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In the framework of the Born-Oppenheimer effective field theory, the hyperfine structure of heavy
quarkonium hybrids at leading order in the 1=mQ expansion is determined by two potentials. We estimate
those potentials by interpolating between the known short-distance behavior and the long-distance behavior
calculated in the QCD effective string theory. The long-distance behavior depends, at leading order, on two
parameters which can be obtained from the long-distance behavior of the heavy quarkonium potentials (up
to sign ambiguities). The short-distance behavior depends, at leading order, on two extra parameters, which
are obtained from a lattice calculation of the lower-lying charmonium hybrid multiplets. This allows us to
predict the hyperfine splitting both of bottomonium hybrids and of higher multiplets of charmonium
hybrids. We carry out a careful error analysis and compare with other approaches.
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I. INTRODUCTION

Exotic hadrons (those beyond mesons and baryons) have
been a matter of research since the early days of QCD [1].
Among them, the so-called hybrids are the closest to
standard hadrons, as the only difference resides in their
nontrivial gluon content. Hence, their flavor structure is the
same as in standard hadrons, but their JPC quantum
numbers may differ, since, in general, the nontrivial gluon
content contributes to them. Nevertheless, the experimental
confirmation of hybrids is an arduous task. On the one
hand, hadrons with exotic quantum numbers, which could
be associated to hybrid states, are difficult to produce with
current beams. On the other hand, for light hadrons, hybrids
with standard quantum numbers may mix with standard
hadrons in an arbitrary way. However, when heavy quarks
are involved, the mixing is suppressed by inverse powers of
the heavy quark mass, and, hence, the identification of
hybrids with standard quantum numbers should become
simpler, provided we have reliable theoretical predictions
for the hybrid spectrum.
An economical approach to calculating the hybrid

spectrum is the so-called Born-Oppenheimer effective field
theory (BOEFT) [2–7]. It exploits the fact that heavy
quarks move slowly in heavy hadrons. The effect of the
nontrivial gluon (or/and light quark) content is encoded in a
series of potentials organized in an 1=mQ expansion, mQ

being the heavy quark mass. The leading potential
[Oð1=m0

QÞ] is heavy quark spin and heavy quark mass
independent. It has been used to calculate the spin average
spectrum [2–4,8], decays to heavy quarkonium [4,9–11],
and transitions between heavy quarkonium states [12]. The
mixing of heavy quarkonium hybrids with heavy quarko-
nium starts at the order of 1=mQ [4]. Spin effects also start
at the order of 1=mQ [4,5], and, hence, they are more
important than in heavy quarkonium, in which they start at
the order of 1=m2

Q. In that respect, it is important to have
spin effects under good control in order to properly identify
possible experimental candidates (see Refs. [13,14] for
recent reviews).
We calculate here the hyperfine splittings (HFS) for the

lower-lying charmonium and bottomonium hybrids at lead-
ing order (LO) [Oð1=mQÞ] in the BOEFT. At this order, the
HFS depend on two unknown potentials [5,6]. At short
distances, the form of these potentials is constrained by the
multipole expansion and has been given in Refs. [6,15],
where one can also find the form of the relevant next-to-
leading-order (NLO) potentials [Oð1=m2

QÞ]. The HFS were
calculated in that reference using the short-distance form of
the potentials only. At long distances, the form of the
potentials can be estimated using the QCD effective string
theory (EST) [16,17]. This has been carried out for heavy
quarkonium [18,19] and for the hybrid-quarkonium mixing
terms [4].We provide the results here for the spin-dependent
terms of the lower-lying static hybrid states (Σu and Πu),
which turn out to be parameter-free (up to signs). We
emphasize that the typical distance between heavy quarks
in heavy quarkonium hybrids states is of Oð1=ΛQCDÞ, and,
hence, an interpolation between the short- and long-distance
forms of the spin-dependent potentials should provide more
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reliable estimates than sticking to the short-distance form
only. We propose a simple interpolation and calculate the
HFSwith it.Weuse the charmonium spectrum inRef. [20] to
fix the unknown parameters in the short-distance form of the
potential and to estimate the interpolation dependence. Then
we can predict the HFS of higher multiplets and the HFS of
bottomonium hybrids.
We distribute the paper as follows. In Sec. II, we work

out the structure of the spin-dependent terms in a conven-
ient basis. We specify the form of the spin-dependent
potentials at short distances in Sec. III A, at long distances
in Sec. III B, and the interpolation we use in Sec. III C. In
Sec. IV, we fix our free parameters using hybrid charmo-
nium lattice data for the lower multiplets and obtain the
HFS of higher multiplets. In Sec. V, we obtain the HFS of
bottomonium hybrids. Section VI is devoted to the com-
parison with other approaches, and we close with a
discussion and our conclusions in Sec. VII.

