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We consider multishell configurations in the Skyrme model within the rational map ansatz. We show that
equations for the Skyrme field are linearized in the limit of a large number of shells, thus allowing for a
simple analytic solution. Although this solution is approximate, it provides an accurate description of
multishell configurations in the Skyrme model in the region where the Skyrme field is large, F ≫ 1. We use
this solution to calculate the mass and the root mean square radius of multishell skyrmion configurations. In
particular, for solutions with one unit of baryon charge per shell (the “hedgehog” solution) the mass scales
as M ∝ B2, and its rms radius scales as B1=2 with the baryon charge B. This scaling for the mass can be
reduced to M ∝ B4=3 in the model with many units of baryon charge per shell. Although this solution is
unstable against decays into single-shell or single-skyrmion configurations, it may be useful for modeling
skyrmion stars or compact composite objects in some models of dark matter if the decay of such
configurations is prevented by some mechanism.
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I. INTRODUCTION

The Skyrme model [1] is a nonlinear sigma model of
pseudoscalar meson fields with quartic self-interaction.
This model allows for static compact solutions with finite
energy which may be considered as baryons [2]. The
baryon charge B is naturally identified with the topological
charge number in the Skyrme model. The solution with
B ¼ 1 provides a satisfactory description of a nucleon; see,
e.g., Ref. [3] for a review.
Solutions with B > 1 are usually considered as systems

of interacting nucleons. In Ref. [4], spherically symmetric
skyrmions with B ¼ 2 and B ¼ 3were studied numerically.
It was shown that these solutions are unstable, and thus
should decay into spatially separated solutions with B ¼ 1.
Recent developments in the Skyrme model were devoted

to constructing multi-B solutions with reduced symmetry
that could model atomic nuclei. In Refs. [5–7], an axially
symmetric solution in the Skyrme model was found for
B ¼ 2. In Refs. [8–10], solitonic configurations with
B ≤ 9 were constricted. Notably, crystal-like solutions with
B → ∞ were found in Refs. [11,12].
The solutions of the Skyrme model proposed in

Refs. [9,10] within the rational map ansatz have a shell-like

structure. The number of units of baryon charge per shell is
equal to the degree of the rationalmap. InRefs. [13,14] it was
conjectured that such multishell solutions with a large
number of units of baryon charge per shell may describe
skyrmion stars, analogs of neutron stars. The authors of these
works managed to study numerically only large-B solutions
with two shells and approached multishell configurations
semianalytically using ramp-profile ansatz that may give
overestimated value of the mass.
In this note,we focus onmultishell solutions in the Skyrme

model that have a large number of shells and an arbitrary
number of units of baryon charge per shell. In Sec. II, we
show that equations for stationary skyrmion configurations
within the rationalmap ansatz are linearizedwhen thenumber
of shells goes to infinity. As a result, we find a simple analytic
solution describing multishell skyrmion configurations
which may be used for studying skyrmion stars or compact
composite objects playing the role of dark matter particles in
some dark matter models [15–18]. We show that the mass of
this solution scales as B2 while its root mean square radius
grows asB1=2. Thus, the obtained solution is unstable against
decays into single-shell or single-skyrmion configurations,
and it may be realized only under external conditions
preventing them from the decay. In Sec. IV we discuss the
results and speculate that adding the pion mass term to the
Skyrme model may help stabilize multishell solutions.
In this paper, natural units with ℏ ¼ c ¼ 1 are used.

II. THE SKYRME MODEL

In this section, we provide background information
about the Skyrme model, which is necessary for complete-
ness of our presentation in this paper.
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At low energy, baryons andmesons represent the effective
degrees of freedom emerging from QCD. The mesons are
dominated by pseudoscalar pion fields π⃗ which are
described by a nonlinear sigma model based on the
SUð2ÞL × SUð2ÞR group. These fields constitute the follow-
ing matrix UðxÞ ¼ f−1π ð1σ þ iτ⃗ · π⃗Þ ∈ SUð2Þ, where fπ ¼
93 MeV is the pion decay constant and σ is the scalar
meson with the constraint σ2 þ π⃗2 ¼ f2π . The field UðxÞ
transforms in the ð1

