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In the framework of the Born-Oppenheimer effective field theory, the hyperfine structure of heavy
quarkonium hybrids at leading order in the 1/m, expansion is determined by two potentials. We estimate
those potentials by interpolating between the known short-distance behavior and the long-distance behavior
calculated in the QCD effective string theory. The long-distance behavior depends, at leading order, on two
parameters which can be obtained from the long-distance behavior of the heavy quarkonium potentials (up
to sign ambiguities). The short-distance behavior depends, at leading order, on two extra parameters, which
are obtained from a lattice calculation of the lower-lying charmonium hybrid multiplets. This allows us to
predict the hyperfine splitting both of bottomonium hybrids and of higher multiplets of charmonium
hybrids. We carry out a careful error analysis and compare with other approaches.
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I. INTRODUCTION

Exotic hadrons (those beyond mesons and baryons) have
been a matter of research since the early days of QCD [1].
Among them, the so-called hybrids are the closest to
standard hadrons, as the only difference resides in their
nontrivial gluon content. Hence, their flavor structure is the
same as in standard hadrons, but their J©¢ quantum
numbers may differ, since, in general, the nontrivial gluon
content contributes to them. Nevertheless, the experimental
confirmation of hybrids is an arduous task. On the one
hand, hadrons with exotic quantum numbers, which could
be associated to hybrid states, are difficult to produce with
current beams. On the other hand, for light hadrons, hybrids
with standard quantum numbers may mix with standard
hadrons in an arbitrary way. However, when heavy quarks
are involved, the mixing is suppressed by inverse powers of
the heavy quark mass, and, hence, the identification of
hybrids with standard quantum numbers should become
simpler, provided we have reliable theoretical predictions
for the hybrid spectrum.

An economical approach to calculating the hybrid
spectrum is the so-called Born-Oppenheimer effective field
theory (BOEFT) [2-7]. It exploits the fact that heavy
quarks move slowly in heavy hadrons. The effect of the
nontrivial gluon (or/and light quark) content is encoded in a
series of potentials organized in an 1/mg, expansion, m

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2023,/108(1)/014025(11)

014025-1

being the heavy quark mass. The leading potential
[0/ mOQ)] is heavy quark spin and heavy quark mass
independent. It has been used to calculate the spin average
spectrum [2—4,8], decays to heavy quarkonium [4,9-11],
and transitions between heavy quarkonium states [12]. The
mixing of heavy quarkonium hybrids with heavy quarko-
nium starts at the order of 1/m, [4]. Spin effects also start
at the order of 1/ mg [4,5], and, hence, they are more
important than in heavy quarkonium, in which they start at
the order of 1/ mZQ. In that respect, it is important to have
spin effects under good control in order to properly identify
possible experimental candidates (see Refs. [13,14] for
recent reviews).

We calculate here the hyperfine splittings (HFS) for the
lower-lying charmonium and bottomonium hybrids at lead-
ing order (LO) [O(1/m)] in the BOEFT. At this order, the
HFS depend on two unknown potentials [5,6]. At short
distances, the form of these potentials is constrained by the
multipole expansion and has been given in Refs. [6,15],
where one can also find the form of the relevant next-to-
leading-order (NLO) potentials [O(1/ sz)] The HFS were
calculated in that reference using the short-distance form of
the potentials only. At long distances, the form of the
potentials can be estimated using the QCD effective string
theory (EST) [16,17]. This has been carried out for heavy
quarkonium [18,19] and for the hybrid-quarkonium mixing
terms [4]. We provide the results here for the spin-dependent
terms of the lower-lying static hybrid states (£, and I1,,),
which turn out to be parameter-free (up to signs). We
emphasize that the typical distance between heavy quarks
in heavy quarkonium hybrids states is of O(1/Aqcp), and,
hence, an interpolation between the short- and long-distance
forms of the spin-dependent potentials should provide more
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reliable estimates than sticking to the short-distance form
only. We propose a simple interpolation and calculate the
HES with it. We use the charmonium spectrum in Ref. [20] to
fix the unknown parameters in the short-distance form of the
potential and to estimate the interpolation dependence. Then
we can predict the HES of higher multiplets and the HFS of
bottomonium hybrids.

