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Analytic continuation of the perturbative series from spacelike to timelike regions is performed using
renormalization group summed perturbation theory (RGSPT). This method provides an all-order

173

summation of kinematic

n°-terms” accessible from a given order of a perturbative series. The impact

of the summation of these terms is studied for Higgs boson decay and electromagnetic R-ratio in the
perturbative QCD. Results obtained using RGSPT have improved convergence behavior in addition to
significantly reduced renormalization scale dependence compared to fixed-order perturbation theory
(FOPT). The higher-order behavior using the Padé approximant is also studied for processes considered.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the theory of
strong interaction describing the interaction among quarks
and gluons. It has asymptotic freedom and is perturbative
for large momentum transfers. The strong coupling con-
stant (a,), which measures the strength of the interaction,
has a relatively large value (as(2 GeV) ~ 0.3) compared to
the electromagnetic coupling constant (@ = 1/137) for a
few GeVs. This large value of a, also introduces certain
issues to the perturbation series in the fixed-order pertur-
bation theory (FOPT) formalism. These key issues are
mainly convergence, scheme dependence, and renormali-
zation scale dependence. The uncertainties from these
sources might constitute a large portion of the total
uncertainty in the theoretical predictions. Various pertur-
bative schemes are devised and used in the literature that
addresses these issues. They have been applied in various
precision determinations of the parameters of the strong
interaction and electroweak parameters of the Standard
Model (SM). The perturbative renormalization group (RG)
plays a key role in improving the fixed-order perturbation
series, and various alternative schemes are also used in the
literature. Some of these commonl?/ used schemes are the
principle of maximal conformality” (PMC) [4], optimized
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perturbation theory (OPT) [5], method of effective charges
(MEC) [6], complete renormalization group improvement
(CORGI) [7,8], RGSPT [9], RG optimized perturbation
theory (RGOPT) [10], the principle of observable effective
matching [11] etc.

The perturbative QCD (pQCD) calculations to higher
orders have been performed in the literature for many
physical processes. These calculations mainly use the
operator product expansion (OPE) formalism in deep
Euclidean spacelike regions where perturbative treatment
to QCD is applicable. However, the experimental informa-
tion is obtained in the timelike regions. The physical
quantities, such as R-ratios, are related to the discontinuities
of the polarization function of a current correlator across the
physical cut. Therefore, the analytic continuation from
spacelike to timelike region acts as a bridge in relating
the experimental observations with the theoretical predic-
tions. For pQCD, the analytic continuation and associated
issues have been pointed out in the early days of QCD,
especially in Refs. [12—17]. One of the key issues emerged
from these studies is large kinematical z’—corrections
arising from the imaginary part of the logarithms when
analytic continuation is performed. These corrections are
significant (~(7zf3y)") at higher orders of the perturbation
theory and found to be dominating the genuine perturbative
corrections in Refs. [18-23]. There have been numerous
attempts to sum these kinematical terms in the literature
using the RG in Ref. [24], renormalon motivated naive non-
abelianization (NNA) in Ref. [25], using contour improved
version of pQCD schemes such as CORGI in Ref. [26],
analytic perturbation theory in Refs. [27,28] and its variants
such as fractional analytic perturbation theory in recent
Refs. [29,30]. This issue has also been addressed in
Refs. [31,32] for the Higgs production, for Sudakov loga-
rithms in Ref. [33], for the pion and nucleon electromagnetic

Published by the American Physical Society


https://orcid.org/0000-0003-2385-8504
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.014028&domain=pdf&date_stamp=2023-07-24
https://doi.org/10.1103/PhysRevD.108.014028
https://doi.org/10.1103/PhysRevD.108.014028
https://doi.org/10.1103/PhysRevD.108.014028
https://doi.org/10.1103/PhysRevD.108.014028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

M.S. A. ALAM KHAN

PHYS. REV. D 108, 014028 (2023)

form factors in Ref. [34], for deep inelastic scattering
and Drell-Yan processes in Ref. [35], for electromagnetic
R-ratio in Refs. [36-38] and other in Refs. [39-42]. For
hadronic 7 decays, the contour improved perturbation theory
(CIPT) scheme is used and found to be inconsistent with
the OPE expansion. For recent developments, we refer to
Refs. [43-49].

This article discusses an alternative analytical approach
to sum the kinematical z’-terms by performing the
analytic continuation using RGSPT. In the RGSPT
scheme, the running logarithms accessible from a given
order are summed using the RG equation (RGE) in a
closed form. These running logarithms are the key
ingredients in the analytic continuation in the complex
energy plane. This scheme has already been used in the
study of 7-decays [50-55] and other processes as well in
Refs. [9,56-59]. In these studies, RGSPT provides better
stability with renormalization scale variations. In some
cases, it can also improve the convergence of the pertur-
bative series at higher orders compared to the results from
the FOPT scheme. We have discussed these issues
involving the polarization functions related to the scalar,
vector, electromagnetic current, and Higgs self-energies.
These correlators are used in various QCD sum rule
studies, and improvements provided by RGSPT can be
crucial in precisely determining various SM parameters
related to QCD and weak interaction physics.

This article is organized as follows: In Sec. I, we briefly
discuss the summation procedure of RG logarithms in the
RGSPT schemes. In Sec. III, the analytic continuation for
the polarization or Adler functions in the FOPT and RGSPT
schemes are described. In Sec. IV, the application of
analytic continuation of the perturbative series for various
processes in the RGSPT and FOPT are discussed. These
processes include the Higgs boson decaying to bottom
quark pairs as well as gluon pairs, total hadronic decay
width of the Higgs boson, electromagnetic R-ratio, and
continuum contribution from the light quarks to muon
g — 2. The summary and conclusion are provided in Sec. V.
The supplementary material needed for various sections
can be found in the appendices A, B, C, D, E.

II. REVIEW OF THE RGSPT

Various observables in the pQCD are calculated in the
high energy limit, and the perturbative series is expressed
in terms of the a; and masses of the quarks (m,). The
observables are independent of the scheme used and
variations of the renormalization scale. This results in
the cancellation of the renormalization scale dependence
among the coefficients from different orders of the
perturbation series. Practically, all order coefficients of a
perturbative series of a physical process are not available
for QCD, and the effects of scale dependence can be seen
in the fixed order results. These perturbative series also
have issues of poor convergence behavior. These effects

can lead to substantial theoretical uncertainty, and various
perturbative schemes are used in the literature to bring
them under control.

RGSPT is a perturbative scheme where RGE is used to
systematically sum the running RG logarithms accessible
from a given order of the perturbation theory. The closed-
form results are found to be less sensitive to the renorm-
alization scale, and hence we get a significant reduction in
the theoretical uncertainties. The running logarithms play a
key role in the analytic continuation of a perturbative series
from spacelike to timelike regions. Their summation,
therefore, is necessary so that the effects of analytic
continuation can be controlled by summing them to all
orders.

A perturbative series S(Q?) in pQCD can be written as:

n,i

S= Z Ti.jxiLj, (

i=0,j=0

—_—
~—

where x = a(u?)/x and L = log(u*/Q?). This series can
be rearranged into an RG summed series as follows:

S* =" xISi(xL), (2)
i=0
where,
xL) =Y Tipji(xL). (3)
=0

The RG evolution of the perturbative series in Eq. (1) with
associated anomalous dimension, yg, is given by:

W —S(0%) = ysS(0?%). (4)

du?
and yg is given by:

rs = thm- (5)
i=0

The RGE in Eq. (4) results in constrain on the summed
coefficients, S;(xL) in Eq. (3), and the recurrence relation
between different coefficients are given by:

(St

1, i(w) +yisn_i<u>> = S,(u) =0,
(©)

where u = xL. The first three solutions to the above
recurrence relation are given by:
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So(u) = Toow™,

Sy(u) = Ty gw o7t 4 Ty w7071 (EIT/O(W —log(w) = 1) = (w— 1)71) (7)

Sa(u) = Tagw 072 = Ty w7072 (By (7o (—w + log(w) + 1) + log(w)) + (w = D)1

1 . - .
+ 2 TO,OW_yO_Z{_ﬂI}’I (Z(W = 1)7o(w

—log(w) — 1) —w? 4 2log(w) + 1)

+ (=1 ((w =170+ (w = D7} = W+ 1)72)

+ Bi7o(w = log(w) — 1) (7o(w — log(w) = 1) = w—log(w) + 1) }. (®)

where w = 1 — fou, X = X/f, and T} are the coefficients
at higher order perturbation theory. The important feature
of the above procedure is that the most general term of
RGSPT is given by:

q,, ='W (9)

n.z ’
WZ

where 7 is a positive integer and z is real. This term will be
used in the next section for the analytic continuation and
resummation of the kinematical z>—terms.

