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We present a new derivation of Israel-Stewart-like relativistic second-order dissipative spin hydro-
dynamic equations using the entropy current approach. In our analysis, we consider a general energy-
momentum tensor with symmetric and antisymmetric parts. Moreover, the spin tensor, which is not
separately conserved, has a simple phenomenological form that is antisymmetric only in the last two
indices. Apart from the evolution equations for energy density, fluid flow, and spin density, we also find
relaxation-type dynamical equations for various dissipative currents. The latter are consistently derived
within the second-order theory as gradient corrections to the energy-momentum and spin tensors. We argue
that this approach correctly reproduces the corresponding Navier-Stokes limit of spin hydrodynamic
equations. Throughout our analysis, the spin chemical potential is considered an Oð∂Þ quantity in the
hydrodynamic gradient expansion and reduces to thermal vorticity in the global equilibrium. New
coefficients appearing in the generalized spin hydrodynamic equations are undetermined and can only be
evaluated within a proper underlying microscopic theory of a given system.
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I. INTRODUCTION

In noncentral relativistic heavy-ion collisions, the average
spin polarization of hadrons (e.g., Λ hyperons) is observed
along the global axis of rotation of the producedmatter [1–9].
This resultmay suggest that constituents’spin in the hyperons
is coordinated in a specific direction, implying that the
quark-gluon plasma (QGP) contains nontrivial vortical struc-
tures [10,11], which in turnmight be caused by the significant
amount of orbital angular momentum produced in such
collisions [12,13]. This phenomenon mimics the Barnett
effect [14,15] which displays the macroscopic effect of a
quantum spin. Various theoretical approaches have been
explored to model the vortical structure of a QCD plasma,
e.g., hydrodynamic approach [16–24], relativistic kinetic
theory [25–44], effective Lagrangian approach [45–48],
quantum statistical density operators [49–54], holo-
graphy [55,56], etc. Considering the triumphs of the relativ-
istic dissipative hydrodynamic frameworks in relativistic
heavy-ion phenomenology [57–59], several extensions of
relativistic hydrodynamics with spin degrees of freedom for
the vortical fluids attracted a lot of attention. The spin

hydrodynamic frameworks have a crucial role to play in
understanding the collective spin dynamics of relativistic
strongly interacting plasma because they may link quantum
mechanical features of matter with hydrodynamics.
To model the collective spin dynamics in relativistic

spin hydrodynamic frameworks, in addition to the usual
hydrodynamic quantities, e.g., the energy-momentum ten-
sor (Tμν), one also introduces the 3-rank spin tensor
(Sλμν) [25]. The additional equations of motion resulting
from the conservation of the system’s total angular momen-
tum provide information about the dynamical evolution of
the spin tensor. One of the fundamental conceptual diffi-
culties in formulating a theory of relativistic dissipative spin
hydrodynamics is the problem of “pseudogauge transfor-
mations.” Pseudogauge transformations imply that the
forms of the energy-momentum tensor and spin tensor are
not unique. In particular, for any energy-momentum tensor
Tμν satisfying the conservation equation, i.e., ∂μTμν ¼ 0,
one can construct an equivalent energy-momentum tensor
T 0μν by adding the divergence of an antisymmetric tensor,
namely T 0μν ¼ Tμν þ ∂λΦνμλ [33,60,61]. Note that ifΦνμλ is
antisymmetric in the last two indices then T 0μν is also
conserved. The same construction of the spin tensor can
also be obtained without affecting the conservation of the
total angular momentum. Different pseudogauge choices do
not affect the conservation of total angular momentum or
energy-momentum, nor do these transformations have any
impact on the global charges (i.e., the global energy, linear
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momentum, and angular momentum). Various pseudogauge
choices, e.g., the canonical, Belinfante-Rosenfeld [62–64],
de Groot-van Leeuwen-van Weert [65], Hilgevoord-
Wouthuysen [66,67] forms and their implications on the
spin hydrodynamic framework are intensely debated in
recent literature [17,18,20,33,53,68,69].
Without going into a specific microscopic theory, a model-

independent dissipative spin hydrodynamic framework can
be obtained using thermodynamic consideration, which
implies that for a dissipative system, entropy must be
produced. This simple but rather powerful physical principle
has been implemented very rigorously to obtain the Navier-
Stokes-like theory of dissipative spin hydrodynamic frame-
work [16,17,20]. In this framework, the energy-momentum
tensor consists of symmetric as well as antisymmetric
components. Moreover, following the earlier works of
Weyssenhoff and Raabe [70], one considers a simple phe-
nomenological form of the spin tensor, which is only anti-
symmetric in the last two indices Sλμν ¼ uλSμν [16,17,20].
Hereuμ represents the timelike fluid flow four-vector, andSμν

represents the spin density in analogy with the number
density. A linear stability analysis for this phenomenological
first-order spinhydrodynamic frameworkhas beenperformed
in Refs. [71,72]. These analyses show that in the fluid rest
frame, the first-order spin hydrodynamic equations are
generally unstable under linear perturbation [71]. This is a
rather interesting result because the instabilitymanifests itself
even in the fluid rest frame, and the source of this instability is
the spin equation of state that relates the spin density tensor
(Sμν) to the spin chemical potential (ωμν). Strictly speaking, it
has been argued that only the spin density perturbation
components δS0i are responsible for the instabilities.
Also an independent analysis of this framework for a boost
invariant system indicates unstable behavior in the
evolution of the temperature (T) and the spin chemical
potential (ωμν) [73]. These instabilities can be generic and
the first-order (Navier-Stokes limit) spin-hydrodynamic
framework can be highly pathological. Second-order dis-
sipative hydrodynamic frameworks have been argued to be
free of stability as well as causality issues [74–82].We expect
that such featureswill also remain intact for second-order spin
hydrodynamic frameworks. Such observationmotivates us to
go beyond the first-order theory.
In this paper, we construct a new second-order Israel-

Stewart-like spin hydrodynamic framework using the
entropy current analysis [83–86]. Some efforts have
been already made to derive the second-order spin hydro-
dynamic equations from an underlying microscopic theory
[87,88] using spin-kinetic equations. Such a kinetic-theory
approach explicitly uses spin-dependent collision terms and
is based on the moment method of kinetic equation. In this
article, we follow an alternative model-independent way
based on the entropy current analysis to derive the second-
order spin hydrodynamic equations [83]. Various second-
order hydrodynamic theories for “spinless” fluid, e.g., the

Muller-Israel-Stewart approach [83,89,90], Denicol-Niemi-
Molnar-Rischke approach [91,92], Baier-Romatschke-Son-
Starinets-Stephanov approach [93], Chapman-Enskog
approach [94–96] etc., have been routinely used to explain
the heavy-ion collision data. Although different second-
order hydrodynamic theories can have a similar structure,
they are not exactly the same which is reflected in the
hydrodynamic evolution, particularly where the gradients
are large [97]. Such differences crucially affect their appli-
cation to explain the heavy ion collision data. These
differences may also become evident for second-order spin
hydrodynamic frameworks. The present calculation can be
considered as a complementary method to the kinetic theory
approach to obtain spin hydrodynamic equations.
After this brief introduction, in Sec. II we discuss the

Navier-Stokes theory of dissipative spin hydrodynamics
using the entropy current analysis. Once the Navier-Stokes
theory is defined we next move to the construction of the
second-order Israel-Stewart theory of dissipative spin
hydrodynamics in Sec. III. Finally, in Sec. IV we conclude
our results with an outlook.
In thismanuscript, the symmetric and antisymmetric parts

of a tensorXμν are denoted asXμν
ðsÞ ≡ XðμνÞ ≡ ðXμν þ XνμÞ=2

and Xμν
ðaÞ ≡ X½μν� ≡ ðXμν − XνμÞ=2, respectively. We use the

metric tensor of the signature gμν ¼ diagðþ1;−1;−1;−1Þ
and the totally antisymmetric Levi-Civita tensor with the
sign convention ϵ0123 ¼ −ϵ0123 ¼ 1. The fluid four-velocity
uμ satisfies the normalization condition uμuμ ¼ 1. The
projector orthogonal to uμ is defined as Δμν ≡ gμν − uμuν;
by definition Δμνuμ ¼ 0. Projection orthogonal to uμ of a
four-vector Xμ is represented as Xhμi ≡ ΔμνXν. Traceless
and symmetric projection operator orthogonal to uμ is
denoted as Xhμνi ≡ Δμν

αβX
αβ ≡ 1

2
ðΔμ

αΔν
β þ Δμ

βΔν
α−

2
3
ΔμνΔαβÞXαβ. Similarly, Xh½μν�i ≡Δ½μν�

½αβ�X
αβ ≡ 1

2
ðΔμ

αΔν
β

−Δμ
βΔν

αÞXαβ denotes the antisymmetric projection oper-
ator orthogonal to uμ. The partial derivative operator can be
decomposed into two parts, one along the flow direction and
the other orthogonal to it, i.e., ∂μ ¼ uμDþ∇μ. Here D≡
uμ∂μ denotes the comoving derivative, and ∇μ ≡ Δμ

α
∂α is

orthogonal to uμ, i.e., uμ∇μ ¼ 0. The expansion rate is
defined as θ≡ ∂μuμ.

