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Masses of positive-parity and negative-parity diquarks are investigated at finite temperature with a quark
chemical potential. We employ the three-flavor Nambu-Jona-Lasinio model, in order to delineate chiral
properties of the diquarks, in particular, the mass degeneracy of chiral partners under extreme conditions.
We focus on the effects of Uð1ÞA axial anomaly on manifestation of the chiral-partner structures. We find
that, in the absence of anomaly effects to the diquarks, the mass degeneracies in all ½ud�, ½su�, and ½sd�
diquark sectors take place prominently above the pseudocritical temperature of the chiral restoration. On
the other hand, the anomaly effects are found to hinder the ½ud� diquark from exhibiting the mass
degeneracy, accompanied by a slow reduction of the s̄s condensate, while the ½su� and ½sd� diquarks are not
much affected. Our present investigation will provide useful information on the chiral-partner structure
with the anomaly effects of diquarks for heavy-ion collision experiments of singly heavy baryons and
doubly heavy tetraquarks, and for future lattice simulations of the diquarks.
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I. INTRODUCTION

The light diquark, a cluster made of two light quarks (u,
d, and s quarks), is not a direct observable due to the color
confinement but is known as a useful ingredient of hadrons.
For instance, the mass spectrum and decay properties of
singly heavy baryons (SHBs) which consist of one heavy
quark (c or b quark) and two light quarks (i.e., one diquark)
can be understood from the diquarks dynamics of order
ΛQCD, the typical energy scale of quantum chromodynam-
ics (QCD), since the heavy quark whose mass is larger than
ΛQCD is regarded as a spectator [1,2]. Similarly, the diquark
is also expected to play an important role in dynamics of
delineating doubly heavy tetraquarks such as Tcc.
Light diquarks contain only light flavors, so that it is

useful to classify them from an appropriate chiral-
symmetry representation. Focusing on this fact, effective
models of diquarks from the viewpoint of chiral symmetry
have been constructed [3], and accordingly, investigation of
SHBs based on the chiral models have been promoted from
field-theoretical approaches with both linear and nonlinear

representations [4–11] and from diquark-heavy-quark
potential description [12–14].
Employing the linear representation of chiral symmetry,

we can describe not only ground states but also orbitally
excited states carrying opposite parities, known as chiral
partners, in a consistent manner. For diquarks as well, the
existence of chiral partners are expected, and theoretically,
for instance, properties of Λcð1=2−Þ as a chiral partner of
the ground-state Λcð2286Þ is being explored [9]. However,
no candidate of such Λcð1=2−Þ has been observed [15] and
the quest for finding such an excited state is left as an
important task.
The mass splitting between the chiral partners is

supposed to be generated by the spontaneous breakdown
of chiral symmetry. Thus, at extreme conditions such as
high temperature and/or density where chiral symmetry
may be restored, the masses of the chiral partners
will become degenerate [16]. As a precursor phenomenon,
it is expected that the masses of the chiral partners may
move towards the degeneracy at finite temperature and/or
density. If such reduction of the mass splitting of
Λcð1=2−Þ and Λcð2286Þ is realized in hot and/or dense
matter which can be produced in, for example, heavy-ion
collision (HIC) experiments, we expect to observe a
suppression of the Λcð1=2−Þ decay.
Thus far, chiral-partner structures of light mesons

[16–23], nucleons [24–28] and heavy-light mesons [29–32]
have been theoretically investigated. In addition, the partner
structures of diquarks and mesons in cold and dense
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two-color QCD, where the diquarks become color-singlet
baryon, have been examined [33], motivated by the
applicability of lattice simulations at density [34,35].
In addition to chiral symmetry, QCD possesses another

prominent symmetric properties: the Uð1ÞA axial anomaly
[36]. That is, a conservation law of the Uð1ÞA axial charge
is violated by quantum effects induced by external gluons,
which may be understood by instanton effects [37]. Chiral
effective models demonstrate that, at zero temperature
and density, the anomaly triggers the inverse mass hier-
archy of negative-parity diquarks [7]; a mass of non-
strange diquarks ½ud�− becomes larger than that of strange
diquarks ½su�− or ½sd�−. Such a peculiar inversion indicates
that the Uð1ÞA anomaly effects have a significant influence
on the chiral-partner structure of the diquarks in the
medium.
In light of the above symmetric properties of QCD, in

the present study we examine diquark mass changes at
finite temperature with a quark chemical potential to see
the chiral-partner structures and roles of the Uð1ÞA axial
anomaly for them. In particular, we employ the three-flavor
Nambu-Jona-Lasinio (NJL) model incorporating six-point
interactions responsible for theUð1ÞA axial anomaly effects
[38–42]. In hot QCD matter, our present investigation is
expected to provide useful information on SHBs and
doubly heavy tetraquarks from the viewpoint of chiral
symmetry and the Uð1ÞA axial anomaly for future HIC
experiments and lattice simulations. Meanwhile, in cold
and dense regime, further understandings of the onset of
color superconducting phase [43,44] and roles of theUð1ÞA
axial anomaly there, which is related to the continuous
transition from hadron to quark phases [45,46], are
expected.
This article is organized as follows. In Sec. II, our three-

flavor NJL model containing meson and diquark channels
is introduced, and in Sec. III our strategy to evaluate the
diquark masses in medium and our regularization tech-
nique are explained. Based on them, we present numerical
results of the diquark masses at finite temperature and
chemical potential in Sec. IV. In Sec. V, we discuss the
SHB spectrum at finite temperature expected from our
results on the diquark masses, and artifacts induced by our
regularization. Finally, Sec. VI is devoted to concluding
our present study.

II. MODEL

In this section, we present our NJL model toward
investigation of diquark masses at finite temperature with
a quark chemical potential.
Our NJL Lagrangian is separated into three parts of

LNJL ¼ L2q þ L4q þ Lanom
6q : ð1Þ

The first part L2q includes kinetic and mass terms of
dynamical quarks as

L2q ¼ ψ̄ði=∂þ μγ0 −MÞψ ; ð2Þ

where ψ ¼ ðu; d; sÞT is a three-flavor quark multiplet.
The quantities μ and M are a quark chemical potential
and a mass matrix of the current quarks, respectively.
Under SUð2ÞI isospin symmetry M takes the form
of M ¼ diagðmq;mq;msÞ.
The second part in Eq. (1), L4q, describes four-point

interactions among the quarks

L4q¼G
X8
A¼0

½ðψ̄λAfψÞ2þðψ̄iγ5λAfψÞ2�

þH
X

A;A0¼2;5;7

h
jψTCλAfλ

A0
c ψ j2þjψTCγ5λAfλ

A0
c ψ j2

i
: ð3Þ

In this Lagrangian, λAf and λA
0

c are the Gell-Mann matrices
for flavor and color spaces, respectively, and C ¼ iγ2γ0 is
the charge-conjugation Dirac matrix. As for the H term in
Eq. (3), we have included only A; A0 ¼ 2, 5, 7 channels
which are antisymmetric with respect to both the flavor and
color indices, since these combinations can generate the
most attractive forces in between the two quarks [43]. At
first glance, symmetric properties of the two terms in
Eq. (3) are obscure because they are written in terms of
parity-eigenstate bases. In order to see the properties more
clearly, we introduce the following quark bilinear fields:

ϕij ¼ ðψ̄RÞaj ðψLÞai ;
ðηLÞai ¼ ϵijkϵ

abcðψT
LÞbjCðψLÞck;

ðηRÞai ¼ ϵijkϵ
abcðψT

RÞbjCðψRÞck: ð4Þ

In these fields, ψRðLÞ ¼ 1�γ5
2

ψ is the right-handed (left-
handed) quark, and the subscript “i; j;…” and superscript
“a; b;…” represent flavor and color fundamental indices,
respectively. Under Uð3ÞL ×Uð3ÞR chiral transformation,
ψL and ψR transform as ψL → gLψL and ψR → gRψR,
where gL ∈ Uð3ÞL (gR ∈ Uð3ÞR), and accordingly, chiral
transformation laws of ϕ, ηL and ηR read

ϕ → gLϕg
†
R; ηL → ηLg

†
L; ηR → ηRg

†
R: ð5Þ

Meanwhile, one can easily derive identities

tr½ϕ†ϕ� ¼ 1

8

X8
A¼0

h
ðψ̄λAfψÞ2 þ ðψ̄iγ5λafψÞ2

i
;

ηTLη
�
L þ ηTRη

�
R ¼ 1

2

X
A;A0¼2;5;7

h
jψTCλAfλ

A0
c ψ j2

þ jψTCγ5λAfλ
A0
c ψ j2

i
; ð6Þ
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and hence, the four-point interaction Lagrangian (3) is
rewritten into