III. ANALYTIC CONTINUATION FROM
SPACELIKE TO TIMELIKE REGIONS

The polarization functions [I1(¢?)] of current correlators
for a physical process are calculated using the OPE
formalism in the spacelike region where momentum transfer
is large and perturbative treatment is applicable. These
contributions are calculated by evaluating the Feynman
diagrams appearing in a given order of the perturbation
theory. Generally, the higher-order calculations are per-
formed in a very special kinematical limit, i.e., either a small
mass, a large mass, or in the expansion in the ratios of the
masses of particles depending upon the scales present in
theory. The OPE expansion also factorizes the short-
distance perturbative part with the long-distance nonpertur-
bative contributions. The long-distance contributions are
encoded in terms of the quark and gluon condensates which
are determined using the lattice QCD, chiral perturbation
theory, optimized perturbation theory, etc. Once the relevant
diagrams are evaluated, we get a fixed-order perturbation
theory (FOPT) series given in Eq. (1) as an expansion in «.

In general, T1(g?) is not an RG invariant quantity and
does not obey a homogeneous RGE. The Adler functions
[D(Q?)] in QCD are the RG invariant quantities derived
from the T1(¢?) as:

d
D(0%) = -0?—TI1(0?), 10
(0 =-¢* 5T (10)
where the II(g?) is calculated at spacelike regions

(0> =¢*> <0) and has a cut for the timelike regions
(Q* = ¢*> > 0) due to the presence of the logarithms

2 . . . .
log (_"—qz) The discontinuity across this cut is related to

observables that are measured in the experiments in the
timelike regions. A systematic study of various processes
in the experiments thus requires the theoretical calcula-
tions to be valid in the energy regions of interest. It should
also have a well-behaved behavior such that a precise
determination of the various theoretical parameters can be
obtained. For this purpose, proper analytic continuation
plays a very important role. This section briefly introduces
quantities needed for the analytic continuation and how it
is performed using FOPT and RGSPT schemes. These
relations include theoretical quantities, such as polariza-
tion and Adler functions, and their relation to the exper-
imental quantities, such as R-ratios [R(s)] for e"e™, which
are used in the other sections of this article.
Polarization function I1(Q?) is related to the R(s) by the
following dispersion relation:
————ds, (11)

e = A (s + 0?)

and the D(Q?) is obtained from the T1(Q?) as:

R(s)

R(s)

D(Q?) = —deinﬂ(Qz) - QZA(”;(S T 1)

Theoretical value of the R(s) is obtained from the imagi-
nary part of the I1(Q?) [60] as:

R(s) = Llim[H(—s —ie) —I(—s + i€)]

27i e—0
1 —s—ie d
_ d 2_1-[ 2
2mi —s+ie 1 dq2 (q )
-1 —s—ie dq2
e _QD(qz)
Rl J—s+ie 4
-1 d
. e D(—x.5) (13)

271 Jix =1 Xc

where the contour of the integration does not cross the
cut. The RGE plays a key role in the analytic continuation

of TI(Q?) or D(Q?). The running logarithms [log(_"—;)]
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present in them are then analytically continued resulting in
the large kinematical “z*” corrections. Once the analytic
continuation is achieved, the running logarithms are
resummed by setting 4> = s, leaving behind the large 72-
terms amplified by f; or y; coefficients. Such kinematical
terms sometimes dominate the genuine perturbative correc-
tions at higher orders starting from N3LO. In some cases, the
convergence of the fixed order series is also spoiled by them
at lower energies. Such examples for the hadronic Higgs
decay width and electromagnetic R-ratio can be found
in Ref. [19].

The timelike perturbative series S(s) is calculated from a
spacelike series S(Q?) from Eq. (1) as:

1

S(s) = 12%21 (S(—s —ie) — S(—s + ie))
o [ i L ()

2mi —s+ie dq2

—§S—l€ dq ﬂ2
g1 14
277,'1 Z]x lj/—erle <_q2 ( )
2
dx, i1 H
iT —log/! —
" 2ni Zj ”j({ql | Xe o8 (st,)’

x (substituting g> — —sx,) (15)
:—ZJxT,j/ dp(L, — igh)/™!
X (substituting x, — e') (16)

s +im) = (Ls = iz))), (17)

1 .
=— g 'T. ((L
i i:ox 1,/((

where L, = log(”é). So, analytic continuation for a FOPT
series given in Eq. (1), can be obtained by taking the
imaginary part by substituting L — L %+ iz. The logarith-
mic terms are resummed by setting s = x?, leaving behind
only the large z>~type corrections.

Given the form of the most general term obtained using
RGSPT in Eq. (9) where running logarithms are present in
the numerator and the denominator, summation of z>—
terms to all orders is very natural. The analytic continuation
for RGSPT can also be directly obtained by substituting
L - L, + iz as for FOPT. Another form in terms of
trigonometric functions can also be derived.

The most general term in Eq. (9) for the RGSPT series
can be written as:

log™ (1 —u; log (f—;)) 12 n—s
> n zag’<1—ullog<—2>>
<1—ullog(_"—q2>> -4

5—0

(18)

where u; = xf; and m is always an integer. Following the
steps as in Egs. (14), (15), (16), we get the following result
for RGSPT:

log” (1 — u, log | £
1 f dq2 Og l/l] Og _qZ
il .
l*l=s 4 <l—u110g<_”—;2>>
tan™! (%)

. , n=1
= limd§' . 1 (19)
=0 w?(n_d_l) sin ((n—é—])tan" <]_IZ‘11LS))
wuy(n—6—1) , o n#l
where, w, = (1 —u;L;)* + 7*u?. We can see that all the

kinematical z2-terms are summed in w, and tan™! (Zan)-

The large logarithms are also under control as they are
always accompanied by a,, which is one of the important
features of the RGSPT. Hence, both RG improvement, as
well as all-order summation is naturally achieved in the
RGSPT. In addition, results can be calculated in an analytic
form, unlike the analytic QCD methods or numerically
evaluating imaginary parts along the contour using CIPT. It
should be noted that the n = 1 case has already been known
in the literature [61,62] and higher terms, to the best of our
knowledge, are new and is the prediction from RGSPT.
This is our main result, and its implications and the
improvements achieved for various physical processes
are discussed in the rest of the article.

