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We use a variational method to calculate the spectrum and the parton distribution function of ground-
state hadrons of various gauge theories in 1þ 1 dimensions. The template functions in our method
minimize a free-energy functional defined as a combination of free-valence partons’ kinetic energy on the
light cone and the Renyi entanglement entropy of biparton subsystems. Our results show that hadrons in
these theories minimize the proposed free energy. The success of this technique motivates applying it to
confining gauge theories in higher dimensions.
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I. INTRODUCTION

One of the enduring questions in modern physics is a
description of the spectrum of strongly coupled theories
such as QCD, which describes the strong nuclear force that
holds quarks and gluons together in colorless hadrons. Our
information about a hadron structure comes from exper-
imentally accessible structure functions such as the parton
distribution function (PDF), which can be isolated using
factorization theorems. While no analytical technique
exists for calculating these functions, numerical computa-
tions in certain regimes are possible with lattice QCD [1–7].
However, these tools are computationally and economically
expensive and do not offer any simple insight into the
mechanism of strong interactions.
This has motivated novel approaches (e.g., [8–21]) for

understanding confining theories, many of which were first
proposed in 1þ 1 dimensions (1þ 1D). Here, gluons are
not propagating degrees of freedom, there is no spin, and
since the gauge coupling is dimensionful, the running
effects are power suppressed. The PDF of the quarks inside
hadrons of 1þ 1D theories is simply equal to the absolute
square of their wave function and does not run with the
energy scale, see Ref. [22] for further details.
In this paper, we suggest that since a strongly coupled

bound state is a complex system with numerous inter-
actions between its partons, notions from complex systems,

statistical mechanics, and information theory (see Ref. [23]
for connections between the latter two subjects) can be
elevated to a more central role in describing its pro-
perties. (Notions from quantum information sciences have
already been used in studying other aspects of confining
gauge theories, e.g., see Refs. [24–54].) Similar to generic
systems studied in classical statistical mechanics, e.g., a
container of gas, that are governed by a minimum free-
energy principle, we conjecture partons’ distribution inside
hadrons are governed by a minimum free-energy principle
that includes a measure of entanglement between pairs of
partons. Such a principle should not rely on the special
properties of a theory, such as its symmetries, so that it can
be readily applied to higher-dimensional systems.
In Ref. [22], we tested whether the hadron wave function

in these theories could be described as a thermal ensemble.
The ansatz for the wave function was derived from
minimizing a proposed free energy

F ¼ E − TS; ð1Þ

where E (S) is free parton kinetic energy on the light cone
(the von Neumann entanglement entropy of biparton
subsystems). We observed that this description was exact
in the limit of infinite parton mass. The description deviates
from exact numerical results as we move to lower quark
masses and is no longer even approximately applicable in
the deep nonperturbative regime, i.e., whenmq=g ≪ 1 with
mq denoting the quark mass and g denoting the coupling of
the confining gauge group in 1þ 1D. This motivates us to
explore modifications of the free-energy principle, keeping
in mind that it should asymptote to the free energy of
Ref. [22] in the large quark mass limit.
Our proposal in this paper is to replace the von Neumann

entropy of Eq. (1) with either Tsallis [55] or Renyi [56]
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entanglement entropy (both these entropy functions work
for our problem); for simplicity, we use the Renyi entropy
throughout this paper. This family of entropy functions
finds a variety of applications in physics including quantum
gravity (e.g., Refs. [57–59]), cosmology [60], topological
phases [61], nonequilibrium many body systems [62], and
condensed matter physics [63].
We can interpret our proposal as a variational method for

approximating the wave function and mass spectrum of the
shallowest bound states of 1þ 1D gauge theories.
We find that our proposed free energy correctly predicts

the hadrons’ mass spectrum and PDF for all quark masses.
The success of this approximation in reproducing the
existing results motivates us to propose our minimum
free-energy principle as the first principle governing the
properties of bound states of confining gauge groups,
including those in higher dimensions.