2
; 1
2
Þ representation of SUð2ÞL × SUð2ÞR:

UðxÞ → AUB−1, A ∈ SUð2ÞL and B ∈ SUð2ÞR.
At any fixed time, UðxÞ maps the space R3 onto the

group manifold S3 ≃ SUð2Þ. Since the pion fields vanish at
spatial infinity, the space R3 may be compactified to the
sphere S3, and the above map turns into UðxÞ∶S3 → S3.
This map is characterized by a topological charge density
B0 arising as a 0-component of a conserved 4-current

Bμ ¼ εμνρσ

24π2
tr½ðU†

∂νUÞðU†
∂ρUÞðU†

∂σUÞ�; ð1Þ

with ε0123 ¼ −ε0123 ¼ 1.
The Skyrme model is a nonlinear sigma model of the

pion fields π⃗ with the Lagrangian

L¼ 1

4
f2πtrð∂μU∂

μU†Þþ 1

32e2
tr½ð∂μUÞU†;ð∂νUÞU†�2; ð2Þ

where e is a dimensionless coupling constant. A skymion is
a static solution in this model of the form

UðxÞ ¼ exp½iFðrÞτ⃗ · n⃗�; ð3Þ

where n⃗ is a unit vector and FðrÞ is a spherically symmetric
function with boundary conditions

FðrÞjr¼0 ¼ bπ; FðrÞjr→∞ → 0: ð4Þ

Here b is an integer.
In the original Skyrme model [1], the unit vector n⃗ is

chosen in a spherically symmetric way, n⃗ ¼ r⃗=r. This case
is suitable for studying the solution with b ¼ 1, which is
usually interpreted as models of nucleon. Solutions with
b > 1 were shown to be unstable [4].
More generally, the unit vector in Eq. (3) may be chosen

in the form [9]

n⃗ ¼ 1

1þ jRj2 ð2ReðRÞ; 2ImðRÞ; 1 − jRj2Þ; ð5Þ

where R is a rational function on the complex plane with
coordinates z related to the spherical angles θ and ϕ of R3

through the stereographic projection z ¼ tanðθ=2Þeiϕ. It
was shown in Ref. [9] that the total baryon charge B within
this ansatz is given by

B ¼ kb; ð6Þ

where b is an integer specifying the boundary condition (4)
and k is the degree of the rational map R. This ansatz allows
for stable multi-B solutions which satisfactorily describe
some atomic nuclei [19,20].
Substituting the ansatz (5) into the Lagrangian (2) one

finds the expression for the skyrmion mass

M ¼ 2πf2π

Z
∞

0

½r2ðF0Þ2 þ 2ksin2F�dr

þ 2π

e2

Z
∞

0

�
IðkÞsin4F

r2
þ 2kðF0Þ2sin2F

�
dr; ð7Þ

with F0 ¼ dF=dr and

IðkÞ ¼ 1

4π

Z �
1þ jzj2
1þ jRj2

���� dRdz
����
�

4 2idzdz̄
ð1þ jzj2Þ2 : ð8Þ

Numerical values of this function for various kwere studied
in Ref. [9]. In particular, I ¼ 1 for k ¼ 1, and

IðkÞjk→∞ → I∞k2; I∞ ≈ 1.28: ð9Þ

Varying the expression (7) we obtain the equation for the
function F:

½ðr2 þ 2kr2sksin
2FÞF0�0

¼ sin 2F

�
kþ kr2skðF0Þ2 þ IðkÞ r

2
sk

r2
sin2F

�
; ð10Þ

where rsk ¼ 1
efπ

.
The baryon charge density (1) acquires a simple expres-

sion within the ansatz (3):

ρB ≡ B0 ¼ −
k
2π2

sin2 F
r2

F0: ð11Þ

By construction, integrating this baryon charge density one
finds the baryon charge number,

4πk
Z

∞

0

ρBr2dr ¼ kb ¼ B ∈ Z: ð12Þ

In this paper we focus on the case b ≫ 1 with arbitrary k.