II. FIRST-ORDER RELATIVISTIC DISSIPATIVE
SPIN HYDRODYNAMICS

A. Macroscopic conservation laws

Phenomenological derivation of hydrodynamics for a
spin-polarized fluid is based on the conservation of energy-
momentum tensor Tμν and total angular momentum tensor
Jλμν1 [25,26],

1For simplicity, we assume that the system has no other
conserved currents.
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∂μTμν ¼ 0; ð1Þ

∂λJλμν ¼ 2Tμν
ðaÞ þ ∂λSλμν ¼ 0: ð2Þ

The total angular momentum tensor, Jλμν ¼ Lλμν þ Sλμν, is
the sum of the spin part, Sλμν, and the orbital part,
Lλμν ¼ 2x½μTλν�. In principle, Tμν and Sλμν can be obtained
from a more fundamental energy-momentum tensor oper-
ator and spin operator of the underlying quantum field
theory system. Utilizing Noether’s theorem from the
perspective of the quantum field theory of Dirac fermions,
the microscopic canonical energy-momentum tensor is in
general asymmetric, and the corresponding spin tensor is
totally antisymmetric [98]. We expect that the symmetry
properties of various microscopic currents will also be
preserved at the macroscopic level. Due to the pseudogauge
transformation, Tμν and Sλμν are not unique. Using the
arbitrariness in defining the energy-momentum tensor and
the spin tensor, for phenomenological studies, one often
uses an asymmetric energy-momentum tensor and a
spin tensor that is only antisymmetric in the last two
indices [70]. The dissipative spin hydrodynamic frame-
work with the phenomenological form of the spin tensor
has been discussed in Refs. [16,17]. Moreover, it can be
shown that the phenomenological spin-hydrodynamic
framework with the spin tensor which is antisymmetric
only in the last two indices can be obtained from a pro-
perly defined canonical spin-hydrodynamic framework
with totally antisymmetric spin tensor using a proper
pseudogauge transformation [20]. In this work, we will
first overview the first-order dissipative phenomeno-
logical spin-hydrodynamic framework by considering the
following forms of the energy-momentum tensor and spin
tensor,

Tμν ¼ Tμν
ð0Þ þ Tμν

ð1sÞ þ Tμν
ð1aÞ

¼ Tμν
ð0Þ þ 2hðμuνÞ þ τμν þ 2q½μuν� þ ϕμν; ð3Þ

Sλμν ¼ Sλμνð0Þ þ Sλμνð1Þ ¼ uλSμν þ Sλμνð1Þ : ð4Þ
The leading order contribution Tμν

ð0Þ in Eq. (3) has the form

of the perfect fluid energy-momentum tensor,

Tμν
ð0Þ ¼ εuμuν − pΔμν; ð5Þ

where ε is the energy density and p is the equilibrium
pressure. The most general expression of Tμν can contain
terms that are symmetric as well as antisymmetric under the
μ ↔ ν exchange. Therefore, we decompose the dissipative
part of the energy-momentum tensor Tμν

ð1Þ into a symmetric

part Tμν
ð1sÞ ≡ 2hðμuνÞ þ τμν and an antisymmetric part

Tμν
ð1aÞ ¼ 2q½μuν� þ ϕμν. The vector hμ represents the heat

flow, while τμν is the symmetric part of the dissipative
correction such that τμν ¼ πμν þ ΠΔμν. The tensor πμν (the
traceless part of τμν) is the shear stress tensor and Π is the
bulk pressure. Analogously, qμ and ϕμν are the antisym-
metric dissipative corrections. These dissipative currents
satisfy the following conditions: hμuμ ¼ 0, τμνuν ¼ 0,
qμuμ ¼ 0, ϕμνuν ¼ 0, τμν ¼ τνμ, and ϕμν ¼ −ϕνμ.
According to the hydrodynamic gradient expansion ε, p,
and uμ scale asOð∂0Þ orOð1Þ. But hμ, qμ, τμν, and ϕμν scale
as Oð∂Þ. The tensor Sμν ¼ −Sνμ in Eq. (4) can be
interpreted as the spin density, Sμν ¼ uλSλμν, in analogy
to the number density [16,17,20]. Consequently, the spin
density is a leading order term in the hydrodynamic
gradient expansion, i.e., Sμν ∼Oð1Þ. The first-order dis-
sipative correction Sλμνð1Þ satisfies uλS

λμν
ð1Þ ¼ 0. Note that in

general, uμS
μαβ
ð1Þ ≠ 0, but due to the matching condition

where Sμν can be identified as the equilibrium spin density
we consider uμS

μαβ
ð1Þ ¼ 0. The same matching condition also

identifies ε as the equilibrium energy density, i.e.,
Tμν
ð1Þuμuν ¼ 0. Using Eqs. (3) and (4) back into Eqs. (1)

and (2) we obtain spin hydrodynamic equations,

Dεþ ðεþ pÞθ ¼ −∂ · hþ hνDuν þ τμν∂μuν − ∂ · q − qνDuν þ ϕμν
∂μuν;

¼ 2hμDuμ −∇ · ðqþ hÞ þ τμν∂μuν þ ϕμν
∂μuν; ð6Þ

ðεþ pÞDuα −∇αp ¼ −ðh · ∂Þuα − hαθ − Δα
νDhν − Δα

ν∂μτ
μν − ðq · ∂Þuα þ qαθ þ Δα

νDqν − Δα
ν∂μϕ

μν;

¼ −ðqþ hÞ ·∇uα þ ðqα − hαÞθ þ Δα
νDqν − Δα

νDhν − Δα
ν∂μτ

μν − Δα
ν∂μϕ

μν; ð7Þ

∂λðuλSμνÞ þ ∂λS
λμν
ð1Þ ¼ −2ðqμuν − qνuμ þ ϕμνÞ: ð8Þ
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Due to the difficulty in specifying the flow velocity, frame
choices are crucial in the setting of dissipative hydro-
dynamics.2 In standard hydrodynamics (spinless fluid) a
natural hydrodynamic frame choice is the Landau frame,
Tμνuν ¼ εuμ with only a symmetric energy-momentum
tensor. This implies hμ ¼ 0. But in the spin hydrodynamic
frameworks in general due to the presence of an antisym-
metric component, one has two alternatives: (1) we can
apply the Landau frame choice but only in the symmetric
part of Tμν. This implies that hμ ¼ 0. (2) Instead of
applying the Landau frame condition only to the symmetric
part of the Tμν, we can also include the antisymmetric
part. In that case, we obtain hμ þ qμ ¼ 0. This immediately
implies that we can have hμ and qμ nonvanishing but
satisfying together the Landau condition. In this paper, we
will keep the discussions general without imposing any
specific frame condition, unless otherwise stated.

B. Thermodynamic relations

In the presence of dynamical spin degrees of freedom, the
laws of thermodynamics can be generalized to [16,17,20]

εþ p ¼ Tsþ ωαβSαβ;

dε ¼ Tdsþ ωαβdSαβ;

dp ¼ sdT þ Sαβdωαβ: ð9Þ

Here, T is the temperature, s is the entropy density, and ωαβ

can be interpreted as the spin chemical potential conjugated
to the spin density Sαβ such that Sαβ ¼ ∂p=∂ωαβ at a fixed
temperature T. The spin chemical potential is defined as a
hydrodynamic variable in analogy with the chemical poten-
tial and distinguishes spin hydrodynamic frameworks from
the standard hydrodynamic theories. However, there is a
fundamental difference between these quantities. The
chemical potential is only allowed in hydrodynamics if
the corresponding current is conserved, e.g., baryon chemi-
cal potential in the presence of a conserved baryon current.
But the presence of spin chemical potential does not
necessarily imply the conservation of macroscopic spin

current. In the language of the quantum statistical density
operator framework [52], in local thermal equilibrium, the
spin chemical potential can only be considered as a
Lagrange multiplier [99]. However, in global equilibrium,
in the presence of an antisymmetric component of the
energy-momentum tensor, the spin chemical potential can
be shown to be related to the thermal vorticity, ϖμν ¼
− 1