II. THE HYPERFINE SPLITTINGS

General expressions for the BOEFT at NLO have been
recently obtained in Ref. [7]. The lower-lying hybrid
potentials correspond to the κp ¼ 1þ quantum numbers
of the light degrees of freedom (LDOF), where κ is the total
angular momentum and p the parity. We focus on the
heavy quark spin-dependent terms in the Hamiltonian

Vð1Þ
κp ðrÞ=mQ:

Vð1Þ
κp ðrÞ ¼

X
ΛΛ0

PκΛ½Vsa
κpΛΛ0 ðrÞSQQ̄ · ðP10 · SκÞ

þ Vsb
κpΛΛ0 ðrÞSQQ̄ · ðP11 · SκÞ�PκΛ0 ; ð1Þ

where SQQ̄ and Sκ are the spin operators of the heavy
quark-antiquark pair and the total angular momentum
operator of the LDOF, respectively. PκΛ are the projectors
to the irreducible representations of the D∞h group
Λ ¼ 0, 1. They read

P10 ¼ I3 − ðr̂ · S1Þ2;
P11 ¼ ðr̂ · S1Þ2: ð2Þ

In our case, the above potentials act on fields Hnm
1 ðr; tÞ;

n; m ¼ 1; 2; 3, where the first index corresponds to the total
angular momentum of the LDOF and the second to the spin
of the heavy quark-antiquark pair. In the Cartesian basis
ðSi1Þjk ¼ −iϵijk, we then have

Pn0n
10 ¼ r̂n

0
r̂n;

Pn0n
11 ¼ δn

0n − r̂n
0
r̂n: ð3Þ

Analogously, the heavy quark-antiquark spin operators
read ðSiQQ̄Þm

0m ¼ −iϵim0m. We find that only two indepen-

dent potentials survive:

½Vð1Þ
κp ðrÞ�n

0m0;nm ¼ −Vsa
1þ11ðrÞðδn

0mδnm
0 − δn

0m0
δnmÞ þ ðVsa

1þ11ðrÞ þ Vsb
1þ10ðrÞÞr̂ir̂jðδjmδn

0iδnm
0

þ δniδjm
0
δn

0m − δjm
0
δn

0iδnm − δniδjmδn
0m0 Þ

¼ −2VhfðrÞðδn0mδnm0 − δn
0m0
δnmÞ − 2Vhf2ðrÞ

�
r̂ir̂j −

δij

3

�
ðδjmδn0iδnm0

þ δniδjm
0
δn

0m − δjm
0
δn

0iδnm − δniδjmδn
0m0 Þ; ð4Þ

where we have used that time reversal and Hermiticity
imply Vsb

1þ01ðrÞ ¼ Vsb
1þ10ðrÞ ∈ R and we have defined

VhfðrÞ ¼
1

6
Vsa
1þ11ðrÞ −

1

3
Vsb
1þ10ðrÞ;

Vhf2ðrÞ ¼ −
1

2
ðVsa

1þ11ðrÞ þ Vsb
1þ10ðrÞÞ: ð5Þ

The structure leading to Vhf was first noticed in Ref. [4],
and the one leading to Vhf2 was already considered in the
short-distance analysis in Refs. [6,21]. We write the field
Hnm

1 ðr; tÞ in the jSLJJM > basis, where S and L are the
spin and the orbital angular momentum of the QQ̄ pair,
respectively, J the total angular momentum of the LDOF
plus the orbital angular momentum of the QQ̄, and J and
M the total angular momentum and its third component,

respectively [4]. For a given J , J ¼ J , J � 1, L ¼ J,
J � 1 and only S ¼ 1 is affected by Eq. (1):

Hji
1 ðr; tÞ ¼

1

r

X
LJJM

YjiLJ
JMðr̂ÞPLJ

1JMðrÞe−iEt; ð6Þ

YijLJ
JM ðr̂Þ¼

X
μ;ν¼0;�1

CðJ1J ;M−ννÞ

×CðL1J;M−μ−νμÞYM−μ
L ðr̂Þχiμχjν; ð7Þ

where CðJJ0J00;MM0Þ are Clebsch-Gordan coefficients,
YM
L ðr̂Þ the spherical harmonics, and χiμ the spin 1 eigen-

vectors. In this basis, Eq. (1) becomes, for J > 1, a 9 × 9
matrix that splits into a 5 × 5 box and a 4 × 4 box.
The five-dimensional box corresponds to the subspace

spanned by ðP−−
1JM; Pþ−

1JM; P00
1JM; P−þ

1JM; Pþþ
1JMÞ, where we
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use the shorthand notation� for J � 1 or J � 1 and 0 for J
or J . For the terms proportional to −2Vhf, it reads [5,22]

0
BBBBBBBB@

1 0 0 0 0

0 − J−1
J

Jþ1
J

ffiffiffiffiffiffiffiffiffi
2J−1

pffiffiffiffiffiffiffiffiffi
2Jþ1

p 0 0

0 Jþ1
J

ffiffiffiffiffiffiffiffiffi
2J−1

pffiffiffiffiffiffiffiffiffi
2Jþ1

p − 1
J ðJþ1Þ

J
Jþ1

ffiffiffiffiffiffiffiffiffi
2Jþ3

pffiffiffiffiffiffiffiffiffi
2Jþ1

p 0

0 0 J
Jþ1

ffiffiffiffiffiffiffiffiffi
2Jþ3

pffiffiffiffiffiffiffiffiffi
2Jþ1

p − Jþ2
Jþ1

0

0 0 0 0 1

1
CCCCCCCCA

ð8Þ

and for terms proportional to −2Vhf2 [23]

