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We study the time evolution of the density matrix of a high energy quark propagating in a dense QCD
medium where it undergoes elastic collisions (radiation is ignored in the present study). The medium is
modeled as a stochastic color field with a Gaussian correlation function. This allows us to eliminate the
medium degrees of freedom and obtain a simple master equation for the evolution of the reduced density
matrix of the high energy quark, making use of approximations that are familiar in the description of open
quantum systems. This master equation is solved analytically, and we demonstrate that its solution can be
reconstructed from a simple Langevin equation. At late times, one finds that only the color singlet
component of the density matrix survives the quark’s propagation through the medium. The off-diagonal
elements of the density matrix are suppressed successively in transverse position space and in momentum
space, and they become independent of the details of the initial condition. This behavior is reflected in the
corresponding von Neumann entropy, whose growth at late time is related to the increase of the classical
phase space explored by the high energy quark in its motion through the medium. The interpretation of the
Wigner transform as a classical distribution is further supported by the fact that the associated classical
entropy coincides at late time with the von Neumann entropy.
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I. INTRODUCTION

Jets provide one of the best probes to explore the quark
gluon plasma (QGP) produced in the aftermath of ultra-
relativistic heavy ion collisions [1,2]. The medium mod-
ifications imprinted into the jet structure, colloquially
referred to as jet quenching, generally result in the emission
of extra soft radiation outside of the jet cone and to the
broadening of the jet structure [3]. A detailed understand-
ing of such medium induced effects is one of the major
drives behind jet quenching theory.
Although the complete description of in-medium jet

evolution requires a quantum treatment [4–7], it turns out
that, for some observables, medium induced modifications
admit a purely classical description; see e.g. [8,9]. The
prototypical example is, at leading order and under the
usual approximations, the effect of medium induced
momentum broadening on the final particle distribution.

This observable can be described as a convolution of the
vacuum particle spectrum and a classical distribution
encapsulating the medium induced modifications.1

More generally, one can capture the full jet dynamics
by constructing the associated reduced density matrix,
obtained by integrating out the medium degrees of freedom.
The particle distribution measured in the final state, from
which one can study momentum broadening, is related to
the diagonal elements in momentum space of this reduced
density matrix, and it mainly reflects the classical aspects
of the jet evolution. As a consequence, by constraining
oneself to study only such observables, one leaves unex-
plored some of the quantum features of the in-medium jet
evolution. From a theoretical point of view, it is desirable to
extend the jet quenching formalism to track the jet’s full
quantum evolution and better identify the limits of a
classical description. In this work, we make a first step
in this direction by constructing the reduced density matrix
of a single energetic quark in interaction with a dense QCD
medium. The obtained density matrix can be identified with
that of a jet in the absence of radiation. This simplified
setting allows us to follow the full evolution of the jet in the
medium within an exact analytical treatment.
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1This is not generally true, as higher order corrections and
other medium effects cannot be described solely using a classical
approach [10–19].
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It is interesting here to note the analogy between this
study and that of the propagation of heavy quarkonia in a
QGP. The jets produced in heavy ion collisions undergo
substantial final state interactions with the QGP in which
they begin their evolution, and, as is the case for quarkonia,
it is fruitful to view them as open quantum systems, with a
nonunitary evolution [20–24]. The master equations for
the corresponding reduced density matrices share many
common properties, and in particular they include the same
collisional decoherence effects. Investigating the exact
mechanisms by which QCD jets lose quantum and color
coherence, as well as their energy, to the plasma is not only
fundamental for the understanding of out-of-equilibrium
QCD dynamics but is also crucial to best exploit jets as
probes of the QGP in heavy ion experiments.
The focus of the present study concerns the emergence of

the classical evolution of the (simplified) jet. As we shall see,
the associated reduced density matrix becomes asymptoti-
cally diagonal successively in position and momentum
representations, suggesting indeed an interpretation in terms
of a classical phase space distribution. This interpretation is
supported by the calculation of the von Neumann entropy
which, at sufficiently late times, takes the form

SvNðtÞ ≈ logΦðtÞ: ð1Þ
Here ΦðtÞ ∝ hK2ithb2it may be interpreted as a measure of
the two-dimensional phase space of the quark in terms of its
average squared total transverse momentum K and its
transverse location b at time t. We find, in particular, that
the emergent diagonalization of the quark density matrix is
accompanied by a fast increase of the entropy, driven by the
fast growth of hb2it at late times. The earlier suppression of
the off-diagonal matrix element of the coordinate space
density matrix is also accompanied by an entropy growth,
driven by the increase of hK2it and related to collisional
decoherence.
The present work is organized as follows. In Sec. II we

introduce the quark reduced density matrix in the medium
and obtain its evolution equation. We discuss the exact
solutions to this equation in Sec. III in the so-called harmonic
approximation. Within the setting considered and the
approximations made, the problem belongs to a class of
problems that have been thoroughly studied in the literature
of open quantum systems [25]. Finally, we compute the
associated von Neumann entropy in Sec. IV. In Sec. V we
summarize our findings. Appendix A provides some tech-
nical details on the derivation of the evolution equations used
in the main body of the work. Appendix B presents the
calculation of the von Neumann entropy.

II. THE MASTER EQUATION FOR THE REDUCED
DENSITY MATRIX

We consider the evolution of a highly energetic quark
traveling in a dense medium of color charges at the speed of

light in the positive z direction. This energetic parton
couples to the long wavelength modes of the fluctuating
gauge potential Aa;μðr; tÞ describing the medium. Here
t≡ xþ denotes the light-cone time2 and r the coordinates of
the fast quark transverse to the z direction. Because the
light-cone energy of the incident quark, E≡ pþ, is taken
to be much larger than that of the medium constituents, the
essential dynamics is localized in the transverse plane,
with the quark coupled to the minus component of the
background field, A−ðr; tÞ. The quark spin is conserved
throughout the evolution. The motion of the quark can be
shown to be determined by the two-dimensional
Schrödinger equation [26]

�
i∂t þ

∂
2⊥

2E
þ gAðr; tÞ

�
ψðr; tÞ ¼ 0; ð2Þ

where E plays the role of a mass. In this equation,
A≡ Aa;−ta, with ta the generators of SUðNcÞ in the
fundamental representation for Nc colors, ∂

2⊥ denotes
the Laplacian operator in transverse space, and ψðr; tÞ
is the quark’s wave function. Thus, for highly energetic

FIG. 1. Depiction of the quark’s propagation in three spatial
dimensions (at amplitude level), denoted by the Euclidean
coordinates ðx; y; zÞ, along the positive z axis. Since the parton
is moving at the speed of light, its dynamics are constrained to the
hyperplane t̃ − z ¼ 0, with t̃ the usual time coordinate. As a
result, the real time evolution of the quark state can be studied as
the motion of an effective nonrelativistic particle in 2þ 1
dimensions, evolving according to Eq. (2).