2
ð∂μβν − ∂νβμÞ [99]. Here βμ ¼ βuμ and β is the inverse

temperature field.
Apart from the presence of spin chemical potential, the

hydrodynamic gradient ordering of spin-related quantities
appearing in Eq. (9) was discussed earlier. Fixing the
hydrodynamic gradient ordering of ωαβ is not straightfor-
ward. Since it is expected that in global equilibrium the spin
chemical potential can be expressed in terms of thermal
vorticity ϖμν, it is rather natural to consider ωμν ∼Oð∂Þ.
But such a conclusion is only applicable if the energy-
momentum tensor is asymmetric [99]. This is a nontrivial
aspect of the spin hydrodynamic framework as compared to
the standard hydrodynamic frameworks for spinless fluids.
In standard hydrodynamics, the derivative correction terms
vanish at global equilibrium. But all gradient terms do not
vanish in global equilibrium if we consider the most
generalized flow configuration, which is also true for spin
hydrodynamics. Using the framework of the quantum
statistical density operator, it can be shown that the most
general flow configuration in global equilibrium must
fulfill the following conditions [100]:

∂μβν þ ∂νβμ ¼ 0; βν ¼ bν þϖνλxλ;

ϖμν ¼ −
1

2
ð∂μβν − ∂νβμÞ ¼ constant: ð10Þ

Here βμ ¼ βuμ, β ¼ 1=T, bν is a constant four-vector. The
2-rank antisymmetric tensor ϖμν is the thermal vorticity,
and one can clearly observe that it scales as Oð∂Þ in the
hydrodynamic gradient expansion. Thus, a generic global
equilibrium allows for Oð∂Þ terms in the flow configura-
tion. Consequently, the gradient ordering of the spin
chemical potential ωμν is a contentious issue in the setting
of spin hydrodynamics and has serious ramifications for the
formulation of the spin hydrodynamic framework. A
natural question could be raised here on how to connect
Sμν ∼Oð1Þ and ωμν ∼Oð∂Þ when their hydrodynamic
gradient orders do not match. This was recently discussed
in Ref. [73] as a new spin equation of state was constructed
to match the gradient orders of Sμν and ωμν without any
further assumptions. Nonetheless, one can also consider
different hydrodynamic gradient ordering of spin chemical
potential, particularly when the energy-momentum tensor
is symmetric. A spin hydrodynamic framework was dis-
cussed in Ref. [19] where the spin chemical potential is
considered the leading order [Oð1Þ] in gradient order
expansion. In this paper, we will only consider the spin
hydrodynamic framework with ωμν ∼Oð∂Þ.

2The energy-momentum tensor Tμν can typically have 16
independent components in four dimensions. In dissipative
hydrodynamics, these 16 components correspond to
ε; p; uμ; hμ; πμν;Π; qμ, and ϕμν. Due to the equation of state,
the variables ε and p together give only one unknown, while uμ,
hμ, and qμ have three independent degrees of freedom due to the
conditions uμuμ ¼ 1, hμuμ ¼ 0, and qμuμ ¼ 0. Both πμν and ϕμν

are orthogonal to uμ. But πμν is symmetric and traceless. Hence, it
has only five independent degrees of freedom. The tensor ϕμν is
antisymmetric, hence it has three independent components. The
bulk pressure Π is just a scalar representing one degree of
freedom. This counting summarizes to 19 independent com-
ponents in the Tμν rather than 16. Therefore we have the freedom
to eliminate 3 degrees of freedom. The so-called frame choice
or the definition of uμ reduces the number of independent
components to 16.

RAJESH BISWAS et al. PHYS. REV. D 108, 014024 (2023)

014024-4



C. Constitutive relations for dissipative currents
in the Navier-Stokes limit

We observe that while there are in total 22 independent
components of Tμν and Sμν, Eqs. (6)–(8) constitute only 10
equations for the 10 independent variables T; uμ, and ωμν.
Note that the hydrodynamic ordering of the term ∂λS

λμν
ð1Þ in

Eq. (8) is higher than the rest of the terms. Therefore, for
the first-order dissipative theory, we can neglect Sλμνð1Þ .
However, to close Eqs. (6)–(8), we still have to provide
additional equations of motion for different dissipative
currents. This eventually reduces to finding constitutive
relations satisfied by the tensors hμ, qμ, Π, πμν, and ϕμν in
terms of T; uμ, and ωμν. Such constitutive relations can be
obtained using the condition that, for a dissipative system,
the entropy is no longer a conserved quantity but rather will
be produced [16,83]. The mathematical form of the entropy
current within the framework of dissipative fluid dynamics
is, a priori, not known. As a result, it is not trivial to obtain
its evolution equation. However, one can proceed by first
constructing the definition of the entropy current in the
absence of derivative correction terms, i.e.,

sμ ¼ βνT
μν
ð0Þ þ βμp − βμωαβSαβ: ð11Þ

Note that such a definition of equilibrium entropy current
correctly reproduces equilibrium thermodynamic relation
(9) if we identify sμ ≡ suμ, where s is the equilibrium
entropy density. For an interacting fluid, we can generalize
the definition of entropy current given above to incorporate
dissipative terms. The nonequilibrium entropy current
ansatz up to first order in hydrodynamic gradient expan-
sion, i.e., in the Navier-Stokes (NS) limit can be written as

sμNS ¼ βνTμν þ βμp − βωαβSμαβ

¼ βνT
μν
ð0Þ þ βνT

μν
ð1Þ þ βμp − βμωαβSαβ − βωαβS

μαβ
ð1Þ

¼ sμ þ βνT
μν
ð1Þ þOð∂2Þ; ð12Þ

where we make use of the equilibrium entropy current sμ

defined in Eq. (11). By imposing the second law of
thermodynamics, i.e., ∂μs

μ
NS ≥ 0, for Eq. (12), we can

obtain the constitutive relations of the various dissipative
currents [16,20],

Π ¼ ζθ; ð13Þ

hμ ¼ −κðDuμ − β∇μTÞ; ð14Þ

qμ ¼ λðDuμ þ β∇μT − 4ωμνuνÞ; ð15Þ

πμν ¼ 2ησμν; ð16Þ

ϕμν ¼ γðΩμν þ 2βωhμihνiÞ ¼ γ̃ð2∇½μuν� þ 4ωhμihνiÞ: ð17Þ

Here, all transport coefficients are positive, i.e., κ ≥ 0,
λ ≥ 0, η ≥ 0, ζ ≥ 0, and γ ≥ 0. We define γ̃ ¼ βγ=2, σμν ¼
∇ðμuνÞ − 1

3
θΔμν ¼ Δμν

αβ∇αuβ, Ωμν ¼ β∇½μuν� ¼ Δμ
αΔν

β∂
½αββ�,

and ωhμihνi ¼ ΔμαΔνβωαβ. In these equations, all the terms
on the right-hand side are of order Oð∂Þ in hydro-
dynamic gradient expansion. Equations (14)–(17) show
explicitly that at this level, the number of state variables
T; uμ;ωμν perfectly matches the number of dynamical
equations (6)–(8). Note that if λ ¼ 0 and γ ¼ 0, then all
the dissipative currents associated with the antisymmetric
part of the energy-momentum tensor vanish. In this limit, if
we consider the Landau frame choice, i.e., hμ ¼ 0, then
nonvanishing dissipative currents are πμν and Π. Moreover,
if we set ωμν ¼ 0, then the spin tensor also decouples from
the theory. This is the NS limit giving rise to the standard
hydrodynamics of spinless fluid. Unfortunately, this first-
order spin hydrodynamic framework can be shown to be
pathological as it can give rise to instabilities under linear
perturbations [71,72]. This is not a desired feature for a
hydrodynamic theory, particularly for phenomenological
applications.

