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The contribution of axial-vector mesons to the muon’s anomalous magnetic moment through a light-by-
light process is considered within a nonlocal quark model. The model is based on a four-quark interaction
with scalar-pseudoscalar and vector–axial-vector sectors. While the transverse component of the axial-
vector corresponds to a spin-1 particle, the unphysical longitudinal component is mixed with a pseudoscalar
meson. The model parameters are refitted to the pion properties in the presence of π − a1 mixing. The
obtained estimation for the light-by-light contribution of a1 þ f1 mesons is ð3.6� 1.8Þ × 10−11.
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I. INTRODUCTION

The anomalous magnetic moments (AMM) a¼ðg−2Þ=2
of the electron and muon are measured with unprecedented
accuracy for elementary particle physics. The experimental
value for the electron anomaly measured with a one-electron
quantum cyclotron is (in units of 10−11)1 [1]

aexpe ¼ 115965218.073� 0.028: ð1Þ

The value for aμ ¼ ðg − 2Þ=2 has been measured in experi-
ments at Brookhaven National Laboratory [2] and Fermilab
[3], and the weighted average is

aBNLμ ¼ 116592089� 63;

aFNALμ ¼ 116592040� 54;

aexpμ ¼ 116592061� 41: ð2Þ

On the other hand, the magnetic moments of the leptons
can be estimated within the framework of the Standard
Model; see, e.g., [4,5]. While the electron anomaly is
mostly due to electromagnetic interactions (the hadronic
contribution to the electron anomaly is estimated to be
only 0.1693 × 10−11 [4]), the muon anomaly presents a
challenge for theorists, since it is more sensitive to
strong, weak, and possible new physics contributions.

The difference between the experimental measurement
and theoretical prediction of the muon magnetic
anomaly has long been an excitement to physicists as
a possible hint of new physics beyond the Standard
Model (SM) which can be observed even at low
energies with a high precision experiment. The differ-
ence between the experimental measurement and theo-
retical prediction of the muon magnetic anomaly is
estimated to be [6]

aexpμ − aSMμ ¼ 251� 41� 43: ð3Þ

In the SM, aμ receives contributions from electromag-
netic, strong, and weak interactions, the values quoted for
them in [7] are

aQEDμ ¼ 116584718.931� 0.104;

aHVPμ þ aLbLμ ¼ ð6845� 40Þ þ ð92� 18Þ;
aEWμ ¼ 153.6� 1.0; ð4Þ

respectively. The theoretical understanding of aμ is limited
mostly due to the strong sector. This is due to the
nonperturbative nature of quantum chromodynamics
(QCD); i.e., at low energies the strong coupling constant
is not a small parameter. Instead, the data driven approach
to the leading order strong contribution, hadronic vacuum
polarization (HVP), has been used for a long time, based
on the experimental data of the total cross section of
electron-positron annihilation to hadrons [8]. The recent
results can be found in [9–12]. Because of the necessity
of including the isospin breaking effects, the measurement
precision of hadronic decays of τ-leptons cannot compete
with that of eþe−. The ab initio calculations in the
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framework of lattice QCD have now reached a level
competitive to the data driven approach. The subpercent
uncertainty level is reported by the BMW Collaboration
[13] which is, however, in ∼2σ tension with the data
driven approach2 [5]. It is found that the light-quark
connected part which gives about 90% to HVP is a source
for the tension. A lot of efforts by different lattice groups
are made in order to investigate in detail different parts of
this contribution to gain a clearer understanding of the
difference [15–18]. The whole story can be found in the
“White paper” 2020 [5] and updated in “Snowmass
2021” [7].
The light-by-light (LbL) contribution via the nonper-

turbative QCD vacuum is suppressed in comparison to
the HVP by the fine structure constant. Despite the
smallness of this contribution, the theoretical understand-
ing is important for an overall assessment of the full SM
result.
In the present paper, the LbL contribution of axial-

vector particles is considered in the framework of the
nonlocal quark model. The contribution of the axial
vector meson to the muon anomalous magnetic moment
is determined by the quark mechanism of a light meson
production from a pair of photons. Because of the variety
of quark models and nonperturbative effects therein,
calculation of the above-mentioned contribution remains
an open question [5,7].
The paper is a continuation of the quark model estimates

of the LbL contributions. In [19–21], the LbL contributions
to the anomalous magnetic moment of the muon, the light
pseudoscalar and scalar resonance exchange, and the quark
loop within the nonlocal chiral quark model are calculated.
Because of the nonlocality of interaction, the mass term in
the quark propagator in the loops depends on the loop
momentum. Only ground states of mesons are considered
in the model and the quark loop mimics the excited states
contribution.
In the present work, we generalize the calculation to

include the vector–axial-vector sector3 refitting the model
parameters to the observed pion data. The mixing of the
pseudoscalar and longitudinal part of the axial-vector
mesons as well as the ρ − γ mixing are taken into account.
Preliminary results are given in [28].
The paper is structured as follows. In Sec. II, the

nonlocal model is discussed. Only nonstrange mesons

are considered. In Sec. III, the interactions with external
conserved currents are introduced. In Sec. IV, the two-
photon transition form factors of pseudoscalar and axial-
vector (AV) mesons are considered. Section V is devoted to
the discussion of model parameters. In Sec. VI, the results
for the two-photon form factor of the axial-vector meson
are discussed. In Sec. VII, the procedure for calculating the
light-by-light contribution from transition form factors is
presented. The result of our calculations is given in
Secs. VIII and IX with a comparison with other approaches.
The conclusions are given in Sec. X.

II. MODEL

The nonlocal chiral (light) quark model with the
pseudoscalar-scalar and vector–axial-vector sectors is
considered. The Lagrangian of the model has the form

L¼ Lfree þLP;S þLV;A; Lfree ¼ q̄ðxÞði∂̂−McÞqðxÞ;

LP;S ¼
G1

2
ððJaSðxÞÞ2 þ ðJaPðxÞÞ2Þ;

LV;A ¼ G2

2
ððJa;μV ðxÞÞ2 þ ðJa;μA ðxÞÞ2Þ; ð5Þ

where Mc is the current quark mass matrix with diagonal
elements mc, G1, and G2 are the coupling constants in
pseudoscalar-scalar (P, S) and vector–axial-vector sectors
(V, A), respectively.
In the limit of vanishing current quark masses, the

Lagrangian has a chiral symmetry similar to QCD. The
chiral symmetry is both spontaneously and explicitly broken
by dynamical chiral symmetry breaking and nonzero current
quark masses. As a result, in the mass spectrum there exist
almost massless pseudo-Goldstone particles.
The nonlocal quark currents are given by4

Jaf;μgM ðxÞ ¼
Z

d4x1d4x2fðx1Þfðx2Þq̄ðx − x1Þ

× Γaf;μg
M qðxþ x2Þ; ð6Þ

withM ¼ S, P, V, A. The spin-flavor matrices are Γa
S ¼ λa,

Γa
P ¼ iγ5λa, Γa;μ

V ¼ γμλa, Γa;μ
A ¼ γ5γμλa. For the SUð2Þ

model, the flavor matrices are λa ≡ τa, a ¼ 0;…; 3 with
τ0 ¼ 1. fðxÞ is the form factor encoding the nonlocality of
the QCD vacuum. Since only four-quark interaction is
considered, the action of the model can be bosonized by the
usual Hubbard-Stratonovich trick with the introduction of
auxiliary mesonic fields for each quark current, i.e., P, S, V,
A. The resulting effective Lagrangian after spontaneous
symmetry breaking can be written in the form

2It is necessary to point out that the recent measurements of the
eþe− → πþπ− cross section from threshold to 1.2 GeV with the
CMD-3 detector [14] will probably reduce the tension between
the lattice and the data driven approach.