0
BBBBBBBBB@

2ð2−J Þ
−3þ6J V−−

2 V−0
2 0 0

V−−
2

2ð1−J 2Þ
3J−6J 2 Vþ−

2 0 0

V−0
2 Vþ−

2 − 2
3J ð1þJ Þ V00

2 Vþ0
2

0 0 V00
2

2J ð2þJ Þ
9þ15Jþ6J 2 V−þ

2

0 0 Vþ0
2 V−þ

2 − 2ð3þJ Þ
9þ6J

1
CCCCCCCCCA

ð9Þ

with

V−0
2 ¼ J þ 1

J ð2J − 1Þð2J þ 1Þ ;

V−−
2 ¼ 3J − 2

2ð2J − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðJ − 1Þp ;

Vþ−
2 ¼ J 2 − J − 2

3J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J 2 − 1

p ;

V00
2 ¼ J ðJ þ 3Þ

3ðJ þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J ðJ þ 2Þ þ 3

p ;

V−þ
2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ J

p

ð3þ 2J Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J

p ;

Vþ0
2 ¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ J Þ

ð1þ J Þð1þ 2J Þð3þ 2J Þ

s
:

The four-dimensional box corresponds to the subspace
spanned by ðP0−

1JM; P−0
1JM; Pþ0

1JM; P0þ
1JMÞ. For the terms

proportional to −2Vhf, it reads [5,22]

0
BBBBBBBB@

1
J

ffiffiffiffiffiffiffiffiffi
J 2−1

p
J 0 0ffiffiffiffiffiffiffiffiffi

J 2−1
p

J − 1
J 0 0

0 0 1
Jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ2ÞJ

p
J

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþ2ÞJ

p
J − 1

Jþ1

1
CCCCCCCCA

ð10Þ

and for terms proportional to −2Vhf2 [23]

0
BBBBBBBB@

2
3J V0−−0

2 V0−þ0
2 0

V0−−0
2 − 2

3J þ 2
1þ2J V−0þ0

2

J
ffiffiffiffiffiffiffiffiffiffi
1þ 1

1þJ

p
1þ2J

V0−þ0
2 V−0þ0

2 − 2ð2þJ Þ
3þ9Jþ6J 2 Vþ00þ

2

0
J

ffiffiffiffiffiffiffiffiffiffi
1þ 1

1þJ

p
1þ2J Vþ00þ

2 − 2
3þ3J

1
CCCCCCCCA

ð11Þ

with

V0−−0
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 − 1

p
3J

þ
ffiffiffiffiffiffiffi
J−1
J

q
ð1þ J Þ

1þ 2J
;

V0−þ0
2 ¼

ð1þ J Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

1þ2J

q
3J

;

V−0þ0
2 ¼

ffiffiffiffiffiffiffiffi
J

1þJ

q
−

ffiffiffiffiffiffiffiffi
Jþ1
J

q
1þ 2J

;

Vþ00þ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ð2þ J Þp ðJ − 1Þ

3ðJ þ 1Þð2J þ 1Þ :

If J ¼ 1, P−−
1JM and P0−

1JM do not exist and the matrices
are 7 × 7. If J ¼ 0, P−−

1JM, Pþ−
1JM, P00

1JM, P0−
1JM, P−0

1JM, and
Pþ0
1JM do not exist and the system is reduced to 3 × 3

matrices for both potentials.
At first order in perturbation theory, only the diagonal

terms and the off-diagonal terms corresponding to
L ¼ J � 1,L0 ¼ J ∓ 1matter. This is because the 0th-order
wave functions have a single component for L ¼ J and two
components for L ¼ J � 1. Then the following formulas for
the masses MSJ of the spin multiplet J, which are indepen-
dent of the potentials Vhf and Vhf2, hold:

M1Jþ1 −M0J

M1J −M0J
¼ −J;

M1J−1 −M0J

M1J −M0J
¼ J þ 1: ð12Þ

Theywere initially derived inRefs. [5,22] forVhf2 ¼ 0, but it
is not difficult to see that they are also fulfilled for
Vhf2 ≠ 0 [23].

III. THE POTENTIALS

The potentials Vsa
1þ11ðrÞ and Vsb

1þ10ðrÞ can be obtained
from suitable operator insertions in the expectation values
of Wilson loops [7], and, hence, they are amenable to lattice
evaluations. However, no such evaluation exists to date.
The short-distance behavior can be worked out with the
help of potential non-relativistic QCD (pNRQCD) [24,25].
It has been obtained at NLO in the 1=mQ expansion in
Refs. [6,15]. However, the typical distances at which the
static hybrid potentials reach the minimum [26–29], the
typical quark-antiquark distance in the bound states [3], and
the shape of the wave functions (see plots in Sec. VI in
Ref. [4]) indicate that most of the time the quark-antiquark
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separation is of the order of 1=ΛQCD. It may then be more
appropriate incorporating reliable long-distance informa-
tion rather than calculating higher orders at short distances.
We shall do that by using the effective string theory of QCD
[16,30], which describes well the long-distance behavior of
the static hybrid potentials [26], as well as those of the
1=mQ and 1=m2

Q potentials for quarkonium [4,18], calcu-
lated in lattice SUð3Þ pure Yang-Mills theory. We will then
stick to the Cornell model’s philosophy of using potentials
that interpolate between known short- and long-distance
behavior.