III. TOWARD SECOND-ORDER SPIN
HYDRODYNAMICS

A. Entropy current for the second-order theory

Historically, it is also well known that even for the
spinless fluid, the relativistic NS theory is ill-defined
because it can contain instabilities when perturbed around
an arbitrary global equilibrium. The relativistic NS theory
is unstable in the sense that small departures from equi-
librium at one instant of time will diverge exponentially
with time. The timescale of these instabilities can be short,
which may affect the time evolution of the system [75,101].
We emphasize that in the comoving frame or in the rest
frame, Landau’s theory of dissipative hydrodynamics (for
spinless fluid) is stable. However, the generic instability
manifests itself in a Lorentz-boosted frame. Subsequently,
it has been argued that such instabilities are intrinsically
related to the acausal nature of the NS theory [82]. Since the
NS equations are not intrinsically hyperbolic, they allow for
perturbations that propagate at an infinite speed. These
fundamental problems provide overwhelming motivation
to prohibit the practical application of relativistic NS
theory. To incorporate dissipative effects consistently in
fluid dynamics without violating causality, second-order
theories are constructed, e.g., Israel-Stewart (IS) theory, etc.
The IS second-order theory contains new parameters
compared to the NS theory. Kinetic theory calculations
have been used to show that these new parameters are
nonvanishing and if these parameters are chosen appropri-
ately then the dynamical equations governing the evolution
of linear perturbations form a hyperbolic system of equa-
tions. Second-order dissipative hydrodynamic frameworks
for spinless fluid have been argued to be free of stability
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and causality issues [74–82] which makes IS theory more
acceptable as a viable hydrodynamic theory. We expect that
such features will also remain intact for second-order spin
hydrodynamic frameworks.3 Similarly to the NS theory
here we also follow the entropy current analysis to derive
the second-order spin hydrodynamic equations. In this
approach once again we start with the entropy current
for an arbitrary nonequilibrium state near equilibrium [83],

sμIS ¼ βνTμν þ βμp− βωαβSμαβ þQμ;

¼ βνT
μν
ð0Þ þ βμp− βμωαβSαβ þ βνT

μν
ð1Þ − βωαβS

μαβ
ð1Þ þQμ;

¼ sμNS − βωαβS
μαβ
ð1Þ þQμ: ð18Þ

Here sμNS contains the first-order corrections [Oð∂Þ]. The
term βωαβS

μαβ
ð1Þ is second order [Oð∂2Þ] in the hydrody-

namic gradient expansion. Such a term does not appear in
the NS limit, see Eq. (12). Novel information about new
spin dissipative currents is embedded in Sλμνð1Þ [Eq. (4)]. The
term Qμ is a general four-vector containing terms up to
second order [Oð∂2Þ�. However, the form of Qμ is not
completely arbitrary as it contains all second-order terms
composed of hμ, πμν, Π, qμ, ϕμν, and Sμαβð1Þ . The form of Qμ

is constrained by the condition that entropy is maximum in

the equilibrium state. Contracting Eq. (18) with uμ we
immediately obtain sIS − s ¼ uμQμ, where sIS ≡ uμs

μ
IS.

The condition that sIS ≤ s implies uμQμ ≤ 0 (see
Appendix A for details). Before we introduce the most
general expression of Qμ we first express Sμαβð1Þ in terms of

irreducible tensors. Recall that the first-order correction to
the spin tensor satisfies uμS

μαβ
ð1Þ ¼ 0 and it is antisymmetric

in the last two indices. Therefore, the most general
decomposition of Sμαβð1Þ in terms of irreducible tensors takes

the form [102] (see Appendix B)

Sμαβð1Þ ¼ 2u½αΔμβ�Φþ 2u½ατμβ�ðsÞ þ 2u½ατμβ�ðaÞ þ Θμαβ: ð19Þ

The new dissipative currents related to spin Φ; τμνðsÞ; τ
μν
ðaÞ,

and Θμαβ are of first order in derivative expansion Oð∂Þ.
The currents satisfy the following properties: uμτ

μβ
ðsÞ ¼

uμτ
μβ
ðaÞ ¼ uμΘμαβ ¼ 0, τμβðsÞ ¼ τβμðsÞ, τμβðaÞ ¼ −τβμðaÞ, τμðsÞμ ¼ 0,

Θμαβ ¼ −Θμβα, uμΘμαβ ¼ 0, uαΘμαβ ¼ 0, and uβΘμαβ ¼ 0.
Now we can express Qμ in terms of all possible second-
order combinations of dissipative currents respecting the
constraint u ·Q ≤ 0,

Qμ ¼ uμða1Π2 þ a2πλνπλν þ a3hλhλ þ a4qλqλ þ a5ϕλνϕλνÞ þ uμðã1Φ2 þ ã2τλνðsÞτðsÞλν þ ã3τλνðaÞτðaÞλν þ ã4ΘλαβΘλαβÞ
þ ðb1Πhμ þ b2πμνhν þ b3ϕμνhν þ b4Πqμ þ b5πμνqν þ b6ϕμνqνÞ
þ ðb̃1Φhμ þ b̃2τ

μν
ðsÞhν þ b̃3τ

μν
ðaÞhν þ b̃4Φqμ þ b̃5τ

μν
ðsÞqν þ b̃6τ

μν
ðaÞqνÞ þ ðc1Θμαβϕαβ þ c2ΘμαβτðaÞαβÞ

þ ðc3ΘαβμΔαβΠþ c4Θαβμπαβ þ c5ΘαβμΔαβΦþ c6ΘαβμτðsÞαβÞ þ ðc7Θαβμϕαβ þ c8ΘαβμτðaÞαβÞ: ð20Þ

We define ai, ãi, bi, b̃i, and ci to be dimensionful
coefficients. While it is clear that due to u ·Q ≤ 0 the
aðãÞ coefficients have definite signatures with a1 ≤ 0,
a2 ≤ 0, a3 ≥ 0, a4 ≥ 0, a5 ≤ 0, ã1 ≤ 0, ã2 ≤ 0, ã3 ≤ 0,
ã4 ≥ 0, there are no such sign constraints on bi, b̃i, or ci.
Although a kinetic theory approach may indicate the sign of
these coefficients.

B. Evolution equations

We argued that for the NS theory the dissipative currents
hμ, qμ, πμν, Π, and ϕμν can be expressed in terms of
fundamental hydrodynamic variables T, uμ, and ωμν.
This conclusion is obtained using the condition
∂μs

μ
NS ≥ 0. But for the second-order theory, various

dissipative currents are considered independent variables.
This is evident from the fact that we have constructed
second-order terms in sμIS in terms of these dissipative
currents. Therefore, to close the hydrodynamic equations,
we also need the evolution equation for these dissipative
currents, which can be obtained using the condition that
∂μs

μ
IS ≥ 0. Taking the divergence of sμIS and using spin-

hydrodynamic equations, it can be shown that (see
Appendix C for details)

∂μs
μ
IS ¼ Tμν

ð1aÞð∂μβν þ 2βωμνÞ
þ ∂μβνT

μν
ð1sÞ − ∂μðβωαβÞSμαβð1Þ þ ∂μQμ: ð21Þ

Notice that for the global equilibrium condition Sμαβð1Þ ¼ 0,

Qμ ¼ 0. Moreover, ∂μs
μ
IS ¼ 0 implies the most general

global equilibrium conditions (10), i.e., the spin chemical
potential converges to thermal vorticity, i.e., ωμν →
T
2
ϖμν with βμ ¼ uμ=T satisfying the Killing condition

3In the present calculation we develop the second-order theory
for spin hydrodynamics. Its stability and causality properties
require extensive investigation which we will address in future
works.

RAJESH BISWAS et al. PHYS. REV. D 108, 014024 (2023)

014024-6



∂ðμβνÞ ¼ 0.4 Using the explicit expressions for Tμν
ð1sÞ, T

μν
ð1aÞ, and Sμαβð1Þ , Eq. (21) can be written as (see Appendix D for

details)

∂μs
μ
IS ¼ −βhμðβ∇μT −DuμÞ þ βπμνσμν þ βΠθ − βqμðβ∇μT þDuμ − 4ωμνuνÞ þ ϕμνðΩμν þ 2βωhμihνiÞ

− 2Φuα∇βðβωαβÞ − 2τμβðsÞu
αΔγρ

μβ∇γðβωαρÞ − 2τμβðaÞu
αΔ½γρ�

½μβ�∇γðβωαρÞ − ΘμαβΔαδΔβρΔμγ∇γðβωδρÞ þ ∂μQμ: ð22Þ

As a last step, we need to investigate the term ∂μQμ

which can be done using the expression of Qμ given in
Eq. (20). A straightforward calculation gives

∂μQμ ¼ hαAα þ qαBα þ παβCαβ þ ΠDþ ϕαβEαβ

þΦF þ ταβðsÞGαβ þ ταβðaÞHαβ þ ΘαβγIαβγ: ð23Þ

In the above equations, scalars D and F , vectors Aβ and
Bβ, and tensors Cμν, Eμν, Gμν, Hμν, and Iμνδ are defined in
Appendix E. Note that the dissipative fluxes multiplying
these quantities satisfy the following properties: hμ and qμ

are orthogonal to uμ, πμν and τμνðsÞ are also orthogonal to uμ

as well as symmetric and traceless, ϕμν and τμνðaÞ are

orthogonal to uμ as well as antisymmetric, Θμαβ is anti-
symmetric in the last two indices and orthogonal to the
fluid flow in all the indices. Using these properties Eq. (23)
can be expressed as