3It is interesting to note that in [22] it is shown that the axial-
vector exchange interaction in muonic hydrogen makes an
essential contribution to hyperfine splitting. The corrected hyper-
fine splitting is given in [23]. For hyperfine splitting, the axial-
vector contribution is even larger than the pion contribution (see
related results and uncertainties in [24–27]).

4Such a structure of the interaction corresponds to that of the
instanton liquid model (ILM) [29,30].
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Leff ¼ q̄ðxÞði∂̂x −McÞqðxÞ þ σ0J0SðxÞ

−
1

2G1

ððPaðxÞÞ2 þ ðS̃aðxÞ þ σ0δ
a
0Þ2Þ

−
1

2G2

ððVa;μðxÞÞ2 þ ðAa;μðxÞÞ2Þ þ PaðxÞJaPðxÞ

þ S̃aðxÞJaSðxÞ þ Va
μðxÞJa;μV ðxÞ þ Aa

μðxÞJa;μA ðxÞ: ð7Þ

The scalar isoscalar field has a nonzero vacuum expectation
value hS0i0 ¼ σ0 ≠ 0. The shift of the scalar isoscalar field
S0 ¼ S̃0 þ σ0, which is necessary to obtain a physical scalar
field with zero vacuum expectation value, leads to the
appearance of the dynamical5 quark mass, which depends
on the quark momentum6 (md ¼ −σ0). The separable
structure of quark current (6) leads to a solution where
momentum dependence is factorized and the “gap” equation
takes the simple form

mðpÞ ¼ mc þmdf2ðpÞ;

md ¼ G1

8Nc

ð2πÞ4
Z

d4Ek
f2ðk2Þmðk2Þ
k2 þm2ðk2Þ : ð8Þ

This equation for scalar coefficient md can easily be solved
numerically. The corresponding quark propagator is

SðpÞ ¼ ðp̂ −mðpÞÞ−1: ð9Þ

Meson propagators can be obtained by taking quadratic
terms over the meson field from the Lagrangian at one
loop level. For spin-0 mesons, the unrenormalized propa-
gators are

DMðp2Þ ¼ 1

−G−1
1 þ ΠMMðp2Þ ¼

g2Mðp2Þ
p2 −M2

M
; ð10Þ

the meson masses are located at points p2 ¼ M2
M, which

correspond to the solution of the equation

−G−1
1 þ ΠMMðM2

MÞ ¼ 0;

and the value of the meson coupling constant on-mass shell
gMðM2

MÞ can be obtained from (10) using l’Hôpital’s rule.
After redefinition of the meson fields, the spin-0 propagator
has the usual form

DR
Mðp2Þ ¼ DMðp2Þ=g2Mðp2Þ ¼ ðp2 −M2

MÞ−1: ð11Þ

The quark polarization loops are

ΠM1M2
ðp2Þ ¼ i

Nc

ð2πÞ4
Z

d4kf2ðk2þÞf2ðk2−Þ

× Trd;f½Sðk−ÞΓa
M1
SðkþÞΓb

M2
�;

where k� ¼ k� p=2 and the trace is taken over Dirac and
flavor matrices. This renormalization is important only for
the decay of mesons while for intermediate particles it is a
completely identical procedure.
Quark loops and propagators of vector and axial-vector

mesons should be split into longitudinal and transverse
parts

Dαβ
M ðp2Þ ¼ DT

Mðp2ÞPT;αβp þ DL
Mðp2ÞPL;αβp ; ð12Þ

with the help of appropriate projectors

PT;αβp ¼ gαβ −
pαpβ

p2
; PL;αβp ¼ pαpβ

p2
:

Transverse components correspond to spin-1 states and
unrenormalized propagators are

DT
V;Aðp2Þ ¼ 1

−G−1
2 þ ΠT

VV;AAðp2Þ ¼
g2V;Aðp2Þ
M2

V;A − p2
; ð13Þ

renormalized propagators are DT;R
M ðp2Þ ¼ DT

Mðp2Þ=g2Mðp2Þ,
and the masses can be found from the solution of

−G−1
2 þ ΠT

V;AðM2
V;AÞ ¼ 0: ð14Þ

On the other hand, the vertex functions and the meson
masses can be found from the Bethe-Salpeter equation,
which for the pion case is

δðp1 þ p2 − p3 − p4Þ
Γ̄π
p1;p3

⊗ Γπ
p2;p4

p2 −M2
π

; ð15Þ

where p is the total momentum of the q̄q pair, Γ̄ ¼ γ0Γ†γ0,
and pi are quark momenta. The meson vertex functions
without mixing in momentum space are

ΓMf;μg
pþ;p− ¼ gMðp2ÞΓfμg

M fðp−ÞfðpþÞ; ð16Þ

where p� and k are the quark and meson momenta,
respectively.
Longitudinal components are related to spin-0. In the

case of a system of pseudoscalar–axial-vector states, a
mixing [31,32] appears due to a quark polarization loop
with pseudoscalar and axial-vector vertices

Πμ
PAðp2Þ ¼ pμΠπa1ðp2Þ; ð17Þ

and physical states can be found as solutions of the matrix
equation [33] D̃P:

5Dynamical means that for small momentum the quark mass
mð0Þ is similar to the constituent one, while for large momentum
it behaves like the current one mc.

6The same symbols are used for Fourier-transformed func-
tions.
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D̃Pðp2Þ ¼ −G−1
2 þ ΠL

AAðp2Þ
Dðp2Þ ; D̃PAðp2Þ ¼ ΠPAðp2Þ

Dðp2Þ ;

D̃L
Aðp2Þ ¼ −G−1

1 þ ΠPPðp2Þ
Dðp2Þ ;

Dðp2Þ ¼ ½−G−1
1 þ ΠPPðp2Þ�½−G−1

2 þ ΠL
AAðp2Þ�

− p2Π2
PAðp2Þ;

D̃μ
PAðp2Þ ¼ pμD̃πa1ðp2Þ: ð18Þ

One can represent the mixing (18) as a modification of
the pion vertex with the contribution of the longitudinal
component of the axial-vector mesons

Γπ
pþ;p−

¼ iγ5λaðgπðp2Þ − p̂g̃πðp2ÞÞfðp−ÞfðpþÞ: ð19Þ

The pion coupling constants can be obtained by comparing
the T-matrix elements from (19) and the solution of the
system (18)

g2πðp2Þ
p2 −M2

π
¼ D̃Pðp2Þ; gπðp2Þg̃πðp2Þ

p2 −M2
π

¼ D̃PAðp2Þ: ð20Þ

Then the rest of the contribution of the longitudinal part of
the axial-vector meson is simply

D̃L
Aðp2Þ−p2

g̃2πðp2Þ
p2−M2

π
¼ 1

−G−1
2 þΠL

AAðp2Þ¼DL
Aðp2Þ; ð21Þ

i.e., all mixing is “eaten” by the modification of the pion
vertex.
Since the pion is a Goldstone boson, it should be massless

in the case of exact chiral symmetry, i.e., by setting mc to
zero. In a nonlocal model with only a scalar-pseudoscalar
sector, it is shown how one can reproduce the Gell-Mann–
Oakes–Renner relation

M2
πf2π ¼ −2mchq̄qi ð22Þ

analytically with the help of chiral expansion [34]. The
mixing with an axial-vector meson does not change the
Goldstone nature of the pion [35]. A similar detailed
derivation on the basis of a chiral expansion for the nonlocal
model with mixing will be presented elsewhere.