2In this work, we use light-cone coordinates such that the light-
cone time is defined as t≡ ðt̃þ zÞ= ffiffiffi

2
p ¼ t̃

ffiffiffi
2

p
, with t̃ the usual

time coordinate and z the longitudinal coordinate; see Fig. 1. The
last equality follows from the fact that we work in the frame
where the quark is infinitely boosted along the positive z
direction. Also, in this frame, any dependence on the coordinate
x− ≡ ðt̃þ zÞ= ffiffiffi

2
p

vanishes. For more details see e.g. [3].
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partons, the 3þ 1D evolution is dimensionally reduced
to 2þ 1D, with the nontrivial dynamics being constrained
to the transverse plane at fixed light-cone energy E;
see Fig. 1.
The reduced density matrix ρ of this energetic quark is

obtained after taking the partial trace of the full density
matrix ρ½A� over the medium’s degrees of freedom, i.e. over
the gauge potential A that enters Eq. (2). In the present
work, the trace over these gauge field configurations is
approximated by a statistical average; that is, the reduced
density matrix is given by

ρ≡ trAðρ½A�Þ ¼ hjψAðtÞihψAðtÞjiA: ð3Þ

where jψAi denotes the solution of the Schrödinger Eq. (2)
for a given field configuration Aðr; tÞ, and the field average
is performed over a Gaussian distribution whose two-point
function is given by

g2hAaðq; tÞA†bðq0; t0ÞiA ¼ δabδðt− t0Þð2πÞ2δð2Þðq− q0ÞγðqÞ:
ð4Þ

Recall that the function δðt − t0Þ in Eq. (4) stands for
δðxþ − x0þÞ. The medium correlations have a finite extent
in xþ, of the order of the inverse of the Debye mass for a
thermalized plasma. When the quark energy is large,
because of time dilation, the quarks see these correlations
as if they were instantaneous [8]. Similar considerations are
involved in order to obtain Markovian equations for the
heavy quark problem [20].
In writing Eq. (3), we have assumed that, prior to the

averaging over the gauge field, the density matrix is that of
a pure state; i.e., ρ is the projector on the solution jψAðtÞi of
Eq. (2) for a given Aðr; tÞ. The quantity γ encodes the form
of the effective interaction between the quark and the
medium. More precisely, the average over the gauge field
fluctuations is to be seen as a simple and efficient way to
take into account the collisions of the high energy quark
with the medium constituents, and γ is thus related to the
high energy limit of the in-medium elastic scattering rate;
see e.g. Refs. [3,27]. In the limit of high momentum
transfer it scales as γðqÞ ≈ g4n=q4, where n is the density
of color charges in the medium and g is the strong
coupling constant.
We already emphasized in the Introduction the analogy

between the treatment of heavy quarks propagating in a
quark-gluon plasma [20], and that presented here for the
motion of a jet in the transverse plane, with the energy jet E
playing the role of the large heavy quark mass. In both
cases, it is convenient to treat the effect of collisions as an
averaging over a fluctuating background field.3 We should
also note the analogy with the strategy used in [28] to treat

the effect of soft photons or gluons on the propagation of a
hard fermion. There, a corresponding averaging is made
with an approximate quantum action.
We are now equipped to compute the quark density

matrix. As a matrix in color space, it can be decomposed
into singlet (ρs) and octet (ρo) components:

ρðtÞ≡ ρs þ taρao

¼ 1

Nc
TrcðρÞ þ 2taTrcðtaρÞ; ð5Þ

where Trc denotes the trace over the fundamental color
indices. Both ρs and ρao, with a ¼ 1; 2;…; N2

c − 1, are
operators in transverse space. Their matrix elements in the
coordinate representation read

hrjρs;oðtÞjr̄i ¼ hbþ x=2jρs;oðtÞjb − x=2i; ð6Þ

where

b≡ rþ r̄
2

; x≡ r − r̄: ð7Þ

We shall denote by ρðb; r; tÞ the function given in Eq. (6)
(with ρ being either ρs or ρao) and with a slight abuse of
notation, we shall denote by ρðl;K; tÞ the momentum
space matrix element hkjρjk̄i, where

K ≡ kþ k̄
2

; l≡ k − k̄ ð8Þ

are the variables conjugate, respectively, to x and b in the
Fourier transform4:

ρðl;K; tÞ≡
Z
b;x

e−il·be−iK·xρðb; x; tÞ: ð9Þ

We shall also use mixed representations, such as theWigner
transform ρWðb;K; tÞ5 which is the Fourier transform of
Eq. (6) with respect to x, and similarly for ρðl; x; tÞ. The
Wigner transform ρWðb;K; tÞ is real since ρ ¼ ρ† is
Hermitian and normalized to unity (Trρ ¼ 1). It allows a
natural connection with the classical regime, acquiring
there the interpretation of a phase space distribution.

3In the formulation of [20], the averaging over the gauge field
yields an imaginary potential.

4In this work we denote two-dimensional momentum integrals
as

R
d2q=ð2πÞ2 ≡ R

q, while for position integrals we useR
d2x≡ R

x.5Note the abuse of notation: we denote by the same symbol ρ
different functions. The arguments of the function should suffice
to lift the possible ambiguities. Note that the first argument refers
to either b or l, and the second to either x or K. Because of its
special role in the present discussion we singularize the Wigner
transform with the specific notation ρW .
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Note, however, that, in contrast to a classical phase-space
distribution, ρW need not be positive definite.6 Loosely
speaking ρWðb;KÞ gives the probability to find the quark at
the location b with the momentum K. This interpretation is
supported by the fact that the integral over K of ρðb;KÞ is
the probability to find the quark at position b, ρðbÞ≡R
K ρWðb;KÞ ¼ hbjρjbi ¼ ρðx¼ 0;bÞ,7 while the integration
over b is the transverse momentum distribution, PðKÞ≡R
b ρWðb;KÞ ¼ hKjρjKi ¼ ρðl ¼ 0;KÞ. The latter is
the quantity that usually appears in jet quenching observ-
ables [3], since only the momenta of the final particles are
measured, as emphasized in the Introduction.
With these definitions, we can derive the equations of

motion for ρs;oðl;KÞ≡ hkjρsðtÞjk̄i (see Appendix A for a
derivation),

hkjρsðtÞjk̄i ¼ CF

Z
q

Z
t

0

dt0ei
ðk2−k̄2Þ

2E ðt−t0Þ

× γðqÞ½hk − qjρsðt0Þjk̄ − qi − hkjρsðt0Þjk̄i�
ð10Þ

and

hkjρoðtÞjk̄i

¼ CF

Z
q

Z
t

0

dt0ei
ðk2−k̄2Þ

2E ðt−t0Þ

× γðqÞ
�
hk − qjρoðt0Þjk̄ − qi þ 1

2NcCF
hkjρoðt0Þjk̄i

�
ð11Þ

for the singlet and octet components, respectively. The two
terms in the right-hand side (RHS) of Eqs. (10) and (11) are
illustrated in Fig. 2. The equations iterate the elementary
processes depicted in Fig. 2 to all orders in the number of
field insertions. Remarkably, the evolution equations for ρs
and ρo are decoupled. This can be traced back to the fact
that the two-point function in Eq. (4) is diagonal in color
space and thus does not change the color structure of the
density matrix. In the graphical representation of Fig. 2 this
color structure is that of the fictitious color dipole formed
by the two horizontal lines that carry the color indices of
the density matrix represented by the gray blob. That the
instantaneous one-gluon exchange does not change this
color structure can then be understood by calling on the
identities tata ¼ CF and tatbta ¼ − 1

2Nc
tb, in the singlet and

octet cases, respectively.
The derivation of Eq. (10) presented in Appendix A

relies on the formalism developed in [8]. An alternative
derivation follows that used for heavy quarks in [20].

Equation (10) is in fact a simplified version of the Lindblad
equation derived in [20], obtained by ignoring there the
dissipative terms. It reads, in the position representation

∂

∂t
hrjρs;oðtÞjr̄i ¼ −

i
2E

�
∂
2

∂r̄2
−

∂
2

∂r2

�
hrjρs;oðtÞjr̄i

− Γs;oðr̄ − rÞhrjρsðtÞjr̄i: ð12Þ
The first term on the right-hand side represents unitary
evolution, which reduces here to free motion. It could be
written hrj½H0; ρs;o�jr̄i, withH0 ¼ −ð1=2EÞ∂2r the transverse
kinetic energy. The second term proportional to Γ accounts
for nonunitary evolution and, as we shall see, is directly
connected to decoherence in coordinate space.8 In Eq. (12),
Γs;o stand for the singlet and octet damping rates [9].
They are related to γðqÞ by the following identities:

ΓsðxÞ ¼ CF

Z
q
ð1 − eiq·xÞγðqÞ;

ΓoðxÞ ¼
Z
q

�
CF þ 1

2Nc
eiq·x

�
γðqÞ; ð13Þ

with CF ¼ ðN2
c − 1Þ=ð2NcÞ.