IV. APPLICATION

In this section, we discuss the application of summation
of the kinematical z°~terms and its application in various
processes. These processes involve energies ranging from a
few GeVs to several hundreds of GeVs. They are calculated
from the I1(g?) for the gluon field strength tensor as well as
vector, axial-vector, and scalar currents. These polarization
functions have applications in hadronic 7 decays, eTe™
annihilation, and hadronic Higgs decays. For more details
about these processes, we refer to a recent review in
Ref. [63] and references therein. In addition, some con-
tinuum contributions to the experimental values of the
charmonium and bottomonium moments [64—-68] as well
as in hadronic contribution to muon (g —2), [69,70] are
also worth mentioning. Most of such examples for FOPT are
already discussed in the literature [19]. In this article, we
have provided a systematic comparison of FOPT results
with the RGSPT. First, we discuss the high-energy proc-
esses (~100 GeV) relevant to the hadronic Higgs decays,
and then we move to vector current processes where
intermediate energies (~few GeVs) are involved.
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A. Higgs decay in pQCD

1. H - bb decay

Higgs decaying to bottom pair is the dominant decay of
the Higgs boson and has been of constant interest from both
experimental and theoretical points of view. This process is
also considered one of the signals in the discovery of the
Higgs boson. Theoretically, QCD correction to this process
is related to the imaginary part of the T1(g?) of the scalar
current correlator. It is known to O(a?) [19,20,71-75] and
the unknown higher-order coefficients are estimated using
the d-Log Padé method in Ref. [76]. Recently, a FOPT
analysis for this process has been used in Ref. [77] to
calculate the mass of the bottom quark at the scale of Higgs
boson mass, i.e., m;,(m?). It has been found that the FOPT
is inapplicable at low energy scale (u~m;) due to
convergence issues mainly arising from the kinematical
7*—terms. These shortcomings, however, can be resolved
using the RGSPT schemes and discussed in the rest of this
subsection. It should be noted that other methods, such as a
renormalon motivated large-f, procedure in Ref. [25] and
analytic QCD approach in Ref. [27] can also be used to
resum the kinematical z2-terms. Here, we also show that a
significant reduction in the scale uncertainty can also be
achieved using RGSPT.

The decay of the Higgs to bottom quark pair using
pQCD is given by:

I'(H — bb) = 34G\;%nH m3 (4*)S(u?) + Other corrections,
n

(20)

~1,802) o1y

where S (u) is an analytically continued perturbative series
as discussed in Eq. (17). Other corrections, including
electroweak and mixed corrections, are irrelevant to our
discussion and therefore ignored in this article.

Using the O(af) inputs from Refs. [19,20] and D-log
Padé predictions to O(a?) from Ref. [76], the FOPT series
has following contributions:

S'(m%i) =1+40.2030 4-0.0374 4-0.0019 — 0.0014 — 0.0004

+6x107°+3x107 +5x107". (22)
where p = my with a;(m%,) = 0.1125 is taken as inputs
using RunDec [78]. However, when the above series is
calculated at y = m;, = 4.18 GeV and a,(in3) = 0.2245,

numerical contributions from different terms are found
to be:

S(m2) = 1 —0.5659 4 0.0585 + 0.1469 — 0.1267

+ 0.0297 + 0.0381 — 0.0438 4 0.0114, (23)

and we can see that the effect of the running logarithms
and the large kinematical corrections spoil the perturbative
nature of the series at the scale ~m,. Due to the poor
convergence behavior of the series in Eq. (23), only results
obtained in Eq. (22) are used in Ref. [77] to extract
the m,,(m3%).

These shortcomings can be cured using the RGSPT
scheme, and it can also improve the convergence compared
to FOPT results in Eq. (22) and Eq. (23). At scale y = my,
the RGSPT series has the following contributions:

8*(m%) = 0.9839 + 0.1894 + 0.0469 + 0.0130 + 0.0042
+0.0016 + 0.0007 + 0.0003 + 0.0002.  (24)

The perturbative series obtained using RGSPT is mono-
tonically decreasing, unlike in Eq. (24), and the truncation
uncertainty can also be calculated reliably. When we
choose renormalization scale u = m,, the perturbation
series for RGSPT has the following contributions from
different orders:

&% (m2) = 0.4949 + 0.0427 + 0.0097 + 0.0033 + 0.001 1
+0.0005 + 0.0002 + 0.0001 +5x 1075, (25)

Again, the resummation of kinematical z°~terms has
significantly improved the convergence behavior of the
series and it can also be used at such low scales. The RGSPT
series to O(a?) is monotonically convergent for a; < 0.373,
which is around charm mass scale y ~ m,.. While the FOPT
series is convergent only for a, < 0.160, for u ~ 4m, for
ny =5 active quark flavors. Theoretical uncertainties using
FOPT and RGSPT series at scale y = my, when scale is
varied in the range u € [my/4,2my], have the following
numerical values:

m2(m3)8(m3;) = 9.5655 + 0.0105,,e + 0.0113,,

+0.0103,
= 9.5655 & 0.0185 (26)
m(m%) 8% (m3;) = 9.5384 + 0.0324nc £ 0.0104,,
+0.0036,
= 9.5384 £ 0.0342 (27)

where uncertainties are ordered as due to truncation,
uncertainties present in the PDG average in a, and the
last one is from the scale variations. We can also rewrite it in
the following form:

TOPT(H — bb) =Ty(1.241 £0.002),  (28)

ROST(H ) = (1257 £0004) (29
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FIG. 1. mi(y)éQCD with perturbative order using 4 = my in Fig. 1(a), ¢ = m,, in Fig. 1(b) and scale dependence for the known O(aﬁ)

terms in the range p € [10 GeV, 2my] in Fig. 1(c).

It should be noted that the truncation uncertainty quoted
above FOPT is much smaller than the RGSPT results due to
the cancellation between the genuine perturbative contri-
butions and the kinematical #>—terms. Hence, the exact
nature of these truncation uncertainties directly derived from
the FOPT may be misleading and should be dealt with
carefully. A safer choice for FOPT would be to estimate
such uncertainties from the Adler functions rather than
analytically continued series. For the Adler function, we get
the following contributions at scale y = mpy:

S(m3;) = 1.0000 + 0.2030 + 0.0539 + 0.0162 + 0.0058
RPN (3())

and the last term is ~4.3 times larger than the N*LO term of
Eq. (22). Other theoretical uncertainties for RGSPT are
significantly smaller compared to FOPT.

The behavior of Sy; with increasing higher-order con-
tributions for two different scales are presented in Fig. 1.
The improved convergence over a wider range of renorm-
alization scales using RGSPT allows one to perform the

perturbative analysis for a wider energy region compared to
FOPT. For a relatively large value of the strong coupling at
u = my, the convergence of the RGSPT is much better, and
it quickly approaches the asymptotic value while the FOPT
series oscillates. This can be seen in Fig. 1(b).

These improvements are used in the light-quark mass
determination using Borel-Laplace sum rules in Ref. [79].

2. H — gg decay

This decay mode is the second important channel for the
Higgs boson decays. It is mediated by a heavy quark loop
and the dominant contribution comes from a top quark loop
due to its large value of the Yukawa coupling, and the decay
width is calculated in the heavy-top (My < M,) limit [80].

The decay width of this process in QCD is related to the
imaginary part of the self-energy of the Higgs boson
[TI9C(g?)] via optical theorem. It is given by the following
relation [80]:

V2Gy

my

[(H - gg) = |C[PImIT® (—my; — ie),

(31)
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where C, is known to N*LO can be found in Refs. [19,81].
This Wilson coefficient is obtained using the low-energy
theorem and decoupling relations for the a,. The decou-
pling relations for the @, and quark masses can also be
obtained using RGSPT and provide further RG improve-
ment to this process by reducing the scale dependence [82].

The perturbative contribution to ImIT¢(g?) are known
to O(a?) [19,83-86] and it can be written as:

N (¢?) =L G(x(g). L = 0)

:27‘14{1 +igixi(Q)} (32)

where x = a{" = (¢?)/x and L = log(4*/¢?). Coefficients
g; can be obtained from Ref. [19], and their RG evolution of
G(x, L) is obtained by the RG invariance of the quantity:

e () 6t.n) —0. @)

where f(x) is the QCD beta function defined in Eq. (Al).
We calculate the RGSPT series for this process by rewriting
the perturbative series in terms of the RG summed
coefficients, S;(x(u)L), as:

GH(x(u). L) = ) _Si(x(u)L)x' (u). (34)
i=0

When the above series is subjected to Eq. (33), we
get the following differential equations among various
Si(x(u)L) as:

dSi(u) z’: ; pi d (u™*2S,_;(u)) =0, (35)

du i+j+1 du
J=0

where u = x(u?)L. The RGSPT form of the Adler function
related to G(q?) is given by Dy, and its expression can be
found in Appendix E 2.