III. EXTERNAL CURRENTS

Because of nonlocality, the interactions with the electro-
magnetic gauge field should be introduced not only in the
quark kinetic part but also in the nonlocal quark currents.
Thus, in the presence of external gauge fields, the part of
the Lagrangian for meson fields with quark currents in
Eq. (6) takes the form

Maf;μgðxÞJaf;μgM ðxÞ ¼
Z

d4x1d4x2fðx1Þfðx2ÞQ̄ðx − x1; xÞ

×Maf;μgðxÞΓaf;μg
M Qðx; xþ x2Þ; ð23Þ

where the Schwinger phase factor7 is attached to
each quark field Qðx;xþx2Þ¼Eðx;xþx2Þqðxþx2Þ and
Q̄ðx−x1;xÞ¼ q̄ðx−x1ÞEðx−x1;xÞ,

Eðx; yÞ ¼ exp

(
−ieQ

Zy
x

duμ GμðuÞ
)
; ð24Þ

where Gμ is the photon field, e is the elementary charge,
and Q is the charge matrix of the quark fields.
Equation (23) is invariant under a gauge transformation

qðxÞ¼ expfiαðxÞQgq0ðxÞ;
q̄ðxÞ¼ q̄0ðxÞexpf−iαðxÞQg;

GμðxÞ¼G0
μðxÞþ

1

e
∂μαðxÞ;

Maf;μgðxÞλa¼ expfiαðxÞQgM0af;μgðxÞλaf−iαðxÞQg; ð25Þ

since the Schwinger phase factor is transformed as

Eðx; yÞ ¼ expfþiαðxÞQg exp
(
−ieQ

Zy
x

duμG0μðuÞ
)

× expf−iαðyÞQg
¼ expfþiαðxÞQgE0ðx; yÞ expf−iαðyÞQg: ð26Þ

The gauge invariance leads to the Ward identity.
Unfortunately, the Ward identity only fixes the longitudinal
part of the photon vertices, and to find an expression for the
transverse part of vertices one needs to specify rules for
the contour integral. One of the possible ways is to use
the straight-path ansatz [35–37] zμ ¼ xμ þ αðyμ − xμÞ,
0 ≤ α ≤ 1. An alternative scheme [38], which is used in
this paper, is based on the rules according to which the
derivative of the contour integral does not depend on the
form of the path and the explicit form of the path is not
important,

∂

∂yμ

Zy
x

dzνGνðzÞ¼GμðyÞ;δð4Þðx−yÞ
Zy
x

dzνGνðzÞ¼ 0: ð27Þ

The crucial feature of such prescriptions is that the resulting
expression for diagrams with nonlocal vertices is expressed

7In the case of a non-Abelian external field, the exponent
should be path-ordered.
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by finite differences with momenta of diagrams with local
vertices.
The Schwinger phase gauge factor contains the field in

the exponent. Thus, vertices with an arbitrary number of
photon fields can be generated. Because of the nonlocal
interaction between mesons and quarks, Fig. 1(a), the
vertices with one or two photons, Figs. 1(b) and 1(c), take
the form (p1 ¼ p2 þ q1 þ � � � þ qi):

ΓMγ;fαgμ
p1;p2;q1 ¼ −egMðkÞ

�
Jμ1ðp1;−q1ÞQΓaf;αg

M fðp2Þ þ fðp1ÞΓaf;αg
M QJμ1ðp2; q1Þ

�
;

ΓMγγ;fαgμν
p1;p2;q1;q2 ¼ e2gMðkÞ

�
Jμν2 ðp1;−q1;−q2ÞQ2Γaf;αg

M fðp2Þ þ Jμ1ðp1;−q1ÞQΓaf;αg
M QJν1ðp2; q2Þ

þ Jν1ðp1;−q2ÞQΓaf;αg
M QJμ1ðp2; q1Þ þ fðp1ÞΓaf;αg

M Q2Jμν2 ðp2; q1; q2Þ
�
;

Jμ1ðp; qÞ ¼ ð2pþ qÞμfð1Þpþq;p;

Jμν2 ðp; q1; q2Þ ¼ þ2gμνfð1Þp;pþq1þq2 þ ð2pþ q1Þμð2pþ 2q1 þ q2Þνfð2Þp;pþq1;pþq1þq2

þ ð2pþ q2Þνð2pþ 2q2 þ q1Þνfð2Þp;pþq2;pþq1þq2 ; ð28Þ

where the shorthand notations for first and second order
finite differences are introduced8:

fð1Þp;q ¼ fðpÞ − fðqÞ
p2 − q2

; fð2Þp;q;l ¼
fð1Þp;q − fð1Þp;l

q2 − l2
:

The vacuum expectation terms of the scalar field gen-
erate antiquark-quark-photon(s) vertices, which can be
rewritten from the expression for the scalar current (28)
by using Eq. (8) in terms of the quark mass

Γγ;μ
p1;p2;q ¼ eQ

�
γμ − ðp1 þp2Þμmð1Þ

p1;p2

�
;

Γγγ;μν
p1;p2;q1;q2 ¼ e2Q2

�
2gμνmð1Þ

p1;p2

þ ð2p2 þ q1Þμð2p1 − q2Þνmð2Þ
p1;p1þq1;p2

þ ð2p2 þ q2Þνð2p1 − q1Þμmð2Þ
p1;p1þq2;p2

�
: ð29Þ

In the presence of the vector sector, the photon(s)-quark
interaction vertices are additionally dressed by the ρðωÞ →
γ transition [35,39]; see Fig. 2. This dressing is transversal
and can be written in the form

CγVðq2Þ¼ iNc
PT;μνq

3

Z
d4k
ð2πÞ4

n
Tr
h
SðkþÞΓγ;μ

kþ;k−;qSðk−ÞΓ
V;ν
k−;kþ

i
þTr

h
ΓMγ;μν
k;k;q SðkÞ

io
; ð30Þ

where V stands for ρ0 or ω mesons. The transition has the
property CγVð0Þ ¼ 0 [35] and does not lead to the renorm-
alization of photon mass or quark charge [39].
One can understand the effect of dressing at the diagram

level by joining Fig. 2 with Fig. 1(a) or 1(b) to get the full
expression for vertices with one or two photons:

Γγ;μ
p2;p1;q ¼ Γγ;μ

p2;p1;q þ
X

V¼ρ0;ω

ΓV;α
p2;p1

PT;αμq CγVðqÞ;

Γγγ;μν
p2;p1;q1;q2 ¼ Γγγ;μν

p2;p1;q1;q2 þ
X

V¼ρ0;ω

ΓVγ;αν
p2;p1;q1P

T;αμ
q1 CγVðq1Þ

þ
X

V¼ρ0;ω

ΓVγ;αμ
p2;p1;q2P

T;αν
q2 CγVðq2Þ: ð31Þ

It is important to note that from Eq. (23), only one vector
meson can be connected with a quark-antiquark pair and
external electromagnetic fields at the point of interaction, as
shown in Figs. 3(d), 4(c), and 4(d). This fact is also critical
for describing the two-photon vertex of interaction with
quark fields, taking into account the ρ − γ mixing.

IV. AV FORM FACTOR

The transition form factor of the pseudoscalar meson has
only one structure,

(a) (b) (c)

FIG. 1. Meson-quark-antiquark vertices: (a) without a photon,
(b) with one photon, and (c) with two photons.

