 212 2\ 2
— F‘ ud| fﬂmﬂmg(l_%)’ (27)

Iy(n™ = ¢ty
o ;) =T .
where the leptonic decay constant f, is obtained
from | = m2f2.

B. Contribution to the amplitude from diagram A

Diagram A contributes at O(a,,) to both the mass of the
pion and to the decay amplitude; the latter through the wave
function renormalization of the pion and a correction to the
weak interaction vertex. The leptonic factor Lg is common
to both M|, and the contribution from diagram A and we
define the Euclidean correlation function corresponding to
diagram A as

Cy p(te) = ——/d4 /d4 (0|T[J3,(0)Jom(x)
X Jen (V)" (=12)]10) 5" (x, ), (28)
where the % is the standard combinatorial factor and the

superscript A indicates the contribution of diagram A. As
the discussion in this subsection is presented entirely in
Euclidean space, we do not include an explicit subscript £
to denote Euclidean. Combining C/J‘W » With C(J)w o [defined

in Eq. (24)] gives

4
Hi i Zn

C(J) ( )+CJW¢( ):2(m0—|—5m)

W

e—(m‘,}Jrém,,)t,,’ (29)

where Hiy = (0173(0)|7(0)) s Zaunr = (7(0)[¢p7(0)[0) gy
and the label “full” implies that the matrix element is
defined in QED + QCD up to O(ap,). At this order we can
write

H4ZO o
C9W¢(tﬂ) + C?Wqﬁ(tn:) = (_5mﬂt ) m o e
H?ullzfull —mgt” (30)
2(mQ + om,) |

so that the mass-shift dm, can be obtained from a study of
the 7, behavior of the correlation function.
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Similarly, defining

Ch (1) = - /d4 /d4 (O[T [(0) 5 (x)

X Jem(¥)9 (=1)]0) 87 (x. ). (31)

and following the same steps we obtain

|Zsunl*
2(m3 + my,,)
Z
= (=6my,t )2 0 wl
|qull| —-m°
2(mQ + &my,,) e (32)

e_(m2+5mﬂ)tﬂ

Cg;(/;([ﬂ) + ngﬁ(tﬂ) =

4

The mass-shift 6m, is obtained from the coefficient of 7,
in Egs. (30) and (32). In order to simplify the notation in the
later discussion we define

Clp(te) = Cl 4 (t2) =

ngb(tﬂ) = C;L/‘)(/)(tﬂ) -

(=0mt7)CG, (1), (33)

(_5mntﬂ)csﬁ¢(tﬂ)’ (34)

so that C4 (1) and C";¢(tn) are the contributions to the
w

correlation functions after the subtraction of the linear term in

t, which is proportional to the mass shift. It is from these

subtracted correlation functions that the contribution to the

decay amplitude is obtained. Thus by studying the 1,

dependence of C9 ,(1,)+C7 (1) and Cy(1,)+Cj,(15),

the matrix element H}‘un <0|J4 (0)]7(0))y can be deter-

mined:

(€9, p(1) +C3 (1))
Zg

Hiy =2(m) +6m,)

Gyt Y+Ch (1)
= [2(mY+6m,)| Twd Twd 1
[ ( )} [(Cg,p(t )+ ¢(t )e —m,,t,,}i
~ [2m2) (1+5m”>—c0 vol's) :
2m [C(M)( e mgl,,:|7
N Clplta) 1 Chlt)  H (35)

1 1
[nga(fn)e_m(”]’”} 22 [ngb(fn)e_’"g’”} 220

=H} + HY, (36)

where H{ is given in Eq. (25).
The corresponding contribution to the amplitude is the
extension of Eq. (22) to O(ttep):

_Gr
V2

My = ViaHALG. (37)

In the evaluation of the correlation functions C o (1r)
and C (1) we exploit the symmetry under x <> y and
con51der only the contribution from the region x, > y, and
introduce a factor of 2. We also divide the time integrations
into 4 regions R;, i =1 —4,

Ri: x4 > —t4, V4 > —1, + 1,
Ryt x4 < —1y, V4 > —t, + 1,
Ry x4 < —t4, Vg < —t; + 1,
Ryi x4 > —1,,  ys<—l,+1,, (38)

where ¢, > 0 is sufficiently large that the propagation of
excited hadronic states can be neglected for time intervals
greater than f,. In principle, the limits on y, defining the
four regions in Eq. (38) could be —7, + #;, with #; # ¢, but
still sufficiently large for the contribution of excited states
to be negligible for time intervals greater than 7. For the
remainder of this paper, however, we simply set 7, = 7, as
in Eq. (38).

In region R, the photon propagates for a time interval of
at least 7, — 2¢,. In an infinite volume with infinite time
extent, the situation being considered in the current dis-
cussion, 7, can be set to be arbitrarily large and hence the
contribution to the correlation functions from this region
can be made arbitrarily small. This term can therefore be
neglected.

We now write the expressions for the correlation function
C) 4(tz) and Cjy(t,) in each of the three remaining
regions in a way which will be useful for the discus-
sion below:

Ch i, (1 :_e/ "“/ L / &x / By (0T[4, (0) o ()T ()] (=1,)[0) 82 (x. y)

= o2 20 / du [* dvy [ @x [ @O O I OEO)S (). (39
93 —1 —t,+t
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—t, '
C;‘W(/);Rz(tﬂ) = —¢? /_t » dxy /_t +t‘dy4/d3X/d3y<0|J‘¢V(

dxy N dyy | d’z Jem X4,0 Jin y4,2 77,'6 S};D X4,6, y4,Z , 40
/_Ht /3<()| (x4, 0)Jem (4, 2)[7(0)) 87" ((x4.0), (v4.2)).  (40)

_ —62 ZOH% e—m?,t,[ /_[S
- 02
(2m3) —tpty
A 2 [T
Clypery (1) = —e /

—t,+t / d / d%
= dyy X4
2 0 Ya

The corresponding expressions for the C/} g (t2)1=1,2,
3, are obtained from those in Egs. (39)— (41) by replacing
H} by Z, and J},(0) by ¢(0).

Note that the integrals in Egs. (40) and (41) are common
to both C7, 4 (1) and the corresponding C4, . (7,)
(i =2, 3) so that

Hg

Chon 1) 7. (42)

Clyper, (2) =

which leads to a partial cancellation in Eq. (35). We shall
show in the following subsections that Eq. (42) together
with the observation that Cf},,. (1;) = Cij;.p (1), leads to

considerable simplifications, specifically that to obtain H%
it is sufficient to compute the O(a,,,) correlation functions
CJW;R](I,,) and CJW(’&;RZ(I,I) [see Eq. (75) below].

The infrared divergent terms in C; ,(1,) and C,(1,), as
well as the shift in the pion mass, come from region R,
defined in Eq. (38). We therefore start the discussion of
these correlation functions by considering the contributions
from region R, in Sec. II B 1. Although the contributions
from regions R and R; are infrared finite, they do allow for
the propagation of a single pion over large (i.e. > ¢,) time
intervals which in a finite volume would lead to large,
nonexponential, finite-volume effects. These are eliminated
by the use of IVR as explained in Secs. II B 2 and II B 3.
|

ZOHO

C,}xMS/¢ R2< ) =

+1, 1,
dy, / dx, / & / dy(0174,(0)

0)| (e (x4, 0) Tt (v4, D) (=

0)Jem (x)Jem (¥)9" (—12)10) S5 (x. y)

T[Jem(x)Tem (¥)9" (=1:)]10) S5 (x. y)

£2)]0)S)" (x4, 0). (44.Z)). (41)

1. Contribution from region R,

The infrared divergences, as well as terms which would
potentially lead to nonexponential finite-volume effects in a
finite-volume computation of the correlation functions,
come from the propagation of a single pion together with
the photon over large time separations x, — y,. We there-
fore rewrite C; , . (1,) as the sum of two terms

Clugey (1) = Chlpp, (2) + (43)

JW¢R (t2),

where the indices L and S represent long and short temporal
separations between the insertions of the two currents respec-
tively. Specifically, we define regions L and S as correspond-
ingtox, —y4 > tyandxy — y4 < t, respectively and take 7, to
be the same as in the definition of the four regions in Eq. (38).
This is a convenient choice but not a necessary one; all that is
required is that the only significant contribution in region L
corresponds to a single pion and photon propagating between
the two currents. The infrared divergence is contained in
Co 4, (1) whereas C7°, . (1,) is infrared finite. We now
consider these in turn, starting with the contribution from the
short temporal separation, C} . (1;).

The infrared-convergent contribution C}°, . (1) is
given by

Gz [ e [* v [ @ 000, DO (5.6, 049,

(44)

It can be evaluated in lattice computations with exponentially small finite-volume corrections. The term proportional to 7,
contributes to the mass shift and is subtracted as in Eq. (33) and the difference is denoted by C}‘i » Rz(t,,).

It is instructive to consider C45 TRy (t,) in a little more detail. Note that the integrand in Eq. (44) is only a function of the
difference z, = x4 — y, and Z. Thus one time integration can be eliminated:

[:m¢: v O 50 0 00 DO (11.). 0.9)

2[ / dZ4/d%

|%>%Uw»wu>/&Jﬁm<wm0%mw»wwm<@
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where z = (z4,7) and we have used translation invariance.
The factor of ¢, — 2¢, in front of the first term on the right-
hand side is a reflection of the fact that the temporal range

Regions R; and R; both have temporal extent ¢, and hence
contributions which cancel the term proportional to —2¢, in
the first term on the right-hand side of Eq. (45). We

in region R, for y, = x4 is t, — 2¢,. From this region,
therefore, we would expect a factor of &m,(r, —2t,).
|

CYt 1) = & o -"“{2z / dzs [ 2o
# [ ey [ @220l im0 572,00 |

therefore only subtract the term proportional to 7, as in
Eq. (33) so that

i (2)5m (0)|(0)) S} (2. 0)

(46)

When the contribution from regions R, R,, and R3 are combined the 7, dependence is eliminated leaving both ém, and the
contribution to the amplitude independent of #,.
We now consider the contribution C/}vlv‘lﬁ; &, (tz) which contains the infrared divergence:

7 H* —t, X4—1y o
Ol == iigtzete [ [y [ @82 a(0) (50 Dm0 ) D)
v (2m ) — 1,421, —t 1,
x S ((x4,0), (va, 2))- (47)
In order to organize the cancellation of infrared divergences we further manipulate C’}‘k(p; Rz(t,,):
, ZoH} ts Xyt Pk 1
CAL (1) = 070 ,—mr, / d / d /d / / -
Iy 1) (2"1 )? ¢ —1,421, e 1oty Y : (27)3 2E,( (27)* 2E,
X (7(0) e (x4, 0) |7 (P)) (B | o (v, D) (D)) e Errame) ik
> ZoHj o~ /_t‘y dx, /xrts dy4/ k 1 =
(2mp)? e 28) (2E,)2E(K))
X (1(0) e (0) | (R)) ((R)| Fen (0) | (0)) =D+ Er b=, (48)
where for three-momentum g, E,(§) = \/* + (m3)* and E, = |k|.* Performing the time integrations we obtain
ZyH} &’k 1 ~ > > ~
il o (t,) = =€ 00—'"%/ —————— (7(0)| /% (0)|m(k)) (7 (k)| (0)| (0
Tk, (1n) = —€ (2m0)2° (27) 2E,2E, () (7(0)|Jem(0)|7(K)) (7 (k)| Jem(0)|7(0))
e~ (Ec(R)+E,—mQ)t, o= Ex(R+E,=m)t, _ p=(E(R)+E,~mD)(t,=2t;)
o (1, —31,) - . } (49)
E,(k)+ E, —m) (E (k) + E, — m3)?