We distribute the paper as follows. In Sec. II, we work
out the structure of the spin-dependent terms in a conven-
ient basis. We specify the form of the spin-dependent
potentials at short distances in Sec. III A, at long distances
in Sec. III B, and the interpolation we use in Sec. III C. In
Sec. IV, we fix our free parameters using hybrid charmo-
nium lattice data for the lower multiplets and obtain the
HES of higher multiplets. In Sec. V, we obtain the HFS of
bottomonium hybrids. Section VI is devoted to the com-
parison with other approaches, and we close with a
discussion and our conclusions in Sec. VIL

II. THE HYPERFINE SPLITTINGS

General expressions for the BOEFT at NLO have been
recently obtained in Ref. [7]. The lower-lying hybrid
potentials correspond to the x” = 1 quantum numbers
of the light degrees of freedom (LDOF), where « is the total
angular momentum and p the parity. We focus on the
heavy quark spin-dependent terms in the Hamiltonian

v ()/my:
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where Spp and S, are the spin operators of the heavy
quark-antiquark pair and the total angular momentum
operator of the LDOF, respectively. P, are the projectors
to the irreducible representations of the D, group
A =0, 1. They read

Pio =L — (- 81)7,
Py = (F-8))% (2)

In our case, the above potentials act on fields H{"(r, 1),
n,m = 1,2, 3, where the first index corresponds to the total
angular momentum of the LDOF and the second to the spin
of the heavy quark-antiquark pair. In the Cartesian basis

(Si)7* = —iel/k, we then have
! A IA
?On — g,
rlt’ln —_ 511'11 _ ?.n'?n‘ (3)

Analogously, the heavy quark-antiquark spin operators
read (S’Q Q)”‘/m = —i€;,m- We find that only two indepen-
dent potentials survive:

(VI () + Vi ()P B3
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where we have used that time reversal and Hermiticity
imply V32 (r) = V32 ,(r) € R and we have defined

1 1

Vi (r) :gviin( r) = 3V¥)+10( r),
Vi) = =3 (i, (D + Vi (). ()

The structure leading to V), was first noticed in Ref. [4],
and the one leading to V), was already considered in the
short-distance analysis in Refs. [6,21]. We write the field
H}"(r,t) in the |SLJJ M > basis, where S and L are the
spin and the orbital angular momentum of the QQ pair,
respectively, J the total angular momentum of the LDOF
plus the orbital angular momentum of the QQ, and 7 and
M the total angular momentum and its third component,

_ 6ni5jm5n’m’ ) , (4)

|
respectively [4]. For a given J, J =7, J+1, L =1J,
J £ 1 and only S =1 is affected by Eq. (1):

H(r Z YR ®)PL(r)e i, (6)
LJJM
YO ®) = > CU1LT:M-w)

uv=0,£1

X C(L1; M —p—v) Yy ™ (®)rigd,  (7)
where C(JJ'J";MM') are Clebsch-Gordan coefficients,
Y¥(#) the spherical harmonics, and )(# the spin 1 eigen-
vectors. In this basis, Eq. (1) becomes, for 7 > 1,29 x 9
matrix that splits into a 5 X 5 box and a 4 x 4 box.

The five-dimensional box corresponds to the subspace
spanned by (P74 P{ 7 P?%M, Pyl Pi ), where we
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use the shorthand notation &+ forJ &+ 1 or 7 £ 1 and O for J
or J. For the terms proportional to =2V, it reads [5,22]

1 0 0 0 0
J-1 J+1V2T-1
0 A T V2T+1 0 0
0 J+1V2T-1 _ 1 _J V2J+3 0 (8)
J V2T+1 J(T+1)  T+1\27+1
J_ V2J+3 J+2
0 0 THIV2T+1 T T+ 0
0 0 0 0 1

and for terms proportional to =2V, [23]

202-T S _
Dy V30 0 0
S 2(1-72 —
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L e e R A V30 9)
00 27(2+J) -
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- 2(3+J)
0 0 V3o 1 T
with
oo _ T+1
2 JRI-n2g+1)’
o 37 -2
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374721
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vt V2FT
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The four-dimensional box corresponds to the subspace
spanned by (P 1JM’P1JM’P1+§M’P(1)}M) For the terms
proportional to =2V, it reads [5,22]

) o
J>—1 1
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T 7 (10)
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0 0 7 7

and for terms proportional to =2V, [23]
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If7=1, Pi7u and P?}M do not exist and the matrices
are 7x 7.1 J = 0, P77 P{ 70 PY%uts PV Pros and
P]?M do not exist and the system is reduced to 3 x 3
matrices for both potentials.