In order to solve Eqs. (10) and (11) or equivalently
Eqs. (12), it is convenient to work in the mixed represen-
tation ðl; xÞ, where these equations take the form

∂tρs;oðl; x; tÞ ¼ −
�
l · ∂x
E

þ Γs;oðxÞ
�
ρs;oðl; x; tÞ: ð14Þ

FIG. 2. Graphs contributing to the transverse space evolution of
the quark density matrix in an infinitesimal time step δt. Tadpole
diagrams denote zero momentum exchange interactions, while
the single scattering diagram denotes real momentum transfer
with the medium.

6The Wigner function associated with the particular initial
condition considered later in this paper is positive definite, as
follows from Hudson’s theorem [29].

7In this paper we shall often refer to ρðbÞ as the density.

8Equation (12) is similar to that introduced in [30] to study
collisional decoherence.
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The ðl; xÞ mixed representation is convenient because the
interaction term is local in x while the partial Fourier
transform diagonalizes part of the kinetic energy.
Equations (14) can be formally solved by acting on them
with the translation operator exp ½ðl · ∂xÞt=E�, leading to
[see also Eq. (A9)]

∂tρs;oðl; yðtÞ; tÞ ¼ −Γs;oðyðtÞÞρs;oðl; yðtÞ; tÞ; ð15Þ

where yðtÞ ¼ xþ l
E t and we used the property

e
l·∂x
E tfðl; r; tÞ ¼ f

�
l; xþ l

E
t; t

�
; ð16Þ

with f a test function. From Eq. (15) one readily obtains

ρs;oðl; x; tÞ ¼ ρð0Þs;o ðl;XðtÞÞe−
R

t

0
duΓs;oðXðuÞÞ; ð17Þ

where now XðtÞ ¼ x − l
E t and ρð0Þs;o ðl; xÞ ¼ ρs;oðl; x; 0Þ is

the initial condition.
There are two limiting cases where the solution is easily

interpreted. The first case corresponds to the absence

of interactions with the medium. Then, ρs;oðl; x; tÞ ¼
ρð0Þs;o ðl;XðtÞÞ describes free streaming, where the
relative coordinate XðtÞ evolves in time at constant
velocity l=E. The Wigner transform corresponding to this
solution is ρWðb − tK=E;K; t ¼ 0Þ, showing in particular
that, as expected, the momentum distribution is not
affected by the free motion, i.e.

R
b ρWðb;K; tÞ ¼R

b ρWðb − tK=E;K; 0Þ ¼ PðK; 0Þ.
The other simple solution corresponds to the case

where the drift term can be ignored, which occurs for
either l ¼ 0 or E → ∞, i.e. the exact eikonal limit. This
corresponds to the infinite mass limit in the heavy quark
problem, a limit where one expects classical features to
emerge in the coordinate space description of the dynamics.
In particular, in this limit x and b are independent of time
and the solution reads

ρs;oðb; x; tÞ ¼ ρð0Þs;o ðb; xÞe−tΓs;oðxÞ: ð18Þ

This formula shows that the coordinate space density
matrix is damped at rates Γs;oðxÞ that depend solely on x.
These rates exhibit interesting features in the limit of
small x. Indeed, when x → 0, Γs → 0 while Γo →
− CA

2

R
q γðqÞ; see Eq. (19) below. The first property,

Γs → 0, is related to the phenomenon commonly referred
to as color transparency [31,32]. Technically, it results
from a destructive interference between the three diagrams
in Fig. 2. Physically, as argued earlier, one may view the
upper and lower lines of the diagrams in Fig. 2 as the two

members of a fictitious color dipole propagating into the
medium. A color singlet dipole of small size is seen as a
neutral object by the medium, which results in the
suppression of the interactions.
In the case of the octet the aforementioned cancellation

does not take place. In fact, in the limit of vanishing size,
the octet behaves as a gluon, and the corresponding
damping factor involves the so-called gluon damping
rate [33,34]. This suppression of the color octet component
of the density matrix results in the equilibration of colors:
the density matrix of a quark initially in a given color state
(generally containing both singlet and octet components)
will, over a timescale 1=Γo, turn into a singlet density
matrix where all color states are equally populated [20].
A similar color equilibration was recently illustrated for the
case of color antennas, with fixed kinematics, evolving in a
dense medium [35].
There is another effect of the damping Γs: since it

increases as jxj increases, it suppresses the nondiagonal
matrix elements of ρðb; xÞ. This suppression of nondiag-
onal matrix elements due to collisions is commonly
referred to as decoherence. It will be discussed in more
details later.
A useful approximation for the rates Γs;oðxÞ is the so-

called harmonic approximation [5], ΓsðxÞ ¼ 1
4
q̂x2, where q̂

is the jet quenching parameter which will be specified
shortly. This form correctly describes soft interactions
between the jet and the medium and can be shown to
be valid for most relevant models used in jet quenching
[27,36,37]. It corresponds to the approximation γ ¼ g4n=q4

of γðqÞ, with which we get

ΓsðxÞ ≈ 4πα2sCFn log

�
Q2

m2
D

�
x2

4
≡ q̂

4
x2;

ΓoðxÞ ≈
4πα2sCAn

m2
D

; ð19Þ

with CA ¼ Nc, and q̂ is the jet quenching parameter in
the fundamental representation. This is a logarithmically
divergent quantity and requires the introduction of an
ultraviolet cutoff Q, which can be chosen as the character-
istic saturation scale [37], as well as an infrared cutoff
chosen to be the medium’s Debye mass mD ∼ gT, with T
the medium’s temperature. Notice that since γ ∝ n ∼ T3,
then q̂ ∼ T3. We can also understand Γo ∼ 1=lfmp ∼ g2T, as
defining the inverse of a mean free path lfmp for gluons in
the medium.
Using the harmonic approximation one can write

Eq. (14) as the following (frictionless) Fokker-Planck
equation for the Wigner function

∂tρWðb;K; tÞ ¼
�
−
K
E

∂

∂b
þ q̂

4

∂
2

∂K2

�
ρWðb;K; tÞ: ð20Þ
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By integrating this equation over b one gets an equation for
the momentum distribution

∂tPðK; tÞ ¼
q̂
4

∂
2

∂K2
PðK; tÞ: ð21Þ

This is a diffusion equation in momentum space, with q̂=4
playing the role of diffusion constant. The solution to that
equation with initial condition PðK; t ¼ 0Þ ¼ ð2πÞ2δðKÞ is
simply

PðK; tÞ ¼ 4π

q̂t
e−

K2
q̂t : ð22Þ

As this formula illustrates, q̂t is the average transverse
momentum acquired by the energetic quark as it traverses
the medium during a time t, i.e. hK2it ¼ q̂t.
As is well known, the dynamics encoded in the

solution of the Fokker-Planck equation [Eq. (20)] can be
equivalently obtained by solving an associated Langevin
equation, which in the present case takes the following
simple form:

E
d2b
dt

¼ ξðtÞ; hξiðt1Þξjðt2Þi ¼
q̂
2
δijδðt1 − t2Þ: ð23Þ

This equation describes the motion of a particle subjected
to a random force ξðtÞ, with the strength of the associated
white noise controlled by the jet quenching parameter q̂.
This equation is easily solved. As an illustration, consider
the momentum K ¼ Edb=dt. By integrating Eq. (23) over
time, one gets

KðtÞ ¼ Kðt ¼ 0Þ þ
Z

t

0

dt0ξðt0Þ: ð24Þ

This solution can be used to evaluate the expectation
value hK2ðtÞi by averaging over the noise and the initial
condition. Taking, for simplicity, as initial condition
Kðt ¼ 0Þ ¼ 0, one gets hK2ðtÞi ¼ q̂t, in agreement with
the result obtained earlier from the momentum distribution.
In the following we shall analyze in detail various

features of the solution of the equation of motion for the
quark density matrix for a specific initial condition as well
as using the harmonic approximation. Since, as we have
argued above, the color octet component is damped when
the energetic quark propagates in the medium, we now
focus on the singlet component and study in more detail its
time evolution. As we only consider singlet quantities,
we drop from now on the subscripts.