In Eq. (49) the term in braces which is proportional to 7, corresponds to a contribution to the pion’s electromagnetic mass
shift and the remaining terms to a contribution to the amplitude. The ¢, dependence in the terms proportional to ¢, in
Egs. (49) and (45) cancel leaving 6m, independent of ¢,. The second contribution in braces can readily be seen to be infrared

divergent by noting that for small |1?|, E,,(/?) +E,—m)= 0(|1€|) and so the (7,-independent) term in the integrand is

o(1/ |l_<)|2) Note that, as explained in the Introduction, we assume that an infra-red cutoff, such as a mass for the photon, has

been introduced so that e~
contribute to the amplitude.

Ex(k)+E=mz)tz _, () as t, — oo and the term containing this factor in the integrand does not

*We write E, because when regulating the infrared divergences below we could envisage introducing a photon mass m, so that

v
E, = \/|k* + m2.
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Using Eq. (9) with f = |z(0)) and with electromagnetic currents for the two operators O ,, i.e.

zE,,l@ 7 (70w (0)|(P)) (r(P) im(0) (D)) = / dx HY (&, 1) elErPImmelt o, (50)

the term contributing to the amplitude in Eq. (49) can be rewritten in the form

~ Z H4 0, Pk 1 - e~ Erts e~ Erts
CAL, . (1) = €2 =20 o=t / /d3zH”” 7, —t, e””{f&ts 5 + - } 51
L S A CXC R

The tilde on the left-hand side of Eq. (51) indicates that the term proportional to 7, has been subtracted as explained in the
discussion around Eq. (33).

In order to organize the cancellation of the infrared divergences it is convenient to separate C/£ =k, (1) into a divergent
and convergent contribution

CIlyin, (12) = Chlgik, (t2) + CHLGR (1), (52)
where
Ik 1 eEs
CALdlv — 27 H4e—m2t,,/ - _ ) 33
B 7 H?* Bk 1 3l56i%'Z€_E7t»Y o e~ Eits
C?ML/(i;;)Igz(tﬂ) =0 002 e_m(”)[”/ 32_/ &z HY (7, ~1, ){ = ot (e 1) = 5 2}-
(2m3) (27)° 2E, E (k) + E, — m (Ex(k) + E, — mY)
(54)

Collecting up all the terms we have

Clygers () = CIUg% () + Chrih, (1) + €3, (12) (55)

where CALf}f} (t,) is given in Eq. (53), f}Lg’,‘é (t,) in Eq. (54), and C%5 > ok, (1) I Eq. (44) after subtraction of the term linear
in 1.

From Eq. (40) we see that the expression for the correlation function C% bR, (t.) is simply obtained from C/ TRy (t,) with
the replacement of H0 by Z,. Therefore, recalling the expression in Eq. (35) the contribution to Hy,, from region R, is

FA FA FA
[Zmo]%l CJ ik, (1) _lc ¢R2< SIS vo(te) :1{2’”0}% Clpim, (1) (56)
7'-' —m%ni — 1 T 0Lt
[Cop(t)e™]: po(lx) [Chy(t)e™ | 2 [Cop(t)e™]:
|
The divergent contribution to Hy, from diagram A is 2. Contribution from region R,
therefore The contributions to M, from region R; is infrared
convergent and in this subsection we present the corre-
Adiv , H} &Ik 1 e~ Eits sponding expression. We start with a discussion of the
H™ = B3 / 273 2E. 7 0\2 (57) correlation function in region R; presented in Eq. (39)
(27)*2E, (E,(k) + E, — m?) : ) .
r which we rewrite here for convenience:

and for later use we define

ZO 0 00 X4
. G . ct t :—eze_'”ﬂ["/ dx / d /d3x
Miv = — 2Ly pdvgd sg) o) 2m) O e,

\/z ud )
<[ @ O 01n(6) 20 ) ()
The factor e~/ in the integrand ensures that H4MW is

ultraviolet convergent. x 8y (x.y). (59)
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We now subdivide R;, where x, > —t, and y, > —t, + t,,
into subregions in which either the contributions to
C’}W PR, (1) can be computed directly or the IVR procedure
is implemented:

Ri,: x4 <0, —y4 > 1,
Rip: x4 >0, vy < —ty,
Ri.: x4 <0, — V4 <y,
Ri;: x4 >0, vy > —1,

and in each case it is to be implicitly understood that x, >
—t,and y, > —t, + t, with x4, > y,, which is the definition
of region R;. In region R;, the temporal separation
between the two electromagnetic currents is greater
than 7, and hence the correlation function is dominated
by the propagation between these currents of states which

consist of a single pion and a photon. Similarly in region
R;, the temporal separation between the electromagnetic
current at y and the weak current is greater than ¢, and
again the correlation function is dominated by the
propagation of a single pion and photon between these
currents. We envisage that when lattice computations are
performed of the contributions from both these regions,
IVR will be implemented to avoid finite-volume correc-
tions which are not exponentially small. In regions R,
and R;, there are no contributions corresponding to the
propagation of a single pion and photon over distances
greater than 7, and hence the finite-volume effects are
exponentially small. The contributions from these two
regions can therefore be computed directly in a finite
volume.

We start by considering
region Rj,:

the contribution from

7 0 Xy4—1g N .
Clhop, (1) = —ez—%e-mgfﬂ [ s [ v [ [ OO R0 0 @) 5 5.9
—t,+t

- / dx, / dy, / e / By (O (01l (2. % + ) (4, 3) (D)
v

x 87" ((X4 ~4:2),0)).

(60)

In the third line of Eq. (60) we have noted that for any (x,y) the photon propagator only depends on x —y so that

St (x,y) = 84" (x — y,0). It is now convenient to consider the hadronic component separately and to define
Hp,,(x4.y4.2) = /d3y (0173 (0) St (x4, Z + )4 (4. ) |7(0)) (61)
= [y [ s O O s DI P (.5 - DI (D)
ip7 o= (E(P)—mQ) (x4—ys—t, = -
/ s PR 014 0) s ()
( )l‘]em<x4 I y)|7‘[<0)>, (62)
where we recall that E,(p) = /|p|* + 2. Taking the inverse Fourier transform at y, = x, — f, we obtain
21\ ,—ip7 1 NN (5 S| v N0
[t (siox= 12077 = s [ OOl SN () = D). (63)
Inserting Eq. (63) into Eq. (62) gives
> 3 = d’p ip-(3=7') = (Ep(B)—mQ) (xs=ys—1,)
HRla(x4’y4’Z): d ZHRla(X4,X4_t5,Z) (2”)3617 =) z\P 7))\ Xa=Y4—ls) (64)

Thus for sufficiently large 7, it is enough to compute Hp (x4,4.Z) at x4 —ys = t, and to use Eq. (64) to obtain

Hp, (x4,y4.%) at values of x; —
for X4 — Y4 > ts‘

Y4 > L.

It is not necessary to compute Hp (x4,y4.Z) directly in a finite volume

The calculation in region R ;, follows a similar procedure with only a single pion and photon propagating between J%,, ()

and the weak current. The hadronic matrix element is now
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Hp,, (x4, y4.7) = / By (01T (x4, 7 + ¥)J%(0) % (4, 7)|(0)) (65)
= | &#7H 2y [ L i52) P is) 66
= < R,b(x4s—ts,Z) (2”)36 e (66)

We see that also in this case we don’t have to compute directly in a finite volume the matrix element
for —t, + 1, < ys < —t,.

The contributions from regions R;. and R;; do not have on-shell single-pion states propagating over long time
separations and hence do not have nonexponential finite-volume corrections. Collecting up the terms from the four
subregions, the correlation function in region R; can be written as:

C?w¢ Rl( ") = Cl}wtﬁ;Rla (tz) + C?wlf’;Rlb(t”) + C?W(ﬁ;Rl/:(t”) + C?W¢§Rld(tﬂ)’ (67)

C?qu;Rla(fn) = 0 / dxy /_t . d)’4/d3 /dSZIHRM(MaM—IwZ)

where

d3p N =3 0 v —
« / Wem(z—z>e—(Eﬂ<p)—m,,)(X4—y4—tx>S¢ (s = va. ), (68)
) Z ,
C9w¢;R|b(t”> - 0 - / a4 /—z +t, dy4/d3 /d3z Hg,, (x4, =15, 7)
" / 3eﬁ(2 ) EBI-m) 1) §% (x, — y,. 7). (69)
Ol (1) = =€ 20 g / dx, / a, [ @ [ @ OU 0O (). (70)

Z o X4 =, v
C?qu;R,d(rﬂ):—ezfnj?[e-mﬂfn [T [ [ [y 0T OO ). (71

The derivation and results for the correlation function Cg PR, (t,) follows in precisely the same way with the weak current
+ replaced by the annihilation operator ¢. However, as we shall see in the following subsection C4 4ok, (1z) can be

comblned with C %k, (1) to cancel the contribution of ch ok, (1) The latter therefore does not have to be computed.

3. Contribution from region R;

The contribution to the correlation function from region R; is presented in Eq. (41) and we rewrite it here for
convenience:

AN —1, 5
Chogn 1) =~y [ sy [ s [ ela@ 1150017250 90 N0 (55 =30 -21.0). - (72)

Y4

The evaluation of the correlation function C’}W 4k, (1) follows in a similar way to that from region R,. However Cj‘w ok (x)
is not needed to obtain the result for H} as we now explain. The expression for Cf; 4., (1z) 1s the same as for Cj‘w 4o, (12) in
Eq. (72) with H} replaced by Z,. We see from Eqs. (35) and (36) that the contribution to H% contains a term proportional to

; C‘A ( ) CA ( ) C-9W¢(t”) _ 1 lC‘A (f ) (73)
[Cpt)emme]s L7 P Coulte) J T [Cylag)emmiep 2 TR

i.e. the second term in braces on the left-hand side cancels half of the first term. This can readily be understood as in both

cases the electromagnetic currents are well separated in time (by at least #,) from the pion creation operator. Moreover, note

also that C4, p (1) = Ciyyp (1) s0 that
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1
W{ Ch oo, (1) = (C¢¢R( %)

0
+C%&mngw&l}:o (74)

Coo(tx)
: FA
It is therefore not necessary to compute Cj ,.p and

A __ /A
Copr, = Copiry:

4. Summary of the contribution to the amplitude
Jfrom diagram A

Since the discussion in this subsection has been lengthy
we collect here all the different contributions:

om, 2m? - 1.
Hy=3 oHo+ <Zoe""°’> <C§‘W¢;R (1) +3Clygin, ( 71))’

(75)

where CJ . (t;) = C3 g (1z) [since C} . (1) does
not contain terms proportional to ¢,] is given in Egs. (67)—
(71) and C7} ok, (1z) is presented in Eq. (55) together with
Eqgs. (44), (53), and (54) after taking care to subtract the

term proportional to 7.