∂μQμ ¼ hαAhαi þ qαBhαi þ παβChαβi þ ΠDþ ϕαβEh½αβ�i

þΦF þ ταβðsÞGhαβi þ ταβðaÞHh½αβ�i þ ΘαβγI hαihβihγi:

ð24Þ

The quantities Ahαi, Bhαi, Chαβi, Eh½αβ�i, Ghαβi, Hh½αβ�i, and
I hαihβihγi satisfy the following constraints:

Ahαi ≡ ΔαβAβ; uαAhαi ¼ 0; ð25Þ

Bhαi ≡ ΔαβBβ; uαBhαi ¼ 0; ð26Þ

Chαβi≡Δμν
αβCμν ¼

1

2

�
Δμ

αΔν
β þΔμ

βΔν
α −

2

3
ΔαβΔμν

�
Cμν;

uαChαβi ¼ 0; gαβChαβi ¼ 0; ð27Þ

Eh½αβ�i ≡ Δ½μν�
½αβ�Eμν ≡ 1

2
ðΔμ

αΔν
β − Δν

αΔμ
βÞEμν;

uαEh½αβ�i ¼ 0; ð28Þ

Ghαβi ≡ Δμν
αβGμν; uαGhαβi ¼ 0; gαβGhαβi ¼ 0; ð29Þ

Hh½αβ�i ≡ Δ½μν�
½αβ�Hμν ≡ 1

2
ðΔμ

αΔν
β − Δν

αΔμ
βÞHμν;

uαHh½αβ�i ¼ 0; ð30Þ

I hαihβihγi ≡ ΔαμΔβνΔγδIμνδ; uαI hαihβihγi ¼ 0;

uβI hαihβihγi ¼ 0; uγI hαihβihγi ¼ 0: ð31Þ

Using Eq. (24) in Eq. (22) the full form of the divergence of
entropy current in the second-order theory can be written as

∂μs
μ
IS ¼ −βhμðβ∇μT −Duμ − TAhμiÞ þ βπμνðσμν þ TChμνiÞ þ βΠðθ þ TDÞ − βqμðβ∇μT þDuμ − 4ωμνuν − TBhμiÞ

þ ϕμνðΩμν þ 2βωhμihνi þ Eh½μν�iÞ þΦ½−2uα∇βðβωαβÞ þ F � þ τμβðsÞ½−2uαΔγρ
μβ∇γðβωαρÞ þ Ghμβi�

þ τμβðaÞ½−2uαΔ½γρ�
½μβ�∇γðβωαρÞ þHh½μβ�i� þ Θμαβ½−Δδ

αΔρ
βΔγ

μ∇γðβωδρÞ þ I hμihαihβi�: ð32Þ

4Naive identification of either global or local equilibrium states only using the condition ∂μs
μ
IS ¼ 0 is not conclusive. However, if one

uses the Boltzmann kinetic equation, then one can distinguish between local and global equilibrium. Although global equilibrium can be
argued to be a solution to the Boltzmann kinetic equation, local equilibrium does not necessarily satisfy the kinetic equation. If we
consider a massive Boltzmann gas, the kinetic equation for the equilibrium distribution function [feq ¼ expð−βμpμÞ], i.e. pμ

∂μfeq ¼ 0
immediately implies ∂μβν þ ∂νβμ ¼ 0. This is known as the Killing equation/Killing condition. We emphasize that pμ

∂μfeq ¼ 0 is
strictly valid in global equilibrium without introducing any additional assumptions (see Ref. [99] and references therein). Since the
Killing equation, i.e., ∂μβν þ ∂νβμ ¼ 0 is one of the characteristics of the global equilibrium state, we may identify a thermodynamic
state in global equilibrium if it at least satisfies the Killing condition. The kinetic equation can also give constant thermal vorticity as
another condition for global equilibrium if one considers nonlocal interactions, as analyzed in Ref. [31]. A similar conclusion can also be
drawn if we consider Zubarev’s approach or the nonequilibrium statistical operator method (see Ref. [100] and references therein). In the
present manuscript, since we recover the most general conditions for global equilibrium using ∂μs

μ
IS ¼ 0, we identify the condition

∂μs
μ
IS ¼ 0 as a condition for global equilibrium. If one identifies ∂μs

μ
IS ¼ 0 as a local equilibrium condition, one will get the Killing

equation satisfied by an arbitrary local equilibrium state, which will be in contradiction to results obtained from the Boltzmann equation
or Zubarev’s approach. Therefore, we do not consider ∂μs

μ
IS ¼ 0 as the local equilibrium condition.
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Similarly to the NS theory the condition ∂μs
μ
IS ≥ 0 gives us

the following relations involving various dissipative cur-
rents appearing in the energy-momentum tensor:

Π ¼ ζðθ þ TDÞ ð33Þ

hμ ¼ −κðDuμ − β∇μT þ TAhμiÞ ð34Þ

qμ ¼ λðDuμ þ β∇μT − 4ωμνuν − TBhμiÞ ð35Þ

πμν ¼ 2ηðσμν þ TChμνiÞ ð36Þ

ϕμν ¼ γðΩμν þ 2βωhμihνi þ Eh½μν�iÞ: ð37Þ

Analogous relations for various dissipative currents appear-
ing in the spin tensor can be expressed as

Φ ¼ χ1ð−2uα∇βðβωαβÞ þ F Þ ð38Þ

τμβðsÞ ¼ χ2

�
−uα

�
ΔγμΔρβ þ ΔγβΔρμ −

2

3
ΔγρΔμβ

�

×∇γðβωαρÞ þ Ghμβi
�

ð39Þ

τμβðaÞ ¼ χ3½−uαðΔγμΔρβ−ΔγβΔρμÞ∇γðβωαρÞþHh½μβ�i� ð40Þ

Θμαβ ¼ −χ4½−ΔδαΔρβΔγμ∇γðβωδρÞ þ I hμihαihβi�: ð41Þ

Here χ1, χ2, χ2. and χ4 are new spin-transport coefficients.5

Using Eqs. (33)–(41), in Eq. (32) we obtain the following
condition:

−
β

κ
hμhμ −

β

λ
qμqμ þ

β

2η
πμνπμν þ

β

ζ
Π2 þ 1

γ
ϕμνϕμν

þ 1

χ1
Φ2 þ 1

χ2
τμνðsÞτμνðsÞ þ

1

χ3
τμνðaÞτμνðaÞ −

1

χ4
ΘμαβΘμαβ ≥ 0:

ð42Þ

This immediately implies that κ ≥ 0, λ ≥ 0, η ≥ 0, ζ ≥ 0
γ ≥ 0, χ1 ≥ 0, χ2 ≥ 0, χ3 ≥ 0, and χ4 ≥ 0. We emphasize
that the presence of D, Ahμi, Bhμi, Chμνi, and Eh½μν�i in
Eqs. (33)–(37) shows that for the second-order theory the
constitutive relations of Π, hμ, qμ, πμν, and ϕμν are not
simply expressed by Eqs. (14)–(17) in terms of basic
hydrodynamic variables, T, uμ, and ωμν. Therefore in
the second-order theory Π, hμ, qμ, πμν, and ϕμν should
be considered as independent hydrodynamic variables
along with T, uμ, and ωμν. The evolution equation of
new hydrodynamic variables can be obtained from
Eqs. (33)–(37). Using explicit expressions of D, Ahμi,
Bhμi, Chμνi, and Eh½μν�i we can write the evolution equations
of different dissipative currents as