At first order in perturbation theory, only the diagonal
terms and the off-diagonal terms corresponding to
L =J +1,L' = J F 1 matter. This is because the Oth-order
wave functions have a single component for L = J and two
components for L = J = 1. Then the following formulas for
the masses M 7 of the spin multiplet J, which are indepen-
dent of the potentials V; and V,s,, hold:

They were initially derived in Refs. [5,22] for Vs, = 0, butit
is not difficult to see that they are also fulfilled for
Vi # 0 [23].

III. THE POTENTIALS

The potentials Vi¢,,(r) and V;ﬁlo(r) can be obtained
from suitable operator insertions in the expectation values
of Wilson loops [7], and, hence, they are amenable to lattice
evaluations. However, no such evaluation exists to date.
The short-distance behavior can be worked out with the
help of potential non-relativistic QCD (pNRQCD) [24,25].
It has been obtained at NLO in the 1/m, expansion in
Refs. [6,15]. However, the typical distances at which the
static hybrid potentials reach the minimum [26-29], the
typical quark-antiquark distance in the bound states [3], and
the shape of the wave functions (see plots in Sec. VI in
Ref. [4]) indicate that most of the time the quark-antiquark
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The two spin-dependent potentials (5) at short (13) [blue line] and long (14) [green line] distances. The orange line shows the

interpolation we use (16). The short-distance parameters A and B correspond to those in Table III and r, = 3.96 GeV~'.

separation is of the order of 1/Aqcp. It may then be more
appropriate incorporating reliable long-distance informa-
tion rather than calculating higher orders at short distances.
We shall do that by using the effective string theory of QCD
[16,30], which describes well the long-distance behavior of
the static hybrid potentials [26], as well as those of the
1/mg and 1/ mé potentials for quarkonium [4,18], calcu-
lated in lattice SU(3) pure Yang-Mills theory. We will then
stick to the Cornell model’s philosophy of using potentials
that interpolate between known short- and long-distance
behavior.

A. The short-distance behavior

In order to estimate the short-distance behavior, we use
the fact that the 1/m, potentials are analytic in r in
pNRQCD. This implies that

Vyp(r)/mg = A+ O(r?),

Vi (r)/mg = Brr + O(r*). (13)
We shall keep the LO terms only. A and B are unknown real
constants: A = cpky/mg and B = cpkg/mg. ky ~ AéCD
and kp ~A4QCD can be related to expectation values of
operator insertions in Wilson lines [15]. ¢ = cp(my) is
a short-distance matching coefficient inherited from
NRQCD [31-33]. We shall take the next-to-leading loga-
rithmic expression for it, cp(my,) = cp(v =1 GeV,m,) =
1.12155 and cp(my) =cp(v =1 GeV,m,) = 0.87897.
The corrections to the leading short-distance behavior are
suppressed by powers of Ajcpr?. We display the potentials
(13) in Fig. 1.

B. The long-distance behavior

The long-distance behavior can be estimated using the
QCD effective string theory [16,17], following the mapping
given in Ref. [18]. It has been obtained in Ref. [34]; see the
Appendix:

mg mokr’ X7

Vsb r A/ 2 1
1olr) _ _ croh'z — = Vib(r). (14)
mQ mQ\/ﬂ'K r

The parameters gA" ~ Agcp and gA”" ~ Agep also appear
in the spin-dependent potentials for heavy quarkonium.
They have been obtained in Ref. [4] from the lattice data in
Refs. [35,36]. Using simple interpolations with the right
short- and long-distance behavior, a good fit to data is
obtained with the following outcome':

g\ ~—=59 MeV,  gA"” ~4230 MeV. (15)

If only long-distance data points and the long-distance form
of the potentials are used, the values of |gA’| and |gA™| are
40% and 35% larger, respectively. k =~ 0.187 GeV? is the
string tension, and cp is the same NRQCD matching
coefficient that appears in the short-distance behavior. The
corrections to the leading long-distance behavior of the
potentials in Eq. (14) are suppressed by factors 1/r*Agcp.
We display the potentials (5) at long distances in Fig. 1.