C. Contribution to the amplitude from diagram B

The contribution to the amplitude for the decay zt —
¢*v, from diagram B is

G v /DI
Ma= V0,0 / e H (x) / By L2 ()5 (x.).
(76)

where all quantities are in Minkowski space as in
Appendix A 1. Rewriting Mp in terms of Euclidean
quantities defined in Appendix A 2 (including the lepton
propagator in L,g) we obtain

G v v
Mpg :—ezjgvzd/d“xH’fE(x)/d“yL’fE(y)Szy,E(x,y),
(77)

where the subscript E denotes Euclidean. Since the entire
discussion in the remainder of this subsection is presented
in terms of Euclidean space quantities, in order to simplify
the notation we now drop the subscript E.

As anticipated in the Introduction we divide the inte-
gration over x4 into two regions, labeled L for long, i.e.
x4 < —t;, and S for short, i.e. x4, > —t,. The hadronic
matrix element A" (x) in region S can be computed directly
using lattice methods with only exponentially suppressed
finite-volume corrections

M5 = —e¢ —V* /oodx /d3xH’” X
B \/’ ud N 4 1()
« / &y 1 (5)ST(x.). (78)

For the long-distance contribution we exploit Eq. (11) in
order to avoid computing H"(x) directly at large time
separations between the weak and electromagnetic currents
and hence introducing finite-volume corrections which
decrease only as inverse powers of the volume,

_tS
ML = —e TV’;d/ dx4/d3xH’f”(x)
x / dy L ()8 (x,)
Y &p
= —€ TVud/oo dX4/d3X/(2”)3
y / B H (3, =1, ) BBl 1) =i (=)
< [ a1 )8, ()

=—e —V’;d/ dx4/d4yL””

&Pk 1
&x H" (3
X/ YHY (%= )/(27r) 2E,

x e~ Erlvimxil g=ik(3-) (79)

e Ex(R)=m3) (xa+1,)

where we recall that, up to an infrared cutoff, £, = |l:| and

= /|g)* + (m2)? for any three-momentum g. We

have used Eq. (A7) for the photon propagator in
Euclidean space.

For notational convenience we rewrite M% in the form

G _
MZL? = _ez_FVud[u(pw) (

V2

where a, # are spinor indices and

Nt = / i, / iy / 5o
X/‘PXH’fD()_C', —1,)
[

A 35 €
(27)32E,
o Bk 1
B dx4/ (27) 2E, / dy,
/‘°° (27)32E,
d S - > .
X /217:5&1/3(174,—(pf — K))emipavigEens

X / dx HY" (%, —t,)

(Ex (k)

P NaNoplr v(pe)ls. (80)

—l(p+pf)-y

(Ex(R)=m3) (xat1,) p—Ey [ya—xs| p—ik-(F=5)

X e mg)(x4+tx>e_Ey|y4_x4‘e_ik')?’ (81)
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where p, is the momentum of the final-state lepton and E, = 4/ p% + mZ. The infrared divergence arises from the region in

which y, > 0 and so we start by considering this region:

Y d3k eEx4 dp 5 . . . )
N, |>4>0 / /( / dyy (/(2—7:)&0,/3(1747—(192%—k))e_’p4~V4> elEc~E /dng” (X, —t,)

o Ex(l)=m3) (xy+1,) pik %
31 LEx oo _F(—F (7, —%) .7 R
/ / Pk e / dy, CEAKa + iPe —K) T4 Me)ap oy 1,
(2z 2E,(—k)
% / Bx H’fb()_c), —ts)e(E"@)_m(’i)(x“H“)e_”;';c
/ " / &k eE 5 (—Ey(—K)ya + i(Pr = K) -7+ me)op 1
4 = =
2E,(—k) E,(—=k)+E, —E;

x/d%H’f"(f, _ts)e(E,,U?)—m‘,l)(Xﬁt.y)e—i/??f,

Bk eE —EL(~K)ys+ i(Pr— k) -7 +my), .

:/ 38 (_) f( 1y4 (pf ) Yﬁ f) ﬁ /d?,xH;iw(x’ _ts)e_lk.x’ (82)
(27)° 2E, 2E,(—k)(E, (k) + E, — E;)(E, (k) + E, — m9)

where E/ (—l:) =\/(Bs— k) + m>. As expected the right-hand side of Eq. (82) is infrared divergent; each of the factors
E, E,(- k) + E,—E;,and E (k) + E, — mY in the denominator of the integrand is O O(|k|) at small k. In order to obtain an

expression for the inclusive decay rate which is free from infrared divergences it is convenient to rewrite the factor e=*** as

1+ (e‘”";‘ — 1) and to separate M% into divergent and convergent contributions:

MILB — Médiv + M]Lgcon, (83)
where
. G 4Pk i(p, )r*(1 - y°)(~E. + k) -7+ mg)y*
M]lédlv _ __FVZng/ 3e—Erts{”(P f)V (/ J: )(/ f( ) Ya+ (P — )_} ¥+ mg)y OU(PK)} (84)
V2 (27) 4E, Ey(=R)(E}(=F) + E, = E¢) (Eq(K) + E, — m§)
and
e — _Gr e [ Pk g, {a<py,,>w<1 ) =B, (R)ya + (B, —F) -7 + mawm}
" == 5 | ay AE, E,(—K)(EL(~k) + E, - E;)(E,,(I;) +E, —mb)
ts
x [ dxHY" (X, —t,)(e” V: / / =
/ 0% 1) ¢ Y4E,E,(—K)
0 . > R
< [ a e<Ef+Ef<-'<>>m{um)w(l - VB + i =) 7+ mro(p) |
% /d3fof”(},_,S)e<E”<l?> m9) (xa+t) p=Ey[Va=ra| p=ikF (85)
1. Summary of the contribution to the amplitude from diagram B
In summary, the contribution to the amplitude from diagram B is
MB — M% +MngdiV +M§00n’ (86)

where M3, M5 and ML are given in Egs. (78), (84), and (85), respectively.
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D. Contribution to the amplitude from diagram C

The hadronic element in the contribution of diagram C to
the amplitude is simply Hg and the wave function renorm-
alization of the final state electron can be calculated in QED
perturbation theory. In evaluating the width it is natural to
combine the result from the interference of diagrams C and
DO with that of diagram E with itself. The result of this
perturbative calculation is reported in Sec. III C below [10].

E. Contribution to the amplitude from diagram D

The contribution to the amplitude for the decay zt —
¢*vyy from diagram D, written in terms of Minkowski
space quantities is

. Gr * v v —ik-x
My = 1eﬁVudi«gW«€/1(k)Lg/d“xH’f (x)eikx,
(87)

where k is the momentum of the final state photon and 4 its
polarization with polarization vector € (k). The charge e is
that of the positron. Rewriting the right-hand side in terms
of Euclidean space quantities we have

—ler’;deﬁE(k)L’éE/dxét/d%H’f%(x)eEr

where again the subscript E reminds us that all y-matrices
and ¢, are in Euclidean space as defined in Appendix A 2.
Again, since the remainder of this subsection is presented in
Euclidean space, for notational convenience we now drop
the label E.

The corresponding Euclidean hadronic correlation func-
tion from which H4"(x) is determined is

(OIT (% (0)Jem(x)op" (—1)][0)  (89)

and with the assumption that ¢, is sufficiently large

MD:

(88)

C/IJJDI (tl!’ x) =

Z
O H" (x)e~™sts. (90)

Chy (tg,x) =
HyIx md

Thus a computation of Cl (t, x) together with the values of
mQ and Z obtained from C (/u/)( ») in Eq. (23) allows us to

determine H4"(x). As in the previous subsections, we divide
the integration over x4 in Eq. (88) into two regions, labelled L
for long, i.e. x4, < —t,, and S for short, i.e. x4 > —t,.

The hadronic matrix element H{"(x) in region S is
obtained directly from the correlatlon function Cf; (12, %),
which can be computed in finite volume w1th only
exponentially suppressed finite volume errors, so that

—ie \/iV’;dej(k)Lg /Oo dx4/d3xH/fD(x)eErx4e_iE"?
—1

(1)

M5, —

x4e—il;f,

is evaluated directly using the computed values of H'"(x).
In region L on the other hand we use IVR to write

=l o
/ dx4/d3xHﬁ’”(x)eErx4e_’k'x
/ dx4/d3/dp/3’H’“'(x —ty)

(E (P)—mY) (xq+t,) e —ip-(X=X') eEr¥a o~ ik-x
= )t / dx4/d3xH’“' X, —ty)
X e +E —m )x4e—lkx
e Eits 2o
_ _ / Px HY (3, —1,)e~*5, (92)
(Eﬂ(k) + Ey - mﬂ)

We now write e~** =14 (¢=*% — 1) and separate the
term which leads to the infrared divergence in the rate from
the convergent term

Mﬁ — le)div _|_1‘/[gcon7 (93)
where
. G e Erts
MEdvV — _ V* et (k)LAH? = (94
D \/z di()OO(E(k)—l-E—m) )
and
Gr e Eits
M%COH = ' V*dei(k)Ll(; =
\/E (Eﬂ(k) + E;' - mg)
< / PrH™ (7, —1)(1 — %), (95)

Collecting up the three contributions in Egs. (94), (95), and
(91), the result for this diagram is

Mp = ME™ + Mp™" + M3, (96)

F. Contribution to the amplitude from diagram E

The contribution to the amplitude for the decay zt —
Yvpy from diagram E is

G i .
My = —ieéVngﬂu/guueﬁ(k)Hﬁ / d*x LYY (x)e~k~,
— 3 Gr v V(KVH" L i 1 (1 5
——le7§ udi/gW/Q( ) 0{u(put})y ( -7 )}a
x / dx (0. x) e PO [ v(p, )Yy (9)

where k and p, are the four-momenta of the final state photon

and lepton respectively and E,(k) = \/ (P, + k)* + m2.
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Note that the subscript £ denotes diagram E and not
Euclidean. We start by presenting the discussion in
Minkowski space. The x integration can be performed as
follows:

/ d*x Sy5(0, x) e ktPe)

)

/ /dpo DoYo + Pf + k) Y+ me) s
- E (k) + ie

Po?’o - P 7+ mf)aﬂ ei(ptktpe)x
o p - mf +ie

X e i(po+E,+Ez)xo

-

1 {(—E;U‘é)yo + (Pe+ k) -7+ me)gs

= —1

2E, (k) E,(k) - E, - E,
n (E}(E)Yo +£ ¢t /z) 7+ mf)aﬁ}‘ (98)
Ey(k)+E, + E;

Note that from the third line of Eq. (98) one could have

/d“xSaﬂ(O, x)e~iktpe)x

(=(Es+E)ro+ (Pr+ k)7

= + mf)aﬁ
(Es +E,)* — Ey(k)?