Using n; = 5 and setting renormalization scale 4 = g =
my, the G(x(my),0) has the following numerical form:

GOPT(m2,) = 1 + 3.9523a, + 6.9555a2 — 6.8518a3
— 7525910} + O(a3)
=14 0.4448 + 0.0881 — 0.0098
—0.0121 + ---. (36)

The N*LO term dominates the N>LO term in the FOPT. In
the case of RGSPT, the same quantity is given by:

GROSPT (12} = 0.9555 + 3.5357at, + 8.609802
+20.493903 + 56.69200* + O(a?)
= 0.9554 + 0.3979 + 0.1090 + 0.0292
+0.0091 4 - - (37)

The convergence of the perturbative series is good for
RGSPT compared to FOPT. Summation of the kinematical
terms also enhances the range of convergence of the
perturbation series, and the N*LO term dominates the
NLO term when a,(u) > 0.3 for y ~ 2 GeV. In addition,
a significant reduction in the scale uncertainty can be seen
in Fig. 2.

The higher-order behavior and effects of the summation
of kinematical terms can be studied by estimating the
unknown terms using the Padé approximants. Since only
O(a?) results are known in the literature, we can choose
various W) Padé approximants for series S(q?) (before
analytic continuation is performed) defined in Eq. (1). The n
and m are the exponents of the polynomial in the numerator
and denominator of W), We obtain the following Padé
approximants:

w04) — 1 ,
1-12.417x+49.268x% —195.212x3 —466.754x*
(38)
1 -2.391
wl3) — )2 2 (39)
1 —14.808x 4+ 78.957x= — 313.013x
_ 2 _ 3
WD — 1 +2.571x —17.347x~ — 146.841x . (40)

1 —9.846x

The Padé approximant W(2?2) results in a negative O(a))
coefficient therefore discarded. The predictions of these
approximations are in agreement, and therefore we take
their average:

W =1+ 12.417x + 104.905x> + 886.037x> + 8723.76x*
+ 89630x° + 906226x° + 8.9855 x 10%x7

+8.87515 x 107x® + 8.80468 x 108x”
+8.76277 x 10°x'°, (41)
that can be used for higher-order behavior. An APAP

prediction [56,87] for O(x’) coefficient (without analytic
continuation) in the large logarithm limit, we obtain:

dSPAP = 48056, (42)
which is nearly half of the predictions from simple Padé

approximants in Eq. (41). An APAP prediction for the decay
width can be found in Ref. [88]. It will be interesting to
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Scale dependence at N*LO
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FIG. 2.

compare these predictions with a detailed analysis using the
D-log Padé [76,89] or in a large-f3, approximation [90].

Using the above inputs, the higher-order behavior of
H — gg in FOPT is obtained as:

GFOPT(12) = 1 + 0.44477 + 0.08808 — 0.00976
—0.01207 — 0.00432 — 0.00132 — 0.00051
—0.00015 + 0.00001 + - - -, (43)

and for RGSPT, the contributions from different order are
obtained as:

GROSPT (1n2,) = 0.95555 + 0.39788 + 0.10903 + 0.02921
+0.00909 + 0.00287 + 0.00086 + 0.00024
+0.00006 + 0.00001 + - - -, (44)

and are shown in Fig. 3. It is evident that the RGSPT
provides better convergence. The scale dependence from
RGSPT and FOPT in different schemes are presented
in Fig. 2.

We present our result for this process in different top
quark mass schemes used in the literature. The decay width

Scale dependence at N2LO
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The scale variation of G(£2m2)/Gy(m?%) using known N*LO results in the MS scheme.

has already been studied very recently in Refs. [19,88]
for scale-invariant (SI), MS, and on-shell scheme for the
top quark mass present in C;. Using top quark mass for SI
and MS scheme as p, = m,(u,) = 165 GeV, and m, =
173 GeV for on shell scheme, we obtain decay width in
different schemes using FOPT as:

u=my

5-1 13
©

1.2

11

—e— FOPT
1.0 RGSPT
09 0 2 4 6 8
Perturbative order n »

FIG. 3. G")(my) with perturbative order n in FOPT and

RGSPT at scale p = my.
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I ol =T (1.8454 % 0.0116yq, + 0.0346, 4 0.0159,) = ['o(1.8454 £ 0.0398),

N*LO

[MSFOPT _ (] 8444 + 0.0115,,,c + 0.0346, = 0.0135,) = [(1.8444 £ 0.0389),

N‘LO
TOOFT = T (1.8452 £ 0.0111 e & 0.0346,, £ 0.0152,) = [y(1.8452 4 0.0394), (45)
where, T'y(H = gg) = 3G6; = ?*2 a?(m%) is leading contribution. The decay width in the RGSPT scheme read:

TOLRGSPT — [ (1.8273 £ 0.0177yne £ 0.0337,, % 0.0037,) = Tp(1.8273 £ 0.0382),

N*LO

TMSRGSPT _ 1 (18264 4 0.0177une + 0.0346, = 0.0067,) = ['(1.8264 == 0.0386),

N*LO

TOSRGSPT _ [\ (1 8271 4 0.0181pc 2 0.0346,, & 0.0042,) = [y(1.8271 £ 0.0385). (46)

N*LO

We can also calculate the decay width in the miniMOM (MM) scheme [91,92] and top quark mass in the on-shell scheme.

The results in FOPT and RGSPT schemes are given by:

TYNMIOPT — 1) (1.8444 £ 0.011 1 £ 00346, £ 0.0136,) = Ty(1.8444 + 0.0388),

N*LO

TYMRGSPT — 1) (1.8264 £ 0.0181 e % 0.0337, £ 0.0047,) = T(1.8264 + 0.0385). (47)

N*LO

It should be noted that the scale dependence is calculated
by varying scale in the range & € [my /3, 3my]. It is clear
from these results that the z°—terms significantly cancel
the genuine perturbative corrections, which led to small
truncation uncertainty in the FOPT results. A similar
behavior is also observed for the H — bb process, but
here « is a primary source of uncertainty.

3. Total hadronic Higgs decay width

The branching ratio of Higgs boson decays to hadrons is
about 70% [93]. The hadronic decay width of Higgs boson
is calculated by constructing an effective Lagrangian from
Yukawa term and strong interaction where heavy top quark
is integrated out [80,94,95]. The effective Lagrangian has
the form:

HO
Legt = —W(Cl (O] + G,[05]) + L, (48)

where H° and 1% are the bare Higgs field and vacuum
expectation value. The primed quantities are defined in five-
flavored QCD. The coefficients C; and C, in Eq. (48) are the
Wilson coefficients of the operators constructed out of light
gluonic and bottom quark degrees of freedom. These Wilson
coefficients also carry large logarithms ~ log(u?/m?),
which can be summed using the RGSPT [82]. Since these
coefficients do not involve analytic continuation, their FOPT
expressions are used in this section. Their numerical
expression can be found in the Appendix D. The operators
O] and O) are given by:

O} = (Gaw)?, (49)

|
Oy = myyBUb", (50)

where GY,, is the bare gluon field strength, m)’ is the bare

bottom quark mass and " is bare bottom quark field. The
current correlators for the operators O and (0 are given by:

M (g?) = i / dx e (O|T[0L O0).  (51)

These correlators can be used to define analytically con-
tinued quantities:

A = Kilm(IT; (M7,)), (52)

Ay = KpIm(ITjp (M%) + T (M7)), (53)

where T1,,(M?%) =11, (M%), K, = (32zM},)~" and
Ky = Ky = (6zM%m3)~'. The Ay, is proportional to
G(q¢?) in Eq. (32) and A,, is related to the S in Eq. (21).

Using the quantities defined above, the total hadronic
Higgs decay width is given by:

['(H — Hadrons) = A,;(C5(1 + Ay,y) + C1CA )
—|—AggC%A]l, (54)

where,
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TABLE 1.

Total hadronic Higgs decay width in FOPT and RGSPT in the MS—scheme and the sources of

uncertainties. The scale dependence is calculated by varying the renormalization scale in the range

u € [10,500] GeV.