C. The interpolating potentials

We use for the hyperfine potentials simple interpolations
with the right short- and long-distance behavior obtained in
Secs. III A and III B, respectively:

Vi) A+ () (Bvistro) -5 vib(ro)

mQ 1+ (r_:))S 5
r 5 A sa s
Vipa(r) _ Br? - (V_o) (2_(; Vid(ro) +%sz1’(70)) (16)
mg - (r_ro>7

"This is so except for the spin-spin potential, which was not
used for the extraction of gA’ and gA” in Ref. [4].
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g\ is the matching scale. It is estimated from the short-
and long-distance behavior of the static hybrid potentials to
be ry ~3.96 GeV~!. This figure will be eventually moved
in order to estimate the error due to the interpolation
dependence. We show the interpolated potentials in Fig. 1.

IV. CHARMONIUM HYBRIDS: FIXING THE
SHORT-DISTANCE PARAMETERS

The short-distance potentials depend on two arbitrary
parameters at LO: A and B. We shall fix those parameters
by comparing our results to the lattice data in Ref. [20] for
the lower-lying hybrid states [the 1(s/d), (H,), 1p, (H,),
1(p/f), (Hy), and 1p, (H3) multiplets]. The spin average
of the multiplets in Ref. [20] was higher than in Ref. [4].
Since we are going to use the same methodology as in
the last reference, we correct the lattice data by the spin
average difference, namely, by 381 [1(s/d),], 326 (1p)),
392 [I(p/f),], and 151 (1py) MeV. We then scan
natural values of A and B in [-0.3,0.3] GeV and
[—0.06,0.06] GeV?, respectively, and search for the ones
with the lowest y?/d.o.f. We adapted the code used in
Ref. [4] by adding the spin-dependent potentials above
and neglecting, for simplicity, the mixing with quarkonium
[37]. The charm mass is also taken as in Ref. [4]:
m,=1.47GeV. If we neglect the long-distance behavior,
we find A=0.0699GeV and B=0.0008GeV? with
y*/d.o.f.=1.1927. When we include the long-distance
behavior, the fit quality improves considerably, and
we obtain as a best fit A=0.1356 GeV and B =
—0.0022 GeV? with y?/d.o.f. =0, 6439. gA’ and gA"”
are taken as in Eq. (15), ry = 3.96 GeV~!in Eq. (16), and
all possible sign combinations for the long-distance poten-
tials in Egs. (14) and (15) are considered. The best fit
corresponds to a negative V3¢(r) and a positive V45(r). The
former implies gA” < 0. Reversing the sign of V35(r)
[V35(r)] worsens the fit considerably (marginally); see
Table I.

We have also explored the dependence of the result on
g\ and gA" according to the possible values given in
Ref. [4]. The fit has a mild preference for larger values of
|gN’| and |gA"'| (¥*/d.o.f. = 0,632 versus y?/d.o.f. =0,
643), so we shall take for now on gA’ = —0.0796 GeV and
g\ = 0.3105 GeV, which correspond to the fit to long-
distance data only in Ref. [4]. These values lead to A =
0.1445 GeV and B = —0.0036 GeV?. The change in the
spectrum is negligibly small (<1 MeV). The interpolation
dependence is estimated by moving r, € [2.5,5] GeV~!.
The y?/d.o.f. marginally improves around ry ~ 3.5 GeV~!
and considerably deteriorates for ry <3 GeV~! and ry >
3.96 GeV~!. We shall stick to the default value ry, =
3.96 GeV~! and use ry ~ 3.5 GeV~! to estimate the error
due to the interpolation. The changes in the spectrum are
of 3.1 MeV in average, with a maximum of 7 MeV.

TABLE 1. Fit parameters and spectrum dependence on the
sign ambiguities arising from the long-distance spin-dependent
potentials.