. (99)

which is equal to the final expression in Eq. (98). However,
as will become apparent in Sec. 111, for the implementation
of the IVR framework, it is convenient to write the result in
the form of the final expression in Eq. (98). The first term in
braces is the result from the integration over positive values
of xo and the denominator vanishes in the limit of the

photon’s momentum k — 0. This leads to an infrared
divergence in the z™ — v,y decay rate. The second
term is the contribution from the integration over xy, < 0
and does not lead to an infrared divergence. The two terms
will therefore be treated separately.

Until now the discussion has been presented entirely in
Minkowski space. Since the evaluation of the hadronic
matrix elements is necessarily performed in Euclidean
space, we now rewrite Mg in terms of Euclidean y-matrices
and polarization vectors [see Eq. (A9)]:

performed the x, integration, obtaining 8(pg + E, + k) so My = M3Y 4 pon (100)
that
where
. 1 G A=) (—EL (R +i(By + k) -7 +
2E, (k) V2 E,(k)-E,—E,
1 G I =PV ELR)Y + i(By+K) -7+ mp )y
Meon = je—1 Sy wom wpy )" = P)(E K7 + i(Pe + k) -7 + me)r*v(pe) (102)
2E, (k) V2 E,(k)+E, + E,

In order not to overcomplicate the notation we have not
included labels to denote explicitly that the y-matrices and
polarization vector in Egs. (101) and (102) are the Euclid-
ean ones as defined in Sec. A 2.

III. CANCELLATION OF INFRARED
DIVERGENCES

In Sec. II we have presented expressions for the con-
tributions from each of the diagrams in Fig. 1 to the
amplitude for the process 77 — £*v,(y) in terms of the
hadronic matrix elements H;, the leptonic factors L; (in
both casesi = 0, 1, 2), and the photon propagator S”. In this
section we demonstrate how to handle the well-known
problem of the cancellation of infrared divergences. At
O(a.y,) these divergences cancel between the rate for the
decay #t — ¢*v, with the propagator of a virtual photon
and that for the process #t — #*v,y with a real photon in

the final state [9]. When calculating the decay rates we
perform integrals over the two-body (®,) or three-body
(®5) phase space of the schematic form

/ 4Dy (x| TH £ v ) (£ v Tlat)  and

/ Ay (| T+ U ) (v Tl (103)

We will take the virtual photon to be in the Feynman gauge
and Eq. (A5) for the sum over polarizations of the real
photon.

The cancellation of the infrared divergences occurs
between subsets of the diagrams in Fig. 1. The subsets
are shown in Table I in which the cancellation occurs
between the contributions in each of the three rows. Thus
the infrared divergence from the two body phase-space
integral of the contribution of diagram A to the amplitude T
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TABLE I. The infrared divergences cancel between the phase-
space integrals of the contributions to the matrix elements of T
and its conjugate T from the diagrams in each of the final three
rows separately.

at =Ty, at = oy
T Tt T T
A DO D D
B DO D E
C DO E E

and the lowest order diagram DO to 77 (and vice versa)
cancels that from the three-body phase-space integral in
which the contribution from diagram D is taken in both T
and T7. Similarly for the remaining two rows. We therefore
consider the subsets of diagrams in each of the three rows
separately in Secs. III A-III C respectively.

A. IR cancellation for diagram A and DD

In this subsection we consider the cancellation of infra-
red divergences between the contribution of the interfer-
ence of diagrams DO and A to the decay width of the
process 77 — v, and the contribution to the square of
diagram D to the width of the decay 't — £*v,y (see the
first of the final three rows of Table I).

The O(a,,,) infrared divergent contribution to the decay
width from the interference of the QCD diagram DO and
diagram A is given by

gy =5 / d®y(ps; pe. py,)2Re[MSVM{],  (104)

where @, (p,: ps. p,,) is the phase space of the two-body
final state consisting of the charged lepton ¢ and its
neutrino v,, with p, +p,, = p, = (m,,,6) and MYV is
defined in Eq. (58). Combining Egs. (22), (37), and (57) we
rewrite T3y as

2 2 2
pdiv — € M \H32
0A om 2 0

T

/ &Pk 1 e Es
X 3A L =
(27)°2E, (E, (k) + E, — mQ)>

X/d®2(pﬂ;pfvpvf)|Lg(pfvpu)|2 (105)

and a sum over the polarizations of the final-state leptons is
implicit.

The infrared divergent contribution to the decay width
for the process 7t — ¢ Dy from the square of diagram D is

. 1 .
1—‘dDWDZZ}/’,L /dq):i(pﬂ;pf’pvwk”MdDw'z

b

__6_2 G%lvud|2 |H4|2
T 2m, 2 0

&Pk 1 e 2
x / 32E, (E (k 0)2
(27[) 4 (Eﬂ(k) + Ey - mﬂ)

></d%(pﬂ—k;pf,ppf)lLé(pf,py)lz, (106)

where ®3(p,; ps. p,,. k) is the phase space of the three-
body final state consisting of the charged lepton 7, its
neutrino vy, and a photon, with p,+p, +k=p, =

(m,.0) and M9 is given in Eq. (94). In the sum of
diagrams D and E only photons with physical polarizations
contribute of course. However in order for the infrared
divergences to cancel separately in the three rows of
Table I, we exploit the electromagnetic Ward identity
and define the diagrams with a virtual photon (diagrams
A, B, and C) to be in the Feynman gauge and take for the
sum over the photon polarizations Y, €} (k)e4* (k) = ¢** in
both diagrams D and E so that >, |} (k)|> = —1. The sum
over the lepton polarizations is again implicit in Eq. (106).

As k — 0, the integrands in Egs. (105) and (106) become
equal and opposite so that I3y + I'SY) is infrared finite. The
finite terms can be determined without any lattice calcu-
lations (beyond the evaluation of HE‘) in QCD) as explained
in detail in Appendix B 1. Thus, by using the analytic
control of the long-distance portion of the electromagnetic
corrections given by IVR, we are able to realize the usual
cancellation of infrared divergences before any lattice
calculation is undertaken.

B. IR cancellation in diagrams D0, B, D, and E

In this subsection we consider the second of the three
rows in Table I and demonstrate the cancellation of the
infrared divergences between the contributions from the
interference of diagrams DO and B to the decay width for
the process zt — v, (we denote this contribution by
") and the interference of diagrams D and E to the decay
width for the process 7 — #Tv,y (denoted by I'pp).

We start by considering 'y which can be written in the
form

Lo =5 /d<1>z(pﬂ;pf,pw)2R6[MBM§], (107)

where ®,(p,, p,,) is the phase space of the two-body
final state consisting of the charged lepton ¢ and its
neutrino v,, with p, 4+ p, = p, = (m,,ﬁ) The infrared
divergent contribution comes from the component M54 in

Mp, presented in Eq. (84) and here we focus on this
contribution:
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] '
o5 = = / dD;(py:pe-py,)2Re[ME™ M)

b

er

Pk e Erts

where M59Y is given in Eq. (84).

GF 2 . 4t
m” |Vud| |H | /dq)Z(pﬂ’pf’pl/f)LO /(2”)3 2E}/

i(p, )7 (1=1) (=EL (=K)ys+i(Pr—k)-7+m,)r* v(p,e)}
2E, (—k) (EL(=k) + E,~E/)(Eq(k)+E,~mQ) ’
(108)

The contribution to the decay width from the interference of diagrams D and E can be written in the form

1
Ipp=—
DE =75

4

/dq)?a(pﬂ;pf’ py/v k) ZRG[MTDME],

(109)

where ®3(p,; ps. p,,. k) is the phase space of the three-body final state consisting of the charged lepton ¢, the neutrino v,

and the photon y with p, + p, +k = p, = (m,, 0). The infrared divergent term in the width comes from the M543
contribution to M, [see Eq. (94)] and the MY contribution to M [see Eq. (101)] and is given by

l—‘div —
DE 2mﬂ

€

/4

(=E,(k)y* +i(p, + k) -7 +mp)

/ d®; (P;ﬁ PesPu,s k)2Re [Mf)dMMdEiv]

= |Vud| |H§ \2/dq)a(pﬂ;pf,pyf,k)L?.”e‘Er’f

x i(p,,)r*(1 —ys){

where the sum of the photon polarizations has been
performed. M5 and M$" are given in Egs. (94) and
(101) respectively.

Both '8y and I'dly are infrared divergent, with the
integrand over k proportional to 1/k* at small k. Noting
however that at small k

E,(+k)~E, + (111)

we see that

Bk

¢

E,(—k)+E, - E, ~E, — —(EL(k) - E, — E,)

(112)

so that 'l + Ty is indeed infrared convergent. We
explain the evaluation of the finite terms in Ty + I'fiy,
in Appendix B 2. Again, this does not require any 1attlce
calculations beyond the determination of Hj.

C. IR cancellation for diagram C and EE

The hadronic matrix element which contributes to dia-
grams C and E with the initial pion at rest is Hg which is
readily obtained from two-point correlation functions in
Egs. (23) and (24) with only exponentially small finite-

2@®w%wfffmm®+g_@ﬁW“%

(110)

volume corrections. Once H3, or equivalently the decay
constant f, have been computed, the contributions to the
decay width from these diagrams only requires O(a,)
calculations within QED. These have been performed
in Ref. [10].

The contribution to the decay width from the interference
of diagrams DO and the wave-function renormalization
of the lepton from diagram C in the Feynman gauge is
given by

m2 m2\ 9

where we use the W-regularization for the ultra-violet
divergences and have introduced a mass m,, for the photon
in order to regulate the infrared divergences.

The contribution to the decay width from the square of
diagram E, with photon energies integrated up to AE in the
pion rest frame is

a
Cpp =—=Ty(R R 114
EE = 0 (Ree1 + Reg). (114)

where
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r —1+(4rE 6)}"2
Rpp = -£ log(1 —
EE2 a ’"?’)2 g( re)
_rE<rE+24Z§)1 (r?))+rE(6—3”E;§O”%)’
(1-r7) 2(1=ry)

(115)

where r, = my/m, and ry = 2AE/m,. The contribution
to the total rate is obtained by setting AE to its maximum
value of m,/2(1 —r%). Here we introduce the familiar
photon energy cutoff AE in the pion’s rest frame in order to
write a simple explicit formula. As is described in Sec. IV
below, this simple cutoff can be replaced as needed by
energy or angle cuts dictated by a particular experimen-
tal setup.

The infrared divergences explicitly cancel in the sum 'y
and 'y and the remaining infrared finite terms are given in
Egs. (113)-(115).