DΠþ Π
τΠ

¼ −
1

2a1
½βθ þ a1Πθ þ ΠDa1 þ ð1 − lΠhÞhμ∇μb1 − b1ð1 − l̃ΠhÞhμDuμ þ b1∇μhμ þ lΠqqμ∇μb4

− l̃Πqb4qμDuμ þ b4∇μqμ þ lΘΠΘαμνΔαμ∇νc3 − l̃ΘΠc3ΔαμΘαμνDuν þ c3Δαβ∇μΘαβμ�; ð43Þ

Dhhμi þ hμ

τh
¼ −

1

2a3
½βðDuμ − β∇μTÞ þ a3hμθ þ hμDa3 þ lΠhΠ∇μb1 þ b1∇μΠ − b1 l̃ΠhΠDuμ þ lπhπλμ∇λb2

þ b2Δμ
ν∇λπ

λν − b2 l̃πhπλμDuλ þ lϕhϕλμ∇λb3 þ b3Δμ
ν∇λϕ

λν − b3l̃ϕhϕλμDuλ þ lΦhΦ∇μb̃1

þ b̃1∇μΦ − b̃1 l̃ΦhΦDuμ þ lτshτ
λμ
ðsÞ∇λb̃2 þ b̃2Δμ

ν∇λτ
λν
ðsÞ − b̃2 l̃τshτ

λμ
ðsÞDuλ þ lτahτ

λμ
ðaÞ∇λb̃3

þ b̃3Δμ
ν∇λτ

λν
ðaÞ − b̃3 l̃τahτ

λμ
ðaÞDuλ�; ð44Þ

Dqhμi þ qμ

τq
¼ 1

2a4
½βðβ∇μT þDuμ − 4ωμνuνÞ − a4qμθ − qμDa4 − ð1 − lΠqÞΠ∇μb4 − b4∇μΠ

þ b4ð1 − l̃ΠqÞΠDuμ − ð1 − lπqÞπλμ∇λb5 − b5Δμ
ν∇λπ

λν þ b5ð1 − l̃πqÞπλμDuλ − lϕqϕλμ∇λb6

5It is worth mentioning that expressions similar to the first terms appearing on the right-hand side in Eqs. (38)–(41) were also obtained
using the first-order spin hydrodynamic approach considering the spin chemical potential leading order [Oð1Þ] in hydrodynamic
gradient expansion [19]. However, such formalism [19] is intrinsically different from our approach of formulating the first-order spin
hydrodynamics [20,71,73] as we consider ωμν ∼Oð∂Þ. In our formalism, the derivative corrections to the spin tensor Eqs. (38)–(41) do
not contribute to the Navier-Stokes theory. This is one of the novel features of our spin hydrodynamic theory, where the nontrivial
contribution of the dissipative parts of the spin tensor starts to contribute to the entropy current at the second order and beyond. Finally to
avoid any confusion, Eqs. (38)–(41) are dynamical equations, i.e., they contain the currents and their spacetime derivatives. Therefore,
one should not get confused with the naive gradient counting at this level where all terms of Eqs. (38)–(41) are not of second order in
gradients. As we will see later, this feature will allow us to recover the Naiver-Stokes spin-hydrodynamic equations [20,71,73].
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− b6Δμ
ν∇λϕ

λν þ b6l̃ϕqϕλμDuλ − lΦqΦ∇μb̃4 − b̃4∇μΦþ b̃4l̃ΦqΦDuμ − lτsqτ
λμ
ðsÞ∇λb̃5

− b̃5Δμ
ν∇λτ

λν
ðsÞ þ b̃5l̃τsqτ

λμ
ðsÞDuλ − lτaqτ

λμ
ðaÞ∇λb̃6 − b̃6Δμ

ν∇λτ
λν
ðaÞ þ b̃6 l̃τaqτ

λμ
ðaÞDuλ�; ð45Þ

Dπhμνi þ πμν

τπ
¼ −

1

2a2
½βσμν þ a2θπμν þ πμνDa2 þ ð1 − lπhÞhhμ∇νib2 − b2ð1 − l̃πhÞhhμDuνi

þ b2∇hμhνi þ lπqqhμ∇νib5 − l̃πqb5qhμDuνi þ b5∇hμqνi þ lΘπΘhμνiα∇αc4

− l̃Θπc4ΘhμνiαDuα þ c4∇αΘhμνiα�; ð46Þ

Dϕh½μν�i þ ϕμν

τϕ
¼ −

1

2a5
½ðΩμν þ 2βωhμihνiÞ þ a5θϕμν þ ϕμνDa5 þ ð1 − lϕhÞh½ν∇μ�b3 − b3ð1 − l̃ϕhÞh½νDuμ� þ b3Δ

½μν�
½αβ�∇½αhβ�

þ ð1 − lϕqÞq½ν∇μ�b6 − b6ð1 − l̃ϕqÞq½νDuμ� þ b6Δ
½μν�
½αβ�∇½αqβ� þ lΘϕΘλμν∇λc1 − l̃Θϕc1ΘλμνDuλ

þ c3Δ
½μν�
½αβ�∇λΘλαβ þ kΘϕΘ½μν�λ∇λc7 − k̃Θϕc7Θ½μν�λDuλ þ c7Δ

½μν�
½αβ�∇λΘ½αβ�λ�: ð47Þ

In the above equations, the relaxation times of various dissipative quantities are defined as τΠ ¼ −2a1ζT ≥ 0,
τh ¼ 2a3κT ≥ 0, τq ¼ 2a4λT ≥ 0, τπ ¼ −4a2ηT ≥ 0, and τϕ ¼ −2a5γ ≥ 0. Moreover we define Dhhμi ¼ Δμ

νDhν,

Dqhμi ¼ Δμ
νDqν, Dπhμνi ¼ Δμν

αβDπαβ, and Dϕh½μν�i ¼ Δ½μν�
½αβ�Dϕαβ. The dissipative currents appearing in the spin tensor

also satisfy similar relaxation type equations,

DΦþ Φ
τΦ

¼ −
1

2ã1
½−2uα∇βðβωαβÞ þ ã1θΦþΦDã1 þ ð1 − lΦhÞhμ∇μb̃1 − ð1 − l̃ΦhÞb̃1hμDuμ þ b̃1∇μhμ

þ ð1 − lΦhÞqμ∇μb̃4 − ð1 − l̃ΦqÞb̃4qμDuμ þ b̃4∇μqμ þ lΘΦΘαμνΔαμ∇νc5

− l̃ΘΠc5ΔαμΘαμνDuν þ c5Δαβ∇μΘαβμ�; ð48Þ

DτhμνiðsÞ þ
τμνðsÞ
ττs

¼ −
1

2ã2

�
−uα

�
ΔγμΔρν þ ΔγνΔρμ −

2

3
ΔγρΔμν

�
∇γðβωαρÞ þ ã2θτ

μν
ðsÞ þ τμνðsÞDã2

þ ð1 − lτshÞhhμ∇νib̃2 − b̃2ð1 − l̃τshÞhhμDuνi þ b̃2∇hμhνi þ ð1 − lτsqÞqhμ∇νib̃5

− ð1 − l̃τsqÞb̃5qhμDuνi þ b̃5∇hμqνi þ lΘτsΘ
hμνiλ∇λc6 − l̃Θτsc6Θ

hμνiλDuλ þ c6∇λΘhμνiλ
�
; ð49Þ

Dτh½μν�iðaÞ þ
τμνðaÞ
ττa

¼ −
1

2ã3
½−uαðΔγμΔρν − ΔγνΔρμÞ∇γðβωαρÞ þ ã3θτ

μν
ðaÞ þ τμνðaÞDã3 þ ð1 − lτahÞh½ν∇μ�b̃3

− b̃3ð1 − l̃τahÞh½νDuμ� þ b̃3Δ
½μν�
½αβ�∇½αhβ� þ ð1 − lτaqÞq½ν∇μ�b̃6 − b̃6ð1 − l̃τaqÞq½νDuμ�

þ b̃6Δ
½μν�
½αβ�∇½αqβ� þ lΘτaΘ

λμν∇λc2 − l̃Θτac2Θ
λμνDuλ þ c2Δ

½μν�
½αβ�∇λΘλαβ þ kΘτaΘ

½μν�λ∇λc8

− k̃Θτac8Θ
½μν�λDuλ þ c8Δ

½μν�
½αβ�∇λΘ½αβ�λ�; ð50Þ

DΘhαihμihνi þ Θαμν

τΘ
¼ −

1

2ã4
½−ΔδμΔρνΔγα∇γðβωδρÞ þ ã4θΘαμν þ ΘαμνDã4 þ ð1 − lΘϕÞϕμν∇αc1

− ð1 − l̃ΘϕÞc1ϕμνDuα þ c1ΔαaΔμbΔνc∇aϕbc þ ð1 − lΘτaÞτμνðaÞ∇αc2

− ð1 − l̃ΘτaÞc2τμνðaÞDuα þ c2ΔαaΔμbΔνc∇aτbcðaÞ þ ð1 − lΘΠÞΠΔα½μ∇ν�c3

− ð1 − l̃ΘΠÞc3ΠΔα½μDuν� þ c3Δα½μ∇ν�Πþ ð1 − lΘΦÞΦΔα½μ∇ν�c5

− ð1 − l̃ΘΦÞc5ΦΔα½μDuν� þ c5Δα½μ∇ν�Φþ ð1 − lΘπÞπα½μ∇ν�c4

− ð1 − l̃ΘπÞc4πα½μDuν� þ c4ΔαaΔμbΔνc∇½cπab� þ ð1 − lΘτsÞτα½μðsÞ∇ν�c6
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− ð1 − l̃ΘτsÞc6τα½μðsÞDuν� þ c6ΔαaΔμbΔνc∇½cτðsÞab� þ ð1 − kΘϕÞϕα½μ∇ν�c7