Source of uncertainty

Scheme I'(H — Hadrons) (MeV) Truncation uncertainty dag omy, My u
FOPT 2.7082 + 0.0206 0.0045 0.0048 0.0183 0.0051 0.0043
RGSPT 2.6978 + 0.0226 0.0115 0.0045 0.0182 0.0051 0.0008
3 4 the kinematical 7’-terms start dominating at N3LO for
Ay (U?) = ——=GeMymi(u?), A, = —=GpMp’. e :
op(H7) A2 My, (1) NG A ny=1,2,...6 flavors of the quark. In this subsection, we
(55) study the summation of these terms using RGSPT and their

Recently, the O(a?) corrections to hadronic Higgs decay
width are presented in Refs. [19,93] with additional bottom
quark mass corrections to H — gg in Ref. [96]. A PMC
analysis for H — gg and H — bb processes can be found in
the Ref. [97]. The total Higgs hadronic decay width is
presented using these results in Table I and scale-dependence
in Fig. 4. It should be noted that the theoretical uncertainty in
RGSPT is dominated by truncation uncertainty from
['(H — bb) contributions. The central value obtained from
RGSPT is slightly smaller than FOPT due to the summation
of z%-terms but agrees within the quoted uncertainty.

Now, we move on to the application of analytic con-
tinuation of the polarization function involving momentum
transfer in the intermediate energy range (~few GeV).

B. The electromagnetic R-ratio

The electromagnetic R-ratio is obtained from the imagi-
nary part of the polarization function for the vector current. It
is an important observable that can be used in the determi-
nation of o using QCD sum rules [98]. The singlet and non-
non singlet contributions to process ete” — hadrons
have been calculated to N*LO in Refs. [18,19,99-101].
The numerical results presented in Ref. [19] show that

1.426

1.424

r(H-Hadrons)/Ay,(M3)
2
2
a
3

1.422

1.420

0 100 200 300 400 500
1 (GeV)

FIG. 4. The scale-dependence of the Hadronic Higgs decay in
the MS scheme.

effects, as discussed in the previous sections. The numerical
expressions for the Adler functions used in this subsection
can be found in the Appendix B.

The leading-order correction to the Alder function in
the massless limit is a constant; therefore, no further
enhancement is arising due to the prefactors from the
anomalous dimensions. Hence, the effects of analytic
continuation are expected to be milder than the H — gg
or H — bb processes in the hadronic decay width.
However, these effects can still be enhanced at low
energies by a relatively large value of the strong coupling.
For RGSPT, both the a, and the kinematical terms are
present in the denominators, which also results in further
reduction in the truncation uncertainties, as observed in
previous subsections.

For numerical comparison, we are considering the two
different cases. In the first case, we consider momentum
transfer below the J/y threshold where active quark
flavors are ny = 3 and @, ~0.3. In the second analysis,
the momentum transfer is above the mass of the cc
resonance and below the Y threshold for which active
flavors are ny; =4 and a;~0.2. These two cases are
already discussed in Ref. [19] in detail, and we will
compare our results with theirs.

1. Case I: Three active flavor

In this case, the leading massless Adler function in
Eq. (B3) receives contributions only from the non-singlet
part of Eq. (B2). Using n; = 3, scale variation £ € [0.7, 5]
and a,(g*) = 0.3, the FOPT result for R, () has following
contributions from various orders:

RY(s) = 1.0 + 0.3183a, + 0.16612 — 0.3317a3
— 109720 + O(ad)
— 1.0 + 0.0955 + 0.0150 — 0.0090 — 0.0089 + - - -
— 1.0926 £ 0.0089c = 0.0106,
— 1.0926 + 0.0138, (56)

and the corresponding result for RGSPT reads:
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ng=3

T T T

RUZ(s) = 14 0.279995a, + 0.076018a2 + 0.0285125a3 120 : :
+0.022963at + O(a3) 115[ ]
= 1+ 0.0840 + 0.0068 + 0.0008 -+ 0.0002 +- - - -

= 1.0918 = 0.0002,,c  0.00005,

————00— 00— ——p—0|

€5 1.05f 1
= 1.0918 £ 0.0002. (57) %
1.00f - d 3
The total uncertainty in the RGSPT is ~47 times smaller —— FOPT
than the FOPT result because of the summation of the 0.95} RGSPT 1
kinematical 7*-terms. The scale dependence in the two
schemes can be seen in Fig. 6. 0.90- 2 " p 8 10 12
We can also study the higher-order behavior using the Perturbative order n -

results of Ref. [102] where the predictions for the higher
coefficients in the case of hadronic 7 decays using the Borel
sum are obtained. These terms are collected in Eq. (B4) in
the Appendix B. The higher-order corrections have the
following numerical values:

FIG.5. Stability of the R., for n; = 3 in the RGSPT and FOPT
schemes.

Rg,)1 =1+ 0.09549 + 0.01495 — 0.00896 — 0.00889 — 0.00394
—0.00050 + 0.00062 + 0.00113 4 0.00052 + 0.00025 — 0.00103 + 0.00095,
RQF =1+ 0.08400 + 0.00684 + 0.00077 4- 0.00019 — 0.00019

—0.00007 — 0.00009 — 0.00009 + 0.00004 — 0.00010 + 0.00015 — 8 x 107S. (58)

Interestingly, the kinematical terms dominate the genuine contributions from N°LO for RGSPT. These effects are relatively
smaller compared to the FOPT, and reliable predictions from a truncated series using RGSPT can still be obtained. As
shown in Fig. 5, higher order contributions are under control.

2. Case II: Four active flavors

For this case, n, = 4, and we use only the non-singlet contributions known to O(a?). Using a,(g*) = 0.2, the R-ratio has
the following numerical form:

REFOPT(5) = 1 4+ 0.3183a, + 0.1545a2 — 0.3715a — 0.9536a? + O(a?)
= 1.0 4 0.0637 + 0.0062 — 0.0030 — 0.0015 + - - -
= 1.0653 % 0.0015 5 £ 0.0010,
= 1.0653 4 0.0018, (59)

and the kinematical z>~terms starts dominating from O(a?). The uncertainty from the scale variations is obtained by
varying ¢ in the range & € [1/2,5].

Using the same inputs as in Eq. (59), the electromagnetic R-ratio in the RGSPT scheme has the following
numerical form:

ROROFT(5) = 1 4 0.3016a, + 0.114002 + 0.0293a3 + 0.10860 + O(a?)

= 1.0 + 0.0603 + 0.0046 + 0.00023 + 0.00017 + - - -
— 1.0653 4 0.0002,,c + 0.00005,
= 1.0653 £ 0.0002. (60)
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Scale dependence at NLO
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FIG. 6. The scale variation of R, (£%¢?) in the range & € [1/3,5] for ny =3 and a,(g*) = 0.3.

We can see from Eq. (59) and Eq. (60) that the resumma-
tion of the kinematical term improves the convergence
as well as the scale dependence for RGSPT compared to
the case when FOPT is used. The theoretical uncertainty in
the RGSPT results in Eq. (60) is ~1/10 smaller than that
of FOPT result in Eq. (59). The scale dependence is
minimal after including the N*LO result in FOPT. How-
ever, the RGSPT always has better control over the scale
dependence than FOPT at each order which can be seen
in Figs. 7.

To the best of our knowledge, there are no predictions for
the higher-order coefficients in this case. We use the Padé
approximants as discussed in the Sec. IVA 2. Using the
O(a?) coefficients of nonsinglet Adler function from
Eq. (B2), following Padé approximants can be constructed:

W) = : ,
1 —x —0.524526x> — 0.709564x> — 23.121x*
(61)
1) 1 —32.5847x )

T 1-133.5847x +32.0602x% + 16.382x%°

() _ 1= 523638x +26.7566x

= , 63
1 —53.3638x + 78.5959x2 (63)
- _ 2 _ 3
WD _ 1 —8.92846x — 8.40393x* — 12.3776x o (64)
1 —9.92846x

leading to the following average:

W =1+ x + 1.52453x% + 2.75862x> + 27.3888x*
+594.038x° + 23309.3x% + 1.05282 * 10°x”
+5.01986 x 107x3 +2.46615 x 10°x”
+1.23479 x 1011 x19, (65)

Using these coefficients, the higher-order behavior of R,
using a, = 0.2 for FOPT are obtained as:
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Scale dependence at NLO
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FIG.7. The scale variation of the non-singlet part of the Ry, (£2¢?) in the FOPT and RGSPT schemes when scale parameter & is varied

in the range & € [1/3,5] for n; = 4 using a,(¢*) = 0.2.