IV. FINAL RESULT

The final result for the O(a,,,) contributions to I'(zt —
Ctvy) +T(xt = €Tvgy) consists of a large number of
terms presented in different sections and subsections of this
paper and we now collect them all together here. We start
by writing

[zt = v,) + T(xt - CTugy)
=T+ (Toa +Tpp) + (Top +T'pe) + Toc + Tge).
(116)

where Iy, given in Eq. (27), is the width without electro-
magnetic corrections, and the remaining six terms represent
the interference of the amplitudes indicated in the sub-
scripts; thus for example, Iy, is the contribution from the
interference of the O(al,) diagram DO and the O(a.y)
diagram A, integrated over phase space. The six contribu-
tions at O(a.,,) have been grouped into three pairs, each of
which is infrared convergent. We now present the results
for each of these three pairs in turn, without rewriting all the
expressions, but pointing instead to the equations in the text
where they can be found.

For the two-body decay #+ — £*v, the integration over
the two-body final-state phase space is fixed. For the three-
body decay zT — £ T vy, it may be appropriate to compute
a partial width by introducing cuts on the kinematical
variables, such as the energy of the photon or the angle
between the photon and the charged lepton, in order to
match the theoretical prediction to experimental measure-
ments. The cancellation of infrared divergences is unaf-
fected, but the remaining finite terms depend on the cuts.
Below we do not specify whether any such cuts have been

imposed and simply write the three-body phase-space
integral as [ d®;(p,; ps, p,. k).

A. FOA +rDD

Using the notation of this paper, the result for I'y, can be
written in the form

om, 2m?

F()A - Fo<—0+

CA FAS
my m <2CJW(/);R| (tﬂ) + CJW¢;R2(1‘”)

e (1) ¢ éﬁéz?am)) (117)

where C) ¢ (tz) = C7 ., (1) is given in Egs. (67)—(71),
C)% 1, (1z) in Eq. (46) [or equivalently Eq. (44) after
subtraction of the term proportional to 7], C/}Vegi;‘jez(t,,) in
Eq. (53),and C}5% (1) in Eq. (54). The infrared divergence
is contained in the term proportional to C}E4% (1), i.e. T
given in Egs. (104) and (105), and this is treated separately in
Appendix B 1. The remaining terms are infrared finite. The
new nonperturbative input into these calculations are the
H% (X, t) for values of |¢| < t,.
I'pp is given by

1
IT'pp —2—/d®3(pﬂ;Pt”Pv’k>|MD|2
m]T

1 i
:2m /dq)3(pﬂ;pt”pwk>|M%+M1L)dlv+M%)C0n|2

1 A
=5 /dﬂbs(pﬂ;pf,pw k) <|Mz%|2 + MR
mﬂ

+ (M 4 2Re M (M55
+ DR (M) 2Rel (M) ).

(118)

where M3, is given in Eq. (91), M5 in Eq. (94) and M4con
in Eq. (95). The infrared divergence is contained in the term
with [M5%V|2 in the integrand and is treated separately in
Appendix B 1. The remaining 5 terms are all infrared
convergent. Note that the only nonperturbative ingredient,
which needs ultimately to be computed using lattice QCD,
is H|"(x,1) for time separations between the weak and
electromagnetic current which are smaller than or equal to
te, 7] < t5.

The finite terms which remain after the cancellation of
the infrared divergences in ')y + I'liY, depend on the three-
body phase space over which |[M54V|? is integrated. In
Appendix B 1 we evaluate the finite terms obtained after
integrating over the full three-body phase space.
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B. FOB + FDE

The procedure for I'ypz +I'pp is very similar to the
above. We write

1 T
FOB :ﬁ/dq)2<p7npf’ pl/)ZRe[MBMO]

/s

1
= / d®y(pyspespy)

2m,

x 2Re (M5 + M + M=) M|

(119)

where M5, M54V and ML are given in Egs. (78), (84), and
(85) respectively and M|, is given in Eq. (22). The infrared
divergence is contained in the term with M% div in the integrand
of Eq. (119) and is treated separately in Appendix B 2. The
remaining 2 terms are both infrared convergent. Again the only
nonperturbative ingredient, which needs ultimately to be
computed using lattice QCD, is H/" (X, 1) for time separations
between the weak and electromagnetic current which are
smaller than or equal to z,.
The expression for I'pf is

1 f
I'pe = E/dq)3(pn;pfvak)2Re[MDME]

T

1
= /d®3(pn;pf,pwk)

2m,
x 2Re[ (M5, + M 4 baeom) (a4 b
(120)

where M3, is given in Eq. (91), M54 in Eq. (94), M5°" in
Eq. (95) MY in Eq. (101) and M$" in Eq. (102). The
infrared divergence is contained in the term with
Re[M59 MY ] in the integrand and is treated separately
in Appendix B 2. The remaining 5 terms are all infrared
convergent. There are no nonperturbative QCD ingredients
in M3v and M$™ (beyond the lowest order Hg), and we
repeat that the only nonperturbative ingredient in Mp),
which needs ultimately to be computed using lattice QCD,
is H{"(X,r) for time separations between the weak and
electromagnetic current which are smaller than or equal to
ts’ |t | < ts'

The finite terms which remain after the cancellation of
the infrared divergences in I'§iy + I'lY. depend on the three-
body phase space over which 2Re[M%% M is inte-
grated. In Appendix B2 we evaluate the finite terms
obtained after integrating over the full three-body
phase space.

C. FOC + FEE

For I'yc + I'gg there is no hadronic input beyond the
lowest order Hg. As above, the result depends on the

three-body phase space over which |M|? is integrated. In
Egs. (113)—(115), we present the results corresponding to an
upper cutoff AE on the energy of the final state photon in the
rest frame of the pion but integrating over the remaining
variables [10]. The total rate is obtained by setting AFE to its
maximum value AE™ = m,_/2(1 — m2%/m32).

D. Lattice QCD implementation

In this section we briefly discuss the further steps needed
to use the results presented in this paper to carry out a
complete lattice QCD calculation of the electromagnetic
corrections to the rates of leptonic decays of pseudoscalar
mesons. Such a calculation is a combination of analytic and
numerical parts. As is evident from the presentation above,
the analytic portion of this calculation is considerably more
complex than is the case for more typical calculations that
involve lattice QCD. This is to be expected since the
perturbative nature of electromagnetism and the analytic
treatment of pion propagation enabled by the IVR method
permit a larger fraction of the calculation to be carried out
analytically.

In the preceding sections this analytic component of the
calculation has been derived and specific formulas pre-
sented for each diagram. However, additional evaluation is
needed before these analytic formulas can be used in an
actual lattice calculation. For some of these analytic factors
additional explicit integrations can be performed. However,
in nearly all cases there are remaining integrals which must
be performed numerically and the results tabulated. These
numerically integrated analytic functions are evaluated in
position space and must be multiplied by the nonperturba-
tive lattice QCD Green’s function H,, H;, H,, and H,
defined in Egs. (13)-(16), also determined in position
space. The required position space sums are then per-
formed. Performing these remaining analytic integrations
and developing an efficient numerical integration strategy
is a significant component in the next step of this
calculation, but is beyond the scope of the present paper.
We should emphasize that up to this stage of the calculation
the results are universal, i.e. these numerical factors are
independent of how the matrix elements are determined
and, in particular, are applicable to any lattice discretization
of QCD. We therefore anticipate that the results presented
here will be generally useful in future computations of
leptonic widths.

An important final step in the determination of the
numerically integrated analytic factors is the efficient
exploitation of possible freedom in the choice of these
factors. In similar calculations, for example the calculation
of the hadronic light-by-light scattering (HLbL) contribu-
tion to the muon’s anomalous magnetic moment [33], it is
possible to modify these functions in a way that adds only a
total derivative to the final space-time summations and
therefore does not change the result. One can then use this
freedom to choose a factor which gives a smaller weight to
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the noisy long-distance parts and/or reduces the contribu-
tion from the short-distance part of the sum, thereby
reducing the size of the discretization errors. These choices
do depend on the noise properties of the lattice Green’s
functions and may not be universal. They may also depend
on whether the lattice Green’s functions contain conserved
or local currents.

Fortunately, the second, nonperturbative component of the
calculation involving the hadronic matrix elements H, H,
H,, and H,; is no more difficult than more standard lattice
calculations of similar two-, three- and four-point Green’s
functions. In fact, the use of IVR and the introduction of a
maximum separation z, between pairs of operators will result
in a required localization of the operator products that are
evaluated, offering some simplification.

In addition to the HLbL calculation mentioned above,
similar combinations of complex analytic factors and lattice
QCD amplitudes have been successfully evaluated in many
projects as can be found for example in Refs. [6,7,34-36].
The presence in the required lattice QCD four-point function
calculations of as many as four temporal separations that
must be sufficiently large that only the exchange of a single
pion will contribute may be an unusual requirement forcing
the use of lattice volumes with a large time extent. However,
this requirement in the 7+ — z° mass difference calculation
[6] did not cause an essential difficulty. Thus, the remaining
parts of the proposed lattice QCD calculation of the electro-
magnetic corrections to the rates of leptonic decays of
pseudoscalar mesons do not appear to be more challenging
than those found in earlier lattice calculations. In fact, such a
calculation by members of the RBC and UKQCD
Collaborations for K 4, and 7, decays is now well underway.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a framework, based on
infinite volume reconstruction for the evaluation of electro-
magnetic corrections, at O(a@y), to the leptonic decay
widths of pseudoscalar mesons. Although we have used the
decays of a n" to illustrate the method, it can be applied
identically to the decays of other pseudoscalar mesons. The
IVR technique is based on the observation that for
sufficiently large time separations (¢ > ¢, < L say) between
the electromagnetic currents or between an electromagnetic
and hadronic weak current, the only significant contribu-
tion comes from the propagation of a single pion and a
photon. As has been explained in detail in Secs. II and III
this allows the computations of the hadronic matrix
elements to be limited to time separations <t,. We
underline two important consequences of the IVR method:

(i) The computation of hadronic effects in the electro-

magnetic corrections to the leptonic decay widths is
organized in such a way that infrared divergences are
not present. The cancellation of infrared divergences
between the contributions to I'(z" — ¢#*v,) and
[zt = ¢tugy) at O(ae,) [9] is demonstrated

analytically (see Sec. III), so that all the terms which
need to be computed to determine I'(z" — £7v,) +
['(zt — ¢*v.y) are individually infrared finite.

By contrast, in the QED;, method of Ref. [10] the
cancellation of infrared divergences is achieved by
subtracting the contribution to the decay amplitudes
obtained perturbatively by treating the pseudoscalar
meson as a pointlike particle from the nonperturba-
tively computed infrared divergent amplitudes [the
divergences appear in the form log(m,L)]. The
method has been successfully implemented in
Refs. [12,13]. It remains to be seen whether, and
by how much, the uncertainties will be reduced by
avoiding the subtraction of an analytic perturbative
expression (the pointlike contribution to the ampli-
tude) from a nonperturbatively computed term (the
finite-volume infrared-divergent amplitude in QCD).

(i) The implementation of this method, as described in
this paper, results in finite-volume effects which are
exponentially small in L as compared to the
O(1/(m,L)?*) structure-dependent finite-volume
corrections present with the QEDy approach [11].
The impact on the numerical precision of this
remains to be investigated.