− ð1 − k̃ΘϕÞc7ϕα½μDuν� þ c7ΔαaΔμbΔνc∇½cϕab� þ ð1 − kΘτaÞτα½μðaÞ∇ν�c8

− ð1 − k̃ΘτaÞc8τα½μðaÞDuν� þ c8ΔαaΔμbΔνc∇½cτðaÞab��: ð51Þ

In the above equations, DτhμνiðsÞ ≡ Δμν
αβDταβðsÞ, Dτh½μν�iðaÞ ≡

Δ½μν�
½αβ�DταβðaÞ, DΘhαihμihνi ≡ ΔαaΔμbΔνcDΘabc. Various spin-

relaxation times can be identified as τΦ ¼ −2ã1χ1 ≥ 0,
ττs ≡ −2ã2χ2 ≥ 0, ττa ≡ −2ã3χ3 ≥ 0, and τΘ ≡ 2ã4χ4 ≥ 0.
In comparison to the first-order spin hydrodynamics, one of
the most important features of the second-order theory is
the presence of relaxation times corresponding to various
dissipative currents. The timescales within which dissipa-
tive currents respond to hydrodynamic gradients are rep-
resented by these relaxation times. These relaxation times
are expected to make the second-order theory free from any
problems appearing from acausality and hydrodynamic
instability. However, such an important feature of the
second-order theory comes at a price. With respect to
the first-order theory, there are more parameters or trans-
port coefficients in the second-order theory.6 Although
Eqs. (43)–(47) and Eqs. (48)–(51) are all relaxation type
equations, there is a striking difference between these

equations. Note that Eqs. (43)–(47) contain terms of
Oð∂Þ and Oð∂2Þ on both sides. But this is not true for
Eqs. (48)–(51). The right-hand sides of Eqs. (48)–(51) do
not contain terms of the order Oð∂Þ. This is because the
dissipative parts of the spin tensor do not contribute to the
entropy current analysis at the Navier-Stokes limit where
all the dissipative currents are expressed as Oð∂Þ terms. To
check the consistency of the formalism, it is natural to look
for the Navier-Stokes limit of the second-order theory. This
can be achieved by ignoring all second-order terms in the
hydrodynamic gradient expansion in Eqs. (43)–(51). In this
limit, we retrieve back the constitutive relation of various
dissipative currents associated with the energy-momentum
tensor, e.g., from Eq. (43) we find, after ignoring all Oð∂2Þ
terms,

Π ¼ −
τΠ
2a1

βθ ¼ ζθ: ð52Þ

Similarly constitutive relations for hμ, qμ, πμν, ϕμν can be
obtained from Eqs. (44), (45), (46), and (47) respectively.
These expressions will match Eqs. (14)–(17). However
if we ignore all Oð∂2Þ terms in Eqs. (48)–(51) then
we observe that Φ ¼ 0þOð∂2Þ, τμνðsÞ ¼ 0þOð∂2Þ,
τμνðaÞ ¼ 0þOð∂2Þ, Θαμν ¼ 0þOð∂2Þ. This immediately
implies that at the Navier-Stokes limit, gradient correction
terms to the spin tensor do not contribute to the entropy
production, and Sαμνð1Þ can only be obtained for the second-
order theory.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we show a new derivation of the second-
order dissipative spin hydrodynamic equations. This
formulation is based on the positivity of the entropy
production for a dissipative system. We consider an
energy-momentum tensor which is asymmetric and the
spin tensor has a simple phenomenological form where it is
only antisymmetric in the last two indices. One can retrieve
the correct Navier-Stokes limit as well as global equilib-
rium conditions. Our calculations can be used to study
macroscopic spin evolution and possibly it will help us to
solve the puzzle related to the longitudinal polarization of
Lambda particles in a dynamical way. But this requires a
proper numerical implementation of spin hydrodynamic
equations along with appropriate initial conditions and
hadronic freeze-out. One immediate future task would be to
study the stability and causality analysis to pin down the

6So far, we have discussed the evolution of various hydro-
dynamic variables apart from the spin chemical potential. Finally,
we make some comments on the dynamical evolution of the spin
chemical potential. In the Navier-Stokes limit, the evolution
equation of ωμν can be obtained using Eq. (8) and a specific form
of the spin equation of state. Note that in the Navier-Stokes limit qμ

and ϕμν can be expressed in terms of ωμν and gradients of other
hydrodynamic variables, i.e., temperature and fluid four-velocity
[Eqs. (15) and (17)]. Also in this limit, one can ignore Sλμνð1Þ .
However, for the second-order theory, qμ and ϕμν are dynamical
variables satisfying their ownevolution equation, Eqs. (45) and (47),
respectively. Moreover, for the second-order theory, the dissipative
part of the spin tensor Sλμνð1Þ also needs to be included. Therefore,
in principle, one can express the evolution equation of ωμν using
Eqs. (8), (45), (47), and (48)–(51). In order to get such an equation,
we must fix the spin equation of state. In the absence of
a microscopic theory, one cannot uniquely define the relation
between Sμν and ωμν. So far in the literature, different spin
equations of state have been considered, e.g., Sμν ∼ ωμν [23] and

Sμν ∼ ωμν=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωαβωαβ

q
[73]. It is evident that these two different spin

equations of state, alongwith Eqs. (8), (45), (47), and (48)–(51)will
eventually give rise to a different evolution of the spin chemical
potential. Since the formof the spin equationof state is itself an open
problem in this field (e.g., see Ref. [73] for some discussion), we
restrict ourselves from writing down any specific dynamical
equation for the spin chemical potential. Note that the dynamical
evolution of the spin chemical potential using these two spin
equations of states for first-order spin hydrodynamic equations
has been previously investigated for a boost-invariant system.
However, in the present article, we only focus on the theoretical
development, and phenomenological studies using different spin
equations of states will be addressed in forthcoming publications.
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region of applicability of this theory. Some of us in
Ref. [71] argued that even in the fluid rest frame, first-
order spin hydrodynamic frameworks can exhibit instabil-
ities (in the linear regime). Interestingly, the stability in spin
hydrodynamics crucially depends on the spin equation of
state. Moreover, from our prior knowledge of relativistic
hydrodynamics, instability may also emerge due to aca-
suality [72,103]. Therefore, we expect that in spin hydro-
dynamics, not only the structure of the dynamical equations
but also the spin equation of state can affect the causal and
stable behavior of hydrodynamic perturbations around
global equilibrium. Although the second-order theory is
expected to give rise to hyperbolic equations, it is not
certain how these theories will eliminate any instability
appearing due to the spin equation of state. The spin
equation of state is not presently constrained by any
observable; therefore, there could be many different pos-
sibilities. It may further turn out that only some specific
spin equations of state along with the second-order equa-
tions give rise to a causal and stable theory. Such possibil-
ities need to be extensively explored, and any comment on
the causal structure of second-order spin hydrodynamics at
this point will be rather inconclusive.
Although we have obtained relaxation timelike hydro-

dynamic equations, we still lack a proper understanding of
the microscopic theory. This is manifested in large numbers
of unknown transport coefficients and relaxation times.
Note that a dissipative hydrodynamic theory captures the
long-wavelength and long-time behavior of a system close
to equilibrium. On the other hand, transport coefficients
encode microscopic physics at a length scale smaller than
the scale where hydrodynamic variables/quantities are
defined. The estimation of various relaxation times and
transport coefficients is very important for phenomeno-
logical applications. Only a microscopic theory approach
to spin hydrodynamics where one obtains a spin-
hydrodynamic equation using a kinetic theory description
can bridge this problem. Finding an equivalent kinetic
theory approach without further assumptions will be a good
direction to explore as a future task.
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APPENDIX A: CONSTRAINT ON THE
FORM OF Qμ

Contracting the second-order entropy current (18) with
the fluid four-velocity, and using the fact that uμS

μαβ
ð1Þ ¼ 0,

we get

uμs
μ
IS ¼ uμs

μ
NS þ uμQμ: ðA1Þ

Substituting the form of sμNS (12) in the above equation,
we have

uμs
μ
IS ¼ uμ½sμ þ βνT

μν
ð1Þ þOð∂2Þ� þ uμQμ;

¼ uμsμ þ uμQμ: ðA2Þ

Utilizing the perfect-fluid energy-momentum tensor (5),
and replacing the form of the entropy current sμ (11)
we find

uμs
μ
IS ¼ uμðβνTμν

ð0Þ þ βμp − βμωαβSαβÞ þ uμQμ;

¼ uμ½βνðεþ pÞuμuν − βνpgμν þ βμp − βμωαβSαβ�
þ uμQμ;