REOPT — 1 4 x + 1.52453x% — 11.5203x% — 92.891x* + 308.683x° + 23278.8x5
+954842x" + 4.31945 x 107x® +2.03702 x 10°x” + 9.73859 x 101%x10 + O(x'!)
=14 0.06366 4 0.00618 — 0.00297 — 0.00153 + 0.00032 + 0.00155 4 0.00405 + 0.01165

+0.03499 + 0.10649 + - - -, (66)
and for RGSPT, we obtain the following contributions:
RRGSPT — 1 4 0.947499x + 1.12508x + 0.909611x> + 10.5751x* 4 221.145x° 4 6241.56x°
+ 157010x7 4 2.61906 x 10°x® — 4.44785 x 107x° — 7.62188 x 10°x10
= 1 4 0.06032 + 0.00456 + 0.00023 + 0.00017 + 0.00023 + 0.00042
+ 0.00067 + 0.00071 — 0.00076 — 0.00833 + - - - . (67)

The higher-order behavior using the above results for
FOPT and RGSPT are shown in Fig. 8. It is evident that
the RGSPT results for R, are more stable than FOPT if we
include the higher order predictions using the Padé approx-
imants. In FOPT, these higher-order contributions are
significantly larger than RGSPT.

3. Light quark hadronic contribution muon g —2

Muon anomalous magnetic moment anomaly has been
of constant interest in recent years. The tension between the
predictions of the standard model and experiments now
stands at 4.26 [103-105]. The key issue of the anomaly is
contributions coming from the hadron vacuum polarization
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FIG. 8. Higher order behavior of the nonsinglet contribution to

Ry, for ny =4 using a, = 0.2.

(HVP). Lattice QCD and dispersive approach based on
data-driven methods are used in the literature to quantify
these HVP contributions. More details on the subject can be
found in the Refs. [69,106—111] and references therein.

In this subsection, we will focus only on the pQCD
contribution to HVP relevant to the summation of the
kinematical 7z’—terms. Such contributions enter while
evaluating the leading order continuum contributions to
HVP using the pQCD input. The electromagnetic R-ratio
discussed in Sec. IV B 1 with some massive corrections are
taken as inputs to calculate these contributions using the
following relation:

GLOHVP _ lagm /°° Gs(s)

R i e ZONENC)

So

where kernel G,(s) is given by [105,112]:

e (Z%(1-2))
Gz(s)—/o dz’(zz+(1—z)s/m};)’ (69)

and m, = 105.6583745 MeV is the mass of Muon.
Recently, three-flavor s-quark connected and disconnected
contributions to Muon g — 2 are calculated in Ref. [70]
using the FOPT scheme. These contributions are denoted as
ag®™ in this article.

The effects of the summation of z°~terms to the Ry,
from massless Adler function and higher order behavior are
already discussed in the Sec. IV B 1. However, some small
corrections are also due to finite strange quark mass ().
These massive corrections for the Adler function are
already known to O(a}) from Refs. [113-116] and can
be found in Appendix B 1. Higher-order corrections can
also be predicted using the Padé approximants. Following
the procedure opted in the previous subsection, the Adler
function in the massive case is obtained as:

DY¢ = 12x + 113.5x% + 1275.89x> + 16496.5x*
+215732x5 4+2.87888 x 10°x° +3.91033 x 107x7
+5.3773 x 103x® +7.47708 x 10°x° +---.  (70)

Now, we can use the above coefficients to study the

stability of the Réﬁi with respect to the renormalization

scale and with the order of the perturbation theory. The Riﬁi
for FOPT, using a,(M?2) = 0.3139, is obtained as:

R = 12x + 113.5x% + 730.597x3 + 2569.98x* — 31969.7x5 — 1.25 x 105x5 — 2.61 x 107x7 — 4.08729
x 108x® — 5.1128 x 10°x° — 4.7013 x 10'%x10 — 1.32053 x 10'x!! 4+ O(x2) (71)

= 1.199 + 1.1331 4 0.7288 + 0.2562 — 0.3184 — 1.2469 — 2.5910 — 4.0604 — 5.0750

— 4.6626 — 1.3086 + - - -. (72)
For the RGSPT scheme,
R = 8.2999x + 39.6882x2 + 167.085x3 + 214.167x* — 9709.35x5 — 148249.x6 — 1.32872
x 10%x7 — 6.2473 x 10°x3 + 3.26504 x 107x° + 1.13115 x 10°x'% + 1.44578 x 10'%x!! + O(x'?),
= 0.8293 + 0.3962 + 0.1667 + 0.0213 — 0.0967 — 0.1475 — 0.1321 — 0.0621 + 0.0324 + 0.1122
+0.1433 + - - -. (73)

From these numerical predictions, it is clear that RGSPT has better convergence than FOPT for the known O(a?) results but
does not have a convergent behavior when higher order coefficients are used. For FOPT, it is a much more serious issue than
RGSPT, as shown in Fig. 9(c). The scale dependence for massive corrections to the Adler function and R, (s) in the
timelike region be found in Fig. 9. These quantities are calculated using a,(M?2) = 0.3139 for three flavors and used in the

014028-14



RENORMALIZATION GROUP SUMMATION AND ANALYTIC ...

PHYS. REV. D 108, 014028 (2023)

L e e T e s e e L S e e e e ML B e e s s 1

N

o

hed
2

g
1=}

C —
E 2.5£ j
A : ]
¥ I € 20f :
£ s i
Q € 150 3
! ol !
[ — FOPT ’ F —— FOPT j
1r RGSPT 0.5 RGSPT
1.0 1.5 2.0 25 3.0 3.5 4.0 1.0 1.5 2.0 25 3.0 3.5 4.0
3 4
(a) (b)
o, .
€ -5t
> B
x L
_10,
[ — FOPT
[ RGSPT
_15k 1 n n n 1 1 n n n 1 ]
2 4 6 8

Perturbative order n

(c)

FIG. 9. The scale dependence of the Dy and R, using O(a}) corrections in (a) and (b), respectively. The stability of the R,,, for

higher-order using Pad’e predictions in Fig. 9(c).

rest of the subsection. It is clear from these plots that the
pQCD analysis for the low energy s ~ M? requires sum-
mation in order to make meaningful predictions. The
RGSPT series shows that the summation of kinematical
m’>—terms improves the scale dependence and the radius of
convergence for known O(af) terms.

The calculation of @ requires both massless and
massive strange quark mass correction, and relevant
expressions are collected in Appendix B. Before moving
to @™ calculation, it should be noted O(ay) coefficient to
massless correction, ds = 283, provided in Ref. [102] is
used to estimate the truncation uncertainties. Using FOPT,
we obtain the following contribution to ;™

eont 6.277 x 107! including O(a3)
a™ = . . (74)
6.282 x 107!1° without O(ay)
and for RGSPT, we get the following contributions:
cont {6.286 x 10710 including O(a3) 75)
“ 7 16.287 x 10710 without O(ad)

We can see that the truncation error is significantly reduced
in the RGSPT. The scale dependence of @™ using known
O(a?) is plotted in Fig. 10(b). Higher-order terms obtained
in Beneke and Jamin [102] can be used to study the
behavior of @ in different schemes. The numerical values
of these coefficients are presented in the Appendix B. The
numerical stability of the @™ using these coefficient is
presented in Fig. 10(a).