Finally, in Appendix C we have outlined an
additional application of IVR to the calculation of
the O(aey,) corrections to the more complex decay
process K — nfv,. Here also a complete lattice
calculation is possible with all infrared singularities
treated analytically and all finite volume effects
vanishing exponentially in L.
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APPENDIX A: NOTATION AND CONVENTIONS

We begin our discussion of the diagrams contributing to
the physical amplitudes and decay rates in Minkowski
space-time, before demonstrating that they can be deter-
mined in finite-volume lattice computations in Euclidean
space. In this appendix we briefly summarize our notation
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and the conventions which we use in the main text of this
paper, in both Minkowski and Euclidean space-times.

1. Minkowski space-time
In Minkowski space-time we use the metric g =
diag(—1,1,1,1) and Dirac matrices which satisfy the
anticommutation relations {y*,y*} = —2¢**. The electro-
magnetic current is given by

Ten = 0Qras'qr— > Er'¢, (A1)
7 7

where the charges Q; = +% for uplike quarks, —% for
downlike ones and —1 for the leptons 7.

The discussion in this paper is presented for the decay
7t — vt (y) but its generalization to the decays of other
pseudoscalar mesons, including those containing bottom
and/or charm quarks, is totally straightforward with the
natural replacement of the quark fields and CKM matrix
elements. The hadronic weak current for the decay of a z™
meson is J4 =dy*(1 —y’)u and the corresponding
Lagrangian density is

Ly(x) = ‘j—gvzdgww B (1= 1))

The photon and lepton propagators are given respectively by

(A2)

y d*k —ig” . _
Sy = / ) k2 e ™) (Feynman gauge),
(A3)
d'p puyt-my
Se(x,y)=1i £ =) (A4

For decays with a real photon in the final state coupled to the
conserved electromagnetic current, we take for the sum over
polarizations A:

> iR (k) = . (AS)
2
2. Euclidean space
Following the continuation to Euclidean space,

ty — —itg, Xy — Xp we relate the Dirac matrices in
Euclidean and Minkowski spaces by’

YaE = V3 YE = —iVu- (A6)

The photon propagator in the Feynman gauge is given by

>The suffices E and M denote Euclidean and Minkowski
spaces respectively.

v d4k M —ik-(x—y
S’yl (x’y) :/Wpe lk( }')
3 v >
= / (;Z ])€3ie‘k"X"."'e"'k'(f_?)
)" 2|k
o
4n?|x —yf?

and the lepton propagator is

d*p —i +my .
(2n)* p*+my

d*p - .

For the polarization vector in Euclidean space itis convenient
to take €9, = —ie}} and €}, = €L (i = 1, 2, 3) so that

(A8)

g#vejgﬂl;v[ = i€}V (A9)

APPENDIX B: CANCELLATION OF INFRARED
DIVERGENCES—THE FINITE TERMS

In Sec. III we have shown that the infrared divergences
cancelled separately in T9Y + %Y [see Egs. (105) and
(106)], in I'$y + Ty [see Egs. (108) and (110) and
subsequent  discussion] and in T9Y 4+ Ty [see
Egs. (113)—(115)]. Although the infrared divergences
cancel separately in these three pairs, there remain finite-
terms. For I3 + I'l¥. the finite terms are presented in
Egs. (113)—(115) as a function of the maximum photon
energy AE. The results depend on the three-body phase
space over which the widths for the decay z* — #Tv,y are
integrated. In this section we calculate the residual finite
terms in T4 + %Y and T4y + %Y. obtained by integrating
over the full three-body phase space, in which the photon
energy is integrated up to its maximum value
Kmax = M, /2(1 — m2/m2). If instead the maximum photon
energy is to be taken to be AE, then the expressions below
should be modified by replacing k., by AE. If partial
widths are studied by imposing kinematical cuts on the
lepton momenta then the derivation below should be
modified accordingly.

In this appendix we simplify the notation in two ways.
Firstly since the diagrams are of O(a,,) we can replace m2
by m, and secondly, since we have shown that the infrared

divergences cancel explicitly we replace E, by k = |7é|

where  is the three-momentum of the photon.

1. Tdiv+ rdiy
In this section we evaluate I'dy + I'li¥,. For convenience
we rewrite Egs. (105) and (106) here:
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—ke,

e (GAV Pk 1
rdy =~ (ZEudl H“/ —— /dcb e P )ILA(Pes )P
0A 2mﬂ 2 ‘ 0| (Zﬂ)32k(Eﬂ(k)+k—m”)2 2(pﬂ' P pl/f)| O(pf pu)|

e’ (G%IVudl2

H421 ,
o (S g

Q

div __
1—‘DD -

(B1)

=2kt

eZ (G%| Vud|2

2m 2 )lHéFIDD'

We recall that E,(k) = \/k> + m2 where k = |k| and
below we denote the four-momentum of the photon by

k, = (k, 12) Since we will show explicitly that the infrared
divergences cancel in /o4 + Ipp we denote the energy of
the photon by E, by k.

While the cancellation of the infrared divergences in
Iys + Ipp 1s manifest, there are a number of sources of
residual finite terms, the evaluation of which is the subject
of this section:

(1) There is a factor of e

€_2kt"' in IDD'

(i) The sum over the lepton polarizations |L¢(py, p,)
is different depending on whether p, + p, = p, as
in loy or py+ p, = p, —k, as in Ipp, where k, is
the four-momentum of the photon.

ki in the integrand of I, and

|2

> (GEVudl? &Pk 1 e
et LRSI N # 53 2/ - _ /dq) —k,:p,, LA . 2
Zmn < 2 >| O| (27[)3 2k (E”(k) + k_m”)2 2(17,, y» Pe pl/f)| 0(pf pu)|

(B2)

(iii) Similarly the leptonic two-body phase space is
different in the two cases.
(iv) Finally the integral over |k| runs from O to oo in /gy
and from 0 to kpe = m,/2(1 —m2/m32) in Ipp.
Our result is written in the form

Ios+1Ipp =Fi+F,+ F3+ Fy, (B3)

where the F; are simple one- or two-dimensional
integrals which can readily be evaluated for any
choice of masses and ¢,. For the reader’s convenience
we collect all the results here and then proceed to
derive Eq. (B3):

oKty _ p=2kt,

m? m2\?2 [o
Fi=—%1-—7% / kdk , B4
ks < mi) 0 (VIE+m2+k—m,)? (B4)
1 /kmax e_Zktf /plbnax /’1 < m2 —2m k_z(m _k)p _mﬁ)
Fr=——+ dk dp, | dz k,p,,2)8 z———= ” z Y , (B5
2 3273 Jo (m-i—k—mn)z min P -1 Foolkp.-2) 2kp, .
o ) - o2k, 1
Fp=—t_ __f> / K2 dk , B6
T 4ndm? < m2) Jo (VK> +m? + k—m,)>m, — 2k (BS)
2 ( m2\2 [ o2k,
F,=-%(1- —'f’) / k dk , B7
TS mz)  Ji (V> +m? + k—m,)? (B7)
where 7 is the cosine of the angle between p, and k (p, - k = |P,|k2)
Kmax = % 1- m_% > anin = mIZE — 2m7[k —~ m%’ s inax = mlz[ — 2mﬂk — m; > (B8)
2 m2 2m, 2(m, — 2k)
and
. 4k(2m, — k)m*  42m2 +2p, -k +k*)(2p, -k + k2
foo(k, PwZ):‘”CZ— ( ) £ - (2m i J2p ) (B9)

mg{(’nﬂ - k)2

(mﬂ - k)2

The quantities k., and p;- are the kinematical limits on the final state photon’s energy and | p,, | respectively. In order to simplify
the notation in Egs. (B5) and (B9), we have replaced |p,| by p,. In deriving these equations we have used
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mZ
Lo =4n2(1-25) @10

when p, + p, = p, as in I, and

m2
L300 pP =42 (1=5) 4 Foplkpos) (B

[

when ps+p,=p,—k, as in T'%y,. Since fpp(0,p,.z) =0,
F, is infrared convergent.

Another ingredient in the derivation of Eqs. (B4)—(B7) is
the integral over the phase space of the leptons. For 1, the
integrand is independent of the integration variables [see
Eq. (B10)] and

1 m>
/ d®y(pyipes py) = & <1 - m_§>

For Ipp the integrand in general does depend on the
integration variables [see Eqs. (B11) and (B9)] so that

(B12)

/ d®,(p, —k,:ps.p,)fop(k. py.2)

1 o 1
=— | dp, | dzfppk.p,.2)
8k pin -1

2 _ _ _ 2
% 5(2 _ my 2m7[k ZZIEZI” k)pu mp

>. (B13)

When the integrand is independent of the integration
variables:

1 m2—2m k—m>
/ d®y(pr—kyipes.p.) = @kaﬁ

(B14)

We now explain the origin of the F;, (i = 1-4). F arises
because it is convenient to have the same factor e=2#" in the
numerator of the integrands in the infrared divergent terms
of both Iy, and Ipp and we therefore write

2 2\ 2 3k 1 —2k,
IOA:%<1_m_§> / a 3 - +Fy.
2\ my (27)° 2k (E, (k) + k —m,,)?

(B15)

|
iv 82G2
FSB - ZmF

1% 2H42/dCI) , L‘”/
| ud| | 0| 2(pf pw) 0 (271_)3 2k

Using Egs. (B11), (B13), and (B14) we rewrite I in the
form

- m’ | mg Pk 1
PP 2am, m2 (27)32k
—2kt, 2_2 k— 2
x— Me = M2~ gy, (BI6)
(Ex(k)+k=my)>  mz—2k
2 2\ 2 31 —2kt,
:_& 1_m—§ / dk3 _,e +F2+F3
2n\ my) ) (22)°2K(E, (k) +k—m,)*
(B17)

Finally, we recall that the range of the k = |k| integration
in Iy, is (0,00) and in Ipp it is (0, kyay) so while the
integrands in the first terms on the right-hand sides of
Egs. (B15) and (B17) are equal and opposite, the integrals
do not cancel exactly and the sum of the two integrals is F.

We have therefore shown that

) ) 2 G2 \% 2
Lo+ T =5, (M

o (T P+ Fk Fck ),

4

(B13)

where the F; are simple finite one- or two-dimensional
integrals which can readily be evaluated numerically for
any choice of masses and ¢,.

2. Ty + Ty
We now repeat the evaluation of the finite-terms remain-
ing after the cancellation of infrared divergences in
I'dy + 1div. Again the cancellation of infrared divergences
is manifest, but there are a number of finite terms remaining
which are the subject of this section.