II. A VARIATIONAL METHOD FOR HADRON
WAVE FUNCTION

We propose replacing the von Neumann entropy in the
biparton free energy of Ref. [22] by one of its generaliza-
tions, namely the Renyi entropy [56]1

SαðρÞ ¼
1

1 − α
ln ðTr½ρα�Þ; ð2Þ

where ρ is a reduced density matrix and α is the order. In
the limit of α → 1, the Renyi entropy Sα reduces to the von
Neumann entropy. We therefore propose a new biparton
Renyi free-energy functional

Fα ¼ E − TSα; ð3Þ

where E denotes the kinetic energy of free valence partons
on the light cone and Sα is the order α Renyi entropy of the
biparton subsystems of the hadron, see Ref. [22] for further
details. We propose to test whether minimizing this func-
tional will lead to an improved description of a hadron
structure.
For a meson, in 1þ 1D the wave function is described by

a qq̄ state since the higher Fock state contribution is
suppressed for the ground state. Following Ref. [22], our
modified free energy for the qq̄ biparton system is given by

Fα ¼
m2

q

P−

Z
dxjϕðxÞj2

�
1

x
þ 1

1 − x

�

−
T

1 − α
ln

�Z
dxjϕðxÞj2α

�
; ð4Þ

where P− is the large light cone momentum, ϕðxÞ is the
meson wave function, x is the momentum fraction of P−

carried by the quark, and T is a Lagrange multiplier. This
functional is minimized by the following ansatz

jϕðxÞj2 ¼
�
m2

q

T 2

� 1
α−1½xð1 − xÞ� 1

1−α; ð5Þ

where

T 2 ¼ TP− α

ð1 − αÞ R dxjϕðxÞj2α ; ð6Þ

whose numerical value will be determined by the normali-
zation condition on the PDF.
Similarly, following the prescription from Ref. [22], after

minimizing the biparton Renyi free energy of a baryon, we
arrive at the ansatz

jϕðx; z1; z2;…; zN−2Þj2

¼
�
m2

q

T 2

� 1
α−1
�
x

�
1 − x −

XN−2

k¼1

zk

�YN−2

k¼1

zk

� 1
1−α

; ð7Þ

where N is number of colors and again T will be
determined numerically by demanding the right normali-
zation for the wave function. We can now write an
expression for the quark PDF inside a baryon (see
Ref. [22] for further details)

fqðxÞ ¼ N

�
m2

q

T 2

� 1
α−1
�YN−2

i¼1

Z
1−x−

P
i−1
j¼1

zj

0

dzi

�

×

�
x

�
1 − x −

XN−2

k¼1

zk

�YN−2

k¼1

zk

� 1
1−α

: ð8Þ

We will use Eqs. (5) and (8) as the template functions in
a variational method for finding eigenvalues and eigen-
functions of ground-state hadrons in various confining
theories in 1þ 1D. The variational parameter is the
order α and will be calculated numerically by demanding
that the wave function minimizes the expectation value of
the Hamiltonian. The specifics of a particular theory will
therefore be reflected in how α varies as a function of mq.
We can now look at specific theories in 1þ 1D and carry
out this calculation. Since the gauge coupling g is dimen-
sionful in 1þ 1D theories, we normalize all other dimen-
sionful quantities by g.

III. SCHWINGER MODEL

This is a U(1) gauge theory in 1þ 1D with a fermion of
mass mq coupled to a photon [10]. The photon can be
eliminated using gauge redundancy and equations of
motion, i.e., it is not a propagating mode in 1þ 1D. We

1One can show that for our study, Renyi and Tsallis [55]
entropy give rise to exactly the same results. Throughout the text
we work with the Renyi entropy, but all our conclusions remain
intact if we use Tsallis entropy instead.
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work in the infinite momentum frame with P− → ∞, where
Pþ acts as the Hamiltonian. In this frame the right-handed
component of the fermion field, ψR, is not a propagating
degree of freedom either and can be eliminated using
equations of motion. Having integrated out these fields, we
find an effective four-fermion interaction term in the
Hamiltonian written in position space as [64,65]

Hintðx0Þ ¼ g2
Z

dx1dy1Jðx0; x1Þjx1 − y1jJðx0; y1Þ; ð9Þ

where J is the bilinear left handed fermion current ψ†
LψL.