Sign(V}$) sign(V}) = o+ - -
7*/dodf. 0.8323 0.7524 0.6439 0.6850
A (GeV) 0.0764 0.0873 0.1356 0.1256
B(GeV?3) 0.0120 0.0144 —0.0022 —0.0045
(s/d), mass (GeV) 17~ 4.0107 4.0107 4.0107 4.0107
0~* 3.9059 3.9029 3.8959 3.8988
1=* 3.9582 3.9569 3.9548 3.9558
27t 40597 4.0603 4.0612 4.0611
py mass (GeV) 175 41450 4.1450 4.1450 4.1450
07~ 4.0886 4.0904 4.0981 4.0955
17~ 40880 4.0921 4.1020 4.0984
27 41456 4.1467 4.1495 4.1485
(p/f), mass (GeV) 27+ 42316 42316 42316 4.2316
14~ 41963 4.1969 4.1959 4.1950
2t 42366 42343 42323 42343
3t 42660 42637 42569 4.2594
po mass (GeV) 0t+ 44864 44864 44864 44864
1= 44674 44693 44564 44554

A increases about 30%, and B becomes more than twice
its value. See Table II.

In order to establish the error of A and B due to the input
data, we assume a linear dependence of the binding energy
on them, which holds at first order in perturbation theory.
We obtain A =0.115+0.034 GeV and B = 0.0038 +
0.0154 GeV>. Notice that the value of B is compatible
with zero. The spectrum is displayed in Table III. The error
due to the uncertainty in gA’ and gA”” is negligible. We also
neglect the error due to the interpolation, which is not

TABLE II. Fit parameters and spectrum dependence on r.
ro ( GeV™) 2.5 3 35 3.96 5
7%/d.o.f. 1.0693 0.7088 0.6216 0.6318 0.7585
A (GeV) 0.3718 0.2439 0.1793 0.1445 0.1049
B( GeV?) —0.0906 —0.0251 —0.0089 —0.0036 —0.0001
(s/d), mass 17~ 4.0107 4.0107 4.0107 4.0107 4.0107
(GeV) 0~" 3.8765 3.8836 3.8894 3.8945 3.9038
1= 3.9547 3.9525 3.9529 3.9543 3.9578
27t 4.0438 4.0543 4.0593 4.0609 4.0604
pi mass 1T 41450 4.1450 4.1450 4.1450 4.1450
(GeV) 0t~ 4.1122 4.1021 4.0991 4.0974 4.0946
17 41172 4.1174 4.1119 4.1045 4.0927
277 4.1559 4.1550 4.1524 4.1502 4.1471
(p/f), mass 2T+ 42316 4.2316 4.2316 42316 4.2316
(GeV) 17~ 4.2291 42073 4.1975 4.1952 4.1958
27 42334 42319 4.2320 4.2327 4.2349
3T 42226 4.2366 4.2474 42545 4.2633
po mass 07" 4.4864 4.4864 4.4864 4.4864 4.4864
(GeV) 17~ 44640 4.4558 4.4534 44546 4.4597
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TABLE III. Fit errors in A, B, and the hybrid charmonium
spectrum. The total errors in the spectrum are obtained by adding
in quadrature to the fit errors the error due to missing higher
orders in the 1/m, expansion (NA?)CD / sz ~ 30 MeV).

Fit error ~ Total error

A (GeV) 0.11455  0.034

B( GeV?) 0.00385  0.0154

(s/d), mass (GeV) 177 4.011 0.030
0-" 3911 0.045 0.054
1=t 3.963 0.023 0.038
2=t 4.046 0.018 0.035

p mass (GeV) 1t 4.145 0.030
0t~ 4.087 0.054 0.061
17 4.055 0.023 0.037
2t 4,130 0.005 0.030

(p/f), mass (GeV) 2++ 4232 0.030
17— 4.235 0.019 0.035
2= 4.258 0.021 0.037
37 4.241 0.013 0.033

po mass (GeV) 0+t  4.486 0.030
1= 4.450 0.013 0.033

negligible in order to obtain a value for A and B, but it is for
the spectrum due to its correlation with 0. We include the
error due to higher orders in the 1/m, expansion, which is
about 30 MeV for charm.

In Ref. [4], it was found that two extra multiplets lie
below the 1p: the 2(s/d),) and the d,. For completeness,
we also display the spectrum of these multiplets including
the hyperfine splitting in Table I'V.