8Similar abbreviations are used for finite differences of the
mass function m → mðiÞ.
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Tμνðp; q1; q2Þ ¼ e2Δμν
P ðp; q1; q2Þ; Δμν

P ðp; q1; q2Þ ¼ εμνρσq
ρ
1q

σ
2FPðp2; q21; q

2
2Þ; ð32Þ

where p is the momentum of the virtual meson and the two photons have momenta q1;2.
The general expression of the axial-vector meson transition form factor is [40,41]

Tμν
α ðp; q1; q2Þ ¼ e2Δμν

A;αðp; q1; q2Þ; Δμν
A;αðp; q1; q2Þ ¼ iερστα

X6
i¼1

Aiðp2; q21; q
2
2ÞBμνρστ

i ;

B1 ¼ qτ1g
μρgσν; B2 ¼ qτ2g

μρgσν; B3 ¼ qν1q
ρ
1q

σ
2g

τμ;

B4 ¼ qν2q
ρ
1q

σ
2g

τμ; B5 ¼ qμ1q
ρ
1q

σ
2g

τν; B6 ¼ qμ2q
ρ
1q

σ
2g

τν; ð33Þ

where p, q1, and q2 are the momenta of the AV meson and photons with indices α, μ, ν. Gauge invariance leads to the
relations

A2ðp2; q21; q
2
2Þ ¼ ðq1 · q2ÞA6ðp2; q21; q

2
2Þ þ q21A5ðp2; q21; q

2
2Þ;

A1ðp2; q21; q
2
2Þ ¼ ðq1 · q2ÞA3ðp2; q21; q

2
2Þ þ q22A4ðp2; q21; q

2
2Þ; ð34Þ

and the Bose symmetry results in

(a) (b) (c) (d)

FIG. 2. Vector meson-photon mixing diagrams: (a) total, (b) with local vertex, and (c),(d) with nonlocal vertices.

(a) (b) (c) (d)

FIG. 3. Quark-antiquark-photon vertices: (a) full, (b) with local vertex, (c) with nonlocal vertex, and (d) with vector meson-photon
transition.

(a) (b) (c) (d)

FIG. 4. Quark-antiquark-photon-photon vertices: (a) full, (b) with nonlocal vertex and (c),(d) with vector meson-photon transition.
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A1ðp2; q21; q
2
2Þ ¼ −A2ðp2; q22; q

2
1Þ;

A3ðp2; q21; q
2
2Þ ¼ −A6ðp2; q22; q

2
1Þ;

A4ðp2; q21; q
2
2Þ ¼ −A5ðp2; q22; q

2
1Þ: ð35Þ

The part of the amplitude longitudinal to the meson
momentum is

Δμν
A;α;Lðp; q1; q2Þ ¼ iερσμνq1ρq2σpα

1

p2
ðA2ðp2; q21; q

2
2Þ

− A1ðp2; q21; q
2
2ÞÞ: ð36Þ

The transverse part of the amplitude can be rewritten
as9 [47]

Δμν
A;αðp; q1; q2Þ ¼ iερσταfRμρ

q1;q2R
νσ
q1;q2ðq1 − q2Þτðq1 · q2ÞFð0Þ

Aγ�γ� ðp2; q21; q
2
2Þ

þ Rνρ
q1;q2Q

μ
1q

σ
1q

τ
2F

ð1Þ
Aγ�γ� ðp2; q21; q

2
2Þ þ Rμρ

q1;q2Q
ν
2q

σ
2q

τ
1F

ð1Þ
Aγ�γ� ðp2; q22; q

2
1Þg;

Rμν
q1;q2 ¼ −gμν þ 1

X
fðq1 · q2Þðqμ1qν2 þ qμ2q

ν
1Þ − q21q

μ
2q

ν
2 − q22q

μ
1q

ν
1g;

Qμ
1 ¼ qμ1 − qμ2

q21
ðq1 · q2Þ

; Qν
2 ¼ qν2 − qν1

q22
ðq1 · q2Þ

; X ¼ ðq1 · q2Þ2 − q21q
2
2; ð37Þ

where Rμν
q1;q2 is the totally transverse tensor, Qμ

1 and Qν
2 are transverse with respect to q1 and q2, respectively.

10 After
projecting to the transverse components and using the Shouten identity, one can relate (33) and (37) as

Fð0Þ
Aγ�γ� ¼

ðq21 þ ðq1 · q2ÞÞA1 þ ððq1 · q2Þ þ q22Þðq21A5 þ ðq1 · q2ÞA6Þ
ðq1 · q2Þðq21 − q22Þ

;

Fð1Þ
Aγ�γ� ¼ −

ðq1 · q2Þ
X

ðA1 þ ðq1 · q2ÞA5 þ q22A6Þ: ð38Þ

The other set of Lorentz structures is suggested in [46], where the asymptotic behavior of meson transition form factors
from a light-cone expansion is studied. The relations with scalar functions FA

i from [46] are

FA
1 ¼ M2

AðA3 þ A6Þ=2; FA
2 ¼ −M2

AðA3 þ A5Þ; FA
3 ¼ −M2

AðA4 þ A6Þ: ð39Þ

In (38) and (39) the arguments of functions FðiÞ
Aγ�γ� , F

A
i , and Ai are ðp2; q21; q

2
2Þ.

According to the Landau-Yang theorem [49,50], the axial-vector mesons cannot decay into two real photons. However,
the coupling of 1þþ mesons to two photons is allowed if one or both photons are virtual. The two-photon “decay” width for
axial-vector mesons is defined for a quasireal longitudinal photon and a real photon as

Γ̃γγðAÞ ¼ lim
Q2→0

1

2

M2
A

Q2
ΓðA → γTγ

�
LÞ ¼

πα2M5
A

12
½Fð1Þ

Aγ�γ� ðM2
A; 0; 0Þ�2: ð40Þ

In the quark model, the photon-meson transition amplitude is a sum of the diagrams shown in Fig. 5. The general
expression for the quark loop integral has the form

Δμν
M;fαgðp; q1; q2Þ ¼ −iNc

Z
d4k
ð2πÞ4 Trð2Γ

M;fαg
k1;k2

Sðk1ÞΓγ;μ
k1;k3;−q1Sðk3ÞΓ

γ;ν
k3;k2;−q2Sðk2Þ

þ ΓMγ;fαgμ
k2;k3;−q1Sðk3ÞΓ

γ;ν
k3;k2;−q2Sðk2Þ þ ΓMγ;fαgν

k3;k1;−q2Sðk1ÞΓ
γ;μ
k1;k3;−q1Sðk3Þ

þ ΓM;fαg
k1;k2

Sðk1ÞΓγγ;μν
k1;k2;−q1;−q2Sðk2Þ þ ΓMγγ;fαgμν

k3;k3;−q1;−q2Sðk3ÞÞ; ð41Þ

where the symbols are the photon momenta q1;2, the meson momentum p ¼ q1 þ q2, and the quark momenta k1;2;3
(k1 ¼ k − q1, k2 ¼ kþ q2, k3 ¼ k). The first term in parentheses corresponds to the quark triangle diagram in Fig. 5(b)

9Various expressions for the transition form factor can be found in [42–48].
10Our definition differs from [47] by a factor M2

A.
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(the factor of 2 comes from the crossed one), and the next
terms correspond to the diagrams in Figs. 5(f) with effective
nonlocal vertices.