III. EVOLUTION OF THE SINGLET
DENSITY MATRIX

To study the evolution of the singlet component, we will
assume that initially the energetic quark is described by a

Gaussian wave packet ψ0ðkÞ centered around a vanishing
transverse momentum. The initial density matrix is then
given by its momentum space matrix elements

hkjρð0Þjk̄i ¼ ψ0ðkÞψ�
0ðk̄Þ ¼

4π

μ2
e
−k2þk̄2

2μ2 ; ð25Þ

with μ a parameter characterizing the extension of the initial
wave packet. The corresponding Wigner transform reads

ρWðb;K; 0Þ ¼ 4e−μ
2b2e

−K2

μ2 : ð26Þ

This Wigner transform is akin to that of a coherent state,
where the particle is localized in both momentum space and
coordinate space, with an accuracy specified by the single
parameter μ. Thus the dispersion in position and momen-
tum are correlated, and when μ → 0, ρðKÞ → ð2πÞ2δðKÞ,
while when μ → ∞, ρðbÞ → δðbÞ. Note that, due to our
specific choice of initial condition, the Wigner transform is
initially positive and remains so as it evolves in time, as we
shall verify.
In the absence of interactions, the initial wave packet

spreads freely and, as observed earlier, its Wigner transform
evolves as ρWðb − ðK=EÞt;K; 0Þ. The momentum distri-
bution remains unchanged, but the density ρðb; tÞ, obtained
by integrating the Wigner transform over K, spreads
according to

ρðb;tÞ¼ 1

πhb2ið0Þt

e
− b2

hb2ið0Þt ; hb2ið0Þt ≡ 1

μ2

�
1þ t2

t20

�
: ð27Þ

Here the characteristic timescale

t0 ≡ E
μ2

ð28Þ

denotes the time at which the spreading of the wave packet
starts to become significant; it corresponds to the time it
takes the quark to cover, at velocity μ=E, a distance equal to
the spatial size ∼1=μ of the initial wave packet. Note that
the same result would have been obtained for a classical

distribution function. In fact, hb2ið0Þt , the time-dependent
mean square radius of the density, can be obtained via a
simple argument that exploits the underlying classical
dynamics. Indeed, the trajectory of the quark in the trans-
verse plane is given by bðtÞ ¼ bð0Þ þ K

E t, so that

b2ðtÞ ¼ b2ð0Þ þ 2
K · bð0Þ

E
tþ K2

E2
t2: ð29Þ

By averaging this expression over the initial conditions
encoded in Eq. (26), i.e. hb2ð0Þi ¼ 1=μ2, hK2i ¼ μ2,
hKi ¼ 0, one easily reproduces the result given in Eq. (27).
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When one allows for interactions and employs the
harmonic approximation in Eq. (17), one obtains the
following expression for the density matrix in the mixed
representation (l; x):

ρðl; x; tÞ ¼ ρð0Þðl;XðtÞÞe−q̂
4

R
t

0
duðxðuÞÞ2

¼ e−
1
4
ðaðtÞx2þbðtÞx·lEþcðtÞl2

E2
Þ; ð30Þ

where

aðtÞ ¼ μ2 þ q̂t≡ μ2
�
1þ t

t1

�
;

bðtÞ ¼ −2μ2t − q̂t2 ≡ −2μ2
�
1þ t

2t1

�
t;

cðtÞ ¼ E2

μ2
þ μ2t2 þ q̂t3

3
≡ E2

μ2

�
1þ t2

t20
þ 1

3

t3

t32

�
: ð31Þ

The timescales t1 and t2 will be defined shortly [see
Eqs. (42) and (45) below]. The coefficients aðtÞ, bðtÞ,
cðtÞ have a simple physical interpretation which is best seen
on the Wigner transform, given by

ρWðb;KÞ¼
4

D
exp

�
−
1

D

�
ab2þ b

E
b ·Kþ c

E2
K2

��
; ð32Þ

with

a¼hK2it;
c
E2

¼hb2it;
b
E
¼−2hb ·Kit; ð33Þ

and

D ¼ hb2ihK2i − hK · bi ¼ ac
E2

−
b
2E

: ð34Þ

The averages are taken with ρW , for instance

hK2it ¼
Z
b;K

K2ρWðb;K; tÞ: ð35Þ

Alternatively, the same expectation values can be obtained by
solving the Langevin equation [Eq. (23)], and performing
averages over both the noise [as in Eq. (24)] and the initial
condition [as in Eq. (29)]. Thus, to a large extent, the time
evolution is governed by the classical Langevin equation,
quantummechanics enteringmainly in the averaging over the
initial condition defined by the initial wave packet.
At this point, it is useful to make further contact with

the formalism used in [8] (see also Appendix A). There,
we introduced a two-point function Sð2Þ which plays a role
similar to that of the Liouville operator that propagates
the density matrix from the initial time to the final time
(see Appendix B1 in [8]). We have indeed

hr0jρðtÞjr̄0i ¼
Z
r;r̄
Sð2Þr0;r̄0;r;r̄ðtÞhrjρðt ¼ 0Þjr̄i; ð36Þ

where (with a somewhat different notation than in [8])

Sð2Þr0;r̄0;r;r̄ðtÞ ¼
�

E
2πt

�
2

exp

�
iE
2t

½ðr0 − rÞ2 − ðr̄0 − r̄Þ2�
�

× exp

�
−
q̂
4

Z
t

0

duðsðuÞÞ2
�
: ð37Þ

In this formula, sðuÞ is a linear function of u such that
sð0Þ ¼ r − r̄ and sðtÞ ¼ r0 − r̄0. This expression of the
density matrix is similar to that in Eq. (17), and it also
reflects the structure of Eq. (12). The first line in this
expression is the product of a free propagator and a
complex conjugate one, and represents free motion. The
second line is the exponential representing the effects of
the collisions, as in Eq. (17). The two lines are not
independent since the trajectory sðuÞ depends on the end
points (r; r̄; r0; r̄0).9 Given an initial density matrix of the
form of Eq. (25), viz.

ρ0ðr; r̄Þ ¼
μ2

π
exp

�
−
μ2

2
ðr2 þ r̄2Þ

�
; ð38Þ

one can explicitly calculate the relevant Gaussian integrals
involved in Eq. (36) and obtain for ρðtÞ the following
expression:

ρðb; x; tÞ ¼ 1

π

E2

c
e−

E2
c b

2

eð−a
4
þ b2

16cÞx2eibE2cx·b; ð39Þ

where we have set b ¼ ðrþ r0Þ=2 and x ¼ r0 − r̄0. It is
easily verified that this is the same as Eq. (30) after a
Fourier transform of the variable b.
We return now to the analysis of the physical content

of the density matrix. Its momentum representation is
obtained by a Fourier transform of ρWðb;KÞ with respect
to b. It reads

ρðl;KÞ

¼ 4π

a
exp

�
−

1

4a
K2 −

1

4E2

�
c −

b2

4a

�
l2 − i

b
4Ea

l · K

�
:

ð40Þ

From this expression, the momentum distribution is
obtained simply by setting l ¼ 0. It is of the form
displayed in Eq. (22) with q̂t substituted by

hk2it ¼ μ2 þ q̂t ¼ μ2
�
1þ t

t1

�
: ð41Þ

9Note that in [8] no attempt was made to determine the density
matrix. Rather one proceeded with simplifications that were
appropriate to get only the momentum distribution.
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One can therefore identify two regimes, separated by the
timescale

t1 ¼
μ2

q̂
: ð42Þ

When t ≪ t1, the collisions have little effect on the
momentum distribution which retains its initial shape.
When q̂t ≫ μ2 or t ≫ t1, collisions dominate and move
the quark away from the region covered by the initial wave
packet.
Another timescale emerges when one considers the

density ρðbÞ, obtained from ρðb; xÞ in Eq. (39) by setting
x ¼ 0. One gets

ρðb; tÞ ¼ 1

πhb2it
e
− b2

hb2it ; ð43Þ

where

hb2it ¼
cðtÞ
E2

¼ 1

μ2

�
1þ t2

t20
þ 1

3

t3

t32

�
; ð44Þ

and the new timescale t2 is given by [see Eqs. (31) and (33)]

t32 ≡ E2

q̂μ2
: ð45Þ

We recognize in the first two contributions to hb2it (that are
independent of t2) the width of the Gaussian that corre-
sponds to the collisionless evolution of the initial wave

packet, i.e. hb2ið0Þt in Eq. (27): hb2it ¼ hb2ið0Þt þ q̂t3=3E2.
The initial spreading of the wave packet is amplified by the
momentum space diffusion, which eventually leads to a
rapid spreading of the density, with

ρðb; tÞ ≈ 3E2

πq̂t3
exp

�
−
3E2

q̂t3
b2
�

ðt ≫ t2Þ; ð46Þ

where we have used that, for t ≫ t2, hb2it ≃ q̂t3=3E2. Note
that, as was the case for the momentum distribution, in this
late time regime, ρðb; tÞ is independent of the scale μ: the
memory of the initial condition is lost. Note, however, that
the onset of this late time regime depends on μ.
So far we have considered the diagonal components of

the density matrix, either the momentum distribution or the
spatial density. The evolutions of these diagonal compo-
nents are driven by the natural spreading of the initial wave
packet in coordinate space, together with diffusion in
momentum space induced by collisions. As we have seen,
both phenomena are captured by a simple Langevin
equation, and they would not be different if the Fokker-
Planck equation were solved for a classical phase-space
distribution function, provided this distribution was initial-
ized as in Eq. (25). We turn now to the off-diagonal
components of the density matrix which encode quantum

correlations. A priori, the density matrix cannot be simul-
taneously diagonal in both momentum and position spaces,
so we shall consider both representations in turn. We
consider first the momentum space representation. To
simplify the discussion, we focus on the case K ¼ 0.
We have

ρðl;K ¼ 0; tÞ ¼ 4π

μ2ð1þ ðt=t1ÞÞ
exp

�
−

l2

4μ2
dðtÞ

�
; ð47Þ

where

dðtÞ ¼ 1þ 1

12

�
t
t2

�
3 tþ 4t1
tþ t1

: ð48Þ

When t ≪ t2, dðtÞ ≪ 1 and the l2-distribution is only
moderately affected by the collisions. In the opposite
regime where t ≫ t2, the t3 factor becomes dominant,
and the μ dependence in the exponent cancels out, leaving
us with

ρðl;K ¼ 0; tÞ ≈ 4π

μ2 þ q̂t
exp

�
−
l2q̂t3

48E2

�

¼ 4π

hk2it
exp

�
−
l2hb2it
16

�
: ð49Þ

The first factor accounts for the decrease of the momentum
distribution Pðk ¼ 0; tÞ when t≳ t1. The other factor is a
Gaussian distribution in l ¼ k − k̄, whose width decreases
rapidly, as 1=t3, indicating that at late times the density
matrix becomes diagonal in k-space. The width of this
distribution is the inverse of that in Eq. (46) characterizing
the behavior of the density at late time.
A similar analysis can be performed in coordinate space.

We have

ρðb ¼ 0; x; tÞ ¼ E2

πcðtÞ exp
�
−
E2aðtÞ
4μ2cðtÞ dðtÞx

2

�
: ð50Þ

At late times, this expression reduces to

ρðb ¼ 0; x; tÞ ≈ 1

πhb2it
exp

�
−
hK2itx2

4

�
; ð51Þ

which shows that also in coordinate space the density
matrix becomes diagonal. The width of the x distribution
is now inversely proportional to that of the momentum
distribution, while the prefactor before the Gaussian rep-
resents the fast decrease of the density at b ¼ 0 due to its
spreading in the transverse plane.
One important aspect of the calculation that leads to

Eq. (39) is that the collisions only affect the location bðtÞ of
the particle, or its total momentum K ¼ Edb=dt, but not the
relative distance x. This property emerges naturally in the
path integral formulation [see the discussion after Eq. (B6)
in [8] ]. At the level of Eq. (17) it is reflected in the explicit
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equation XðtÞ ¼ x − l
E t stemming from the fact that in the

(l; x) mixed representation l plays the role of a constant of
motion. Now, in contrast to what we found for b and K,
there is no obvious classical equation of motion that would
allow us to calculate directly the spread in x, nor that in l.
However, these dispersions of the off-diagonal elements (of
a quantum nature) are controlled by the (classical) expect-
ation values of K2 for hx2i and of b2 for hl2i.
The analysis that has been presented in this section

reveals that at late times, t ≫ t2, the density matrix
becomes effectively diagonal both in momentum space
and in coordinate space, reflecting the loss of quantum
correlations associated with the off-diagonal elements.
Note that this occurs sequentially, the suppression of the
off-diagonal elements of the coordinate space density
matrix occurring first, for time t≳ t1, while the momentum
space density matrix becomes diagonal only for t≳ t2. The
fact that there seems to be no limit to this diagonalization is
of course due to the absence of friction. We return to this
issue at the end of the next section.
As we have seen, the evolution of the density matrix is

determined by three timescales

t0 ¼
E
μ2

; t1 ¼
μ2

q̂
; t32 ¼

E2

q̂μ2
: ð52Þ

These timescales are not independent but are related to each
other via the identity

t32 ¼ t1t20: ð53Þ
Thus, there are only two possible time orderings: either
t0 > t2 > t1 or t0 < t2 < t1. The former regime, with
t0 > t1, appears to be the one of physical interest when
discussing the dynamics of a highly energetic quark (see
estimates below). In this regime, the collisions with the
medium constituents dominate the time evolution, and the
spreading of the initial wave packet plays a minor role.
This regime corresponds to an initial wave packet well
localized in momentum space, and correspondingly a
broad density distribution. Formally this matches the
small μ, large E limit, where the exact solution for the
Wigner transform reads

ρWðb;K; tÞE→∞ ¼ 4μ2

hk2it
e−μb

2

e
− K2

hK2it ; ð54Þ

where hK2it ¼ μ2 þ q̂t ≈ q̂t. In this limit, the motion of
the quark in the transverse plane is negligible, and the sole
effect of collisions is diffusion in momentum space.10

To further illustrate all the points made so far, in Fig. 3
we plot the real part of hkjρjk̄i in terms of the absolute value
of k (k⊥) and k̄ (k̄⊥), for increasing evolution times and
taking kk k̄.11 In addition, we provide the respective
position space representation, hrjρjr̄i in terms of the
absolute values of r (r⊥) and r̄ (r̄⊥), with again rk r̄. For
the chosen values of the parameters, q̂ ¼ 0.3 GeV3,
μ ¼ 0.3 GeV, and E ¼ 200 GeV, we have t1 ≃ 0.06 fm
and t2 ≃ 22.80 fm, while t0 ≃ 444.44 fm. The qualitative
features discussed above are clearly visible. At early times,
when t < t1, the general pattern is set by the initial
condition. As time increases, there is an overall decrease

FIG. 3. Time evolution of the real part of the quark density
matrix, in momentum (top, red) and position (bottom, blue) space.
We have used q̂ ¼ 0.3 GeV3, μ ¼ 0.3 GeV, and E ¼ 200 GeV.
Also, k and k̄ (as well as r and r̄) are taken to be parallel vectors.
The first plot, in each representation, is in the region t < t1, while
the last plot is taken at very late times when t > t2. The color axis
is dimensionless.