V. BOTTOMONIUM HYBRIDS: PREDICTING
THE HYPERFINE SPLITTINGS

Once the parameters A and B are fixed from charmo-
nium, the corresponding parameters for bottomonium, A’
and B’, also are:

TABLEIV. The remaining hybrid charmonium spectrum below
the 1p, multiplet. The total errors in the spectrum are obtained by
adding in quadrature to the errors induced by the uncertainties in
A and B the error due to missing higher orders in the 1/m
expansion (~Adcp/mg ~ 30 MeV).

Mass (GeV) A and B error  Total error

d, 2=- 4.486 0.030
aw e

27 4.302 “00% “o0
srooam o e

2(s/d), 1= 4.355 0.030
oo oam

S e oo0e st

—0.032 —0.044

A/ :ACF(mb)mC Bl _ BCF(mh)mc (17)
cp(me)my,’ cp(me)my,

We calculate the spectrum for the central values of these
parameters (A’ = 0.02704 GeV and B’ = 0.00091 GeV?),
which provides us with the central value of the masses, and
for the four corners of their 1o range, which allows us to
estimate the error due to the fit parameters. We take it as the
larger difference in either sense. The total error is obtained
by adding in quadrature to the latter the error associated to
higher orders ~Adcp/mg ~3 MeV. The bottom mass is
taken as in Ref. [4]: m;, = 4.88 GeV. We display the results
in Table V.

We have also explored the dependence on r,. We have
recalculated the central values for r, = 3.5 GeV~! and
the corresponding parameters [obtained from charm and

TABLE V. The hybrid bottomonium spectrum. The total errors
in the spectrum are obtained by adding in quadrature to the fit
errors the error due to missing higher orders in the 1/myg
expansion (NA?QCD / m2Q ~3 MeV).

Mass (GeV) A and B error  Total error
(s/d), 17—  10.6902 0.003
0+ 10.682 0.004 0.005
1=+ 10.686 0.002 0.004
2=+ 10.694 0.002 0.003
» 1 10.761 0.003
0t 10.756 0.004 0.005
1= 10.759 0.002 0.004
2+ 10.764 0.002 0.003
(p/f), 2+t 10819 0.003
1= 10.815 0.002 0.003
2+= 10.818 0.000 0.003
3+- 10.821 0.001 0.003
d, 2= 10.870 0.003
SN B
2 10.869 20002 L 000a
3-+ 10.871 0.001 0.003
2s/d), 17 10.885 0.003
0= 10881 10005 10006
1=+ 10.883 fg:oogzl 0.003
270 10.888 10001 10003
2p, 1+t 10970 0.003
A
1 10.968 X 0001 20003
2= 10.971 0.001 0.003
20p/f), 2+t 11005 0.003
17 11.003 fg:ggzl 0.003
2= 11.005 0.000 0.003
3+= 11.007 0.001 0.003
Po 0+ 11.012 0.003
1= 11.012 0.000 0.003
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converted to bottom according to Eq. (17), A’ =
0.0423 GeV and B’ = —0.0021 GeV?3]. Recall that this
r( choice provides a slightly better fit to charmonium lattice
data than our default r, = 3.96 GeV~!. The difference is
below 1 MeV for the (s/d); multiplet and around 0.1 MeV
for the remaining ones. We can then safely neglect it.

VI. COMPARISON WITH OTHER APPROACHES

We shall compare here our results with those also
obtained in BOEFT in Refs. [6,15] and with the lattice
QCD results of the HSC Collaboration [20,38] (we will not
use earlier results at larger pion masses [39]). Recall that
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the main differences with respect to Refs. [6,15] is that only
short-distance expressions for the spin-dependent poten-
tials at NLO (eight nonperturbative parameters to fit) are
used there, whereas we use LO short-distance expressions
and LO long-distance expressions (two nonperturbative
parameters to fit).