A. The short-distance behavior

In order to estimate the short-distance behavior, we use
the fact that the 1=mQ potentials are analytic in r in
pNRQCD. This implies that

VhfðrÞ=mQ ¼ AþOðr2Þ;
Vhf2ðrÞ=mQ ¼ Br2 þOðr4Þ: ð13Þ

We shall keep the LO terms only. A and B are unknown real
constants: A ¼ cFkA=mQ and B ¼ cFkB=mQ. kA ∼ Λ2

QCD

and kB ∼ Λ4
QCD can be related to expectation values of

operator insertions in Wilson lines [15]. cF ¼ cFðmQÞ is
a short-distance matching coefficient inherited from
NRQCD [31–33]. We shall take the next-to-leading loga-
rithmic expression for it, cFðmbÞ≡ cFðν ¼ 1 GeV; mcÞ ¼
1.12155 and cFðmbÞ≡ cFðν ¼ 1 GeV; mbÞ ¼ 0.87897.
The corrections to the leading short-distance behavior are
suppressed by powers of Λ2

QCDr
2. We display the potentials

(13) in Fig. 1.

B. The long-distance behavior

The long-distance behavior can be estimated using the
QCD effective string theory [16,17], following the mapping
given in Ref. [18]. It has been obtained in Ref. [34]; see the
Appendix:

Vsa
1þ11ðrÞ
mQ

¼ −
2cFπ2gΛ000

mQκr3
≡ Vsa

ld ðrÞ;

Vsb
1þ10ðrÞ
mQ

¼ ∓ cFgΛ0π2

mQ
ffiffiffiffiffi
πκ

p 1

r2
≡ Vsb

ld ðrÞ: ð14Þ

The parameters gΛ0 ∼ ΛQCD and gΛ000 ∼ ΛQCD also appear
in the spin-dependent potentials for heavy quarkonium.
They have been obtained in Ref. [4] from the lattice data in
Refs. [35,36]. Using simple interpolations with the right
short- and long-distance behavior, a good fit to data is
obtained with the following outcome1:

gΛ0 ∼ −59 MeV; gΛ000 ∼�230 MeV: ð15Þ
If only long-distance data points and the long-distance form
of the potentials are used, the values of jgΛ0j and jgΛ000j are
40% and 35% larger, respectively. κ ≃ 0.187 GeV2 is the
string tension, and cF is the same NRQCD matching
coefficient that appears in the short-distance behavior. The
corrections to the leading long-distance behavior of the
potentials in Eq. (14) are suppressed by factors 1=r2Λ2

QCD.
We display the potentials (5) at long distances in Fig. 1.

C. The interpolating potentials

We use for the hyperfine potentials simple interpolations
with the right short- and long-distance behavior obtained in
Secs. III A and III B, respectively:

VhfðrÞ
mQ

¼
Aþ

�
r
r0

�
2
�
1
6
Vsa
ld ðr0Þ − r

3r0
Vsb
ld ðr0Þ

�
1þ

�
r
r0

�
5

;

Vhf2ðrÞ
mQ

¼
Br2 −

�
r
r0

�
5
�
r0
2r V

sa
ld ðr0Þ þ 1

2
Vsb
ld ðr0Þ

�
1þ

�
r
r0

�
7

: ð16Þ
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FIG. 1. The two spin-dependent potentials (5) at short (13) [blue line] and long (14) [green line] distances. The orange line shows the
interpolation we use (16). The short-distance parameters A and B correspond to those in Table III and r0 ¼ 3.96 GeV−1.

1This is so except for the spin-spin potential, which was not
used for the extraction of gΛ0 and gΛ000 in Ref. [4].
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gΛ000 is the matching scale. It is estimated from the short-
and long-distance behavior of the static hybrid potentials to
be r0 ≃ 3.96 GeV−1. This figure will be eventually moved
in order to estimate the error due to the interpolation
dependence. We show the interpolated potentials in Fig. 1.

IV. CHARMONIUM HYBRIDS: FIXING THE
SHORT-DISTANCE PARAMETERS

The short-distance potentials depend on two arbitrary
parameters at LO: A and B. We shall fix those parameters
by comparing our results to the lattice data in Ref. [20] for
the lower-lying hybrid states [the 1ðs=dÞ1 (H1), 1p1 (H2),
1ðp=fÞ2 (H4), and 1p0 (H3) multiplets]. The spin average
of the multiplets in Ref. [20] was higher than in Ref. [4].
Since we are going to use the same methodology as in
the last reference, we correct the lattice data by the spin
average difference, namely, by 381 [1ðs=dÞ1], 326 (1p1),
392 [1ðp=fÞ2], and 151 (1p0) MeV. We then scan
natural values of A and B in ½−0.3; 0.3� GeV and
½−0.06; 0.06� GeV3, respectively, and search for the ones
with the lowest χ2=d:o:f. We adapted the code used in
Ref. [4] by adding the spin-dependent potentials above
and neglecting, for simplicity, the mixing with quarkonium
[37]. The charm mass is also taken as in Ref. [4]:
mc¼1.47GeV. If we neglect the long-distance behavior,
we find A¼0.0699GeV and B¼0.0008GeV3 with
χ2=d:o:f:¼1.1927. When we include the long-distance
behavior, the fit quality improves considerably, and
we obtain as a best fit A ¼ 0.1356 GeV and B ¼
−0.0022 GeV3 with χ2=d:o:f: ¼ 0, 6439. gΛ0 and gΛ000

are taken as in Eq. (15), r0 ¼ 3.96 GeV−1 in Eq. (16), and
all possible sign combinations for the long-distance poten-
tials in Eqs. (14) and (15) are considered. The best fit
corresponds to a negative Vsa