V. MODEL PARAMETERS

At first sight, the model parameters can be taken
from [35], since our model is somewhat similar: only
nonstrange particles with a vector–axial-vector sector, a
form factor in Gaussian form, fðk2Þ ¼ expð−k2=Λ2Þ in
Euclidean space, and currents with derivatives that are
leading to the quark wave function renormalization are not
included as in [51,52].
However, it is better to study the dependence of the LbL

contribution similar to the analysis in [20,21]. Recall that
the scalar-pseudoscalar sector model has three parameters:
the current quark mass mc, the dynamical quark mass md,
and the nonlocality parameter Λ.
In principle one can use the PDG value [6] to fix the

current quark mass. However, it is not a simple procedure
since the actual scale of the model is unknown, and
therefore it is not clear how to evolve the values from
the scale of 2 GeV. It is expected that the model scale
should be of the order of 1 GeV; however, even smaller
values for the model scale are discussed in the literature
[53]. Because of this complication the current quark mass is
considered as an independent model parameter.
To understand the stability of the model predictions with

respect to changes in the model parameters, one can vary
the dynamical quark mass in a rather wide physically
acceptable interval of 200–350 MeV, while fixing the other
parameters by using as the input the pion mass and the two-
photon decay constant of the neutral pion.11 The inclusion
of the vector sector leads to the appearance of an additional
four-quark coupling constant G2 which can be fixed in
favor of the ρ-meson mass, Eq. (14). Here one may
encounter the absence of confinement. The equation

k2 þm2ðk2Þ ¼ 0 ð42Þ

could be satisfied for some k2 ¼ −m2
pole, and as a result the

quark propagator could have singularities. For the Gaussian
form factor the type of singularities is poles [35,37]. The
first pair of them could be real-valued or complex-value,
and then there are infinitely many poles in the complex
plane. If the pole is real-valued, it corresponds to pole mass
mpole, and then it is convenient to have 4m2

pole > M2
ρ in

order to define G2 without the generation of an imaginary
part. For complex-valued poles the situation is a bit more
complicated. Imaginary parts of different poles cancel
each other but the real part of the polarization loop has
a cusp that should be unphysical. This happens at M2

thr ¼
2Reðm2

poleÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðm2

poleÞ2 þ Imðm2
poleÞ2

q
. Therefore the

region of md is restricted to 293–354 MeV.
The fitted model parameters are given in the Table I. In

principle mc, md, Λ, and G1Λ2 are not independent
quantities and are related via the gap equation (8), and
four values are given for cross-check. To prove that the
inclusion of the vector sector does not change model
parameters drastically, we perform a similar fit without
the vector sector and present it in the last three columns in
Table I. The changes of model parameters after the
inclusion of a vector–axial-vector sector are only small
corrections to model parameters at the 10% level.
One can see that in the md region 293–354 MeV the

variation of Λ is around 10%, mc roughly 20%, and
dimensionless ratio G2Λ2 about 30%. The ratio G2=G1

is between −0.08 and −0.14. The calculation with fixed
ratiosG2=G1 ¼ −0.08,G2=G1 ¼ −0.14 in a wider range of
dynamical quark masses is also performed to check the
sensitivity of the model to parameter changes.
In the instanton model the effective Lagrangian contains

only the scalar-pseudoscalar and the tensor sectors [54],
and the relation jG2j ≪ jG1j is expected. On the other hand,
the relation jG1j ¼ 4jG2j which is valid for large scales
can be obtained from one-gluon exchange [55]. In the
local Nambu-Jona-Lasinio (NJL) model it is found that

(a) (b) (c) (d)

(e) (f)

FIG. 5. Diagrams for meson transition form factor: (a) total, (b) quark triangle and (c),(d) with meson-photon-quark-antiquark vertex
transition, (e) quark-antiquark-two-photon, and (f) meson-quark-antiquark-two-photon.

11Particularly, the values Mπ ¼ 134.9768 MeV, Γπ0γγ ¼
ℏ
τ
Γγγ

Γtot
¼ 7.72 eV, and Mρ ¼ 775.26 MeV are used [6].
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jG2j > jG1j [31,56] or jG1=G2j between 0.78 and 1.2 for
different fits [55]. It seems that the relation between
couplings depends on the model and the scheme used
for fixing the model parameters.
The central value is taken for the set of model parameters

with md ¼ 310 MeV as it has the maximal Mthr. For this
parameter set one can calculate the properties of the a1 and
f1 mesons without any complications and ambiguities due
to singularities of the quark propagator. The axial-vector
meson mass in the model for this parameter set is found to
be MA ¼ 918 MeV. It is well-known that even in the local
NJL model the mass of the meson is underestimated [31].
In the local model, the masses of axial-vector and vector
mesons are related by M2

A ¼ M2
ρ þ 6M2. For the exper-

imental values of meson masses, this relation can be
fulfilled only for an unrealistically large mass of the light
constituent quark M ∼ 400 MeV.

VI. TWO-PHOTON FORM FACTOR

At present, there are only a few experimental data on
the form factor of 1þþ meson decay into two photons.
The L3 Collaboration has studied the reaction eþe− →
eþe−γ�γ� → eþe−f1ð1285Þ → eþe−ηπþπ− and extracted
the form factor of the f1ð1285Þ meson transition into pair
photons, of which only one is real [57]. The fitting for the
dipole form factor is

Γ̃γγðAÞ ¼ 3.5� 0.6� 0.5 keV;

Λdip ¼ 1.04� 0.06� 0.05 GeV: ð43Þ

We have compared the axial-vector meson form factors12

Fð0Þ and Fð1Þ (38) from the above-mentioned model calcu-
lations to the L3 Collaboration result (43) in the left part of

Fig. 6. The right part of Fig. 6 shows the comparison with
the results of the asymptotic transition form factor FA

2

from [46] and the calculation of a nonrelativistic quark
model [58] normalized to L3 data. One can see that when
the meson is on the mass shell, the agreement between
the model calculation and experimental result is quite
reasonable.
It is also instructive to compare the model with the

Brodsky-Lepage (BL) scaling result obtained in [46]. The
asymptotic constraints for the axial vector transition form
factor were first derived in holographic models in [59] and
later in the Brodsky-Lepage formalism [46].
The results are given in terms of the average photon

virtualities Q2 and the asymmetry parameter w in

Q2 ¼ q21 þ q22
2

; w ¼ q21 − q22
q21 þ q22

: ð44Þ

At large virtualities the form factor behaves as

FA
2 ¼ C

Q4
fA2 ðwÞ; ð45Þ

where C is the sum of different flavor contributions and the
asymmetry function is

fA2 ðwÞ ¼
3

4w3

�
3−2wþð3þwÞð1−wÞ

2w
log

1−w
1þw

�
: ð46Þ

In Fig. 7, the ratio fA2 ðwÞ=fA2 ð0Þ calculated from our
model is presented. For ω → −1, the asymmetry function
diverges similarly to [46]. It is interesting that this singular
behavior for ω → −1 is connected with the intermediate
ρðωÞ − γ mixing diagrams. However, in general, the
model result does not have a good correspondence to
the BL approach. Namely, the behavior near the −1 end
point is not smooth. This could be connected with the
properties of the Gaussian form factor, which leads to too

TABLE I. Different parametrizations of the model parameters Λ, mc, md, dimensionless combinations G1Λ2,
G2Λ2, and the position of the first two poles of the quark propagator in a complex plane. For comparison, the model
parameters for the model without vector particles using the same values of md are also presented and denoted by
asterisks.