Lattice results for charmonium hybrids [20] are used to
fit the nonperturbative parameters. Hence, our errors are
slightly larger than the ones from lattice data. Our fits
have lower y?/d.o.f. than those in Refs. [6,15], which
supports the inclusion of long-distance potentials. The
overall picture for the charmonium hyperfine splittings is
similar to the one obtained in those references; see Fig. 2.
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FIG. 2. The spectrum of the lower-lying n(s/d), (H,), np, (H3), n(p/f), (Hs), and npy (H3) charmonium hybrids computed by
adding the LO spin-dependent potentials to the static potentials used in Ref. [4] is shown in green boxes. The average mass for each
multiplet is shown as a red dashed line. Blue and magenta boxes show the results of the BOEFT with NLO spin-dependent short-distance
potentials only [6,15] and lattice QCD [20], respectively, adjusted to our spin average. The height of the boxes indicates the uncertainty.
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The spectrum of the lower-lying n(s/d), (H,), np; (Hz), n(p/f), (Hy), and npy (H3) bottomonium hybrids computed by

adding the LO spin-dependent potentials to the static potentials used in Ref. [4] is shown in green boxes. The average mass for each
multiplet is shown as a red dashed line. Blue and magenta boxes show the results of the BOEFT with NLO spin-dependent short-distance
potentials only [6,15] and lattice QCD [38], respectively, adjusted to our spin average. The height of the boxes indicates the uncertainty.

For spin-one states, we get similar, slightly larger, smaller,
and larger errors for the (s/d), (H,), p1 (H3), (p/f), (Hy),
and p, (Hz) multiplets, respectively. For spin-zero states,
which do not enter in our analysis, the errors are due only to
neglected higher orders in the 1/mg, expansion. Note that
the error that we assign to them is larger than than the one
assigned in Refs. [6,15]. See Fig. 2.

Our predictions for the bottomonium hybrid hyperfine
splittings are compatible with the few available states from
lattice QCD [38], but we have much smaller errors; see
Fig. 3. We get again an overall picture similar to the one in
Refs. [6,15], with smaller errors for spin-one states, and
smaller hyperfine splittings, in general. However, for the

(s/d), multiplet, we have about 2o discrepancies with
those references. Nevertheless, both sets of splittings are
consistent with lattice data in Ref. [38] for this multiplet.
The remaining available lattice states do not form any
obvious spin multiplet. We have assigned the three lighter
(two heavier) ones to the p; [(p/f),] multiplet. However,
the fact that the 17" state is lighter than the 17~ in the
lattice results is in conflict with the BOEFT ones.

VII. DISCUSSION AND CONCLUSIONS

The static potentials we use are taken from Ref. [4]. They
were obtained from pure SU(3) (n, = 0) lattice data in
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Refs. [26,27]. More recent pure SU(3) (n, = 0) lattice data
exist for the static hybrid potentials, with better resolution
at short and intermediate distances [28,29,40]. It would be
interesting to incorporate them in future analysis. However,
the systematic errors due to using pure SU(3) (n; = 0)
rather than QCD with dynamical light quarks (n, = 3)
would still be difficult to evaluate. The early study in
Ref. [41] suggests that they are small. The strategy recently
presented in Ref. [42] may help to resolve this issue.

The lattice data to which we fit our spin-dependent
expressions (Ref. [20]) are obtained from a 2+ 141
clover action at a fixed spatial lattice spacing of
0.12 fm, a 3.5 times smaller temporal lattice spacing,
and light quark masses corresponding to m, ~ 240 MeV.
In Ref. [43], results in the continuum limit for realistic light
quark masses are obtained using a highly improved
staggered quarks action with 2 4+ 1 + 1 dynamical quarks,
but only for two states in the lowest-lying multiplet. The
lattice bottomonium data we compare with (Ref. [38])
uses the same setting as Ref. [20], tuning the heavy quark
parameters to bottomonium observables, and uses light
quark masses corresponding to m, ~ 391 MeV.

We have focused on the hyperfine splittings. The
absolute values of the masses we quote correspond to
the spin averages in Ref. [4]. The central values quoted in
that reference are lower than those in Ref. [3] but
compatible within errors. The differences are due to the
choice of normalization (quarkonium spectrum versus RS
mass scheme). They are also much lower than the lattice
results in Ref. [20], a difference that shrinks if they are
compared with earlier lattice data at larger pion mass [39].
This suggests that part of the discrepancy may be due to the
quenched lattice data used as an input in Refs. [3,4]. They
are also lower than in most models (see Ref. [44] for a
review). Since the discrepancies usually amount to global
shifts, they are not expected to affect the bulk of the
hyperfine splitting analysis presented here. However, a
small dependence on the input lattice data (unphysical)
pion mass was noticed in the short-distance analysis of
Ref. [15], which may be present in our results as well.