ld ðrÞ and a positive Vsb
ld ðrÞ. The

former implies gΛ000 < 0. Reversing the sign of Vsa
ld ðrÞ

[Vsb
ld ðrÞ] worsens the fit considerably (marginally); see

Table I.
We have also explored the dependence of the result on

gΛ0 and gΛ000 according to the possible values given in
Ref. [4]. The fit has a mild preference for larger values of
jgΛ0j and jgΛ000j (χ2=d:o:f: ¼ 0; 632 versus χ2=d:o:f: ¼ 0;
643), so we shall take for now on gΛ0 ¼ −0.0796 GeV and
gΛ000 ¼ 0.3105 GeV, which correspond to the fit to long-
distance data only in Ref. [4]. These values lead to A ¼
0.1445 GeV and B ¼ −0.0036 GeV3. The change in the
spectrum is negligibly small (≲1 MeV). The interpolation
dependence is estimated by moving r0 ∈ ½2.5; 5� GeV−1.
The χ2=d:o:f. marginally improves around r0 ∼ 3.5 GeV−1

and considerably deteriorates for r0 ≤ 3 GeV−1 and r0 >
3.96 GeV−1. We shall stick to the default value r0 ¼
3.96 GeV−1 and use r0 ∼ 3.5 GeV−1 to estimate the error
due to the interpolation. The changes in the spectrum are
of 3.1 MeV in average, with a maximum of 7 MeV.

A increases about 30%, and B becomes more than twice
its value. See Table II.
In order to establish the error of A and B due to the input

data, we assume a linear dependence of the binding energy
on them, which holds at first order in perturbation theory.
We obtain A ¼ 0.115� 0.034 GeV and B ¼ 0.0038�
0.0154 GeV3. Notice that the value of B is compatible
with zero. The spectrum is displayed in Table III. The error
due to the uncertainty in gΛ0 and gΛ000 is negligible. We also
neglect the error due to the interpolation, which is not

TABLE I. Fit parameters and spectrum dependence on the
sign ambiguities arising from the long-distance spin-dependent
potentials.

Sign(Vsa
ld ) sign(V

sb
ld ) þ− þþ −þ −−

χ2=d:o:f. 0.8323 0.7524 0.6439 0.6850
A (GeV) 0.0764 0.0873 0.1356 0.1256
BðGeV3Þ 0.0120 0.0144 −0.0022 −0.0045

ðs=dÞ1 mass (GeV) 1−− 4.0107 4.0107 4.0107 4.0107
0−þ 3.9059 3.9029 3.8959 3.8988
1−þ 3.9582 3.9569 3.9548 3.9558
2−þ 4.0597 4.0603 4.0612 4.0611

p1 mass (GeV) 1þþ 4.1450 4.1450 4.1450 4.1450
0þ− 4.0886 4.0904 4.0981 4.0955
1þ− 4.0880 4.0921 4.1020 4.0984
2þ− 4.1456 4.1467 4.1495 4.1485

ðp=fÞ2 mass (GeV) 2þþ 4.2316 4.2316 4.2316 4.2316
1þ− 4.1963 4.1969 4.1959 4.1950
2þ− 4.2366 4.2343 4.2323 4.2343
3þ− 4.2660 4.2637 4.2569 4.2594

p0 mass (GeV) 0þþ 4.4864 4.4864 4.4864 4.4864
1þ− 4.4674 4.4693 4.4564 4.4554

TABLE II. Fit parameters and spectrum dependence on r0.

r0 ð GeV−1Þ 2.5 3 3.5 3.96 5

χ2=d:o:f: 1.0693 0.7088 0.6216 0.6318 0.7585
A (GeV) 0.3718 0.2439 0.1793 0.1445 0.1049
B ð GeV3Þ −0.0906−0.0251−0.0089−0.0036−0.0001

ðs=dÞ1 mass
(GeV)

1−− 4.0107 4.0107 4.0107 4.0107 4.0107
0−þ 3.8765 3.8836 3.8894 3.8945 3.9038
1−þ 3.9547 3.9525 3.9529 3.9543 3.9578
2−þ 4.0438 4.0543 4.0593 4.0609 4.0604

p1 mass
(GeV)

1þþ 4.1450 4.1450 4.1450 4.1450 4.1450
0þ− 4.1122 4.1021 4.0991 4.0974 4.0946
1þ− 4.1172 4.1174 4.1119 4.1045 4.0927
2þ− 4.1559 4.1550 4.1524 4.1502 4.1471

ðp=fÞ2 mass
(GeV)

2þþ 4.2316 4.2316 4.2316 4.2316 4.2316
1þ− 4.2291 4.2073 4.1975 4.1952 4.1958
2þ− 4.2334 4.2319 4.2320 4.2327 4.2349
3þ− 4.2226 4.2366 4.2474 4.2545 4.2633

p0 mass
(GeV)

0þþ 4.4864 4.4864 4.4864 4.4864 4.4864
1þ− 4.4640 4.4558 4.4534 4.4546 4.4597
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negligible in order to obtain a value for A and B, but it is for
the spectrum due to its correlation with r0. We include the
error due to higher orders in the 1=mQ expansion, which is
about 30 MeV for charm.
In Ref. [4], it was found that two extra multiplets lie

below the 1p0: the 2ðs=dÞ2Þ and the d2. For completeness,
we also display the spectrum of these multiplets including
the hyperfine splitting in Table IV.