L4q ¼ 8Gtr½ϕ†ϕ� þ 2HðηTLη�L þ ηTRη
�
RÞ: ð7Þ

Equation (7) clearly shows Uð3ÞL × Uð3ÞR chiral sym-
metry of the interactions. Moreover, (global) SUð3Þc color
symmetry is also manifest since ηL and ηR belong to 3̄
representation of SUð3Þc color group.
The third part of Eq. (1), Lanom:

6q , is of the form

Lanom:
6q ¼ −8Kðdetϕþ detϕ†Þ

þ K0ðηTLϕη�R þ ηTRϕ
†η�LÞ: ð8Þ

This Lagrangian is again left unchanged under SUð3ÞL ×
SUð3ÞR chiral and SUð3Þc color transformations but is not
invariant under Uð1ÞA axial transformation. That is, Eq. (8)
is responsible for leading contributions from the Uð1ÞA
axial anomaly. In particular, the K term is often referred to
as the Kobayashi-Maskawa-’t Hooft (KMT) determinant
term which plays an essential role in generating a large
mass of η0 meson [38–41]. The K0 term captures direct
contributions of the anomaly effects to diquarks through
interactions with mesons [42].
When we derive the four-point interactions in Eq. (3)

from a one-gluon exchange vertex, the Fierz transformation
yieldsH=G ¼ 3=4 [43]. Similarly, one obtain K0=K ¼ 1=1
from the Fierz transformation of the instanton vertex
for the anomalous six-point interactions in Eq. (8)
[42,47]. However, in the present study, we regard all of
them as free parameters based on our effective-model
description.
In the vacuum, i.e., at zero temperature and density, it is

well known that (approximate) SUð3ÞL × SUð3ÞR chiral
symmetry is spontaneously broken by emergence of chiral
condensates such that quarks acquire their dynamical
masses. Under an assumption of SUð2ÞI isospin symmetry,
the chiral condensates are described by vacuum expectation
values (VEVs) of ϕ as hϕi ¼ 1

2
diagðhq̄qi; hq̄qi; hs̄siÞ. In

cold and dense regime, VEVs of ηL and ηR can also become
nonzero which represents emergence of the color super-
conducting phase [43,44]. However, in our present study,
we mainly focus on hot medium so that we do not take into
account such condensates.
In order to evaluate fluctuations of diquark modes at the

one-loop level of quarks, we make use of the following
linearization of multi-quark couplings with the help of the
Wick’s theorem:

XY → XY þ hXiY þ hYiX − hXihYi;
XYZ → hXiYZ þ hYiXZ þ hZiXY þ hXihYiZ

þ hYihZiX þ hZihXiY − 2hXihYihZi: ð9Þ

Within this approximation, from NJL Lagrangian (1)
dynamical masses of qð¼ u; dÞ and s quarks incorporating
the chiral condensates are read off as

Mq ¼ mq − 4Ghq̄qi þ 2Khq̄qihs̄si;
Ms ¼ ms − 4Ghs̄si þ 2Khq̄qi2; ð10Þ

respectively. The mass formula (10) indicates that the
nonanomalous G term generates hq̄qi (hs̄si) contributions
to Mq (Ms). Meanwhile, the anomalous K term generates
hs̄si (hq̄qi) contributions toMq (Ms), that is, the latter term
mixes different flavor contents. Besides, Eq. (10) indicates
that the modification of Mq is strongly controlled by the
change of hq̄qi regardless of the value of K since hq̄qi
appears in both the G and K terms, while that of Ms is not.
These noteworthy features play important roles for temper-
ature dependences of Mq and Ms, as will be explained in
Sec. IVA.

III. FLUCTUATIONS OF DIQUARKS

Diquark masses within the NJL model can be evaluated
by pole positions of the corresponding Bethe-Salpeter (BS)
amplitudes. In this section, we show our strategy to
compute the BS amplitude.

A. BS amplitude

In this subsection, we provide explanations how to
evaluate pole positions in the BS amplitudes for diquark
channels [48].
The BS amplitude T is evaluated by infinite scatterings

of the quarks as

T ¼ KþKJKþKJKJKþ � � �
¼ KþKJT ; ð11Þ

namely,

T ¼ ð1 −KJ Þ−1K; ð12Þ

where K is the interaction kernel and J is a loop function
generated by quarks. In our present analysis, the kernels are
read off from effective four-point interactions of quarks in
Eq. (1) with the approximation (9). When we take parity
eigenstates of the diquarks as

ðηþÞai ¼
1ffiffiffi
2

p ðηR − ηLÞai ¼
1ffiffiffi
2

p ϵijkϵ
abcψT;b

j Cγ5ψc
k;

ðη−Þai ¼
1ffiffiffi
2

p ðηR þ ηLÞai ¼
1ffiffiffi
2

p ϵijkϵ
abcψT;b

j Cψc
k; ð13Þ
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the kernel K’s for respective diquark channels read

Kab
½qq�þ ¼ i

�
2H −

K0

2
hs̄si

�
δab;

Kab
½sq�þ ¼ i

�
2H −

K0

2
hq̄qi

�
δab;

Kab
½qq�− ¼ i

�
2H þ K0

2
hs̄si

�
δab;

Kab
½sq�− ¼ i

�
2H þ K0

2
hq̄qi

�
δab: ð14Þ

In these expressions, the subscripts ½qq�� and ½sq��
represent ðη�Þi¼3 and ðη�Þi¼1;2 channels, respectively,
where the former is made of u and d quarks while the
latter is of u and s (or d and s) quarks. The color factor δab

guarantees the conservation of color charges. One sees that
the K0 term incorporates the chiral condensates so as to
induce the mass differences of the positive- and negative-
parity diquarks.
As for the loop functions, within the present quark one-

loop approximation, J ’s for scalar diquark channels are
given by

J ab
½qq�þðqÞ ¼ 4iδabT

X
m

Z
d3p
ð2πÞ3 tr

h
γ5SðqÞðp0Þγ5ScðqÞðpÞ

i
;

J ab
½sq�þðqÞ ¼ 2iδabT

X
m

Z
d3p
ð2πÞ3 tr

h
γ5SðsÞðp0Þγ5ScðqÞðpÞ

þ γ5SðqÞðp0Þγ5ScðsÞðpÞ
i
; ð15Þ

and those for pseudoscalar diquark channels are by

J ab
½qq�−ðqÞ ¼ 4iδabT

X
m

Z
d3p
ð2πÞ3 tr

h
SðqÞðp0ÞScðqÞðpÞ

i
;

J ab
½sq�−ðqÞ ¼ 2iδabT

X
m

Z
d3p
ð2πÞ3 tr

h
SðsÞðp0ÞScðqÞðpÞ

þ SðqÞðp0ÞScðsÞðpÞ
i
; ð16Þ

with p0 ¼ pþ q. In these equations, we have defined
propagators of q quark by

SðqÞðpÞ ¼ F:T:h0jTqðxÞq̄ð0Þj0i ¼ i
X
ζ¼p;a

ΛðqÞ
ζ ðpÞ

p0 − ηζϵ
ðqÞ
ζ ðpÞ

;

ScðqÞðpÞ ¼ F:T:h0jTqcðxÞq̄cð0Þj0i ¼ i
X
ζ¼p;a

ΛðqÞ;c
ζ ðpÞ

p0 þ ηζϵ
ðqÞ
ζ ðpÞ

;

ð17Þ

where the symbol “F.T.” stands for the Fourier trans-
formation. In Eq. (17), we have introduced a propagator
of the charge-conjugated quark field qc ¼ Cq̄T so as to

perform the Dirac trace of the one loops straightforwardly.

Besides, ΛðqÞ
ζ is a projection operator with respect to the

positive-energy and negative-energy contributions of the q
quark

ΛðqÞ
ζ ðpÞ ¼ EðqÞ

p γ0 þ ηζðMq − p · γÞ
2EðqÞ

p

; ð18Þ

with EðqÞ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
and ηp ¼ þ1 (ηa ¼ −1). The

charge-conjugated projection operator is simply given by
interchanging the subscripts p and a as

ΛðqÞ;c
p ðpÞ ¼ ΛðqÞ

a ðpÞ; ΛðqÞ;c
a ðpÞ ¼ ΛðqÞ

p ðpÞ: ð19Þ
The single-quark dispersion relations affected by the
chemical potential μ read

ϵðqÞζ ðpÞ ¼ EðqÞ
p − ηζμ: ð20Þ

In the same way, propagators of the s quark are defined.
It should be noted that, in Eqs. (15) and (16), we have
replaced p0 integrations by the Matsubara summations
iT
P

m with p0 ¼ iωm ≡ ið2mþ 1ÞπT (m ∈ Z) being the
Matsubara frequencies in order to access hot matter [49].
As for the one-loop functions in Eqs. (15) and (16),

kinetic contributions stemming from spin couplings among
quarks and diquarks are evaluated by the Dirac trace
formulas (f; f0 ¼ q or s)

tr½Λðf0Þ
ζ0 ðp0ÞΛc;ðfÞ

ζ ðpÞ� ¼ 1þ ηζ0ηζðp0 · p −Mf0MfÞ
Eðf0Þ
p0 EðfÞ

p

;

tr½γ5Λðf0Þ
ζ0 ðp0Þγ5Λc;ðfÞ

ζ ðpÞ� ¼ −1 −
ηζ0ηζðp0 · pþMf0MfÞ

Eðf0Þ
p0 EðfÞ

p

:

ð21Þ

In addition, medium effects describing occupation proba-
bilities of the quarks are incorporated by the Matsubara
summation formula [49]

T
X
m

1

ðiωm þ iω̄n − ϵ0p0 Þðiωm − ϵpÞ

¼ fFðϵpÞ − fFðϵ0p0 Þ
iω̄n − ϵ0p0 þ ϵp

; ð22Þ

with ωm ≡ ð2mþ 1ÞπT and ω̄n ≡ 2nπT (m; n ∈ Z), where
fFðϵÞ ¼ 1=ðeϵ=T þ 1Þ is the Fermi-Dirac distribution func-
tion. The retarded one-loop functions in our real-time world
are obtained by the analytic continuation of iω̄n → q0 þ i0
in the denominator of Eq. (22).
With the help of Eqs. (21) and (22), the one-loop

functions in Eqs. (15) and (16) can be evaluated.
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B. Regularization

In making use of the formula (22), one encounters
ultraviolet (UV) divergences when either ϵ0p0 or ϵp is
negative, which must be regularized. In the present study,
we employ a three-dimensional proper-time regularization
including not only a UV cutoff ΛUV but also an infrared
(IR) cutoff μIR [48,50]. This treatment is implemented by
the following replacement:

1

q0 − ϵ0p0 þ ϵp þ i0
→

Rðq0 − ϵ0p0 þ ϵpÞ
q0 − ϵ0p0 þ ϵp þ i0

; ð23Þ

where the function RðxÞ is defined by

RðxÞ≡ e−
jxj

ΛUV − e−
jxj
μIR : ð24Þ

In this regularization, real and imaginary parts of Eq. (23)
are read off by the Cauchy principal-value integral

Rðq0 − ϵ0p0 þ ϵpÞ
q0 − ϵ0p0 þ ϵp þ i0

¼ P
Rðq0 − ϵ0p0 þ ϵpÞ
q0 − ϵ0p0 þ ϵp

− iπ

× δðq0 − ϵ0p0 þ ϵpÞRðq0 − ϵ0p0 þ ϵpÞ:
ð25Þ

Thus, the remaining p integration yields a relation
q0 − ϵ0p0 þ ϵp ¼ 0 from the delta function for the imaginary

part, and using a propertyRð0Þ ¼ e0 − e0 ¼ 0 one can find

Rðq0 − ϵ0p0 þ ϵpÞ
q0 − ϵ0p0 þ ϵp þ i0

¼Im0: ð26Þ

Equation (26) implies that all imaginary parts of the loop
function J ’s are removed when both the UVand IR cutoffs
ΛUV and μIR are introduced [48,50]. Therefore, when
focusing on diquarks in medium, the regularization (23)
allows us to remove physical processes of the Landau
dampings such as q → ½qq� þ q̄ as well as those of the pair
creations (annihilations) such as ½qq� → qþ q (qþ q →
½qq�). Hence, the present regularizationmethod enables us to
define the masses of diquarks properly with no influence
from imaginary parts. Intuitively speaking, disappearance of
the physical processes implies that diquarks are doped into
color-singlet matter and cannot discriminate colorful quarks
in medium, while they indeed feel the medium effects. In
this sense, diquarks are “confined” in our present study.1

Therefore, our present treatment is expected to be useful
for delineating modifications of SHBs and Tcc in medium
where the diquarks are well confined in the hadrons. The
existence of the IR cutoff in QCD is suggested by, e.g., the
usefulness of inclusion of a bare gluonmasswhich represents
nonperturbative nature of QCD both in the vacuum [51] and
in medium [52,53].2 We note that the disappearance of
imaginary parts shown in Eq. (26) follows a cancellation of
UVand IR regulator parts in Eq. (24), so that the imaginary
parts are left finitewhen the IR cutoff is not included.We also
note that RðxÞ → 1 is recovered when we take ΛUV → ∞
and μIR → 0.

C. Loop functions

We are now ready to get rather concrete analytic
expressions of the loop functions. That is, using
Eqs. (21) and (22) together with the regularization (23),
the loop function J ’s of the diquarks at rest q ¼ 0 read

J ab
½qq�þðq0Þ¼4iδab

Z
d3p
ð2πÞ3

�
T ½qq�þ
pp ðpÞRðq0−2ϵðqÞp ðpÞÞ

q0−2ϵðqÞp ðpÞ
h
1−2fFðϵðqÞp ðpÞÞ

i
−T ½qq�þ

aa ðpÞRðq0þ2ϵðqÞa ðpÞÞ
q0þ2ϵðqÞa ðpÞ

h
1−2fFðϵðqÞa ðpÞÞ

i�
;

ð27Þ

J ab
½sq�þðq0Þ ¼ 4iδab

Z
d3p
ð2πÞ3

�
T ½sq�þ
pp ðpÞRðq0 − ϵðsÞp ðpÞ − ϵðqÞp ðpÞÞ

q0 − ϵðsÞp ðpÞ − ϵðqÞp ðpÞ
h
1 − fFðϵðqÞp ðpÞÞ − fFðϵðsÞp ðpÞÞ

i

þ T ½sq�þ
pa ðpÞRðq0 − ϵðsÞp ðpÞ þ ϵðqÞa ðpÞÞ

q0 − ϵðsÞp ðpÞ þ ϵðqÞa ðpÞ
h
fFðϵðqÞa ðpÞÞ − fFðϵðsÞp ðpÞÞ

i

− T ½sq�þ
ap ðpÞRðq0 þ ϵðsÞa ðpÞ − ϵðqÞp ðpÞÞ

q0 þ ϵðsÞa ðpÞ − ϵðqÞp ðpÞ
h
fFðϵðqÞp ðpÞÞ − fFðϵðsÞa ðpÞÞ

i

− T ½sq�þ
aa ðpÞRðq0 þ ϵðsÞa ðpÞ þ ϵðqÞa ðpÞÞ

q0 þ ϵðsÞa ðpÞ þ ϵðqÞa ðpÞ
h
1 − fFðϵðqÞa ðpÞÞ − fFðϵðsÞa ðpÞÞ

i�
; ð28Þ

2The massive-gluon description for chiral dynamics in low-energy QCD was discussed in, e.g., Refs. [54,55].

1It was shown that not only imaginary parts but also poles of the BS amplitudes in the physical region disappear, when including the
next-to-leading order of the rainbow approximation. In Ref. [48], the authors used the term “confinement” from these two observations.

AXIAL ANOMALY EFFECT ON THE CHIRAL-PARTNER … PHYS. REV. D 108, 014030 (2023)

014030-5



J ab
½qq�−ðq0Þ ¼ 4iδab

Z
d3p
ð2πÞ3

�
T ½qq�−
pp ðpÞRðq0 − 2ϵðqÞp ðpÞÞ

q0 − 2ϵðqÞp ðpÞ
h
1 − 2fFðϵðqÞp ðpÞÞ

i

þ 2T ½qq�−
pa ðpÞRðq0 − ϵðqÞp ðpÞ þ ϵðqÞa ðpÞÞ

q0 − ϵðqÞp ðpÞ þ ϵðqÞa ðpÞ
h
fFðϵðqÞa ðpÞÞ − fFðϵðqÞp ðpÞÞ

i

− T ½qq�−
aa ðpÞRðq0 þ 2ϵðqÞa ðpÞÞ

q0 þ 2ϵðqÞa ðpÞ
h
1 − 2fFðϵðqÞa ðpÞÞ

i�
; ð29Þ

and

J ab
½sq�−ðq0Þ ¼ 4iδab

Z
d3p
ð2πÞ3

�
T ½sq�−
pp ðpÞRðq0 − ϵðsÞp ðpÞ − ϵðqÞp ðpÞÞ

q0 − ϵðsÞp ðpÞ − ϵðqÞp ðpÞ
h
1 − fFðϵðqÞp ðpÞÞ − fFðϵðsÞp ðpÞÞ

i

þ T ½sq�−
pa ðpÞRðq0 − ϵðsÞp ðpÞ þ ϵðqÞa ðpÞÞ

q0 − ϵðsÞp ðpÞ þ ϵðqÞa ðpÞ
h
fFðϵðqÞa ðpÞÞ − fFðϵðsÞp ðpÞÞ

i

− T ½sq�−
ap ðpÞRðq0 þ ϵðsÞa ðpÞ − ϵðqÞp ðpÞÞ

q0 þ ϵðsÞa ðpÞ − ϵðqÞp ðpÞ
h
fFðϵðqÞp ðpÞÞ − fFðϵðsÞa ðpÞÞ

i

− T ½sq�−
aa ðpÞRðq0 þ ϵðsÞa ðpÞ þ ϵðqÞa ðpÞÞ

q0 þ ϵðsÞa ðpÞ þ ϵðqÞa ðpÞ
h
1 − fFðϵðqÞa ðpÞÞ − fFðϵðsÞa ðpÞÞ

i�
; ð30Þ

where we have defined the kinetic contributions stemming
from spin-coupling properties by