We have shown that the inclusion of long-distance
contributions calculated in the QCD EST to the LO
spin-dependent potentials in the BOEFT considerably
improves the description of the charmonium hybrid hyper-
fine splittings obtained in lattice QCD [20]. For the LO
spin-dependent potentials, the y*/d.o.f. moves from 1.193
for short-distance contributions only to 0.644 for short- and

|

Vit (r)

long-distance contributions. This figure is much lower
than the y?/d.o.f. =0.999 obtained in Ref. [15] for
NLO spin-dependent potential with short-distance contri-
butions only. The fact that long-distance contributions are
important may be anticipated from the results on the size of
charmonium hybrids displayed in Table III in Ref. [3],
(1/r) € [190,420] MeV, scales of the order of Agcp.
Using the QCD EST to describe them has the remarkable
feature that it introduces no new unknown parameter,
beyond sign ambiguities and the scale r, that separates
short and long distances in the interpolation. Hence, we
have two parameter fits to data, rather than the eight
parameter fits in Ref. [15], leading to a smaller y*/d.o.f.
as mentioned above.

Once we have the unknown parameters fixed, we can
calculate the hyperfine splittings of higher charmonium
hybrid states, of the bottomonium ones, and the error
associated to them. This is displayed in Tables III-V and in
Figs. 2 and 3. For charmonium hybrids, we get results
compatible with Ref. [15] with similar errors overall and, as
expected, compatible with Ref. [20], the source of our fit,
with slightly larger errors. For bottomonium hybrids, our
hyperfine splittings are compatible with those in Ref. [38],
with much smaller errors, but smaller than those in
Ref. [15], with similar errors.
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APPENDIX: EFFECTIVE STRING
THEORY CALCULATION

The general expressions for the (heavy quark) spin-
dependent potentials (1), given in Ref. [7], reduce for
kP =17 to

mQ T—>oomQT

Vi{)q()(r) — lim gcr

— lim gcr /gdt<B*(0’Z)B3(§’t)B(0’_%)_B<0v%)B3(§,f)B*(0,—%)>D,
: (B(0.5)B*(0.-0)+ B (0.5)B(0,-1)),

((B*(0.9)B(3.1) = B(0.3)B"(5.1)B*(0.—3))r

Vn,— Vs /2
mg T—odmysin((Vy, — Vs )L) )z

= (B(0.5)B*(0.—1)+ B*(0.1)B(0.- 1)) /*(B*(0.5)B3(0.- 1)) 11>

(A1)
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where Bi(r, 1), i = 1, 2, 3 are the three components of the
chromomagnetic field and

B(r,t) = B'(r, ) + iB*(r, 1),

B*(r,t) = B'(r,t) — iB?(r, 1). (A2)

t is taken in the z direction. The mapping of the operator
insertions in the temporal Wilson lines onto EST operators
was given in Ref. [18]:

B(4r/2,1) » —ivV2N0,0.9(£r/2, 1),

B*(£r/2.1) — iV2N 0,00 (£r/2.1),

B3(£r/2,t) = iN"0,0,(£r/2,1)0.0* (£r/2,1)

+Hec., (A3)

and the mapping of the operator insertions in the middle of
spatial Wilson lines at = +T7'/2 onto string states in Ref. [4]:

B(0,1) — +iA%0,p(0, 1),
B*(0,1) = FiA*dpe* (0, 1),

B3(0,1) » £A%i0yp(0,1)0.¢*(0,1) + Hec.,  (A4)
t = £ 1. Note that neither V3¢ (r) nor V{2, (r) depend on

the values of A% or A”2. V3¢, (r) is not sensitive to the sign

ambiguity of the mapping either; however, V42, (r) is, which

produces a sign ambiguity in it. Recall that Vy; — Vs =
_2_;: in EST. Once these substitutions are carried out in
Eq. (A1), and the QCD vacuum averages (- - -) replaced by
the string vacuum average (---), a simple (tree-level)
calculation in EST leads to Eq. (14) [34].
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