md, MeV mc, MeV Λ, MeV G1Λ2 G2Λ2 m2
pole, GeV

2 Mthr, MeV m�
c, MeV Λ�, MeV G�

1Λ�2

293 7.12 1066.5 34.808 −3.00 0.152; 0.489 780 7.64 1029.3 35.144
300 7.28 1045.5 35.357 −4.36 0.180; 0.404 848 8.09 992.2 35.888
310 7.72 1004.8 36.297 −5.02 0.245� 0.091 1006 8.73 945.3 36.980
320 8.24 963.1 37.333 −5.20 0.202� 0.152 954 9.37 903.8 38.115
330 8.82 922.3 38.453 −5.09 0.164� 0.180 902 10.01 866.6 39.293
340 9.48 882.5 39.665 −4.72 0.131� 0.194 854 10.65 833.0 40.515
350 10.24 842.5 40.999 −3.98 0.101� 0.200 806 11.29 802.6 41.776
354 10.64 824.2 41.615 −3.33 0.088� 0.201 784 11.54 791.5 42.286

12It is necessary to point out that in Fig. 6 the model value of
the axial-vector mass is used for calculations while for the decay
width of the particle for phase space the experimental value
should be used.
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strong suppression. Therefore, it is interesting to consider
the generalization of asymmetry functions for finitely
large Q2,

fA2 ðwÞ
fA2 ð0Þ

¼ FA
i ð−M2

A;Q
2ð1þ ωÞ; Q2ð1 − ωÞÞ

FA
i ð−M2

A;Q
2; Q2Þ : ð47Þ

In Fig. 7, the result for Q2 ¼ 10 GeV2 is presented. One
can see that the correspondence with the BL approach
becomes slightly better.

VII. LbL CONTRIBUTION

The LbL contribution to the anomalous magnetic moment
of the muon is defined by the following projection [60]:

aHLbLμ ¼ 1

48mμ
Trððp̂þmμÞ½γρ;γσ�ðp̂þmμÞΠρσðp;pÞÞ;

Πρσðp0;pÞ ¼−ie6
Z

d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4

1

q21q
2
2ðq1þq2− kÞ2

× γμ
p̂0 − q̂1þmμ

ðp0 −q1Þ2−m2
μ
γν

p̂− q̂1− q̂2þmμ

ðp−q1−q2Þ2−m2
μ

× γλ
∂

∂kρ
Πμνλσðq1;q2;k−q1−q2Þ; ð48Þ

where mμ is the muon mass and the static limit kμ≡
ðp0 − pÞμ → 0 is implied. The four-rank polarization tensor
Πμνλσ is saturated by resonances, as shown in Fig. 8.
For pseudoscalar mesons the polarization tensor reads

Πμνλρðq1; q2; q3Þ ¼ iΔμν
P ðq1 þ q2; q1; q2Þ

1

ðq1 þ q2Þ2 −M2
P
Δλρ

P ðq1 þ q2; q3; q4Þ

þ iΔμρ
P ðq2 þ q3; q1; q4Þ

1

ðq2 þ q3Þ2 −M2
P
Δνλ

P ðq2 þ q3; q2; q3Þ

þ iΔμλ
P ðq1 þ q3; q1; q3Þ

1

ðq1 þ q3Þ2 −M2
P
Δνρ

P ðq1 þ q3; q2; q4Þ: ð49Þ

FIG. 7. The asymmetry functions fA2 ðwÞ=fA2 ð0Þ for the axial-
vector meson are shown: the black solid line is the asymptotic
result of the nonlocal model calculation, the blue dash-dotted line
is the asymptotic result (46) from [46], and the yellow dashed line
is the generalization of the asymmetry (47) for Q2 ¼ 10 GeV2.

FIG. 6. Left: Behavior of the form factors (38) for f1ð1285Þ on the mass shell. Nonlocal model calculation: black solid line

is −Fð1Þ
Aγ�γ� ðM2

A; Q
2; 0Þ, and blue dash-dotted line is Fð0Þ

Aγ�γ� ðM2
A;Q

2; 0Þ. The gray band is the result of the L3 Collaboration for

−Fð1Þ
Aγ�γ� ðM2

A;Q
2; 0Þ. Right: Behavior of theFA

2 form factor (39) for f1ð1285Þ. The gray band refers to the L3 result (43), the orange band
to the nonrelativistic quark model from [58], and the green and blue bands to the asymptotic result with or without inclusion of the axial-
vector mass [46].
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The expression for other mesons can be rewritten in the
same way with the corresponding changes of form factors
and propagators. For example, the first line in (49) for the
axial-vector meson is

iΔμν
A;αðq1 þ q2; q1; q2ÞðDT;R

M ððq1 þ q2Þ2ÞPT;αβq1þq2

þ DL;R
M ððq1 þ q2Þ2ÞPL;αβq1þq2ÞΔλρ

A;βðq1 þ q2; q3; q4Þ: ð50Þ

Then, by averaging over the direction of the muon
momentum, the result for aHLbLμ becomes a three-
dimensional integral with the radial integration variables
Q1, Q2 and the angular variable [20,61–64]. Since the
additional momentum in the meson-two-photon vertex is
the meson one which is already present in the meson
propagator, the averaging procedure is not changed.
After integrating over the angular variable, the LbL

contribution can be written in the form [21]

aLbLμ ¼
Z

∞

0

dQ1

Z
∞

0

dQ2 ρðQ1; Q2Þ; ð51Þ

where ρðQ1; Q2Þ is the density function for the contribution
to g − 2. We cross-checked that our program reproduces the

expression for the projectors proposed in [61] as well as the
numerical results for the pion pole [65].

VIII. RESULT

The LbL contribution of π with the π − a1 mixed
component and the a1 þ f1 mesons is shown in the left
part of Fig. 9. Recall that ideal mixing is implemented for
a1 and f1 mesons. The partial contributions of the trans-
verse and longitudinal components of the axial meson are
shown in the right part of Fig. 9. Surprisingly, most of the
contribution comes from the longitudinal part.
The analysis of the axial meson contribution is compli-

cated by the mixing between the a1 meson and pion, which
leads to a change in the pion properties. Therefore, it is
necessary to refit the model parameters before performing
the comparison. However, after refitting the model param-
eters, the pion LbL contribution is also changed. Hence, it
seems that it is more meaningful to subtract the result of the
π contribution in the model without the vector sector from
the full π þ a1 þ f1 contribution in the model with the
vector sector for a givenmd. In this way, the (additive) axial
contribution can be extracted (from the full π þ a1 þ f1
contribution).
It is helpful to consider a set of model parameters with

md ¼ 310 MeV, since this set is used as a central point for

(a) (b) (c)

FIG. 8. LbL contribution from intermediate meson exchanges.