V. BOTTOMONIUM HYBRIDS: PREDICTING
THE HYPERFINE SPLITTINGS

Once the parameters A and B are fixed from charmo-
nium, the corresponding parameters for bottomonium, A0
and B0, also are:

A0 ¼ A
cFðmbÞmc

cFðmcÞmb
; B0 ¼ B

cFðmbÞmc

cFðmcÞmb
: ð17Þ

We calculate the spectrum for the central values of these
parameters (A0 ¼ 0.02704 GeV and B0 ¼ 0.00091 GeV3),
which provides us with the central value of the masses, and
for the four corners of their 1σ range, which allows us to
estimate the error due to the fit parameters. We take it as the
larger difference in either sense. The total error is obtained
by adding in quadrature to the latter the error associated to
higher orders ∼Λ3

QCD=m
2
Q ∼ 3 MeV. The bottom mass is

taken as in Ref. [4]:mb ¼ 4.88 GeV.We display the results
in Table V.
We have also explored the dependence on r0. We have

recalculated the central values for r0 ¼ 3.5 GeV−1 and
the corresponding parameters [obtained from charm and

TABLE III. Fit errors in A, B, and the hybrid charmonium
spectrum. The total errors in the spectrum are obtained by adding
in quadrature to the fit errors the error due to missing higher
orders in the 1=mQ expansion (∼Λ3

QCD=m
2
Q ∼ 30 MeV).

Fit error Total error

A (GeV) 0.11455 0.034
B ð GeV3Þ 0.00385 0.0154

ðs=dÞ1 mass (GeV) 1−− 4.011 0.030
0−þ 3.911 0.045 0.054
1−þ 3.963 0.023 0.038
2−þ 4.046 0.018 0.035

p1 mass (GeV) 1þþ 4.145 0.030
0þ− 4.087 0.054 0.061
1þ− 4.055 0.023 0.037
2þ− 4.130 0.005 0.030

ðp=fÞ2 mass (GeV) 2þþ 4.232 0.030
1þ− 4.235 0.019 0.035
2þ− 4.258 0.021 0.037
3þ− 4.241 0.013 0.033

p0 mass (GeV) 0þþ 4.486 0.030
1þ− 4.450 0.013 0.033

TABLE IV. The remaining hybrid charmonium spectrum below
the 1p0 multiplet. The total errors in the spectrum are obtained by
adding in quadrature to the errors induced by the uncertainties in
A and B the error due to missing higher orders in the 1=mQ

expansion (∼Λ3
QCD=m

2
Q ∼ 30 MeV).

Mass (GeV) A and B error Total error

d2 2−− 4.486 0.030
1−þ 4.287 þ0.050−0.062 þ0.059

−0.068
2−þ 4.302 þ0.031

−0.039
þ0.043
−0.049

3−þ 4.333 þ0.003
−0.034

þ0.030
−0.046

2ðs=dÞ1 1−− 4.355 0.030
0−þ 4.280 þ0.060

−0.066
þ0.067
−0.072

1−þ 4.334 þ0.020
−0.006

þ0.036
−0.031

2−þ 4.394 þ0.013
−0.032

þ0.033
−0.044

TABLE V. The hybrid bottomonium spectrum. The total errors
in the spectrum are obtained by adding in quadrature to the fit
errors the error due to missing higher orders in the 1=mQ

expansion (∼Λ3
QCD=m

2
Q ∼ 3 MeV).

Mass (GeV) A and B error Total error

ðs=dÞ1 1−− 10.6902 0.003
0−þ 10.682 0.004 0.005
1−þ 10.686 0.002 0.004
2−þ 10.694 0.002 0.003

p1 1þþ 10.761 0.003
0þ− 10.756 0.004 0.005
1þ− 10.759 0.002 0.004
2þ− 10.764 0.002 0.003

ðp=fÞ2 2þþ 10.819 0.003
1þ− 10.815 0.002 0.003
2þ− 10.818 0.000 0.003
3þ− 10.821 0.001 0.003

d2 2−− 10.870 0.003
1−þ 10.869 þ0.001

−0.003
þ0.003
−0.005

2−þ 10.869 þ0.001
−0.002

þ0.003
−0.004

3−þ 10.871 0.001 0.003

2ðs=dÞ1 1−− 10.885 0.003
0−þ 10.881 þ0.002

−0.005
þ0.004
−0.006

1−þ 10.883 þ0.001
−0.002 0.003

2−þ 10.888 þ0.003
−0.001

þ0.004
−0.003

2p1 1þþ 10.970 0.003
0þ− 10.967 þ0.002

−0.004
þ0.005
−0.004

1þ− 10.968 þ0.002
−0.001

þ0.004
−0.003

2þ− 10.971 0.001 0.003

2ðp=fÞ2 2þþ 11.005 0.003
1þ− 11.003 þ0.001

−0.002 0.003
2þ− 11.005 0.000 0.003
3þ− 11.007 0.001 0.003

p0 0þþ 11.012 0.003
1þ− 11.012 0.000 0.003
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converted to bottom according to Eq. (17), A0 ¼
0.0423 GeV and B0 ¼ −0.0021 GeV3]. Recall that this
r0 choice provides a slightly better fit to charmonium lattice
data than our default r0 ¼ 3.96 GeV−1. The difference is
below 1 MeV for the ðs=dÞ1 multiplet and around 0.1 MeV
for the remaining ones. We can then safely neglect it.