III. A LARGE-B SOLUTION

Equation (10) is nonlinear, and its exact analytic sol-
utions are not known. Numerical solutions of these equa-
tions were studied in Refs. [2,4] for B ¼ 1, 2, 3. In this
section we construct an explicit analytic solution of this
equation for B ≫ 1. More precisely, we consider a multi-
shell solution with a large number of shells and an arbitrary
number of units of baryon charge per shell.
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The boundary condition (4) shows that near the origin
the solution is large, F ≫ 1 if b ≫ 1, and it drops rapidly
with the distance. Thus, in this region the functions
sin 2F and sin2 F are rapidly oscillating with the following
average values:

hsin 2Fi ¼ 0; hsin2Fi ¼ 1

2
: ð13Þ

With these values of the trigonometric functions, Eq. (10) is
linearized,

½ðr2 þ kr2skÞF0�0 ¼ 0: ð14Þ

A solution of this equation subject to the boundary
condition (4) reads

FðrÞ ¼ 2b arccot
rffiffiffi
k

p
rsk

: ð15Þ

Note that a similar solution was found in a self-dual
modified Skyrme model [21].

A. Mass of the skyrmion configuration

Making use of Eq. (7) it is straightforward to find the
mass of the skyrmion configuration (15):

M ¼ 4π2fπe−1
�
b2

ffiffiffi
k

p
þ bk

ffiffiffi
k

p �
1þ 1

4
I∞

��
: ð16Þ

Recalling that the baryon charge is B ¼ bk, we find that the
mass per unit baryon charge scales as

M
B

¼ 4π2
fπ
e

�
bffiffiffi
k

p þ
ffiffiffi
k

p �
1þ I∞

4

��
: ð17Þ

The expression (17) allows us to study the scaling of the
ratio M=B for large baryon charge B. Recall that b is the
number of shells and k is the number of baryon charge units
per shell. Consider first the case k ¼ 1, which corresponds
to the original “hedgehog” solution in the Skyrme model.
As is seen from Eq. (16), M ∼ B2 in this case. This scaling
was first established in Ref. [22]. With the use of the
explicit analytic solution (15) we find exact coefficients in
this relation.
Consider now the case when both b ≫ 1 and k ≫ 1.

It is natural to assume k ∝ b2, meaning that the number of
skyrmions per shell is proportional to the area of a
sphere of radius b. In this case Eq. (17) shows that
M=B ∝

ffiffiffi
k

p
∝ B1=3. Thus, solutions in the Skyrme model

with multiple shells are unstable against decays into single-
shell or single-skyrmion configurations.

B. Root mean square radius

Note that the baryon charge density (11) is normalized
as in Eq. (12). Therefore, the mean radius squared is
defined as

hr2i ¼ B−1
Z

r2ρBðrÞd3r: ð18Þ

Substituting the solution (15) into this equation we find

hr2i ¼ 4Br2sk

�
1 −

1

4b

�
: ð19Þ

The last term may be neglected in the large-b limit. Thus,
for large B, we find

rrms ≡
ffiffiffiffiffiffiffiffi
hr2i

q
¼ 2

ffiffiffiffi
B

p
rsk: ð20Þ

As a result, the characteristic size of this solution grows
with B faster than that of the nuclear matter. For the latter,
we recall that the nuclear charge radius scales with the
atomic number as A1=3.

C. Asymptotic behavior

The solution (15) has the following asymptotic behavior:

FðrÞjr→∞ → 2
Bffiffiffi
k

p rsk
r
: ð21Þ

This behavior is, however, unphysical, because at large r
Eq. (10) reduces to r2F00 þ 2rF0 − 2kF ¼ 0, which dictates
Fjr→∞ ∝ r−

1
2
−1
2

ffiffiffiffiffiffiffiffi
8kþ1

p
. Thus, the solution (15) is applicable

only in the interval 0 ≤ r < R, in which FðrÞ ≫ 1. Here R
is a cutoff radius for the solution (15).
It is convenient to define the cutoff radius R such that

FðRÞ ¼ 2. In this case, for b ≫ 1,

R ¼
ffiffiffi
k

p
rsk cot

1

b
≈

Bffiffiffi
k

p rsk: ð22Þ

For r > R, the solution (15) needs to be corrected.