10The other time ordering, t0 < t2 < t1, would correspond
formally to the large μ limit. In that case the dominant phenomenon
at early time would be the broadening of the density, amplified
beyond t2 by the collisions, while the effect of the collisions on the
momentum distribution would not be visible until t ≳ t1 ≫ t2.

11See Ref. [38] for equivalent plots in the case of heavy quark
evolution in the medium.
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of the weight of each entry due to the underlying broad-
ening of the distributions. At late time, when t > t2, the
density matrix becomes diagonal. How this occurs depends
on the representation. In coordinate space, the x depend-
ence of ρðb; xÞ is controlled by momentum broadening, and
the concentration along the diagonal becomes visible for
t≳ t1. In momentum space, the same phenomenon occurs
at later time, t≳ t2, and is controlled by the spreading of the
quark density in the transverse plane.
In view of making closer contact with the physics of jets,

the initial motivation of this paper, it is interesting to note
that the previous discussion can be carried out in terms of
dimensionless angular variables which are more closely
related to jet observables. To that aim, we introduce the
following angles:

θ2μ ¼
μ2

E2
; θ2cðtÞ ¼

1

q̂t3
; θ2brðtÞ ¼

q̂t
E2

: ð55Þ

Both θμ and θbr have simple physical interpretations: θμ
measures the angle made by the quark momentum with
respect to the initial direction of the high energy quark (the
z axis in Fig. 1). If the initial distribution is very sharply
peaked, then θμ → 0. The angle θbr has a similar inter-
pretation, with the initial spread in transverse momentum
substituted by the transverse momentum acquired by
collisions. The angle θc depends only on q̂ and time,
but on neither μ nor E. Its role will be clarified shortly. Note
that t1 is determined by θμ ¼ θbr and t2 by θμ ¼ θc; see
Fig. 4. At early times, i.e. when t ≪ t1 ≪ t2 ≪ t0, the
system is in the regime θbr ≪ θμ ≪ θc, and the dispersion
around the diagonal of the density matrix in momentum
space remains of order μ; see Eq. (47). At later times, when
t > t1, one has θbr > θμ, and, as time increases, the average
momentum becomes gradually dominated by the collisions
with the medium constituents. Finally, when t > t2, i.e.,
θc < θμ, the off-diagonal elements of the momentum space
density matrix decrease rapidly. In this late time regime,
the momentum space density matrix takes the form (with
θl ≡ jk − k̄j=E)

ρðl;K; tÞ ≃ PðK; tÞ exp
�
−

1

48

θ2l
θ2c

�
eitK·l=ð2EÞ; ð56Þ

and gradually identifies to the momentum distribution as t
grows. Figure 4 also reveals the existence of a crossover
time tE where θc ¼ θbr:

tE ≡
ffiffiffiffi
E
q̂

s
¼ ffiffiffiffiffiffiffi

t0t1
p

; t1 < tE < t2: ð57Þ

This corresponds to the time where the energy of the quark
satisfies E ¼ q̂t2 ≡ ωc. However, neither the timescale tE

nor the energy ωc seem to play any significant role in the
evolution of the density matrix.
Interestingly, the angle θc has been previously identified

in the context of color coherence of QCD antennas in the
medium [39–44]. It is also related to the characteristic angle
for medium induced radiation [5,6]. In the present case, θc
controls the loss of coherence between the two legs of the
effective dipole in the third diagram in Fig. 2. As discussed
earlier, this loss of coherence, which manifests itself in the
vanishing of the off-diagonal matrix elements of hkjρjk̄i,
can be related to the random walk done by the quark in the
transverse plane. The scale ωc is also associated with
the medium induced radiation problem, characterizing the
critical frequency above which gluon emissions are sup-
pressed due to the QCD Landau Pomeranchuk Migdal
effect [5,6] and is related to θc by θc ¼

ffiffiffiffiffiffiffiffiffiffi
hk2it

p
=ωc.

IV. ENTROPY AS A MEASURE OF QUANTUM
TO CLASSICAL TRANSITION

The two regimes that we have identified in the previous
section, with their associated characteristic timescales t1
and t2, are nicely reflected in the entropy associated with
the density matrix. There are several entropy measures

FIG. 4. Relation between the temporal and angular scales
identified in the main text. We have identified three regions
(shaded blue, yellow, and pink regions), related to the evolution
of ρ in momentum space. In the first (blue), the initial condition
sets the form of the density matrix. This is followed by a region
(yellow) where momentum broadening drives diffusion in mo-
mentum space, but the off-diagonal elements are still sensitive to
the initial configuration of the system. In position space, this region
is characterized by the suppression of off-diagonal elements, while
the diagonal has roughly the same form as the initial condition.
Finally, at later times the system loses all knowledge of the initial
condition (pink region). We used the values q̂ ¼ 0.3 GeV3,
μ ¼ 0.3 GeV, and E ¼ 200 GeV. We also identify the scale when
the quark energy matches the scale ωc, i.e. when t ¼ tE. This
divides the plot into a region where E > ωc and E < ωc.
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which, although differing quantitatively, are maximized/
minimized by the same density matrices and share
common qualitative features; see e.g. [45] and references
therein. Here we shall consider the von Neumann entropy
which we compare to the classical entropy associated with
the Wigner representation of the density matrix. We shall
also mention the Renyi-2 entropy which, in the present
context, carries essentially the same information as the
von Neumann entropy.
The von Neumann entropy SvN is defined as

SvN½ρ� ¼ −Trρ log ρ: ð58Þ

In the present case, the calculation of SvN reduces to the
calculation of multidimensional Gaussian integrals. It is
explicitly carried out in Appendix B. It is shown there that
SvN depends on time through a single variable, which can
be chosen to be the so-called purity p,

p≡ Trρ2 ¼ E2

ac − b2
4

: ð59Þ

The purity measures the deviation of the density matrix
from that of a pure state. For a pure state, Trρ2 ¼ Trρ ¼ 1,
and p ¼ 1. When the density matrix represents a statistical
mixture, p < 1. In terms of p, SvN takes the form

SvN ¼ log

�
1 − p
4p

�
þ 1ffiffiffiffi

p
p log

1þ pþ 2
ffiffiffiffi
p

p
ð1 − pÞ : ð60Þ

By using the explicit time dependence of the coefficients a,
b, and c given by Eq. (31), one obtains

1

p
¼

�
1þ t

t1

��
1þ t3

12t32

tþ 4t1
tþ t1

�
: ð61Þ

As discussed in the previous section, the following ordering
of timescales holds in the relevant high energy regime:
t1 < t2 < t0. There are therefore three regimes of interest:

(i) Initial stage:

t ≪ t1; p ≃ 1: ð62Þ

In this stage, collisions do not play a significant role
and the system evolves as a nearly pure state with
vanishing entropy, SvN → 0 as p → 1.

(ii) Spatial decoherence due to collisions: t1 ≪ t ≪ t2,

p ≃
1

ð tt1Þð1þ t3

12t3
2

Þ ≃
t1
t
≪ 1: ð63Þ

In this regime, p ≪ 1 and the system is in a mixed
state. Moreover, the off-diagonal elements of the
density matrix in the position representation become

strongly suppressed by the growth of hK2it [see
Eq. (51)]. In this regime, the von Neumann entropy
takes the simple form:

SvN ¼ log
1

p
þ 2 − log 4þOð ffiffiffiffi

p
p Þ

≃
t1≪t≪t2

log
t
t1
¼ log

hK2it
μ2

: ð64Þ

It increases logarithmically with hK2it. Note the
constant, 2 − log 4, beyond the leading logarithmic
term. We shall encounter it again shortly.