T ½qq�þ
pp ðpÞ ¼ T ½qq�þ

aa ðpÞ ¼ 2;

T ½sq�þ
pp ðpÞ ¼ T ½sq�þ

aa ðpÞ ¼ 1þ p2 þMqMs

EðqÞ
p EðsÞ

p

;

T ½sq�þ
pa ðpÞ ¼ T ½sq�þ

ap ðpÞ ¼ 1 −
p2 þMqMs

EðqÞ
p EðsÞ

p

; ð31Þ

for positive-parity diquarks and

T ½qq�−
pp ðpÞ ¼ T ½qq�−

aa ðpÞ ¼ 2p2

ðEðqÞ
p Þ2

;

T ½qq�−
pa ðpÞ ¼ 2M2

q

ðEðqÞ
p Þ2

;

T ½sq�−
pp ðpÞ ¼ T ½sq�−

aa ðpÞ ¼ 1þ p2 −MqMs

EðqÞ
p EðsÞ

p

;

T ½sq�−
pa ðpÞ ¼ T ½sq�−

ap ðpÞ ¼ 1 −
p2 −MqMs

EðqÞ
p EðsÞ

p

; ð32Þ

for negative-parity diquarks. The differences of these
quantities between the chiral partners are proportional to

Mq so that they vanish in a limit ofMq → 0, e.g.,T ½qq�þ
pp ðpÞ ¼

T ½qq�−
pp ðpÞ → 2 and T ½sq�þ

pp ðpÞ ¼ T ½sq�−
pp ðpÞ → 1þ jpj=EðqÞ

p ,
which reflects a fact that all diquarks examined in this work
contain at least one q quark.
From Eqs. (27) and (29), for instance, one can see that

variations of the loop functions between the chiral partners
are solely incorporated by the kinetic contributions (31) and
(32). This is easily understood since ½qq�þ and ½qq�−
diquarks differ by only their spin structures; the former
is 1S0 while the latter is 3P0 in a quark-model sense, with the
same color and flavor contents. Similar structures are found
in ½sq�þ and ½sq�− sectors from Eqs. (28) and (30).
The loop functions of antidiquarks ½q̄ q̄�� and ½s̄ q̄�� are

simply evaluated by changing the variable q0 to −q0 in the
corresponding J ’s as

J ab
½q̄ q̄�þðq0Þ¼J ab

½qq�þð−q0Þ; J ab
½s̄ q̄�þðq0Þ¼J ab

½sq�þð−q0Þ;
J ab

½q̄ q̄�−ðq0Þ¼J ab
½qq�−ð−q0Þ; J ab

½s̄ q̄�−ðq0Þ¼J ab
½sq�−ð−q0Þ;

ð33Þ

due to the charge-conjugation properties.

IV. NUMERICAL RESULTS

In this section, we present our numerical results of mass
changes of the diquarks in medium.

DAIKI SUENAGA and MAKOTO OKA PHYS. REV. D 108, 014030 (2023)

014030-6



A. Inputs

Before showing the results, in this subsection we explain
our strategy to fix the model parameters.
Our NJL model contains eight parameters: the current

quark masses mq and ms, four-point couplings G and H,
six-point couplings responsible for the Uð1ÞA axial
anomaly K and K0, the UV cutoff ΛUV and the IR cutoff
μIR. Since H and K0 do not affect pseudoscalar meson
properties in our treatment, first we fix the remaining mq,
ms, G, K, ΛUV, and μIR from the meson sector.
As for inputs from the pseudoscalar sector, we adopt

vacuum values of a pion mass, a kaon mass, a pion decay
constant, and a kaon decay constant as [15]

mπ ¼ 0.138 GeV; mK ¼ 0.496 GeV;

fπ ¼ 0.0921 GeV; fK ¼ 0.110 GeV: ð34Þ

These inputs allow us to determine the four parameters mq,
ms, G, K for a given set of ΛUV and μIR. The latter two
parameters are fixed so as to derive a reasonable temper-
ature dependence of the chiral condensates hq̄qi and hs̄si at
μ ¼ 0, where lattice simulations already explored [56].
Evaluations of mπ , mK , fπ , and fK in our present NJL
model are not concise and not our main aim of the pre-
sent work, so we leave them to Appendix A. The
chiral condensates hq̄qi and hs̄si at finite T and μ are
computed by

hq̄qi ¼ −3iT
X
n

Z
d3p
ð2πÞ3 tr½SðqÞðpÞ�

¼ −12Mq

Z
d3p
ð2πÞ3

RðϵðqÞp ðpÞ þ ϵðqÞa ðpÞÞ
ϵðqÞp ðpÞ þ ϵðqÞa ðpÞ

×
h
1 − fFðϵðqÞp ðpÞÞ − fFðϵðqÞa ðpÞÞ

i
; ð35Þ

and

hs̄si ¼ −3iT
X
n

Z
d3p
ð2πÞ3 tr½SðsÞðpÞ�

¼ −12Ms

Z
d3p
ð2πÞ3

RðϵðsÞp ðpÞ þ ϵðsÞa ðpÞÞ
ϵðsÞp ðpÞ þ ϵðsÞa ðpÞ

×
h
1 − fFðϵðsÞp ðpÞÞ − fFðϵðsÞa ðpÞÞ

i
; ð36Þ

respectively.
When we take

ΛUV ¼ 1.6 GeV; μIR ¼ 0.45 GeV; ð37Þ

and determine the model parameters

mq ¼ 0.00258 GeV; ms ¼ 0.0761 GeV;

G ¼ 1.15 GeV−2; K ¼ 10.3 GeV−5; ð38Þ

from fitting the inputs (34), the resultant T dependence of
the chiral condensates is obtained as depicted in the top
panel of Fig. 1. This figure indicates that the condensates
do not change significantly until T ∼ 0.1 GeV, and around
T ∼ 0.15 GeV they are abruptly suppressed to exhibit the
partial restoration of chiral symmetry at higher temperature.
In other words, our parameters (37) and (38) yield the
pseudocritical temperature of

Tpc ∼ 0.15 GeV; ð39Þ

where Tpc is defined by the temperature at which the chiral
susceptibility χq̄q ≡ ∂

2Ω=∂m2
q has a peak. Here, Ω is a

thermodynamic potential evaluated from the Lagrangian
(1) at the quark one-loop level with the mean fields.
Although reduction of hs̄si at finite temperature is slightly
slow compared to lattice results, the pseudocritical temper-
ature for hq̄qi is close to the lattice estimation [56,57]. For
this reason, we conclude that the parameters (37) and (38)
are capable of capturing the behavior of chiral symmetry in
medium well, and in what follows we adopt those param-
eters to unveil mass modifications of the diquarks at high
temperature.3

As seen from Eq. (10), Mq is proportional to hq̄qi when
ignoring the current quark mass mq which is indeed small.
Hence, at finite temperature Mq drops substantially above
Tpc ∼ 0.15 GeV in accordance with the sufficient reduction
of hq̄qi, as depicted in the bottom panel of Fig. 1. On the
other hand, Ms is generated by the comparably large ms
and hs̄si contributions, so Ms does not decrease promi-
nently even above Tpc. In Sec. IV B, we find that the former
fast reduction of Mq significantly affects the mass degen-
eracy of the chiral partners of diquarks above Tpc. We note
that Mq ¼ 0.263 GeV and Ms ¼ 0.407 GeV are obtained
in the vacuum with the parameters (37) and (38).
One of our aims in this work is to examine the Uð1ÞA

axial anomaly effects to the chiral-partner structures of
diquarks in medium. For this reason, as for the parameters
in terms of diquarks, we regard K0 as a free parameter and
determine the remaining H from a lattice result: mlattice

½qq�þ ¼
0.725 GeV [58]. In particular, we use two parameter sets
with no anomaly effects (K0 ¼ 0) and with significant
effects (K0 ¼ 15 GeV−5). The determined H and diquark
masses in the vacuum with those values of K0 are tabulated

3It should be noted that the values of the cutoffs (37) play
significant roles to reproduce Eq. (39). In fact, when we take the
smaller value of μIR from Eq. (37) the resultant Tpc shifts to lower
temperature, since the Pauli-blocking effects on lower modes of
the quarks, represented by the distribution function fF, work
unnecessarily in the integrations in Eqs. (35) and (36).
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in Table I. It should be noted that we employ K0 ¼
15 GeV−5 as a typical value of K0 such that the mass of
chiral-partner Λcð1=2−Þ reads M½Λcð1=2−Þ� ¼ 2.99 GeV.
The detailed discussion in terms of the Λc baryons is
provided in Sec. VA.
From the table, one can see that, for positive-parity

diquarks, m½qq�þ < m½sq�þ follows as naively expected since
the s quark mass is larger than the q quark mass. For
negative-parity diquarks, m½qq�− > m½sq�− which is often
referred to as the inverse mass hierarchy is realized when
significant anomaly effects enter [7], while the normal mass
hierarchy m½qq�− < m½sq�− is obtained when the anomaly
effects are absent.