D. Approximate solution with corrected
asymptotic behavior

It is possible to construct a function FapproxðrÞ such that
FapproxðrÞ ≈ FðrÞ for 0 < r < R, and it possesses the

correct asymptotics FapproxðrÞjr→∞∝r−
1
2
−1
2

ffiffiffiffiffiffiffiffi
8kþ1

p
. Of course,

such a function is just an approximate solution of the
model, and it may be constructed in different ways. In
particular, it is convenient to use the following function:

FapproxðrÞ ¼ 2b

�
R

rþ R

�
−1
2
þ1

2

ffiffiffiffiffiffiffiffi
8kþ1

p

arccot
rffiffiffi
k

p
rsk

; ð23Þ
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which reduces to (15) for r ≪ R, but asymptotically it
behaves as

FapproxðrÞjr→∞ → 2

�
Bffiffiffi
k

p rsk
r

�1
2
þ1

2

ffiffiffiffiffiffiffiffi
8kþ1

p

: ð24Þ

The approximate solution (23) is compared with the
exact numerical solution of Eq. (10) in Fig. 1(a). It shows a
good agreement with the numerical solution both at small
and at large distances. We plotted also the baryon charge
density (11) for the solution (23). As is seen from Fig. 1(b),
the multi-B skyrmion has an onion shell-like structure with
b shells and k units of the baryon charge in each shell.

IV. SUMMARY AND DISCUSSION

In this note, we constructed an explicit analytic multishell
solution (15) in the Skyrme model. This solution appears
due to the observation that Eq. (10) for the Skyrme fieldFðrÞ
is linearized forF ≫ 1. Thus, this analytic solution provides
an accurate description of multishell configurations in the
Skyrme model in the interval 0 < r < R, in which
FðrÞ ≫ 1. The cutoff parameter R is given in Eq. (22).
For r > R, the solution (15) should be modified, because it
falls off with distance slower than asymptotic solutions of
Eq. (10). One possible long-distance modification of the
solution (15) is proposed in Eq. (23).
The analytic solution (15) allows us to calculate exactly

the mass of multishell configurations in the Skyrme model;
see Eq. (16). In a particular case of one baryon charge per
shell, k ¼ 1, the mass of such a solution scales as M ∝ B2

with the baryon charge B. This scaling was first found in
Ref. [22], whereas in this paper we determine an exact
coefficient in this relation. In the case of an arbitrary
number of units of baryon charge per shell we show that the
mass per unit baryon charge grows at least as

ffiffiffi
k

p
, and, thus,

any multishell solution is unstable against decays into
single-shell or single-skyrmion configurations.

A. Adding pion mass term

As is noted above, the mass of the multi-B skyrmion
configuration (15) grows quadratically with the baryon
charge, M ∝ B2, for k ¼ 1. This behavior is characteristic
for a set of B particles with a long-range two-body inter-
action. Therefore, it is natural to expect that this behavior
may change in a Skyrme model with massive pion fields.
In Ref. [5] it was shown that adding the pion mass term

to the Lagrangian reduces the mass-per-baryon ratio in a
multi-B solution within the rational map ansatz. Moreover,
for some choices of the mass term, the mass-per-baryon
ratio tends to a constant in the large-B limit. In this section
we comment on the role of the pion mass term for a
multishell large-B solution.
The simplest pion mass term that can be added to the

model (2) is

Lm ¼ 1

2
m2f2πtrðU − 1Þ ¼ −

1

2
m2π⃗2 þ � � � ; ð25Þ

where the ellipses stand for higher orders of pion fields.
With this term the expression for the skyrmion mass (7)
becomes