FIG. 9. (in units 10−11) Left: The LbL contribution to the muon AMM from the π, a1 þ f1 and π þ a1 þ f1 exchanges for different
parametrizations as a function of the dynamical quark mass. The shaded area corresponds to the region between fixing G1=G2 ¼ −0.08
and G1=G2 ¼ −0.14. The black solid lines correspond to the parametrization where G2 is fixed in order to reproduce the physical value
of the ρ-meson mass. The cross corresponds to the result with md ¼ 310 MeV. The blue dash-dotted line is the pion contribution in the
model without the vector sector [19]. Right: The separate contribution of the longitudinal and transverse components of a1 þ f1 mesons
for different parametrizations as a function of the dynamical quark mass.
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estimations. It can be shown that the pion LbL contribution
in the model without the vector sector is 51.6 and the π þ
a1 þ f1 LbL contribution in the model with the vector
sector is 55.2, so the a1 þ f1 contribution is 3.6.
The error band is estimated as the difference between

the highest and lowest values of the contribution, i.e., for
G2=G1 ¼ −0.14 and G2=G1 ¼ −0.08, respectively.
Therefore, the estimated a1 þ f1 contribution is

3.6� 1.8. For rough estimations of the strange quark
contributions, the values of the current and dynamical
mass of the strange quark can be taken from [21] (using the
interpolation for values between md ¼ 305 and 320 MeV):
mc;s ¼ 239.9 MeV, and md;s ¼ 418.2 MeV. G2 and Λ are
taken from the set with md ¼ 310 MeV. As a result, in
ideal mixing, the f01 contribution is found to be small (from
T and L modes):

0.004þ 0.039 ¼ 0.041 ð52Þ

and therefore does not change the final answer for the
a1 þ f1 contribution.

IX. DISCUSSION

In the nonlocal chiral quark model, the contribution of
a1ð1260Þ and f1ð1285Þ in the case of ideal mixing is
estimated to be ð3.6� 1.8Þ × 10−11, which includes the full
kinematic dependence of the vertices, i.e., the off-shell
effects for the mesonic bound state, the reevaluation of the
pion contribution resulting from ρ − γ and π − a1 mixing,
and the refitting of the model parameters. Moreover, it is
normalized to the model without the vector sector, so that
the contributions from different parts could be added, thus
making it possible for further comparison with the other
models.

The axial-vector contribution is presented in Table II
together with other estimations.
At first glance, our result is comparable in size to that of
(i) early estimates in the NJL-like models [66–69],
(ii) using form factors from the L3 Collaboration

data [71],
(iii) resonances + operator product expansion (OPE)

restriction [62], and
(iv) resonances chiral theory [73].
Our result is lower than
(i) Melnikov-Vainshtein estimates [70].
(ii) AdS=CFT calculations including the tower of res-

onances [59,72].
(iii) AdS=CFT calculations with the Uð1ÞA anomaly [74].
Our result is compatible with the “White paper” 2020

estimate [5].
However, it should be pointed out that a detailed under-

standing of the axial-vector contribution a quite complicated
task. The following points should be discussed:

(i) dependence of the transition form factor on meson
virtuality,

(ii) contribution of the longitudinal mode,
(iii) the short-distance constraint for the LbL ampli-

tude, and
(iv) correspondence with the whole result.
In our model, the transition form factor depends not only

on the virtuality of photons but also on that of the meson.
This dependence results from the fact that mesons are
quark-antiquark bound states. It leads to suppression of
the LbL contribution due to the virtuality of the meson, and
in [19] it is discussed for π, η, η0 mesons. A similar situation
should occur in the local NJL model [67] or the Dyson–
Schwinger (DSE) approach [76]. There are approaches
based on phenomenological information from experiments,
i.e., making use of the form factor when the meson is on the

TABLE II. Contribution to aμ from axial-vector meson exchanges (in 10−11). The a1ð1260Þ, f1ð1285Þ, and f1ð1420Þ mesons are
denoted as a1; f1; f01. When possible, the partial contributions of the mesons are given in the note field in braces. T and L denote
transverse and longitudinal modes, respectively.

References Contribution Note

[66,67] 2.5� 1 ENJL model
[68,69] 1.74� 0.35 ENJL model
[70] 22� 5 Resonanceþ OPE, partial contributions a1; f1; f01: f5.7þ 15.6þ 0.8g
[71] 6.4� 2 Resonance, dipole FF from L3, partial contributions f1; f01: f5þ 1.4g
[62] 7.55� 2.71 Resonanceþ OPE, partial contributions a1; f1; f01: f1.89þ 5.19þ 0.47g
[72] 28 AdS=CFT, tower of resonances in channels a1; f1; f01, partial Tand L modes: f4þ 4þ 6g and f4þ 4þ 6g
[59] 22� 5 AdS=CFT, tower of resonances in channels a1; f1; f01, partial T and L modes: f9g and f13g
[73] 0.8þ3.5

−0.1 Resonance chiral theory, a1; f1; f01
[74] 27.8 AdS=CFT with the Uð1ÞA anomaly, v1(OPE) fit, partial contributions a1; f1; f01: f7.8þ 5.71þ 14.3g

25 v1ðFρ-fitÞ, partial contributions a1; f1; f01: f7.1þ 4.34þ 13.6g
[75] 15� 10 “Glasgow consensus”
[5] 6� 6 “White paper” 2020

This work 3.6� 1.8 Ratio of T and L modes contribution: T=L ¼ f0.22 − 0.43g. Estimation for f01 is 0.041
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mass shell [62,71]. In the model, one can investigate the on-
mass-shell case in the following way. First, the part of a
diagram that contains the form-factors in LbL can be
rewritten in the following form in Euclidean space:

AiðP2; ðQ1 þQ2Þ2; Q2
2Þ

1

Q2
1 þM2

A
AjðP2; Q2

1; 0Þ; ð53Þ

where Ai andAj are the form-factor functions, the additional
artificial momentum P2 is introduced in order to investigate
the dependence of the transition form factors on meson
virtuality. The two limiting cases are as follows:

(i) P2 ¼ −M2
A corresponds to the case where the form

factors are taken when the meson is on-shell.
(ii) P2 ¼ Q2

1 corresponds to the case where the depend-
ence of form factors on meson virtuality is taken into
account.

To connect these limits smoothly, we consider the following
two-step transition. First, fix the artificial momentum at
P2 ¼ −ζM2

A and ζ is decreased from 1 to 0. Then the
artificial momentum is taken to be P2 ¼ κQ2

1 where κ is
increased from 0 to 1. The same procedure is performed for
three possible diagrams, with appropriate changes of P2. In
Fig. 10, the LbL contribution for the f1 meson is presented
for this two-step transition.
In the limit P2 ¼ −M2

A one can estimate the axial-vector
contributions of the transverse modes for a1, f1, and f01
mesons with approximation ga1 ¼ gf1 ¼ gf0

1
and PDG

values of meson masses for two scenarios: ideal mixing
θ ¼ 35.3° and θ ¼ 62° from the L3 experiment [57]. The
results for the partial contributions from a1, f1, f01 are as
follows:

(i) ideal mixing: 1.95þ 5.08þ 0.004 ¼ 7.03, and
(ii) L3, θ ¼ 62°: 1.95þ 3.63þ 1.24 ¼ 6.82.