VI. COMPARISON WITH OTHER APPROACHES

We shall compare here our results with those also
obtained in BOEFT in Refs. [6,15] and with the lattice
QCD results of the HSC Collaboration [20,38] (we will not
use earlier results at larger pion masses [39]). Recall that

the main differences with respect to Refs. [6,15] is that only
short-distance expressions for the spin-dependent poten-
tials at NLO (eight nonperturbative parameters to fit) are
used there, whereas we use LO short-distance expressions
and LO long-distance expressions (two nonperturbative
parameters to fit).
Lattice results for charmonium hybrids [20] are used to

fit the nonperturbative parameters. Hence, our errors are
slightly larger than the ones from lattice data. Our fits
have lower χ2=d:o:f: than those in Refs. [6,15], which
supports the inclusion of long-distance potentials. The
overall picture for the charmonium hyperfine splittings is
similar to the one obtained in those references; see Fig. 2.
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FIG. 2. The spectrum of the lower-lying nðs=dÞ1 (H1), np1 (H3), nðp=fÞ2 (H4), and np0 (H3) charmonium hybrids computed by
adding the LO spin-dependent potentials to the static potentials used in Ref. [4] is shown in green boxes. The average mass for each
multiplet is shown as a red dashed line. Blue and magenta boxes show the results of the BOEFTwith NLO spin-dependent short-distance
potentials only [6,15] and lattice QCD [20], respectively, adjusted to our spin average. The height of the boxes indicates the uncertainty.
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For spin-one states, we get similar, slightly larger, smaller,
and larger errors for the ðs=dÞ1 (H1), p1 (H3), ðp=fÞ2 (H4),
and p0 (H3) multiplets, respectively. For spin-zero states,
which do not enter in our analysis, the errors are due only to
neglected higher orders in the 1=mQ expansion. Note that
the error that we assign to them is larger than than the one
assigned in Refs. [6,15]. See Fig. 2.
Our predictions for the bottomonium hybrid hyperfine

splittings are compatible with the few available states from
lattice QCD [38], but we have much smaller errors; see
Fig. 3. We get again an overall picture similar to the one in
Refs. [6,15], with smaller errors for spin-one states, and
smaller hyperfine splittings, in general. However, for the

ðs=dÞ1 multiplet, we have about 2σ discrepancies with
those references. Nevertheless, both sets of splittings are
consistent with lattice data in Ref. [38] for this multiplet.
The remaining available lattice states do not form any
obvious spin multiplet. We have assigned the three lighter
(two heavier) ones to the p1 [ðp=fÞ2] multiplet. However,
the fact that the 1þþ state is lighter than the 1−− in the
lattice results is in conflict with the BOEFT ones.

VII. DISCUSSION AND CONCLUSIONS

The static potentials we use are taken from Ref. [4]. They
were obtained from pure SUð3Þ (nf ¼ 0) lattice data in
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FIG. 3. The spectrum of the lower-lying nðs=dÞ1 (H1), np1 (H3), nðp=fÞ2 (H4), and np0 (H3) bottomonium hybrids computed by
adding the LO spin-dependent potentials to the static potentials used in Ref. [4] is shown in green boxes. The average mass for each
multiplet is shown as a red dashed line. Blue and magenta boxes show the results of the BOEFTwith NLO spin-dependent short-distance
potentials only [6,15] and lattice QCD [38], respectively, adjusted to our spin average. The height of the boxes indicates the uncertainty.
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Refs. [26,27]. More recent pure SUð3Þ (nf ¼ 0) lattice data
exist for the static hybrid potentials, with better resolution
at short and intermediate distances [28,29,40]. It would be
interesting to incorporate them in future analysis. However,
the systematic errors due to using pure SUð3Þ (nf ¼ 0)
rather than QCD with dynamical light quarks (nf ¼ 3)
would still be difficult to evaluate. The early study in
Ref. [41] suggests that they are small. The strategy recently
presented in Ref. [42] may help to resolve this issue.
The lattice data to which we fit our spin-dependent

expressions (Ref. [20]) are obtained from a 2þ 1þ 1
clover action at a fixed spatial lattice spacing of
0.12 fm, a 3.5 times smaller temporal lattice spacing,
and light quark masses corresponding to mπ ∼ 240 MeV.
In Ref. [43], results in the continuum limit for realistic light
quark masses are obtained using a highly improved
staggered quarks action with 2þ 1þ 1 dynamical quarks,
but only for two states in the lowest-lying multiplet. The
lattice bottomonium data we compare with (Ref. [38])
uses the same setting as Ref. [20], tuning the heavy quark
parameters to bottomonium observables, and uses light
quark masses corresponding to mπ ∼ 391 MeV.
We have focused on the hyperfine splittings. The

absolute values of the masses we quote correspond to
the spin averages in Ref. [4]. The central values quoted in
that reference are lower than those in Ref. [3] but
compatible within errors. The differences are due to the
choice of normalization (quarkonium spectrum versus RS
mass scheme). They are also much lower than the lattice
results in Ref. [20], a difference that shrinks if they are
compared with earlier lattice data at larger pion mass [39].
This suggests that part of the discrepancy may be due to the
quenched lattice data used as an input in Refs. [3,4]. They
are also lower than in most models (see Ref. [44] for a
review). Since the discrepancies usually amount to global
shifts, they are not expected to affect the bulk of the
hyperfine splitting analysis presented here. However, a
small dependence on the input lattice data (unphysical)
pion mass was noticed in the short-distance analysis of
Ref. [15], which may be present in our results as well.
We have shown that the inclusion of long-distance