B. T dependence of the diquark masses

Here, we present our numerical results on temperature
dependences of the diquark masses at a given μ, and see
their chiral-partner structures together with effects from the
Uð1ÞA axial anomaly. We note that, in the present paper, we
define the diquark masses including the shifts from μ.
Depicted in Fig. 2 is the resultant temperature depend-

ences of the diquark masses at μ ¼ 0 for the parameter
Set (I) with no anomaly effects and Set (II) with signi-
ficant anomaly effects in Table I. Mass differences between
the chiral partners, Δm½qq�≡m½qq�−−m½qq�þ and Δm½sq�≡
m½sq�− −m½sq�þ , are also displayed to see the chiral-partner
structures more clearly.
The left panels of Fig. 2 indicate that the normal mass

hierarchy for both the positive and negative-parity diquarks
is observed at any temperature when the anomaly effects
are absent. Besides, the mass difference between the chiral
partners always satisfiesΔm½sq� > Δm½qq�. In the absence of
the anomaly effects, the kernels for ½qq�þ and ½qq�− (½sq�þ
and ½sq�−) are identical, and only the kinetic contributions
in the loop functions (31) and (32) generate different effects
to the two diquarks. As explained below Eqs. (31) and (32),
such differences are proportional to Mq which sufficiently
drops above Tpc for both the ½qq� and ½sq� diquark sectors.
Therefore, the mass degeneracy of the chiral partners takes
place prominently above Tpc, and as a result the chiral-
partner structures are clearly seen at high temperature.
On the other hand, from the right panels of Fig. 2, one

can see that the inverse hierarchy for the negative-parity
diquarks is always realized accompanied by the significant
anomaly effects. Moreover, the mass difference reads
Δm½qq� > Δm½sq� at any temperature when the anomaly is
switched on, and the reduction of Δm½qq� at high temper-
ature is tempered whereas Δm½sq� is sufficiently suppressed
similarly to with K0 ¼ 0. The former tempered reduction is
understood as follows. When K0 ¼ 15 GeV−5, the kernels
K½qq�þ and K½qq�− are significantly affected by the hs̄si
contributions in addition to the constant H, signs of which
are opposite for ½qq�þ and ½qq�− channels as seen from
Eq. (14). Besides, the suppression of hs̄si at finite temper-
ature is hindered compared to hq̄qi as in Fig. 1. Hence, the
difference between K½qq�þ and K½qq�− is left sizable even at
T ∼ 0.3 GeV and the resultant Δmqq also reads consid-
erably large, although J ½qq�þ and J ½qq�− become approxi-
mately identical. Meanwhile, the sufficient reduction of
Δmsq is straightforwardly understood from the fast decre-
ment of hq̄qi above Tpc, since the difference betweenK½sq�þ
and K½sq�− induced by K0 contributions is proportional to
hq̄qi and the situation is similar to with K0 ¼ 0 at such high
temperature.
As for behaviors of the diquark masses at temperature,

particularly from the top-left panel of Fig. 2, one can see
that m½qq�− and m½sq�− once decrease around Tpc but they

FIG. 1. Temperature dependences of the chiral condensates
hq̄qi and hs̄si normalized by their vacuum values (top), and those
of the dynamical quark massesMq andMs (bottom), at vanishing
quark chemical potential μ ¼ 0.

TABLE I. Determined values of H and the diquark masses for
two parameter sets with K0 ¼ 0 and K0 ¼ 15 GeV−5. The aste-
risk (�) stands for an input from the lattice simulation.

K0 H m½qq�þ m½qq�− m½sq�þ m½sq�−
[GeV−5] [GeV−2] [GeV] [GeV] [GeV] [GeV]

Set(I) 0 1.77 0.725� 0.840 0.777 0.931
Set(II) 15 1.53 0.725� 1.43 0.854 1.38
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turn to the increment above Tpc. Such nonlinear temper-
ature dependences are driven by the abrupt reduction of
hq̄qi, namely, chiral-symmetry restoration. In fact, when
we neglect effects from chiral-symmetry restoration, it can
be shown that diquark masses exhibit monotonic incre-
ments as the system is heated owing to thermal effects [49].
Reflecting such a thermal-mass property, at sufficiently
high temperature where chiral symmetry is mostly restored
the diquark masses monotonically increase.
In order to see effects from a quark chemical potential μ

to diquark masses at finite temperature, in Fig. 3 we also
depict the resultant diquark masses and mass differences as
a function of T at μ ¼ 0.2 GeV. The figure indicates that at
T ¼ 0 all the diquark masses are reduced by 2μ ¼ 0.4 GeV
since the diquarks carry the quark number þ2. Besides,
mass degeneracies of the chiral partners take place at a
lower temperature compared to Fig. 2, reflecting the fact
that the pseudocritical temperature Tpc decreases at finite
quark chemical potential. Except for these points, temper-
ature dependences of the diquark masses are qualitatively
similar to the ones at μ ¼ 0.
At μ ¼ 0.2 GeV, diquark and antidiquark masses differ

due to the breakdown of charge-conjugation symmetry.
Thus, in order to quantify such violation it is worth
investigating temperature dependences of the antidiquark
masses as well. The resultant temperature dependences are
displayed in Fig. 4. In contrast to the results for the diquark
masses in Fig. 3, the masses of antidiquarks carrying the

quark number −2 are increased by 2μ ¼ 0.4 GeV at T ¼ 0.
Besides, at higher temperature where the mass degeneracies
of the chiral partners occur substantially, increment of
the antidiquark masses is tempered compared to those of
the diquark masses. Those are major consequences of the
violation of charge-conjugation symmetry. Meanwhile,
the temperature dependences of mass differences between
the partners, Δm½q̄q̄�≡m½q̄q̄�− −m½q̄q̄�þ and Δm½s̄ q̄� ≡m½s̄ q̄�−−
m½s̄ q̄�þ , are similar to those of Δm½qq� and Δm½sq�,
respectively.

C. μ dependence of the diquark masses

In Sec. IV B, the temperature dependences of the diquark
masses have been examined and we have succeeded in
getting deeper insights into the chiral-partner structures of
the diquarks andUð1ÞA axial anomaly effects to them in hot
matter. In this subsection, we investigate μ dependences of
the diquark masses at T ¼ 0 in order to see the chiral-
partner structures and anomaly effects in cold dense matter.
Depicted in Fig. 5 is the resultant μ dependences of the

diquark masses for the parameter Set (I) (top) and Set (II)
(bottom) at T ¼ 0. At lower μ regime, μ≲ 0.28 GeV, all
the diquark masses are simply evaluated by linear functions
as m½qq�� ¼ mvac

½qq�� − 2μ and m½sq�� ¼ mvac
½sq�� − 2μ, since in

this region medium effects do not enter and the diquark
masses are diminished by the chemical potential solely.
Beyond μ ∼ 0.28 GeV the diquark masses behave

FIG. 2. Temperature dependence of the diquark masses for the parameter Set (I) (left) with no anomaly effects and Set (II) (right) with
significant anomaly effects at μ ¼ 0. The mass differences are defined by Δm½qq� ¼ m½qq�− −m½qq�þ and Δm½sq� ¼ m½sq�− −m½sq�þ .
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FIG. 4. Temperature dependence of the antidiquark masses and mass differences for the Set (I) (left) and Set (II) (right) at
μ ¼ 0.2 GeV. The mass differences are defined by Δm½q̄ q̄� ¼ m½q̄ q̄�− −m½q̄ q̄�þ and Δm½s̄ q̄� ¼ m½s̄ q̄�− −m½s̄ q̄�þ .