We start be rewriting the integral expressions for these
two terms, i.e. Egs. (108) and (110)

Pk ek

y {u(,,m(] ~ ) E,(R)ra + i(B +8) -7 + mfv*v(pf)}
2E,(R)(Ep(K) + k = E¢)(E,(K) + k= mp)

_oc
- 2m,

Vual*IHG Lo

(B19)
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and

e’G%
2m,

o 11— yd CERA i A K) )
et y){zE'()( (6) - k—Ef><E”<%>+k—mﬂ>}y )

[HE Va1 (B20)

iy = |Hé|2|Vud|2/dq)3(Pf,pr’k)LgTe_k“

_e
- 2m,

We recall that E, = y/p2 + m2, E’f(l_é) \ (B + k)2 + m2, k= k| and E, (k) = \/k2 + m2. In Eq. (B19) we have

changed variables k — —k so that the lepton trace, written in terms of the momenta and energies, is the same in both cases.
We write the lepton trace as Log = Lpp = LS}; -+ L§y where

Ly — L9v — _16E,E2 — 16E,p, - P, (B21)
L = Lgp = —8(AE, (k) E/E, — 8(AE, (k)P - B, — 8E,(p, - k) — 8E, (P, - k). (B22)

where AEf(l_é) = E;,(ié) — E,. At small photon momenta L{}' = O(k) and there is then no infrared divergence. The
integrals can readily be performed numerically as we explain towards the end of this section.
We now start by considering the contributions from the divergent terms. For the two-body decay for which Ty
contributes to the width, E, and |p.| are fixed, E, = (m2 + m2)/2m, and |p,| = (m2 — m%)/2m, and
fav— ! <1 mf> / dk et 1 /1d —16E,E; — 16E,p, - P,
P A6\ m) ) @) 2k (B,(R) + k—m,) S 2E,(R)(EL(R) + k- E,)
m%(l m>/d3ke’s 1 /ld E,
== 5 = 2y = =
A\ mz) ) ) 2k (B )+ k= me) S B ELE) + k- E)
m

2
4
2
2 2 Bk I 1 1 1
— _&<1 _§> / 36 = / de = +F1;OB
4 myz (27)* 2k (E (k) +k—my)J-1 " (EL(k)+k—E,)

2 2 3 t
my ms &’k e 1 /1 1
=—"11- = d -+ F. Fs.0p, B23
i < m,2[> / (2n) 2k D)+ k—m) ) ka+%+ 1:08 + £208 (B23)
4
where z, is the cosine of the angle between k and B, so that p, - k = |pslkz, and
m? m Bk e 1 ! AE,(k
ST T S . S
n my (27) (Eo(k) +k—mg) J=1 " EL(K)(EL(K) + k- Ej)
2 Bk e ks 1 1 2R AE,(k
Foop = i (1 _m_§> / 3 5 7 / dz E/ 4 (B25)
4z my (27)* 2k (E (k) + k — m,,)

L (AE(R) + k) <k + PE—">

are finite integrals which can readily be evaluated numerically.
In the first term on the right-hand side of Eq. (B23) the z, integration can be performed to give

! 1 E, E 1 2
/dzf LA S il ermf’l M (B26)

1 k + ﬁfié p,/ﬂk Ef — Py¢ k m2 — mf mf

where p, = |p.|, so that
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P 2 2 2 ki,
W m m2 m2 m2 [ ek
Iy = = 1673 < B n12> <1 - m2> log m?/) dkE(]z)Tm + Fros + Faop: (B27)

The two finite terms, F'y.0p and F,,op are simple two-dimensional integrals (over k and z,) which can readily be evaluated
numerically for any values of the masses and z,. The two-body phase-space integral of a general function f(k, ps, z.),
where p, = |p,| can be reduced to

_Me

1 2 1
/dq)z(Pn;Pf,Pu/)f(k, pK’Zf) :E (1 m2> /leff(k, Pf,Zf)- (B28)

The finite contributions corresponding to Lgy' in the numerator are evaluated similarly.
We now consider I4i}. Following the corresponding steps to those in Eq. (B23) we have

. Bk e ks —16E,E2 —16E,p,- p
IdDIE:/—z—e /d%(pﬂ—k;pf,mf) — P Pe
(27)° 2k 2E,(k)(E, (k) —k — E;)(E;(k) + k—m,)

R —
4 2 3 7
mz) J (27)° 2k(E,(k

Q

E,
d® pﬂ_k;p » Py - = +F,
/ 2 P e k=B

~—

+k—m,)
—kt,

4 2<1 mi)/ @k : /dd)( k ) : + Frpp+F
= —4m - = Pr—KiPgs Dy, = > >
‘N m2) ) @aYokE,R) +k-my)) C k) —k—E,) TP
m> Pk e~ 1
= 4m? 1—f/ - /dcp —k;perpy,) ——=+ F). F,, FipEs B29
mf< m%) (1) D) k) 2(Px PesPu,) P % + Fi.pg + Fo.pe + FipE (B29)
4
where F'y.pg, Fo.pg, and F5.pp are infrared finite:
Pk e~
Fy, :/ = /d(D (pﬂ_k;p vpv)
BPET ) @a) ok(E,(R) + k—my) ) o e
BEA (1~ 20)m — d(m, — k — E)E, + my(m, — 2K) — m2)
X —_ —_ 9
2E,(k)(E,(k) —k — E;)
m>3 Pk ek AE,(k
Fz;DE=4m§( ——i)/ 3 = /dsz(pﬂ—k;pf,pyt,) s (k) :
mz) ) (27) 2k(E, (k) + k — m,) E,(K)(EL(k) — k — E,)
> b
m2\ [ &Pk e AE(k) - 27
P == (108 [ ity pomy ] 00 Rren) (B30
g3 —m -
x x (k —PE—) (AE, — k)

The infrared divergence is contained in the first term on the right-hand side of Eq. (B29) and we now evaluate

d®,(p, —k;ps Dy 5 =- /d<I> Pr—kipeipy,) —
[ @npn ko) = [ dpe—kipn)
/ ddy(p, — k )Ef_mgzm% (B31)
+ Pa—kipsp,,) ——=.
’ “CEsk—psk

The second term on the right-hand side of Eq. (B31) is infrared convergent and we now focus on the first term. The
integrand is Lorentz invariant and so we can evaluate the integral in the rest frame of the lepton system

1 mi+m  E;+p;
ps-k  8amzk 2m, E, - p,

m,2r + m?
_Ma +my / d®,(p, — ki ps. p,) (B32)

2m,

014501-27



CHRIST, FENG, JIN, SACHRAJDA, and WANG

PHYS. REV. D 108, 014501 (2023)

where £7, p;, are the variables in the lepton rest frame:

_mg 4 mi —2mk

mz —m2 — 2m,k

B ’ Pl = B33
g 2y/m2 —2m,k ‘ Zm .
Thus we can write
. m2 m2 m> m2 [k e
Jdiv. — ¢ 1 i 1 _ 7 1 _”/ dk—————+ Fpp, B34
DE = 76,3 ( +m,2,> ( 2 OgmL% A E,,(k)+k—m,,+ DE (B34)

where kpa = m,/2(1 — m2/m2) is the maximum value of k in the three-body decay and the finite term Fpp is given by

5
Fpgp = Z FipE. (B35)
i=1
Fi.pg, Fo.pg, and F5.pp are given in Egs. (B30) and
) m%; Pk e~k E,— m?mzf
Fapp =amz{1-—5 = /dfb Pr—kipe py,) ——=.
o f< m%) Y ak(E, () + k—myd P P S R
2 2 2 d3k —kt, -2k
Fopp =22 (1 - m—§> (1 n ’"—§> / - I log m”(m”2 ) (B36)
87 my mz) ) (27)° K2(E,(k) + k — m,) my
Thus finally we have
; . m> m> m2 m2 [ e~ kts
I+ dy = ——C (1-—L)(1+=%]1o —”/ dk———————+ Fy.0 + Fa08 + Fpg. B37
o8 T 1pE 167r3< m2 +m,2[ gm? . E,,(k)+k—m,,+ 108 T 208 + FpE (B37)

All the terms on the right-hand side of Eq. (B37) are infrared finite.
The finite terms F;.pp can also be readily evaluated numerically for any values of the masses and #,. F's.pz is a one-
dimensional integral whereas F; g, i = (1-4), are two-dimensional integrals. In evaluating these it is natural to use the

mass-shell condition for the neutrino to determine z,, the cosine of the angle between p and k:

_ m2 + m% — 2myk — 2E,(m, — k)
ngk ’

2 (B38)

where p, = |p,|. The range of integration over p, = |p,|, or equivalently E,, can then be determined from Eq. (B8):

m2 + m2 m2 — m>
E, < Emax — — f — pmin — 77 ¢ d max _ 7 L”’ B39
4 £ my Pv D) . an Pr 2m” ( )
, (my —2k)? +m2 o (my—2k)* —m2
E, > E™ = k — pmax d ppt=-—- ¢ B40
4 4 mn’ pl/ 2(m,r—2k) an pf 2(m,,—2k) ( )
so that for a general function f(k, p,,z,)
L [P pedpe
do —k;pepy k, pg, =— k,pg,
/ 2(Px=kipespu, ) (ki Pe2e) snk/p?m E, J(k.peoze)
= g f e py ) (B41)
_Sﬂ'k E;““ 4 »Pes2¢)s
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where z, is given in terms of the integration variable p, by
Eq. (B38). Note that the factor of 1/k in front of the
integrals in Eq. (B41) is compensated at small k by the
ranges of integration being of O(k).

All the finite terms contributing to I'p g listed above (with
the exception of F's.pp which is a simple one-dimensional
integral), including those with L{jp in the numerator, can
readily be evaluated using Eq, (B41) for any specified
values of the masses and f,.

APPENDIX C: ELECTROMAGNETIC
CORRECTIONS TO K,; DECAYS

In the preceding sections of this paper we have devel-
oped a method using infinite-volume reconstruction to
calculate the radiative corrections to leptonic decays, such
as 7w, and K,,, that promises greater precision than
approaches in which the amplitude is fully computed in
a finite volume, such as that based on the QED; treatment
of electromagnetism. This refinement replaces power-law
finite-volume corrections with corrections which are expo-
nentially suppressed in the linear size of the finite volume.
The additional analytic control provided by the IVR
method also allows the analytic cancellation of infrared
divergences so that all expressions which are evaluated
numerically require no infrared regulator.

In this appendix we generalize this approach to treat the
electromagnetic corrections to the K,; decay, a process
where there is no alternative approach currently known that
permits a first-principles lattice calculation. The fundamen-
tal diagrams for the K,; process are similar to those in
Fig. 1 except that the initial meson is a kaon and a pion
emerges from the hadronic weak vertex. In this case
diagrams A and B in Fig. 1, where the photon is attached
to one or two quark lines, will now include the case where
one or more of these electromagnetic vertices appear on
quarks of the final-state meson. We show in Fig. 2 an
example of such a new type-B diagram in which the photon
propagator connects the lepton with a quark appearing in
the final-state pion.

Calculating the electromagnetic corrections to K .3 decays
involves two new difficulties not present in leptonic decays,
such as K », [37,38]. Both difficulties are associated with the
exchange of a photon between the two charged final-state
particles, the pion and the lepton as shown in Fig. 2.%1n the
final state, these two particles are noninteracting and each
carry the three momentum that is determined by the lattice
interpolating operator which annihilates them. Thus, the
total energy carried by the pion and lepton, E ., is also
determined. However, the intermediate state can also consist
of a pion and a lepton, where the individual particles

®The difficulties are also present in the semileptonic decay of a
charged kaon, e.g. K~ — 7%~ D,. In this case however, the
imaginary part of the amplitude in Minkowski space is not
infrared divergent.