contributions calculated in the QCD EST to the LO
spin-dependent potentials in the BOEFT considerably
improves the description of the charmonium hybrid hyper-
fine splittings obtained in lattice QCD [20]. For the LO
spin-dependent potentials, the χ2=d:o:f: moves from 1.193
for short-distance contributions only to 0.644 for short- and

long-distance contributions. This figure is much lower
than the χ2=d:o:f: ¼ 0.999 obtained in Ref. [15] for
NLO spin-dependent potential with short-distance contri-
butions only. The fact that long-distance contributions are
important may be anticipated from the results on the size of
charmonium hybrids displayed in Table III in Ref. [3],
h1=ri ∈ ½190; 420� MeV, scales of the order of ΛQCD.
Using the QCD EST to describe them has the remarkable
feature that it introduces no new unknown parameter,
beyond sign ambiguities and the scale r0 that separates
short and long distances in the interpolation. Hence, we
have two parameter fits to data, rather than the eight
parameter fits in Ref. [15], leading to a smaller χ2=d:o:f.
as mentioned above.
Once we have the unknown parameters fixed, we can

calculate the hyperfine splittings of higher charmonium
hybrid states, of the bottomonium ones, and the error
associated to them. This is displayed in Tables III–Vand in
Figs. 2 and 3. For charmonium hybrids, we get results
compatible with Ref. [15] with similar errors overall and, as
expected, compatible with Ref. [20], the source of our fit,
with slightly larger errors. For bottomonium hybrids, our
hyperfine splittings are compatible with those in Ref. [38],
with much smaller errors, but smaller than those in
Ref. [15], with similar errors.
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APPENDIX: EFFECTIVE STRING
THEORY CALCULATION

The general expressions for the (heavy quark) spin-
dependent potentials (1), given in Ref. [7], reduce for
κp ¼ 1þ to

Vsa
1þ11ðrÞ
mQ

¼ lim
T→∞

gcF
mQT

Z T
2

−T
2

dt
hB�ð0;T

2
ÞB3ðr

2
; tÞBð0;−T

2
Þ−Bð0; T

2
ÞB3ðr

2
; tÞB�ð0;−T

2
Þi□

hBð0; T
2
ÞB�ð0;−T

2
ÞþB�ð0; T

2
ÞBð0;−T

2
Þi□

;

Vsb
1þ10ðrÞ
mQ

¼ lim
T→∞

gcF
4mQ

VΠu
−VΣ−

u

sinððVΠu
−VΣ−

u
ÞT
2
Þ
Z T

2

−T
2

dt
hðB�ð0; T

2
ÞBðr

2
; tÞ−Bð0;T

2
ÞB�ðr

2
; tÞÞB3ð0;−T

2
Þi□

hBð0; T
2
ÞB�ð0;−T

2
ÞþB�ð0; T

2
ÞBð0;−T

2
Þi1=2

□
hB3ð0;T

2
ÞB3ð0;−T

2
Þi1=2

□

; ðA1Þ
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where Biðr; tÞ, i ¼ 1, 2, 3 are the three components of the
chromomagnetic field and

Bðr; tÞ ¼ B1ðr; tÞ þ iB2ðr; tÞ;
B�ðr; tÞ ¼ B1ðr; tÞ − iB2ðr; tÞ: ðA2Þ

r̂ is taken in the z direction. The mapping of the operator
insertions in the temporal Wilson lines onto EST operators
was given in Ref. [18]:

Bð�r=2; tÞ → −i
ffiffiffi
2

p
Λ0
∂t∂zφð�r=2; tÞ;

B�ð�r=2; tÞ → i
ffiffiffi
2

p
Λ0
∂t∂zφ

�ð�r=2; tÞ;
B3ð�r=2; tÞ → iΛ000

∂t∂zφð�r=2; tÞ∂zφ�ð�r=2; tÞ
þ H:c:; ðA3Þ

and the mapping of the operator insertions in the middle of
spatialWilson lines at t ¼ �T=2onto string states inRef. [4]:

Bð0; tÞ → �iΛ̃2
∂0φð0; tÞ;

B�ð0; tÞ → ∓iΛ̃2
∂0φ

�ð0; tÞ;
B3ð0; tÞ → �Λ̃02i∂0φð0; tÞ∂zφ�ð0; tÞ þ H:c:; ðA4Þ

t ¼ � T
2
. Note that neither Vsa

1þ11ðrÞ nor Vsb
1þ11ðrÞ depend on

the values of Λ̃2 or Λ̃02. Vsa
1þ11ðrÞ is not sensitive to the sign

ambiguity of themapping either; however,Vsb
1þ10ðrÞ is,which

produces a sign ambiguity in it. Recall that VΠu
− VΣ−

u
¼

− 2π
r in EST. Once these substitutions are carried out in

Eq. (A1), and the QCD vacuum averages h� � �i□ replaced by
the string vacuum average h� � �i, a simple (tree-level)
calculation in EST leads to Eq. (14) [34].
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