FIG. 3. Temperature dependence of the diquark masses and mass differences for the Set (I) (left) and Set (II) (right) at μ ¼ 0.2 GeV.
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nonlinearly as μ increases accompanied by the medium
effects, but soon they reach a critical chemical potential μ�
at which m½qq�þ ¼ 0 is satisfied. Within our present NJL
model, the μ� represents the onset of the two-flavor color
superconductivity (2SC) phase as explicitly shown in
Appendix B [43,44].4 In the 2SC phase, for instance, a
positive-parity diquark ðηþÞa¼3

i¼3 defined in Eq. (13) creates
a Bose-Einstein condensate (BEC), and accordingly, the
original baryon (quark) number symmetry is violated such
that the rotated baryon (quark) number symmetry becomes
realized alternatively. As a result, mixings among diquarks
and mesons sharing the identical quantum numbers, e.g., f0
mesons (scalar and isoscalar mesons), ½qq�þ diquark and

½q̄ q̄�þ antidiquark, occur [65,66]. Thus, although the
realization or indication of chiral-partner structures at
μ≳ μ� seems to be shown in Fig. 5, they may include
ambiguities. We leave investigation of the chiral-partner
structures in cold and dense matter including the 2SC phase
to future studies.

V. DISCUSSIONS

A. Decay of Λcð1=2− Þ at finite temperature

So far, we have focused on the masses of diquarks in
medium which are not direct observable due to the color
confinement. Useful testing grounds to see the diquark
dynamics are color-singlet hadrons composed of a diquark
and heavy quarks, such as SHBs and doubly heavy
tetraquarks. In this section, we examine the masses and
decay widths of the SHBs based on the analysis done for
the diquarks in Sec. IV.
The singly charmed baryons composed of ½qq�� are the

ground-state Λcð2286Þ and its chiral partner Λcð1=2−Þ.
Experimentally, the chiral partner Λcð1=2−Þ has not been
identified, while the ground-state Λcð2286Þ is well-
established [15]. One possible reason why the Λcð1=2−Þ
is still missing could be a too large decay width caused by a
comparably large mass of Λcð1=2−Þ. Based on this specu-
lation here we particularly focus on the mass and decay
width of Λcð1=2−Þ at finite temperature.
We here assume the masses of Λcð1=2�Þ are given

simply by the sum of the constituent c quark mass mQ and
the corresponding diquark ones m½qq�� as [7]

M½Λcð1=2�Þ� ¼ mQ þm½qq�� ; ð40Þ

based on the heavy-quark effective theory. From the
particle data group (PDG) we find M½Λcð1=2þÞ� ¼
2.286 GeV [15]. Hence, when we assume m½qq�þ ¼
0.725 GeV in the vacuum as shown in Table I, the value
of mQ is fixed to be mQ ¼ 1.56 GeV. With this value,
M½Λcð1=2−Þ� in the vacuum is evaluated to be
M½Λcð1=2−Þ� ¼ 2.99 GeV when we take the Set (II) in
Table I. The estimated mass is sufficiently larger than
M½Λcð1=2þÞ�, which seems to be suitable for the demon-
stration in this section. For this reason, in the following
analysis we will employ the Set (II) to study the mass and
decay width of Λcð1=2−Þ.5
Under an assumption that the value of mQ and inter-

actions between the heavy quark and the diquark do not
change in a medium, the temperature dependence of the
masses of Λcð1=2�Þ is simply evaluated by that of m½qq�� .
Depicted in Fig. 6 is the resultant temperature dependences

FIG. 5. Quark chemical potential dependence of the diquark
masses for the Set (I) (top) and Set (II) (bottom) at T ¼ 0. The
dotted vertical line corresponds to the critical chemical potential
μ� at which m½qq�þ ¼ 0 is satisfied.

4In two-color QCD where diquarks become color-singlet
baryons, similarly to our present work, it is shown that the
critical chemical potential μ� which denotes the onset of
emergence of the diquark condensates (i.e., the onset of the
baryon superfluidity phase) is determined at which the 0þ
diquark mass vanishes [33,59–61]. Moreover, it is supported
by the lattice QCD simulations numerically [62–64].

5As for the mass of Λcð1=2−Þ, for instance, the nonrelativistic
quark model predicts M½Λcð1=2−Þ� ¼ 2.89 GeV [67]. Within the
present chiral-model approach such amass value is obtained when
the inverse mass hierarchy is realized as with the Set (II).
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of M½Λcð1=2�Þ� for μ ¼ 0 with the Set (II). The depend-
ences are essentially identical to those of ½qq�� as in the
top-right panel of Fig. 2, implying that the mass of
Λcð1=2þÞ increases while that of Λcð1=2−Þ decreases as
the system is heated.
The main decay mode of Λcð1=2−Þ is Λcð1=2−Þ →

Λcð1=2þÞη due to SUð2ÞI isospin symmetry. In the
previous analysis based on the linear representation of
SUð3ÞL × SUð3ÞR chiral symmetry, which is basically
equivalent to our present approach [9], it was found that
couplings of Λcð1=2−Þ − Λcð1=2þÞ − η are given by a
generalized Goldberger-Treiman relation as

Lint¼
2iffiffiffi
3

p
fπ

�
MB1

�
cosθPþ

1ffiffiffi
2

p sinθP

�

þMB2ðcosθP−
ffiffiffi
2

p
sinθPÞ

�
ηΛ̄cð1=2þÞΛcð1=2−Þ:

ð41Þ
Here, MB1 and MB2 are evaluated by mass differences
between the chiral partners as

MB1 ¼
AΔMΞc

− ΔMΛc

2ðA2 − 1Þ ;

MB2 ¼
AΔMΛc

− ΔMΞc

2ðA2 − 1Þ ; ð42Þ

with

ΔMΛc
≡M½Λcð1=2−Þ� −M½Λcð1=2þÞ�;

ΔMΞc
≡M½Ξcð1=2−Þ� −M½Ξcð1=2þÞ�; ð43Þ

and the mixing angle θP ¼ −11.3° appears due to the
η − η0 mixing. The dimensionless constant A in Eq. (42)
quantifies a violation of SUð3ÞLþR flavor symmetry, which
is estimated in our present approach as A ¼ ð2fK − fπÞ=
fπ ¼ 1.39. We note that M½Ξcð1=2�Þ� in Eq. (43) is the

masses of Ξcð1=2�Þ composed of a c quark and a ½sq��
diquark, which is defined similarly to M½Λcð1=2�Þ�.
From the coupling (41) the decay width of Λcð1=2−Þ →

Λcð1=2þÞη is computed, and the resultant temperature
dependence of the width is displayed in Fig. 7. In obtain-
ing the figure, the value of η mass is fixed to be mη ¼
0.548 GeV [15]. Besides, any thermal effects such as the
broadening effect are neglected, and only the changes of
M½Λcð1=2�Þ� and M½Ξcð1=2�Þ� at finite temperature are
incorporated through Eq. (42). The figure indicates that
the decay width vanishes above Tpc since the threshold is
closed (ΔMΛc

< mη) although the width is exceedingly
large in the vacuum (ΔMΛc

> mη).
Our demonstration in this section implies that, even

though it is difficult to observeΛcð1=2−Þ in the vacuum due
to its too large decay width, there would be a possibility of
observing Λcð1=2−Þ when focusing on finite-temperature
system by e.g., HICs or lattice simulations. Toward a
realistic evaluation, thermal effects such as the broadening
effects are unavoidable, and we leave inclusion of such
effects for a future study.
Moreover, other decay modes of Λcð1=2−Þ are expected.

As a primary mode among them, Λcð1=2−Þ would decay
into the ground-state Λcð1=2þÞ by emitting two pions
sequentially via Σc resonances [9]. However, such proc-
esses break heavy-quark spin symmetry so that those
channels are rather suppressed. In addition, in Ref. [14]
it was predicted that masses of Σc ’s decrease in accordance
with the partial restoration of chiral symmetry, which leads
to a closing of Σc → Λcð1=2þÞπ channel. Therefore, we
expect that the sequential decays of Λcð1=2−Þ → Σcπ →
Λcð1=2þÞππ do not generate sizable widths even at finite
temperature.

B. Artifacts from of the proper-time regularization

As shown in Sec. III B, in our present analysis the three-
dimensional proper-time regularization including UV and

FIG. 7. Temperature dependence of the decay width of
Λcð1=2−Þ → Λcð1=2þÞη for μ ¼ 0 with the Set (II).

FIG. 6. Temperature dependence of the masses of Λcð1=2þÞ
and Λcð1=2−Þ for μ ¼ 0 with the Set (II).
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IR cutoffs is employed so as to evaluate the mass of
diquarks in a transparent way by removing the imaginary
parts. In this section, we discuss the appearance of artifacts
which would break chiral symmetry in the chiral limit.
From Eq. (A7), the pion decay constant in the chiral limit

f̄π is evaluated to be

f̄π ¼ 3

ffiffiffiffiffiffiffiffi
2Z̄π

q
M̄q

Z
d3p
ð2πÞ3

1

Ēp

×

 
e−

2Ēp
ΛUV − e−

2Ēp
μIR

2Ē2
p

þ
1

ΛUV
e−

2Ēp
ΛUV − 1

μIR
e−

2Ēp
μIR

Ēp

!