As a result, one can see that for the on-mass-shell
form factors, the result obtained in the paper is not far
from [62,71]. The strange quark contribution is also sup-
pressed as in (52). The source of this suppression could be
understand using the local NJL model: the Ai functions at

zero virtuality are proportional to 1=M2, where M is the
constituent mass and the ratio of strange to nonstrange
masses is rs=l ¼ Ms=Mu ∼ 1.6 [31,67]. As a result even if
we suppose that most of the changes in Ai for nonstrange
and strange quarks are from the constituent quark mass
values, the f01 contribution will be suppressed by order
2
9
r−4s=l ∼ 30 in comparison with a1. Then, one can naively

invert the ratio of a1 and f0 contributions in the ideal mixing
case in order to find the effective ratio of masses reffs=l,

reffs=l ¼
�
1.95
0.004

·
2

9
·

�
1230

1420

�
2
�

1=4
∼ 3: ð54Þ

In the nonlocal model, the ratio of a1 and f0 contributions is
suppressed even stronger due to the momentum dependence
since at the zero virtuality, the ratio of masses is somewhere
between msð0Þ=muð0Þ ≈ 2 and msð∞Þ=muð∞Þ ¼ mc;s=
mc;u ≈ 31. From the equation reffs=l¼msðμ2effÞ=muðμ2effÞ∼3,
one can estimate that such a ratio could be reached
when μeff ∼ 0.7 GeV.
Another important contribution has to do with the

longitudinal modes. By construction, the spin-1 field
contains a part that corresponds to spin 0. As a result, this
part of the field mixes with the pseudoscalar one. In the
case of the a1 meson, the corresponding particle is a pion,
and therefore the interplay of the longitudinal spin-0
component becomes important. In the nonlocal model,
most of the contribution comes from the L mode: the T=L
ratio is 0.22 for uncorrected data and 0.43 after normali-
zation of the pion contribution to the model without a
vector sector. In [72], using AdS=CFT correspondence to
hadronic physics, the T and L contributions of the axial-
vector towers of resonances are estimated to be of the same
size. In [59], it is discussed that results of [72] roughly
correspond to the HW2 holographic model results of [59]
with different sets of parameters. In [59], the T=L ratios
quoted for the HW1, HW2 models and an extrapolation to
match the L3 data for f1 and f01 are 17.4=23.2 ≈ 0.75,
12.0=16.6 ≈ 0.72, and 9=13 ≈ 0.69, correspondingly. It is
interesting that the only T-mode contribution in the non-
local model is similar to that obtained in the resonance
chiral theory [73].
The short distance constraint for the LbL amplitude in

the nonlocal model is connected with the quark loop
contribution, which is discussed in more details [19] (see
also [77,78]). In the model, the quark-loop contribution
provides the correct asymptotic, while the meson con-
tributions do not violate the OPE results due to the
dependence of form factors on meson virtuality. On the
other hand, for the resonances, the OPE restrictions can
be achieved by an infinite tower of resonances [59,72,79].
For example, in the five-dimensional model where
the fifth dimension is later integrated out and which
mimics QCD in the large-Nc limit [72] the short distance

FIG. 10. The contribution of the transverse component of the f1
meson to the anomalous magnetic moment at different values of
the artificial momentum P2 where ζ ¼ −M2

A=P
2 and κ ¼ Q2

1=P
2.
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constraint is achieved by the infinite tower of the axial-
vector contribution of a1ð1260Þ, f1ð1285Þ, and f�1ð1420Þ.
Similarly, in [59], the axial-vector meson contributions
arising from the Chern-Simons action in the holographic
QCD models are estimated, and it is found that the infinite
tower of axial-vector mesons leads to correct behavior at
short distances. In this sense, from quark-hadron duality
arguments, the quark loop represents the contribution of
an infinite number of excited states since only the ground
states are explicitly included in our model.
The contribution of the u, d, s quark loop is estimated

in [21] in the nonlocal model without spin-1 fields. The
total result

aHLbL;NχQMμ ¼ 168� 12.5; ð55Þ

and the partial contributions from pseudoscalar (π0, η, η0)
mesons 58.5� 8.7, the scalar [σ, a0ð980Þ, f0ð980Þ] mesons
3.4� 4.8, and the quark loop 110� 9. With the addition of
the axial-vector mesons, the central value becomes 171.6.
The number quoted for the total LbL contribution in “White
paper” 2020 [5] and “Snowmass 2021” [7] from phenom-
enology is 92� 19 while recent lattice results are 109.6�
15.9 [80] and 124.7� 14.9 [81]. Therefore, the question of
double counting in the model arises, since both contribu-
tions from mesons and quark alone is not far from the
“White paper” or lattice values. However, our calculations
with the inclusion of the vector–axial-vector sector are not
yet complete: while the model parameters refitted with
the inclusion of the vector sector are only mildly changed,
the effect of ρ − ω mixing influence on the quark loop
contribution is not yet properly accounted for in the quark
loop contribution.
The diagrams of the type shown in Figs. 3(d), 4(c), and

4(d), and similarly with three or four photons should be
taken into account. The very rough estimation in the local
NJL model of this effect can be done based on the value
quoted in [67] with the expression for the LbL contribution
for the constituent quark loop [82,83]. This analytical
expression is the contribution of a fermion to the order
ðmμ=MÞ4 [84] with appropriate factors. The values of the
constituent quark mass from [67] (Mu ¼ 275 MeV,
Ms ¼ 427 MeV), the result for the quark loop contribution
using the expression is 62, while the value quoted in [67] is
21(3), signal that there is strong suppression due to ρ − ω
mixing. On the other hand, the effects of dressing is
estimated to be 5% in the DSE approach [85].
Furthermore, one can estimate what the constituent

masses should be to give the nonstrange and strange
contributions of the size of the nonlocal model one. By
using the values uþ d quark contribution of 99.8 for
md;u ¼ 310 MeV and the strange contribution of 1.8913 in

the nonlocal model, the constituent quark masses Mu ¼
209 MeV and Ms ¼ 383 MeV can be obtained. One can
use these values to check reasonability of scale in the
momentum dependent mass as muðμ2effÞ ¼ Mu and
msðμ2effÞ ¼ Ms. The corresponding results for the momen-
tum scales from these equations are more or less reason-
able μeff ≈ 0.47 GeV and μeff ≈ 0.73 GeV.
Apart from the suppression due to ρ − ω mixing, other

sources for the decreasing of the phenomenological value
are the terms formally suppressed by 1=Nc, i.e., the
contribution from pion and kaon loops. One can find
the estimation of these contributions in “White paper”14

−16.4� 0.2. In the nonlocal model estimations subleading
corrections can be done with the help of the 1=Nc
expansion [87,88].

X. CONCLUSIONS

The LbL contribution of axial-vector mesons to the
anomalous magnetic moment of the muon is estimated in
the framework of the nonlocal quark model, which contains
only ground state mesons. The inclusion of axial-vector
particles leads to mixing with pseudoscalar states, and the
vertices of interaction with photons are dressed by vector
particles. The model parameters are refitted. To obtain the
final result, the contribution from π þ a1 þ f1 in the model
with the vector sector is normalized to the pion result in the
model without the vector sector.
In the nonlocal quark model, the meson transition form

factors depend not only on the photon virtuality but also on
the meson virtuality. This leads to a strong suppression, and
the resulting value for the a1 þ f1 LbL contribution is
ð3.6� 1.8Þ × 10−11 (the estimation for the f01 is 0.041).
Most of the contribution comes from the longitudinal
mode. In the future, we plan to reestimate the influence
of the vector–axial-vector sector on the quark loop con-
tribution and to extend our calculations to include sub-
leading 1=Nc corrections. In fact, the presence of the quark
loop is the main difference between models with quark
degrees of freedom and that with only mesonic degrees of
freedom or the dispersive approach. Up to now, it is not
clear how to relate these calculations since the mesonic
contributions are present in both approaches, while the
quark loop is attributed only to the quark models.
A clear understanding of the relation between the quark

model calculations and the dispersive approach needs an
extension of the nonlocal model beyond leading 1=Nc
order, at which the mesonic bound states appear in the
loops; therefore one can directly compare them with the
dispersive approach. The first step in this direction is made
in [88] where the nonlocal chiral quark model is extended
beyond mean field.

13Using interpolation for values between md;u ¼ 305 and
320 MeV.

14The recent DSE approach calculations gave a somewhat
similar value −16.1� 0.2 [86].
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