M → M þ 4πm2f2π

Z
∞

0

ð1 − cosFÞr2dr; ð26Þ

and in the right-hand side (RHS) of Eq. (10) one gets the
additional term m2r2 sinF. In contrast with other terms in
the RHS of this equation, we cannot discard m2r2 sinF
since this term grows with distance and oscillates for F ≳ 1.
Therefore, Eq. (14) gets the following correction due to the
pion mass term:

½ðr2 þ kr2skÞF0�0 ¼ m2r2 sinF: ð27Þ

(a) (b)

FIG. 1. (a) Comparison of the approximate solution (23) (solid blue curve) with a numerical solution of Eq. (10) (dashed red curve).
(b) Plot of the baryon charge density (11) calculated for the approximate solution (23) (solid blue curve), and for an exact numerical
solution of Eq. (10) given by the red dashed curve. Both figures are produced for b ¼ 10 and k ¼ 1 that correspond to ten shells with one
unit of baryon charge per shell.
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Unfortunately, exact analytic solutions of this equation are
not known, but the large-distance asymptotics become
FðrÞjr→∞ ∝ r−1e−mr.
It would be interesting to explore other pion mass terms

proposed in Ref. [5] and study whether either of these terms
allows for explicit analytic solutions reducing to (15) in the
massless case. We hope that such solutions may possess a
constant mass per unit baryon charge in the large-B limit. If
such stable solutions exist, they may describe compact
composite objects of baryonic matter fully within the
frames of the Standard Model. Such compact composite
objects could play the role of dark matter particles similar
to the ones studied in Refs. [15–18]. In Refs. [23,24] it was
shown that for B≳ 1025 such dark matter particles are not
excluded, neither by cosmological observation nor by
Earth-based dark matter detectors. We leave this question
for future studies.

B. Toward Skyrmion stars

In Ref. [25] an Einstein-Skyrme model was proposed,
and in Refs. [13,14] spherically symmetric solutions in this
model were considered as models of stars similar to neutron
stars. Following these works, we also consider the Skyrme
model (2) minimally interacting with a metric field, and we
assume a spherically symmetric ansatz for the latter:

ds2 ¼ −A2ðrÞ
�
1 −

2mðrÞ
r

�
dt2 þ

�
1 −

2mðrÞ
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdφ2Þ: ð28Þ

Here AðrÞ and mðrÞ are unknown functions subject to the
condition that the metric (28) is asymptotically flat. Within
this ansatz, the stationary static solutions of the Einstein-
Skyrme theory obey the following equations [13]:

μ0 ¼ α

�
1

2
x2SF02 þ sin2F

�
kþ kSF02 þ Isin2F

2x2

��
; ð29aÞ

A0 ¼ α

�
xþ 2N

x
sin2F

�
AF02; ð29bÞ

½ðx2 þ 2ksin2FÞASF0�0

¼ A sinð2FÞ
�
kþ kSF02 þ Isin2F

x2

�
; ð29cÞ

where x≡ r
rsk
¼efπr, μ¼efπmðrÞ, and S¼1−2m

r ¼1−2μ
x

are dimensionless variables and

α ¼ 4πGf2π ¼ 7.3 × 10−40 ð30Þ

is a dimensionless coupling constant. The derivatives in
Eqs. (29) are over the dimensionless variable x.
When the function FðxÞ is large, F ≫ 1, the average

values (13) of the trigonometric functions in Eqs. (29) can
be assumed. Thus, for a multishell solution with b ≫ 1,
Eqs. (29) simplify drastically:

μ0 ¼ α

2

�
ðx2 þ kÞSF02 þ kþ 3I

8x2

�
; ð31aÞ

A0 ¼ α
x2 þ k

x
AF02; ð31bÞ

½ðx2 þ kÞASF0�0 ¼ 0: ð31cÞ

The latter equation may be integrated once, and the
remaining equations may be treated perturbatively with the
small parameter α.
Although the application of Eqs. (13) provides a drastic

simplification of equations in the Einstein-Skyrme model,
this model in the regime of weak gravitational field still
suffers from instability against decays into single-shell or
single-skyrmion configurations. We hope that this problem
will be resolved elsewhere.
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