× ½1 − fFðϵ̄pðpÞÞ − fFðϵ̄aðpÞÞ�; ð44Þ
by taking a limit of mπ → 0. In Eq. (44), we have defined
the dynamical quark mass M̄q and dispersion relations
ϵ̄ζðpÞ in the chiral limit as

M̄q ¼ −4Ghq̄qi þ 2Khq̄qi2; ð45Þ
and

ϵ̄ζðpÞ ¼ Ēp − ηζμ; ð46Þ

respectively, with Ēp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ M̄2

q

q
. It should be noted that

hq̄qi in Eq. (45) is the chiral condensate evaluated in the
chiral limit. The quantity Z̄π in Eq. (44) is the renormal-
ization constant for the pion in the chiral limit, which is
expressed as

Z̄−1
π ¼ 3

Z
d3p
ð2πÞ3

1

Ēp

�
e−

2Ēp
ΛUV − e−

2Ēp
μIR

2Ē2
p

þ
1

ΛUV
e−

2Ēp
ΛUV − 1

μIR
e−

2Ēp
μIR

Ēp

þ 1

Λ2
UV

e−
2Ēp
ΛUV −

1

μ2IR
e−

2Ēp
μIR

�
× ½1 − fFðϵ̄pðpÞÞ − fFðϵ̄aðpÞÞ�; ð47Þ

from Eq. (A9). That is, within our proper-time regulariza-
tion scheme the decay constant and the dynamical quark
mass are related as

f̄π ¼
ffiffiffi
2

p
Z̄−1=2
π M̄q þ δf̄π; ð48Þ

with

δf̄π ≡ −3
ffiffiffiffiffiffiffiffi
2Z̄π

q
M̄q

Z
d3p
ð2πÞ3

�
1

Λ2
UV

e−
2Ēp
ΛUV −

1

μ2IR
e−

2Ēp
μIR

�

× ½1 − fFðϵðnÞp ðpÞÞ − fFðϵðnÞa ðpÞÞ�: ð49Þ

On the other hand, we know that those quantities must
satisfy f̄π ¼

ffiffiffi
2

p
Z̄−1=2
π M̄q from the Glashow-Weinberg

relation due to exact chiral symmetry [68], and thus the

existence of Eq. (49) implies an artificial violation of chiral
symmetry. Such a troublesome contributions stem from
pion mass dependences in the exponents of Z̄π in Eq. (A9),
which is obviously induced by the use of the proper-time
regularization. However, the artifact (49) is proportional to
M̄q as the first term in Eq. (48), so that the diquark masses
at sufficiently high temperature where the chiral-symmetry
restoration takes place well are not affected by the artificial
violation significantly. Thus, our qualitative conclusion in
this paper does not change. Besides, while hs̄si is not
prominently reduced above Tpc as in Fig. 1, the violation of
chiral symmetry is dominantly triggered by the presence
of the current s quark mass ms, and again it is expected
that our main results are not affected by the artifact (49).
Although our regularization breaks the Glashow-Weinberg
relation, we note that the massless nature of a pion in the
chiral limit can be checked as it should be.
We emphasize that the artifacts are not obtained as a

direct consequence of the inclusion of IR cutoff μIR. In fact,
the artifacts remain finite when we take μIR → 0 keeping
ΛUV finite in Eq. (49). Moreover, even the widely-used
four-dimensional proper-time regularization with obvious
Lorentz covariance in the vacuum suffers from similar
artifacts.

VI. CONCLUSIONS

In this paper,we have investigated diquarkmasses at finite
temperature and chemical potential based on the three-flavor
NJL model from the viewpoint of the (partial) restoration of
chiral symmetry and theUð1ÞA axial anomaly. In particular,
we have focused on the mass degeneracies of the positive-
parity and negative-parity diquarks at high temperature to
see the chiral-partner structure. As a result, we have found
that the inverse mass hierarchy caused by the Uð1ÞA axial
anomaly for the negative-parity diquarks remains valid at
finite temperature. We have also found that the mass
degeneracies take place clearly in all ½ud�, ½su� and ½sd�
diquark sectors in the absence of anomaly effects to the
diquarks. On the other hand, the anomaly effect defers the
mass degeneracy in ½ud� sector, reflecting the slow reduction
of hs̄si at finite temperature, whereas those in ½su� and ½sd�
sectors aremanifestly realized reflecting the fast reduction of
hūui and hd̄di. Those findings are expected to provide future
lattice simulations with useful information on the chiral-
partner structure for the diquarks together with the magni-
tude of the Uð1ÞA axial anomaly.
As for low-temperature and high-density regimes,

our analysis indicates that the emergence of the color
superconducting phase, especially the two-flavor super-
conductivity, is unavoidable toward delineation of the
chiral-partner structures of diquarks. Thus, we leave
examination of diquarks in the color superconducting phase
for a future study.
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Besides, based on the temperature dependence of
diquark masses, we have discussed decay widths of
Λcð1=2−Þ, the chiral partner of Λcð2286Þ which has not
been experimentally observed, at finite temperature. As a
result, we have found that the decay channel of Λcð1=2−Þ is
closed accompanied by the partial restoration of chiral
symmetry, which would demonstrate a possibility of
observing the missing Λcð1=2−Þ in future HIC experi-
ments. To check such a feasibility, more realistic evalua-
tions including the broadening effects are inevitable and we
leave such study for future publication.
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APPENDIX A: EVALUATION
OF mπ, mK , f π AND f K

In this appendix we give explanations as to how
to evaluate the pion mass mπ, kaon mass mK , pion decay
constant fπ , and kaon decay constant fK in the vacuum.
First, we calculate the pion mass mπ and kaon mass mK .

Similarly to the diquark masses given in the main text,
those masses are also evaluated by pole positions of the
corresponding BS amplitudes

T ¼ ð1 −KJ Þ−1K: ðA1Þ
Kernels for pion and kaon channels are read off from
effective four-point interactions of quarks in Eq. (1) with
the approximation (9), yielding

Kπ ¼ ið4G − 2Khs̄siÞ;
KK ¼ ið4G − 2Khq̄qiÞ; ðA2Þ

respectively. Besides, the respective loop functions read

J π ¼ −3
Z

d4p
ð2πÞ4 tr½iγ5SðqÞðp

0Þiγ5SðqÞðpÞ�;

J K ¼ −3
Z

d4p
ð2πÞ4 tr½iγ5SðqÞðp

0Þiγ5SðsÞðpÞ�: ðA3Þ

Then, using the Dirac trace formula (21) and performing
the q0 integral, we arrive at

J πðq0Þ¼ 6i
Z

d3p
ð2πÞ3

�
Rðq0−2EðqÞ

p Þ
q0−2EðqÞ

p

−
Rðq0þ2EðqÞ

p Þ
q0þ2EðqÞ

p

�
;

ðA4Þ

and

J Kðq0Þ ¼ 3i
Z

d3p
ð2πÞ3

�
1þ p2 þMsMq

EðsÞ
p EðqÞ

p

�

×

�
Rðq0 −EðsÞ

p −EðqÞ
p Þ

q0 −EðsÞ
p −EðqÞ

p

−
Rðq0þEðsÞ

p þEðqÞ
p Þ

q0þEðsÞ
p þEðqÞ

p

�
;

ðA5Þ
at rest frame q ¼ 0. In Eqs. (A4) and (A5) we have
employed the same regularization technique as the diquark
loop functions so as to maintain the chiral symmetric
consistency. Inserting the kernels (A2) and the loop
functions (A4) and (A5) into the BS amplitude (A1), mπ

and mK are computed.
Next, we present analytic expressions of the decay

constants fπ and fK . The decay constants are defined
through matrix elements of

h0jψ̄γμγ5ðλaf=2Þψ jπbðqÞi ¼ −ifπqμ ða ¼ b ¼ 1 − 3Þ;
h0jψ̄γμγ5ðλaf=2Þψ jKbðqÞi ¼ −ifKqμ ða ¼ b ¼ 4 − 7Þ;

ðA6Þ
and in our present normalization they are computed as

fπ¼−
3i

ffiffiffiffiffiffi
Zπ

pffiffiffi
2

p
q2

Z
d4p
ð2πÞ4 tr½=qγ5SðqÞðpþqÞγ5SðqÞðpÞ�jq0¼mπ ;q¼0

¼−
3
ffiffiffiffiffiffiffiffi
2Zπ

p
Mn

mπ

Z
d3p
ð2πÞ3

1

EðqÞ
p

�
Rðmπ−2EðqÞ

p Þ
mπ−2EðqÞ

p

þRðmπþ2EðqÞ
p Þ

mπþ2EðqÞ
p

�
; ðA7Þ

and

fK¼−
3i

ffiffiffiffiffiffi
ZK

pffiffiffi
2

p
q2

Z
d4p
ð2πÞ4 tr½=qγ5SðqÞðpþqÞγ5SðsÞðpÞ�jq0¼mK;q¼0

¼−
3
ffiffiffiffiffiffi
ZK

pffiffiffi
2

p
mK

Z
d3p
ð2πÞ3

�
Mq

EðqÞ
p

þ Ms

EðsÞ
p

�

×

�
RðmK−EðqÞ

p −EðsÞ
p Þ

mK−EðqÞ
p −EðsÞ

p

þRðmKþEðqÞ
p þEðsÞ

p Þ
mKþEðqÞ

p þEðsÞ
p

�
:

ðA8Þ
In these expressions Zπ and ZK are renormalization
constants for pion and kaon wave functions, respectively,
which are defined by

Z−1
π ≡ i

2mπ

∂J πðq0Þ
∂q0

				
q0¼mπ

¼ −
3

mπ

Z
d3p
ð2πÞ3 ½F ðmπ − 2EðqÞ

p Þ − F ðmπ þ 2EðqÞ
p Þ�;

ðA9Þ
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and

Z−1
K ≡ i

2mK

∂J Kðq0Þ
∂q0

				
q0¼mK

¼ −
3

2mK

Z
d3p
ð2πÞ3

�
1þ p2 þMsMq

EðsÞ
p EðqÞ

p

�

× fF ðmK − EðqÞ
p − EðqÞ

p Þ − F ðmK þ EðqÞ
p þ EðsÞ

p Þg;
ðA10Þ

with

F ðxÞ≡ ∂

∂x

�
e−

jxj
ΛUV − e−

jxj
μIR

x

�

¼ e−
jxj
μIR − e−

jxj
ΛUV

x2
þ

1
μIR

e−
jxj
μIR − 1

ΛUV
e−

jxj
ΛUV

jxj : ðA11Þ

At first glance, the function F ðxÞ seems to yield a
discontinuity at x ¼ 0 originating from derivatives of jxj
with respect to x. However, one can easily show

lim
x→þ0

F ðxÞ ¼ lim
x→−0

F ðxÞ ¼ 1

2Λ2
UV

−
1

2μ2IR
; ðA12Þ

and no such discontinuities emerge. Therefore, the renorm-
alization constants are well defined in our treatment.

APPENDIX B: EMERGENCE OF THE 2SC PHASE

Here, we analytically show that the onset density of 2SC
phase is estimated when m½qq�þ becomes zero within our
present model.

The 2SC phase is defined by emergence of diquark
condensates made of u and d quarks. In particular, the
condensates are S-wave, flavor-singlet, and color anti-
triplet [43,44], so that the diquark gap takes the form
of, e.g.,

Δ2SC ≡ ffiffiffi
2

p
hðηþÞa¼3

i¼3 i ¼ −
1

2
hqTCγ5τ2fλ2cqi; ðB1Þ

where τAf is the Pauli matrix acting on two-flavor q ¼
ðu; dÞT space. Including the diquark condensate (B1) in
addition to the chiral condensates hq̄qi and hs̄si, at mean-
field level the Lagrangian (1) is reduced to

LMF ¼ q̄ði=∂þ μγ0 −MqÞqþ s̄ði=∂þ μγ0 −MsÞs

−
�
H −

K0

4
hs̄si

�
ðΔ�

2SCq
Tτ2fλ

2
cCγ5qþ H:c:Þ

− 2Gð2hq̄qi2 þ hs̄si2Þ − 4HjΔ2SCj2
þ 4Khq̄qi2hs̄si þ 2K0jΔ2SCj2hs̄si; ðB2Þ

where dynamical quark masses can be now affected by the
diquark condensate Δ2SC as

Mq ¼ mq − 4Ghq̄qi þ 2Khq̄qihs̄si;
Ms ¼ ms − 4Ghs̄si þ 2Khq̄qi2 þ K0jΔ2SCj2: ðB3Þ

From the mean-field Lagrangian (B2), a thermodynamic
potential per volume V is evaluated to be (β ¼ 1=T)

Ω=V ¼ −8
Z

d3p
ð2πÞ3

�
ϵ̃ðqÞp ðpÞ

2
þ ϵ̃ðqÞa ðpÞ

2
þ T ln ð1þ e−βϵ̃

ðqÞ
p ðpÞÞ þ T lnð1þ e−βϵ̃

ðqÞ
a ðpÞÞ

�

− 4

Z
d3p
ð2πÞ3

�
ϵðqÞp ðpÞ

2
þ ϵðqÞa ðpÞ

2
þ T ln ð1þ e−βϵ

ðqÞ
p ðpÞÞ þ T lnð1þ e−βϵ

ðqÞ
a ðpÞÞ

�

− 6

Z
d3p
ð2πÞ3

�
ϵðsÞp ðpÞ

2
þ ϵðsÞa ðpÞ

2
þ T ln ð1þ e−βϵ

ðsÞ
p ðpÞÞ þ T lnð1þ e−βϵ

ðsÞ
a ðpÞÞ

�
þ 2Gð2hq̄qi2 þ hs̄si2Þ þ 4HjΔ2SCj2 − 4Khq̄qi2hs̄si − 2K0jΔ2SCj2hs̄si; ðB4Þ

where dispersion relations of q and s quarks are given by
(ζ ¼ p; a)

ϵðfÞζ ¼ EðfÞ
ζ − ηζμ; ðB5Þ

with EðfÞ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

q
, and those of quasiparticles cor-

rected by the diquark condensate read

ϵ̃ðqÞζ ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðqÞζ ðpÞÞ2 þ ð4H − K0hs̄siÞ2jΔ2SCj2

q
: ðB6Þ

The factors for each quark contribution in Eq. (B4)
are understood by ðspinÞ×ðflavorÞ×ðcolorÞ degrees of
freedom.
From a stationary condition of Eq. (B4) with respect to

Δ2SC, a gap equation determining the value of diquark
condensate Δ2SC in the 2SC phase is obtained as

AXIAL ANOMALY EFFECT ON THE CHIRAL-PARTNER … PHYS. REV. D 108, 014030 (2023)

014030-15



0¼ 2ð4H −K0hs̄siÞ2
Z

d3p
ð2πÞ3

�
1

2ϵ̃ðqÞp ðpÞ
½1− 2fFðϵ̃ðqÞp ðpÞÞ�

þ 1

2ϵ̃ðqÞa ðpÞ
½1− 2fFðϵ̃ðqÞa ðpÞÞ�

�

þ 6K0Ms

Z
d3p
ð2πÞ3

1

2EðsÞ
p

f1− fFðϵðsÞp ðpÞÞ− fFðϵðsÞa ðpÞÞg

− 2HþK0hs̄si; ðB7Þ

and thus, by taking Δ2SC → 0 in Eq. (B7), an identity
which holds at the onset density of 2SC phase is found
to be

0¼ 2ð4H −K0hs̄siÞ2
Z

d3p
ð2πÞ3

�
1

2ϵðqÞp ðpÞ
½1− 2fFðϵðqÞp ðpÞÞ�

þ 1

2ϵðqÞa ðpÞ
½1− 2fFðϵðqÞa ðpÞÞ�

�

þ 6K0Ms

Z
d3p
ð2πÞ3

1

2EðsÞ
p

f1− fFðϵðsÞp ðpÞÞ− fFðϵðsÞa ðpÞÞg

− 2HþK0hs̄si: ðB8Þ

This identity is further reduced; from the analytic expres-
sion of hs̄si in Eq. (36), one can find that Eq. (B8) yields

1 − 2ð4H − K0hs̄siÞ
Z

d3p
ð2πÞ3

�
1

ϵðqÞp ðpÞ
½1 − 2fFðϵðqÞp ðpÞÞ�

þ 1

ϵðnÞa ðpÞ
½1 − 2fFðϵðqÞa ðpÞÞ�

�
¼ 0; ðB9Þ

where we have used a fact that 4H − K0hs̄si is always
positive to generate a bound state of ½qq�þ [see the kernel
(14)]. Meanwhile, from the kernel (14) and the quark loop
function (27) for ½qq�þ diquark channel, we can see that the
pole position of the BS amplitude (12) for this channel is
determined by solving the following equation with respect
to q0:

δab −Kac
½qq�þJ

cb
½qq�þðq0Þ

¼ δabþ 4δabð4H−K0hs̄siÞ
Z

d3p
ð2πÞ3

�
1

q0− 2ϵðqÞp ðpÞ

× ½1− 2fFðϵðqÞp ðpÞÞ�− 1

q0þ 2ϵðnÞa ðpÞ
½1− 2fFðϵðqÞa ðpÞÞ�

�

¼ 0: ðB10Þ

Therefore, from the identity (B9), we can conclude that
Eq. (B10) has a solution when q0 ¼ 0, and it is shown that
the onset of the 2SC phase is certainly triggered when ½qq�þ
diquark mass becomes zero.
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