!
~

I
=1

FIG. 2. A new representative of a type B diagram identified in
Fig. 1 that can appear when computing the electromagnetic
corrections to K 43 decay. Here the three-momenta carried by the
propagators have been labeled in a fashion consistent with
Eq. (C5) below.

have spatial momenta that are different from those
of the final-state particles. This is illustrated in Fig. 2, by
the pion with momentum p, —k and the lepton with
momentum p, + k. The # — £ intermediate state can there-
fore have an energy E’, which is lower than E,,. This
creates a familiar difficulty in a Euclidean-space lattice
calculation since such a lower-energy pion-lepton inter-
mediate state will result in an exponentially growing term in
u v T
the (0[¢h, (1) (1) Jem ()T e (1) Hw (0) i (15 )|0) correla-
tion function, where ¢;, ¢, and ¢, are interpolating
operators used to create or annihilate the corresponding
particles and we have only exhibited the time dependences.
In this case the lower-energy pion-lepton intermediate
state will be favored because of its less-rapid exponentially
falling Euclidean-space-time dependence, leading to an
exponentially growing relative factor proportional to
eE==E2)t Tn a conventional Euclidean-space lattice cal-
culation such an unphysical term must be carefully iden-
tified and subtracted.

In the infinite-volume integration over the photon’s
momentum k, as E’, approaches E,, a singular energy
denominator appears. Applying the Feynman prescription of
introducing the usual —ie in the denominators of the lepton
and photon propagators results in a complex amplitude. The
real part of this amplitude is obtained by a principal-part
recipe while the imaginary part comes from a delta function,
giving a result dictated by the standard optical theorem. A
finite-volume Euclidean calculation would miss this imagi-
nary contribution and the approximation of the principal part
by a discrete sum would introduce potentially large finite-
volume corrections [39].

These difficulties arise from the space-time region in which
the photon is exchanged between the pion and the lepton at
increasingly late times in the decay, i.e. with 7, and ¢, close to
t. This is precisely the region that can be treated analytically
using IVR. In fact, using IVR a lattice QCD calculation can
treat the final state pion directly in Minkowski space avoiding
the difficulties described above. If we assume that other
possible X7 intermediate states with energy E'y, smaller than
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E . are unimportant, then this provides a complete treatment
of the radiative corrections to K,; decays. Here the most
important hadronic state X is the two pion state whose lack of
significance is suggested by the ratio of partial widths:
(K, - nt2%0,)/T(K;, - nt¢~0,) ~ 107, In addi-
tion, if desired such two-pion intermediate states can be
further suppressed or avoided altogether by considering K /3
decays in the kinematic region in which the neutrino carries
substantial energy.

A discussion of the radiative corrections to K3 decays
which is as detailed as that presented here for leptonic
decays is beyond the scope of this paper. However, given
the absence of other lattice approaches to the calculation of
these corrections and its value as a further example of the
methods developed in this paper, we present a broad outline
of this approach in this appendix. The critical step is the use
of IVR to determine the contribution of an intermediate
pion carrying a known spatial momentum. We begin with
the relevant hadronic matrix element expressed as a sum
over intermediate states:

(@(B),(x)IV (0)|K(0))

=Y (w (Bl en(x) ) (nl 4, (0)|K(0);  (C1)

d3p/
2/ 2E,(7)

x (2(p')| 74,/ (0)|K(0)).

e EPIEN (B ) [ em (3, 0) (')

(C2)

where x4 > 0 and the subscript £ has been introduced
when necessary to indicate a Euclidean-space amplitude.

For a generic momentum ¢ we define E,(§) = \/g*> + m2,
and in order to simplify the notation we define E, to be

the energy of the external pion, E, = \/p2 4+ m2. As
has already been extensively discussed, by taking the
Euclidean time x, to be sufficiently large we can insure that
only the intermediate pion state contributes as described
by Eq. (C2).

Following the now familiar steps taken earlier, we can
Fourier transform Eq. (C2) to determine the pion contri-
bution A, (p, p’, xo) to this amplitude at an arbitrary time
Xy in Minkowski space from our Euclidean lattice result:.

A (B P %0) = (2(5) [T (0) 2(5')) (2 (5') %, (0) [ K (0))

X e_ixo(En<ﬁ/)_Eﬂ) (C3)

_ o / P P glimia) (B (F)Ey)

X (7P| Jem(F, )75 (0)|K (0)) . (C4)

provided the real Euclidean time ¢, is sufficiently large and
positive. Here h = diag(1, i, i, i) is introduced to take into
account that the currents in Eq. (C3) are defined in

Minkowski space whereas those in Eq. (C4) are defined
in Euclidean space using the conventions in Appendix A.
We have also replaced the variable x4 by ¢, to follow more
closely the conventions used earlier. Thus, the Minkowski-
space amplitude A7 (P, p', xo) can be determined directly
from a Euclidean lattice calculation. All finite-volume
errors will remain exponentially small in the size of the
spatial volume provided we keep #; < L.

We can now use the amplitude A7 (7, p', xy) to avoid
both of the difficulties described above that are involved in
the calculation of the radiative correction to K, 3 decays.
Firstly, the amplitude A7 (p,, p’,xo) can be substituted
directly into the Minkowski-space calculation of the con-
tribution of the z¢ intermediate state to the K,; decay.
There will be no terms with exponentially growing time
dependence since the calculation is performed in
Minkowski space and the unwanted term that oscillates
at large times can be isolated in this analytic calculation and
dropped as was done in Ref. [4]. The resulting complex
amplitude will obey the optical theorem.”

An explicit expression for this Minkowski-space ampli-
tude coming from a single pion intermediate state can be
readily written down directly in terms of the underlying
lattice QCD amplitude:

/oodko/d3ket\-(Eﬂ(ﬁn—1?)—Eﬂ)

[ e B )OI K O

=

Eﬂ_Eﬂ(ﬁﬂ_k)_k0+i€

» 1 ay(p)yu(y-(pe+k)+me)y,(1=7)vs(py)
k* —ie (pe+k)>+m—ie ’

(C5)

The four-vector k is the Minkowski-space momentum
carried by the photon propagator, p, is the four-momentum
of the final-state lepton and p; the four-momentum of the
final-state antineutrino. The routing of momenta adopted in
Eq. (C5) is shown in Fig. 2. This expression is independent
of the parameter ¢, when 7, is sufficiently large that
intermediate states more massive than the pion can be
neglected.

As in our earlier derivations, the analytic integrals over

ko and k can be performed at fixed X allowing the quantity
in Eq. (C5) to be expressed as the product of a Euclidean-
space, finite-volume lattice amplitude and an analytic

"Note, this result will contain a physical infrared divergence
that results from the logarithmic radial dependence of the
Coulomb wave functions. This divergence can be regulated by
adding a photon mass and removed by including screening effects
or evaluating a ratio in which these effects cancel. This diver-
gence contributes to the imaginary part of the amplitude and
hence does not enter the O(a,,,,) correction to the decay rate being
considered here.
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kernel which in this case has both real and imaginary
parts. Equation (C5) isolates the contribution of the
pion intermediate state inserted between the currents
JEm (X, x4)J%,(0) for the case that x4 > 0. We should
recognize that all features of the electromagnetic interaction
of a physical pion are captured by this Euclidean-space

|

matrix element, including the pion’s electromagnetic form
factor.

The second step of the calculation targets the remaining
terms in the sum over intermediate states that appear in
Eq. (C1). These terms can be written in Minkowski space
using the notation introduced in Egs. (C1), (C3), and (C5):

_ [edky [ Pk [e | o 3 B} L
A= [Tle [ do{ [ e ) el ) I O D) - A <p,np,,—k,xo>}

2z ) (27)% Jo

)

U as(Be)ru(y - (pe+ k) —mg)y,(1—7°)vs(p

k* — ie (pr+ k) +m2 —ie

This Minkowski amplitude is written as a product of a time-
ordered QCD matrix element multiplied by covariant
Feynman propagators for the photon and lepton. This
can of course be re-expressed as a conventional time-
ordered matrix element of one weak current and two
electromagnetic currents in which the photon and leptons
as well as the QCD degrees of freedom all appear as
intermediate states. By removing the contribution of the
single-pion state to these intermediate states and neglecting
the small contributions of two- and three-pion states, we
guarantee that no intermediate states appear in the right-
hand side of Eq. (C6) with lower energy than my.

Under these circumstances, the same result for this
subtracted decay amplitude will be obtained in either
Minkowski or Euclidean space. Thus, Eq. (C6) can be
reexpressed as the product of a time-ordered QCD matrix
element multiplied by covariant Feynman propagators for
the photon and lepton, all expressed in Euclidean space.
The resulting amplitude will fall exponentially as the
separation between the hadronic weak and electromagnetic
currents increases, allowing the hadronic matrix element to
be computed in lattice QCD with only exponentially
suppressed finite volume errors.

In this appendix we have focussed on the region x, > 0,
since this is where the difficulties discussed above, asso-
ciated with intermediate states with energies lower than
mp, appear. For xy < 0 there are no such difficulties; the
Minkowski and Euclidean integrals over negative x, and x4
respectively are equal, so that the corresponding contribu-
tion to the physical hadronic matrix element can also be
computed in lattice QCD with only exponentially sup-
pressed finite volume errors.

(Co)

Finally we summarize the results of this appendix. We
have provided a further application of the IVR method to
treat the electromagnetic corrections to K,; decays. The
resulting approach has the same important features as the
treatment of the electromagnetic corrections to the decay of
a pseudoscalar meson into a lepton and neutrino which was
the main topic of this paper: (i) All errors resulting from the
finite volume in which the lattice QCD portions of the
calculation are performed fall exponentially with increasing
lattice volume. (ii) Infrared divergences appear only in the
analytic parts of the calculation, leaving the amplitudes to
be computed using lattice QCD infrared finite.

The electromagnetic corrections to K,; decays are
more complex than those needed for the leptonic decays
of a pseudo-scalar meson and have until now eluded a
treatment in lattice QCD. The most significant obstacle
to such a lattice calculation is the photon exchange
between the final-state pion and lepton. The difficulties
associated with this photon exchange contribution are
the infrared-singular imaginary part and the appearance
of intermediate pion-lepton states that are less energetic
than the final pion-lepton. Both difficulties can be
resolved analytically in the IVR approach allowing this
pion-lepton scattering contribution to be computed in a
finite-volume lattice calculation of the qﬁ( —Jw—Jem —
¢, four-point function as summarized in Eq. (C5). After
the contribution of this single-pion intermediate state has
been evaluated, the remaining contribution can be
directly evaluated from the lattice QCD calculation of
a finite-volume Euclidean-space amplitude as indicated
in Eq. (C6).
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