(iii) Full diagonalization and memory loss: t ≫ t2,

p ≃
12t1t32
t4

≪ 1: ð65Þ

What characterizes this regime is the diagonalization
of the density matrix in the momentum space, as
well as the loss of memory of the initial condition.
Asymptotically the entropy behaves as

SvN ≃ log
1

p
≃ log

q̂2t4

E2
∼ loghk2ithb2it: ð66Þ

Its increase as the logarithm of the total phase space
measured by hk2ithb2it is what one could expect in a
classical regime.

To confirm this classical feature, let us consider the
following Wigner entropy:

SW ≡ −
Z
K;b

ρWðb;KÞ log ρWðb;KÞ; ð67Þ

where ρW is the Wigner representation of the density
matrix; see e.g. [46,47]. Equation (67) can be understood
as the classical entropy obtained from the phase space
distribution associated with ρW . A simple calculation yields

SW ¼ log
1

p
þ 2 − log 4: ð68Þ

The constant SWðt ¼ 0Þ ¼ 2 − log 4 is that met earlier in
the small p expansion of SvN [see Eq. (64)]. It corresponds
to the entropy of a classical distribution function that takes
the same form as the initial density matrix. Comparing
Eq. (68) to Eq. (64) we find that at late times

SW − SvN
SW

≈
ffiffiffiffi
p

p
logð1=pÞ : ð69Þ

This vanishes as 1=ðt2 log tÞwhen t → ∞, indicating that at
late times the entropy content of the quark density matrix
coincides with that of a classical phase space distribution.
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The Renyi-2 entropy is often used in place of the von
Neumann entropy, because it is much simpler to evaluate.
It is defined as [48]

S2½ρ� ¼ −
1

2
logðTrρ2Þ ¼ 1

2
log

1

p
: ð70Þ

Thus, to within a factor of 1=2 and the constant 2 − log 4, it
is identical to the Wigner entropy introduced in Eq. (68). At
late time all three entropies, the von Neumann entropy, the
Renyi-2 entropy, and the Wigner entropy, carry the same
information.
To illustrate all the above points, we display in Fig. 5 the

time evolutions of both the von Neumann and the Wigner
entropies. This figure confirms that SvN ≃ SW as soon as
t≳ t1. In addition, the figure displays the drop of the purity
when t ∼ t1.
As a final remark, we note that the apparent unbounded

growth of the entropy at late times is a consequence
of the fact that the master equation for the reduced density
matrix that we have used accounts only for collisional
decoherence, but ignores friction and dissipation. We could
expect indeed friction to alter the late time evolution and
drive the transverse motion of the quark to equilibrium with
the surrounding medium. It is relatively straightforward to
include such effects in the master equation, following for
instance the analogy with the heavy quark problem [20].
Including the friction effect amounts in particular to
generalize the correlation function in Eq. (4) beyond the
instantaneous limit. In momentum space, this leads generi-
cally to an evolution equation of the form12 [cf. Eq. (21)]�

∂

∂t
−

∂

∂K

�
q̂
4

∂

∂K
þ γf

K
E

��
PðK; tÞ ¼ 0; ð71Þ

where we used the harmonic approximation and γf is
the friction coefficient, related to q̂ via the Einstein
relation, γf ¼ q̂=4T ∼ T2. The late time solution to this
equation is a thermal momentum distribution, PðK; tÞ ∝
exp½−K2=ð2ETÞ�. This implies that at late times the entropy
saturates at a maximum value, which is achieved once
hK2it ≃ q̂t ¼ 2ET, that is, at time t≳ trel, where
trel ≡ ET=q̂. When this transverse thermalization is
reached, the off-diagonal matrix elements of the coordinate
space density matrix remain significant in a small range
of the order of the thermal wavelength λT ∼ 1=ET,
rather than becoming arbitrarily small. For the present
choice of parameters, q̂ ¼ 0.3 GeV3, T ¼ 0.5 GeV, and
E ¼ 200 GeV, we find trel ≃ 66.7 fm, which is larger than
t2 ≃ 22 fm, but not much larger.13 Thus, whether, in the
presence of dissipation, the regime of the rapid entropy
growth will develop fully or not may depend significantly
on the values of the relevant parameters.

V. SUMMARY AND CONCLUSIONS

We have studied the time evolution of the density matrix
of an energetic quark in the presence of a dense QCD
medium, by solving simple master equations for its reduced
density matrix. The two color components of the density
matrix evolve independently, with only the singlet compo-
nent surviving the propagation through the QCD medium.
At late times we observe that the off-diagonal elements
are suppressed sooner in the position representation than in
the momentum representation of the density matrix. We
interpret the simultaneous diagonalization of the density
matrix in both representations as a signal that its Wigner
representation behaves at late times as a classical phase
space distribution. This interpretation is further supported
by the explicit calculation of the von Neumann entropy,
which is shown to agree completely with the classical
Wigner entropy at late time. The entropy growth can be
split into two regimes where first the momentum space is
populated, followed by position space. We note that the
regime of the fast entropy growth at late time is not
accessible in the exact eikonal limit, i.e. E → ∞, where
the density matrix reduces to Eq. (54), because in this
regime the transverse position of the quark is frozen. We
also argue that this regime may be affected by dissipation
effects that are not included in the master equation that we
used. A simple estimate of these dissipation effects sug-
gests that the development of the late time entropy growth
may be tamed before developing fully, depending on the
values of the relevant parameters.
The model that we have studied in this paper is an

oversimplified picture of an in-medium jet. More realistic
situations can of course be considered, such as more

FIG. 5. Time evolution of the quark’s SvN and SW entropies.
Here we used the same parameters as in Fig. 3.

12We postpone the discussion of the complete evolution
equation for the density matrix to a forthcoming work.

13Note that trel ¼ t2ET is independent of the initial condition,
but t2 is.
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complex initial conditions for the quark, and a more
realistic description of the plasma. More importantly the
present study needs to be extended by including radiative
corrections to the reduced density matrix. Such a radiative
correction would, in particular, have an impact on the jet
entropy [49]. In addition, increasing the number of particles
in the jet leads to more complex color structures that are
worth exploring [8,50]. Although the in-medium evolution
results in the randomization of the jet’s color degrees of
freedom [35], how such an effect manifests itself beyond
two particles in the final state is not known in detail so far.
Understanding this aspect is important to describe the final
particle distribution after hadronization; see e.g. [51]. Such
issues will be addressed in future works.
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APPENDIX A: DERIVATION OF THE COLOR
SINGLET AND OCTET EVOLUTION EQUATIONS

Here we derive the master equations for the singlet
and octet color components of the density matrix, i.e.

Eqs. (14) and (13). For that, we start from the relation
which connects the density matrix at different times:

hkjρijðtþ δtÞjk̄i ¼
Z
q;q̄
hqjρi0j0ðtÞjq̄i

× hGii0ðk; tþ δt;q; tÞG†
j0j
ðk̄; tþ δt; q̄; tÞi;

ðA1Þ

where δt should be understood as being a small time step;
see Fig. 2. The propagator G describes the evolution of a
single particle in the presence of a classical background. It
is Green’s function to Eq. (2), and its explicit path integral
representation can be found e.g. in [3,8] and references
therein. Importantly, it satisfies the relation (in coordinate
free form)