We can also include the massive corrections from the
strange quark mass represented as Zlc";‘l&. The expressions
for such corrections in the FOPT and RGSPT schemes are
presented in the Appendix B 1. Using the strange quark
mass as m (2 GeV) = 93.4 £ 8.6 MeV as input from the
PDG [117], we obtain the following corrections to &;‘3‘7‘1‘2:

s

G, = 1.550 x 10712 (FOPT), (76)

acont2
pm

WMty

=8.453 x 10713 (RGSPT). (77)
The RGSPT contribution is ~54.5% smaller than the FOPT
due to the enhanced suppression by the presence of the
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FIG. 10. The behavior of a°" with increasing perturbative order in O(a?) in Fig. 10(a) and scale dependence for the exactly known
terms in Fig. 10(b). The scale dependence of the massive corrections to &;";‘1‘2 in Fig. 10(c).

quark mass anomalous dimension in the denominator. Even
though massive corrections to @™ are small, analytic
continuation effects are numerically significant in this case.
The scale dependence of these contributions is presented in
Fig. 10(c).

V. SUMMARY AND CONCLUSION

Effects of kinematical corrections arising from analytic
continuation in QCD have a long history. There are various
methods used in the literature to control their effects. These
effects are related to the RG behavior of the perturbative
series. RGSPT uses RGE to sum running logarithms
originating from a given order of perturbation series to
all orders. We have used this property to sum these
kinematical terms to all orders in addition to the reduced
dependence on the renormalization scale. These issues are
discussed in Sec. II and Sec. III leading to important all
order summation formula in RGSPT in Eq. (19).

In Sec. IV, the effects of the kinematical terms using
FOPT and RGSPT for various processes involving Higgs
decay Sec. IVA in pQCD and electromagnetic R-ratio for
ete™ IV B are discussed.

In Sec. IVA 1, Higgs decaying to a pair of bottom quarks
is studied. The results obtained from RGSPT show

enhanced stability with respect to scale variation in addition
to good convergence, even if predictions for higher orders
are included. For FOPT, cancellation between genuine
perturbative correction and z’-terms occurs, leading to
less truncation uncertainty for the known O(aj) results.
The truncation uncertainty for the higher order term should
be estimated from the Adler function rather than analyti-
cally continued series in FOPT if kinematical z° -terms are
involved.

In Sec. IVA 2, we study the decay of Higgs to a pair of
gluons. The analytically continued series has a better
convergence to known orders using RGSPT than FOPT.
However, in the total decay width, contributions from the
Wilson coefficients result in slightly greater truncation
uncertainty for RGSPT.

In Sec. IVA3, the results from the previous two
subsections as well as some contributions from the mixing
of gluonic and fermionic operators, are also included. We
get to observe the same patterns as discussed in the
previous two subsections.

In Sec. IV B, electromagnetic R-ratio for ny =3 and
ny = 4 are studied. Its application in continuum contribu-
tion to muon g— 2 is discussed, including the massive
correction from the s-quark. In these examples, a significant
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reduction in the truncation uncertainties is also achieved in
addition to improved scale dependence. We believe that
these results can be used to calculate the experimental
values of the low-energy moments of the vector current
correlators [64—68] that are important observables in the
determination of the g, charm-, and bottom- quark masses.
We have used the experimental moments available in the
determination of the «a,, charm-, and bottom-quark masses
in Ref. [118].

In addition, the results obtained in this article can be used
in the QCD sum rules where analytic continuation of the
polarization function is required. One such application we
have used in the light quark mass determination from the
divergences of the axial vector current in Ref. [79].
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APPENDIX A: RUNNING OF THE STRONG
COUPLING AND THE QUARK MASSES
IN THE pQCD

The evolution of the strong coupling and quark masses is
computed by solving the following RGEs:

27 x(u) = B(x) = — X i+23.

W (1) = p(x) ;( (1)*2ps,

) = ) = (<)
(A1)

where the coefficients of QCD beta functions [119-128]
and quark mass anomalous dimension [129—-136] can be
found in Ref. [51].

APPENDIX B: ADLER FUNCTION
FOR THE VECTOR CORRELATOR
AND ELECTROMAGNETIC CURRENT

The Adler function for the vector current correlators is
known to O(a?) in Refs. [18,19,99,137-143]. The Adler
function for ete™ also receives additional singlet contri-
butions. The numerical expression for n, flavor is given by:

Dys = 1+ x + x?[1.98571 + L(2.75 — 0.166667n,) —0.115295n,] + x3[18.2427 — 4.21585n,
+ 0.086206971% + L?(7.5625 — 0.916667n, + 0.027777871%) + L(17.2964 — 2.08769n,
+ 0.038431871%)] + x*135.792 — 34.4402n; + 1.87525n.}2f - 0.0100928n5’¢ + L(198.14
—52.8851n; + 3.09572n} - 0.0431034n;-) + L?(88.8789 — 16.1754n, + 0.812399n§»

- 0.00960795n}) + L3(20.7969 — 3.78125n, + 0.22916711} - 0.0046296311]3()),

Dg = —26.4435x% 4 (=1521.21 = 218.159L + (49.0568 + 13.2218L)n;],

where L = log(y*/q?) and x = a,(u)/n. The total con-
tribution to the Adler function is given by:

D™ = "(e3)Dys + (zfzef)zl)s (B3)

f

where e, is the charge of the n—flavored quark and the
singlet contribution vanishes for the ny =3 case. These
expressions are relevant for dimension zero contribution to
the eTe™ — hadrons, hadronic Z- and 7 decays, electro-
magnetic contributions to muon (¢-2),, J/y and T
systems.

Predictions for the higher-order terms using large—f,
approximation and Borel models for hadronic 7z decay
width in Ref. [102]:

[
6Dem|”f:3 = 283x> + 3275x% + 18800x7 + 388000x"

+919000x° 4+ 8.37 x 107x'9 — 5.19 x 103x!!
+3.38 x 1010512, (B4)

Other predictions using D-log Padé approximants for
hadronic 7 decay to O(a$) can be found in Ref. [144].

1. Leading mass correction to R-ratio

The massless and leading-order massive corrections to
eTe™ — hadrons are now known to O(a?) and can be
found in Refs. [113—-116]. The leading mass correction
coefficient of the Adler function for the vector current
correlator for ny = 3 case in FOPT reads:
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DY = 12x + x2[113.5 + 51L] + x3[1275.89 + 876.75L + 165.75L%] + x*[16496.5
+ 13351.6L + 4233.16L% + 483 438L°] (BS)

and the corresponding expression in RGSPT reads:

DY = 12xw 179 4 52 [(134.981 — 40.2963L,,)w26/° — 21.4815w—17/9] +x3](1551.31
—764.876L,, + 103.477L2 )w=3/% — (271.34 — 72.135L,,)w™26/9 — 4.073w~17/7]
+ x* [w—44/9(19944.3 —12084.9L,, + 2827.98L2% — 238.465L3,) + w=3/°(=3340.89

+ 1521.79L,, — 185.236L2) + (—114.043 + 13.679L,, )w=26/° + 7.12168w‘17/9} (B6)

APPENDIX C: ADLER FUNCTION FOR THE SCALAR CURRENT CORRELATOR

The Adler function of the scalar current is known to O(a) [19,20,71-75] relevant for the process H — bb, and leading
mass correction for the hadronic 7 decay for the longitudinal contributions. Its numerical value for n; quark flavor is
given by:

Dy =1+ x(5.667 4 2L) + x*(51.57 + 35.33L + 4.75L? + (=1.907 — 1.22L — 0.167L?)n )
+ x3(648.7 + 509.6L + 147.29L? + 11.88L% — (63.74 4 42.12L + 11.54L? + 0.94L%)n,
+(0.929 4-0.582L + 0.204L> 4- 0.0185L%)n7) + x*(9470.76 + 8286.31L + 3047.01L*
+ 536.76L° 4 30.4297L* — (1454.28 + 1202.9L + 398.02L* + 68.11L3 + 3.91L*)n,
+ (54783 4+ 45.723L + 14.688L7 4 2.723L* + 0.166L*)n% + (—0.454 — 0.453L
—0.145L% - 0.034L° - 0.0023L*)n}) + O(a3), (C1)

where x = a,(u?)/z and L = log(u*/q?).