The expectation value of the Hamiltonian for the ground-
state meson in this model is given by

M2
hadron ¼ hϕjP−Pþjϕi ¼ hϕjP−ðH0 þHintÞjϕi

¼ m2
q

Z
dxjϕðxÞj2

�
1

x
þ 1

1 − x

�

þ g2

π

Z
dxdyϕðxÞϕ�ðyÞ

þ g2

2π

Z
dxdy

jϕðxÞ − ϕðyÞj2
ðx − yÞ2 : ð10Þ

Here M2
hadron is the invariant mass squared of the meson

bound state. We now plug in the ansatz from Eq. (5) and
minimizeM2

hadron over α to find the mass and wave function
of the meson.
We show the value of order α for different quark masses

in Fig. 1. The order is a monotonically increasing function
ofmq, asymptoting to −∞ asmq → 0 and approaching 1 as
mq → ∞. What is peculiar is the negative order at low
quark masses. We observe that the shift into negative order
happens as we transition into the nonperturbative (mq ≪ g)
regime. We should emphasize that while usually positive

values of α are considered in other applications of Renyi
entropy in high-energy physics, and while some desirable
properties such as concavity [66] or additivity [67] hold
only for positive values of α, mathematically, the Renyi
entropy function could still be defined for α < 0.
Putting the calculated value of α into the ansatz of

Eq. (5), we find the meson mass (Fig. 2) and PDF (Fig. 3)
for different values of mq. We find excellent agreement for
all values of quark masses (compared to Ref. [68]) which
supports our free-energy conjecture.

IV. ’t HOOFT MODEL

Non-Abelian gauge groups SUðNÞ in 1þ 1D are col-
lectively referred to as the ’t Hooft model, in recognition of
’t Hooft’s contribution in studying their properties in the
large-N limit [11,14]. The Hamiltonian of the bound states
in the light cone is derived and, by solving a time-
independent Schrödinger equation, the hadron mass spec-
trum (as a function of the quark mass) and the wave
function of the bound state are calculated [11,14,69].

FIG. 1. The order α for the Schwinger model (blue), mesons of
the ’t Hooft model with N ¼ 3 (purple), and baryons (orange) of
the ’t Hooft model with N ¼ 3. We find that at large mq=g values
α → 1, i.e., our biparton Renyi free energy approaches the
thermal free energy of Ref. [22].

FIG. 2. Our prediction for the ground-state meson mass in the
Schwinger model (solid blue) that agrees perfectly with the
existing results (blue squares) [68]. In the mq=g ≫ 1 limit, α → 1
and our result converges to the thermal description of Ref. [22]
that used the von Neumann entropy instead of the Renyi entropy
(golden).

FIG. 3. PDF of the Schwinger model ground-state meson for
two different values of quark mass. Our results (solid) agree
perfectly with the existing results (dashed) [68].
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For the rest of this work, we focus on N ¼ 3; extending
our results to higher values of N is straightforward. For one
flavor of quarks in the fundamental representation of
SUðNÞ, the expectation value of the Hamiltonian of the
meson state is

M2
hadron ¼ m2

q

Z
dxjϕðxÞj2

�
1

x
þ 1

1 − x

�

þ g2

2π

32 − 1

3

Z
dxdy

jϕðxÞ − ϕðyÞj2
ðx − yÞ2 ; ð11Þ

while for the baryon it is

M2
hadron ¼ m2

q

Z
dx

Z
1−x

0

dzjϕðx; zÞj2
�
1

x
þ 1

1 − x − z
þ 1

z

�

þ g2

2π

3

2

32 − 1

3

Z
dz

×
Z

1−z

0

dxdy
jϕðx; zÞ − ϕðy; zÞj2

ðx − yÞ2 : ð12Þ

Here ϕðx; zÞ is the joint wave function of the three valence
partons.
We now put the template ansatz from Eq. (5) or (8) in