Gðt; uÞ ¼ G0ðt; uÞ − ig
Z
s
G0ðt; sÞA−ðsÞGðs; uÞ; ðA2Þ

with u < s < t. Using the explicit form of the vacuum
propagator

G0ðk; t; q; sÞ ¼ ð2πÞ2δðk − qÞe−ik22Eðt−sÞ; ðA3Þ

we can derive that

Gðk; tþ δt; q; tÞG†ðk̄; tþ δt; q̄; tÞ ¼ ð2πÞ2e−iðk
2−k̄2Þ
2E δt

�
ð2πÞ2δðk − qÞδðk̄ − q̄Þ

þ g2

ð2πÞ2
Z

tþδt

t
ds1

Z
tþδt

t
ds2ei

k2
2Es1Aðk − q; s1Þe−i

q2

2Es1e−i
k̄2
2Es2A†ðk̄ − q̄; s2Þei

q̄2

2Es2

− g2δðk̄ − q̄Þ
Z
p

Z
tþδt

t
ds1

Z
s1

t
ds2ei

k2
2Es1Aðk − p; s1Þe−i

p2

2Eðs1−s2ÞAðp − q; s2Þe−i
q2

2Es2

− g2δðk − qÞ
Z
p

Z
tþδt

t
ds1

Z
s1

t
ds2e−i

k̄2
2Es1A†ðk̄ − p; s1Þei

p2

2Eðs1−s2ÞA†ðp − q̄; s2Þei
q̄2

2Es2

�
þOððgAÞ3Þ: ðA4Þ

Here we already dropped the terms linear in the background
field since they vanish after tracing out the medium
according to Eq. (4). We also used the shorthand notation
A ¼ Aa;−ta, and we have left the color indices implicit.
Notice that the contributions are ordered according to the
diagrams in Fig. 2.
To obtain the evolution equations from Eq. (A4), we

average over the background field and expand to leading
order in δt. Since the averaging according to Eq. (4) is local

in time, one can directly construct the associated integral
evolution kernel.14 Also since the average has Gaussian
statistics, there is no need to include higher order terms in

14The locality of the medium averages will remove some of the
quantum effects [20,21] associated with the quark’s evolution
in the medium. Such nonlocal contributions are, for example,
responsible for the transverse space thermalization discussed in
the main text.
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the background field of Eq. (A4). It is straightforward to
show that the real single gluon exchange, given by the
second line in Eq. (A4), generates the contribution to the
density matrix at time t,Z
q

Z
t

0

dt0e−i
ðk2−k̄2Þ

2E ðt−t0ÞγðqÞtaii0taj0jhk − qjρi0j0ðt0Þjk̄ − qi;

ðA5Þ

while the virtual terms [last two lines in Eq. (A4)] yield

−
1

2

Z
q
γðqÞ

Z
t

0

dt0e−i
ðk2−k̄2Þ

2E ðt−t0Þ

×
n
taikt

a
ki0
δj;j0 þ taj0kt

a
kjδi;i0

o
hkjρi0j0ðt0Þjk̄i: ðA6Þ

Notice that here we have promoted the small time step δt to
an integral from the initial time t ¼ 0 up to time t, using
that the problem is invariant under time translations. The
singlet and octet decompositions of these contributions are
obtained from applying Eq. (5).
Focusing on the singlet case, after absorbing the trivial

contribution associated with zero gluon exchanges, we find
that the above terms lead to the following relation:

hkjρsðtÞjk̄i ¼ CF

Z
q

Z
t

0

dt0ei
ðk2−k̄2Þ

2E ðt−t0Þ

× γðqÞ½hk − qjρsðt0Þjk̄ − qi − hkjρsðt0Þjk̄i�:
ðA7Þ

In the coordinates

K ¼ kþ k̄
2

; l ¼ k − k̄; ðA8Þ

the action of the operator

ei
K·l
E t ∂

∂t
e−i

K·l
E t ¼ ∂

∂t
− i

K · l
E

ðA9Þ

on Eq. (A7) yields the momentum space master equation
for the singlet

∂

∂t
hK þ l=2jρsðtÞjK − l=2i

¼ −i
K · l
E

hK þ l=2jρsðtÞjK − l=2i

þ CF

Z
q
γðqÞ½hK þ l=2 − qjρsðtÞjK − l=2 − qi

− hK þ l=2jρsðtÞjK − l=2i�: ðA10Þ

After transforming to the ðl; xÞ mixed coordinate repre-
sentation, this reduces to Eq. (14).

APPENDIX B: CALCULATION OF THE
VON NEUMANN ENTROPY

The calculation of the von Neumann entropy can be
efficiently done by applying the replica trick:

Trρ log ρ ¼ ∂

∂n
Trρn

				
n¼1

: ðB1Þ

To compute Trρn, we note that, in momentum space,

hq2jρjq1i ¼
4π

a
exp

�
−

1

2a
ðαðq22 þ q21Þ − βq1 · q2Þ

�
; ðB2Þ

where

β ¼ 1

2E2

�
ac −

b2

4

�
−
1

2
; α ¼ β þ 1; ðB3Þ

and we have used Eqs. (31) and related definitions. We then
write the trace of the nth power of ρ as

Trρn ¼ hqnþ1jρjqnihqnj � � � jq2ihq2jρjq1i

¼
�
4π

a

�
n
Z
q1;q2;…qn

e−
1
aQ

T ·M·Q

¼ 1

detðMÞ ; ðB4Þ

with the periodic boundary conditions qnþ1 ¼ q1. HereQ is
a column vector whose components are the n momenta q1
to qn. The matrix M is a n × n matrix that we shall specify
shortly.
First, we should discuss the special cases n ¼ 1 and

n ¼ 2 for which the matrix M does not obey the general
form valid for n > 2. The case n ¼ 1 is straightforward
since M ≡ αþ β ¼ 1. Hence, detðMÞ ¼ 1, and we simply
recover that Trρ ¼ 1. The n ¼ 2 case corresponds to the
purity [48]

p≡ Trρ2 ¼
Z
q1;q2

hq2jρjq1i2: ðB5Þ

The matrix M in Eq. (B4) is then

M ¼
�

α −β
−β α

�
; ðB6Þ

which yields

p ¼ 1

α2 − β2
¼ 1

2β þ 1
¼ E2

ac − b2
4

: ðB7Þ
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In the case n > 2, the matrix M reads

M ≡

0
BBBBBBBBBB@

α −β=2 0 � � � 0 −β=2
−β=2 α −β=2 � � � � � � 0

0 −β=2 α −β=2 � � � 0

..

. . .
. . .

. . .
. . .

. ..
.

..

. ..
. . .

. . .
. . .

.
−β=2

−β=2 0 � � � 0 −β=2 α

1
CCCCCCCCCCA
;

ðB8Þ

Besides the top right and bottom left elements
Mn;1 ¼ M1;n ¼ −β=2 that reflect the boundary conditions
qnþ1 ¼ q1, M is a tridiagonal symmetric Toeplitz matrix,
with Mi;i ¼ α, Mi;ðiþ1Þ ¼ −β=2, Mðiþ1Þ;i ¼ −β=2, and
Mi;j ¼ 0 otherwise. To compute the determinant of M
we use the fact that the determinant of a tridiagonal
matrix TðxÞ, with off-diagonals equal to 1 and the diagonal
elements set to 2x, satisfies

detðTðxÞÞ ¼ UnðxÞ; ðB9Þ

where UnðxÞ is the Chebyshev polynomial of the second
kind, which can be defined through

UnðcosðθÞÞ ¼
sinððnþ 1ÞθÞ

sinðθÞ : ðB10Þ

Using these elements, one can show that

detðMÞ ¼
�
β

2

�
n
½UnðxÞ −Un−2ðxÞ þ 2�; ðB11Þ

where x ¼ α=β. By using the identity

UnðxÞ −Un−2ðxÞ ¼


x −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
n þ



xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
n
;

ðB12Þ

we finally obtain

Trρn ¼
�
2

β

�
n 1


x −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
n þ



xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
n þ 2

:

ðB13Þ

By combining this result with Eq. (B1), we get the von
Neumann entropy in the following form:

SvN ¼ log

�
β

2

�
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
log

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

x −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

¼ log

�
β

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β þ 1

p
log

β þ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β þ 1

p
β

: ðB14Þ

The expression (60) of the main text is obtained by
expressing β in terms of p using Eq. (59).
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