APPENDIX D: WILSON COEFFICIENTS C; AND C,

The Wilson coefficients needed for the hadronic Higgs decays, C; and C, are known to O(3) and are obtained using
the four loops decoupling relations [145—147] and expressions can be found in Refs. [19,148]. Their value in the different
mass schemes are calculated using the quark mass relations [149-154] and their numerical values in the MS-, SI- and
OS- schemes are given by:

CMS = I—; [1 +2.750x + x%[9.642 — 0.698n; 4 L,,(1.188 + 0.333n,)] + x3[47.370 — 7.69n,
—0.221n? 4+ L2,(3.266 + 0.719n, — 0.056n) + L,,(6.017 + 1.019n; + 0.045n2)]
+ x*[311.780 — 62.368n; + 1.616n7 — 0.034n3 + L2(21.878 + 1.796n,

— 009212 — 0.011n3) + L,(8.980 + 1.432n; — 0.273n? + 0.009n3)
+ L,,(26.504 — 10.211n; — 2.426n7 + 0.093@)]} (DI1)

CS! = VS 4 x*L,,(~2.375 — 0.667n;) + x°L,,[~21.700 — 4.420n, + 0.003n2
+ L, (~16.526 — 3.649n; + 0.278n2)] (D2)
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COS — CMS 4 x4[-3.167 — 0.889n; + L,,(—2.375 — 0.667n,)] + x°[-52.197 — 10.390n, + 0.575n2
— L,,(47.825 4 10.170n; — 0.448n7) + L2,(—~16.526 — 3.649n; + 0.278n?)], (D3)

CYS = 1+ x2[0.278 — 0.333L,,] + x3[2.243 — 1.528L,, — 0.917L2, + (0.245 + 0.056L2,)n;]
+ x*[2.095 — 2.627L,, — 6.736L2, — 2.521L3, + (=0.01 — 0.096L,, — 0.009L3 )n?
+(0.31 4+ 3.142L,, + 0.479L2, + 0.306L3)n)] + x°[65.144 + 13.373n, — 3.642n}
+0.076n; + L,,(=121.028 + 27.852n, — 0.959n7 — 0.001n}) + L2,(~17.373
+19.162n; — 1.581n7 + 0.032n}) + L;,(—25.654 + 3.630n; — 0.126n7)
+ L}, (=6.932 + 1.260n; — 0.076n? + 0.002n3)] (D4)

CS! = OIS 4 x30.667L,, + x*[L2,(4.639 — 0.278n,) + L,,(5.769 — 0.093n,)]
+ x°[L,,(29.056 — 8.266n; + 0.173n2) + L2,(60.290 — 4.793n; + 0.046n?)
+ L3,(22.261 — 2.673n; + 0.080n2)] (D5)

C9S = CYS + x3[0.889 + 0.667L,,] + x*[14.222 — 0.694n, + L,,(13.102 — 0.537n,)
+ L2,(4.639 — 0.278n,)] + x°[206.029 — 30.829n, -+ 0.690n?
+ L,,(203.548 — 27.199n; 4 0.636n2) + L2,(100.623 — 9.682n; + 0.19412)
+ 13,(22.261 — 2.673n, + 0.080n2)]. (D6)

where L,, = log(u?*/ mé) and m, are the mass of the quark in the mentioned quark mass scheme.

APPENDIX E: ADLER FUNCTIONS RELEVANT FOR THE HADRONIC HIGGS DECAY WIDTH

The Adler functions relevant to the hadronic Higgs decay to compute the A; ; are presented in this section. The A,;; are
obtained from the discontinuity of the D;; with appropriate factors.

1. FOPT expressions
Dy = 1+ x[12.417 + 3.833L ] + x*[104.905 + 81.063L; + 11.0208L%]

+ x°[886.037 4 971.268Ly + 333.899L3, + 28.1644L;;]
+ x*(8723.76 + 10408.8L y; + 5279.62L3% + 1119.89L3, + 67.4771L%)

2
+ % [6x + 22[202.046 + 69.5Ly + 3L + x3[4069.51 + 2622.94L,, + 462.167L2 + 17.5L§,ﬂ . (El)
H

Dy, = —x[30.67 + 8Ly| — x2[524.701 + 280.44 L + 31.33L%] — x3[7093.07 + 5337.21Ly
+1316.94L% +91.39L3,)]. (E2)

The analytic results for A;; can be obtained from Refs. [19,93,96].
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2. RGSPT expressions

DY = w2 + x(14.9384w™3 — 2.52174L,,w™> — 2.52174w™?) + x*(140.526w*
—59.6857L,,w™* + 4.76938L2w™* — 37.441w™> + 6.360L,, w3 + 1.820w~2)
+ x3(1233.01w™5 — 783.997L,, w5 + 156.525L2w=> — 8.018L3w=> — 348.927w*
+ 149.642L,,w™* — 12.027L2w™* 4 18.484w™> — 4.589L,,w™> — 16.533w2)
+ x*(11878.4w=° — 8761.86L,,w=° 4 2668.65L2w=°0 — 339.04L3 w=° 4 49.6729w >
+ 12.6372L4w™0 — 3037.83w > 4 1948.48L,,w> — 392.522L2w° + 20.2195L3w™>
+49.8197w* — 75.7019L,,w* + 8.67931L2w™* — 216.349w > + 41.6915L,,w™>)
m
M%_IWM/B
—3.134L,w™3 — 34.8133w™2 + 4.20822L,,w~2 + 8.76682w™! — 1.07444L,,w")
+ x%[1.499 + 638.823w™* — 158.362L,,w™* 4 7.988L2w™* — 551.269w >
+ 138.9L, w3 — 8.074L2w™> + 97.462w=2 — 23.943L, w2 + 1.384L2 w2
+15.531w™" = 2.315L,,w™"] 4 x*[—12.839 + 10698.6w=° — 4262.05L,,w™>
+513.596L2w™> — 16.93L3w™> — 7966.85w™* 4 2985.67L, ,w™* — 364.26L2w™*
+ 13.7218L3w™* + 1189.89w™3 — 404.192L,,w=> + 47.685L2w=> — 1.77L; w3

+ [(0.8166 +0.8166w~2 — 1.633w™1) + x(1.7599 + 30.287w >

+129.34w2 — 42.9368L,, w2 + 2.98299L2 w2 + 31.3499w! — 1.97163wa‘1]} (E3)

D%, = w—24/23{(4.17391(1 — 1) 4 x[~0.409 + (~78.7983 + 10.7543L,, )w™>

+ (48.5405 — 5.49158L,,)w™")] + x2[~4.37668 + w3 (~1032.38
+315.943L,, — 20.6345L2) + (532.464 — 131.992L,, + 7.07469L2 )w~2
+ (=20.4045 + 0.53794L, )w~"] + x3[—29.29 + (—12441.7 + 5661.76L,,
— 831.402L2 + 35.067L3 )w + (5715.82 — 2209.72L,, + 262.174L?

—9.04953L3 )w3 + (=310.481 + 53.2516L,, — 0.693018L2)w2 + (~27.3994 + 5.75835Lw)w‘1]} (E4)

DE, = w—24/23{1 + x[=2.35098 + (8.01764 — 1.31569L,,)w™1] + x2[1.144 + (59.6174

—22.3168L,, + 1.69498L2 )w=2 + (—18.7293 + 3.09316L,,)w™]

+ x3[3.74239 + (482.958 — 256.916L,, + 44.9568L2, — 2.16812L3 )w™>

+ (=138.124 4 52.1572L,, — 3.98485L2 )w™2 + (4.65204 — 1.50502L,,)w™']
+ x*[=10.6936 + (45.18 —4.92L,,)w~" — (8.45 4 13.88L,, — 1.94L2 )w=>

+ (4598.16 — 2786.2L,, + 711.6L2 — 79.135L3, + 2.763L} )w*

+ (=1111.99 + 595.803L,, — 105.099L2 + 5.09719L§V)w‘3]} (E5)
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