Eqs. (11) and (12) and minimize the eigenvalue as a
function of the order α. The resulting α, as a function of
the quark mass, is shown in Fig. 1. Similar to the case of the
Schwinger model, we find that α grows monotonically with
mq=g and in the limit of mq ≫ g it asymptotes to 1. Note
that α → 1 corresponds to the von Neumann entropy, thus
in this limit our free-energy functional becomes identical to
the free energy used in Ref. [22].
We can now use these values of α and calculate our

approximation for the mass spectrum of the ground-state
hadrons for different quark masses, see Fig. 4. We are not
aware of numerically accurate results for baryons in the low

mass quark limit; our findings are in perfect agreement with
the existing results. We also show the PDF of the ground-
state mesons (baryons) for different values of mq=g on the
top (bottom) plot in Fig. 5. For the case of mesons we again
find perfect agreement with the results from exactly solving
the light cone Schrödinger equation, further corroborating
our biparton Renyi free-energy conjecture. We are not
aware of any existing results in the literature for baryons.

V. DISCUSSION

In this paper, we have proposed a variational method for
calculating ground-state wave function and spectrum of
hadrons in 1þ 1D. We derive template functions from a
physically motivated free-energy functional made of free
partons’kinetic energy in the light cone frameand theTsallis/
Renyi entanglement entropy of fixed momentum biparton
subsystems in the bound state. The variation parameter is the
order of the entropy and is calculated by minimizing the
expectation value of the Hamiltonian of a given theory. We
found that our method correctly reproduces the existing
results for the mass spectrum and for the PDF of hadrons in

FIG. 4. Our prediction for the ground-state meson (purple) and
baryon (orange) mass as a function of the quark mass mq for
N ¼ 3 ’t Hooft model. We find perfect agreement between our
results and existing ones from solving the light cone Schrödinger
equations (denoted by□) for both mesons [11] and baryons [69].

FIG. 5. Top: The PDF of the ground-state meson of ’t Hooft
model with N ¼ 3 and for a single flavor of quark in the
fundamental representation for different quark masses. Our
results (solid lines) are in agreement with the existing results,
see Ref. [70]. Bottom: PDF of the ground-state baryon in the
same theory for a few different quark masses. In the mq → 0

limit, we approach the analytic results of Ref. [69]. We are not
aware of any numerical calculation of these PDFs for finite
masses.
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the Schwinger and the ’t Hooft (withN ¼ 3 and one flavor of
quarks in the fundamental representation) model.
Our approach was motivated by drawing an analogy

between hadrons and generic systems studied in classical
statistical mechanics that are governed by a minimum free-
energy principle. While the free energy of classical systems
involves the von Neumann entropy, we used the Tsallis/
Renyi entanglement entropy of biparton subsystems with
fixed momentum.
Our results show that hadrons in these models minimize

our proposed biparton Renyi free-energy functional. We
also observe that, irrespective of the specific theory or
bound state, the order of the entropy increases monoton-
ically with the bare parton mass from α → −∞ at zero
quark mass to α → 1 at infinite quark mass limit. We find
that the order becomes negative at low parton masses just as
we enter the nonperturbative regime. Statistically, we can
understand this as a switch from maximizing high-prob-
ability configurations to minimizing those with low prob-
ability. We do not yet have any deeper physical intuition
about α beyond this interpretation.

Given our construction, we conjecture that in a biparton
subsystem (in any bound state of any confining theory)
carrying a fixed total momentum, a single parton reduced
density matrix is effectively described by an ensemble
which is maximally entangled at zero mass and which
approaches a thermal state at large masses.
Our method can be extended to other 1þ 1D models.

Our ultimate goal is to extend our method to models in
higher dimensions, where a host of new complications
(e.g., renormalization group evolution, spin, and gluon
degrees of freedom) need to be accommodated. We leave
such studies, and many other phenomenology explorations,
for future work.
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