¼ β½ðεþ pÞ − ωαβSαβ� þ uμQμ: ðA3Þ

Finally, using the generalized first law of thermodynamics
(9), we obtain

uμs
μ
IS ¼ sþ uμQμ: ðA4Þ

Employing the fact that entropy is maximum in equilib-
rium, we obtain the constraint on Qμ, i.e.,

uμQμ ≤ 0: ðA5Þ

APPENDIX B: DECOMPOSITION OF AN
ARBITRARY 3-RANK TENSOR

ANTISYMMETRIC IN LAST TWO INDICES

Let us consider an arbitrary three-rank tensor ϕλμν

antisymmetric in the last two indices. Employing the
decomposition of its first index into the parts transverse
and parallel to four-velocity, one has

ϕλμν ¼ gλαϕαμν ¼ ðuλuα þ Δλ
αÞϕαμν

¼ uλγμν þ Δλ
αϕ

αμν

¼ uλγμν þ ϕhλiμν: ðB1Þ
Here we define the antisymmetric tensor as γμν ≡ uαϕαμν.
This immediately implies that Fν ≡ uμγμν satisfies
F · u ¼ 0. In the next step, we proceed with the decom-
position of γμν
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γμν ¼ gμργρν ¼ ðuμuρ þ Δμ
ρÞγρν ¼ uμFν þ γhμiν

¼ uμFν þ gνργhμiρ ¼ uμFν þ ðuνuρ þ Δν
ρÞγhμiρ

¼ uμFν þ uνuργhμiρ þ γhμihνi: ðB2Þ

It can be easily shown that uνuργhμiρ ¼ −uνFμ. Therefore,
γμν has the form

γμν ¼ uμFν − uνFμ þ γhμihνi: ðB3Þ

Now, let us consider the last term in Eq. (B1),

ϕhλiμν ¼ gμρϕhλiρν ¼ ðuμuρ þ Δμ
ρÞϕhλiρν

¼ uμuρϕhλiρν þ ϕhλihμiν: ðB4Þ

Defining uρϕhλiρν ≡ −Σλν implies uλΣλν ¼ 0. Therefore,

ϕhλiμν ¼ ϕhλihμiν − uμΣλν

¼ gναϕhλihμiα − uμΣλν

¼ ϕhλihμihνi þ uνuαϕhλihμiα − uμΣλν

¼ ϕhλihμihνi þ uνΣλμ − uμΣλν: ðB5Þ
Using Eqs. (B2) and (B5) in Eq. (B1) we obtain,

ϕλμν¼uλðuμFν−uνFμþγhμihνiÞþuνΣλμ−uμΣλνþϕhλihμihνi:

ðB6Þ

Here we can introduce Sμν ≡ uμFν − uνFμ þ γhμihνi.
Noticing that Sμν is an antisymmetric tensor that can also

be decomposed as Sμν ≡ uμκν − uνκμ þ ϵμναβuαωβ, with u ·
κ ¼ 0 and u · ω ¼ 0, we identify Fν ¼ κν and γhμihνi ≡
ϵμναβuαωβ [104]. Since Σμν is asymmetric (not antisym-
metric) and orthogonal to uμ it can also be decomposed into
symmetric (Σμν

ðsÞ) and antisymmetric (Σμν
ðaÞ) parts. The

symmetric part can be further decomposed into a trace

(Σ) and a traceless part (Σhμνi
s ). Finally, we obtain the

following expression:

ϕλμν¼uλSμνþðuνΔλμ−uμΔλνÞΣ
þðuνΣhλμi

ðsÞ −uμΣhλνi
ðsÞ ÞþðuνΣλμ

ðaÞ−uμΣλν
ðaÞÞþϕhλihμihνi:

ðB7Þ

One may check that the number of degrees of freedom
(DOF) matches for the quantities on both sides of the above
equation. The tensor ϕλμν has in total 24 DOF. At the same
time, Sμν has 6 DOF, and Σ is a scalar, hence it has only one

DOF. Σhμνi
ðsÞ is symmetric, traceless, and orthogonal to the

fluid flow vector, hence it has 5 DOF, while Σμν
ðaÞ is

antisymmetric and transverse to the fluid flow, hence it
has 3 DOF. Finally, ϕhλihμihνi is antisymmetric in the last
two indices and orthogonal to flow vector in all indices,
hence it has only 9 DOF.

APPENDIX C: DERIVATION OF EQ. (21)

We start with the entropy current given in Eq. (18),

sμIS ¼ βνTμν þ pβμ − βωαβSμαβ þQμ

⇒ ∂μs
μ
IS ¼ Tμν

∂μβν þ βν∂μTμν þ ∂μðpβμÞ − Sμαβ∂μðβωαβÞ − βωαβ∂μSμαβ þ ∂μQμ

¼ ∂μðpβμÞ þ Tμν
ð0Þ∂μβν − Sμαβð0Þ ∂μðβωαβÞ þ ð∂μβν þ 2βωμνÞTμν

ð1aÞ þ Tμν
ð1sÞ∂μβν − Sμαβð1Þ ∂μðβωαβÞ þ ∂μQμ: ðC1Þ

To obtain the last line of the above equation we used the
hydrodynamic equations (1) and (2). Moreover, using
thermodynamic relations it can be easily shown that

∂μðpβμÞ þ Tμν
ð0Þ∂μβν − Sμαβð0Þ ∂μðβωαβÞ ¼ 0; ðC2Þ

which, when used in Eq. (C1), leads to Eq. (21), i.e.,

∂μs
μ
IS ¼ ð∂μβν þ 2βωμνÞTμν

ð1aÞ þ Tμν
ð1sÞ∂μβν

− Sμαβð1Þ ∂μðβωαβÞ þ ∂μQμ: ðC3Þ

APPENDIX D: DERIVATION OF EQ. (22)

We start with Eq. (21),

∂μs
μ
IS ¼ ð∂μβν þ 2βωμνÞTμν

ð1aÞ þ Tμν
ð1sÞ∂μβν

− Sμαβð1Þ ∂μðβωαβÞ þ ∂μQμ

¼ 2βωμνT
μν
ð1aÞ þ Tμν

ð1aÞ∂μβν þ Tμν
ð1sÞ∂μβν

− Sμαβð1Þ ∂μðβωαβÞ þ ∂μQμ: ðD1Þ

Using the explicit form of Tμν
ð1sÞ and Tμν

ð1aÞ it has been

already shown in Ref. [20] the first three terms in the above
equation can be expressed as
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2βωμνT
μν
ð1aÞ þ Tμν

ð1aÞ∂μβν þ Tμν
ð1sÞ∂μβν ¼ −βhμðβ∇μT −DuμÞ þ βπμνσμν þ βΠθ − βqμðβ∇μT þDuμ − 4ωμνuνÞ

þ ϕμνðΩμν þ 2βΔα
μΔβ

νωαβÞ: ðD2Þ

Here we defined Ωμν ≡ Δα
μΔβ

ν∂½αββ� ¼ β∇½μuν�. The tensor σμν ¼ ∇ðμuνÞ − 1
3
θΔμν is traceless, i.e. σ

μ
μ ¼ 0, and orthogonal

to the fluid four velocity, i.e. σμνuμ ¼ 0 ¼ σμνuν. Now let us consider the fourth term in Eq. (D1),

−Sμαβð1Þ ∂μðβωαβÞ ¼ −ð2u½αΔμβ�Φþ 2u½ατμβ�ðsÞ þ 2u½ατμβ�ðaÞ þ ΘμαβÞ∂μðβωαβÞ
¼ −2u½αΔμβ�Φ∇μðβωαβÞ − 2u½ατμβ�ðsÞ∇μðβωαβÞ − 2u½ατμβ�ðaÞ∇μðβωαβÞ − Θμαβ∇μðβωαβÞ
¼ −2Φuα∇βðβωαβÞ − 2uατμβðsÞ∇μðβωαβÞ − 2uατμβðaÞ∇μðβωαβÞ − Θμαβ∇μðβωαβÞ

¼ −2Φuα∇βðβωαβÞ − τμβðsÞuα
�
ΔγμΔρβ þ ΔγβΔμρ −

2

3
ΔγρΔμβ

�
∇γðβωαρÞ

− τμβðaÞuαðΔγμΔβρ − ΔμρΔβγÞ∇γðβωαρÞ − ΘμαβΔαδΔβρΔμγ∇γðβωδρÞ: ðD3Þ

Using Eqs. (D2) and (D3) in Eq. (D1) we find

∂μs
μ
IS ¼ −βhμðβ∇μT −DuμÞ þ βπμνσμν þ βΠθ − βqμðβ∇μT þDuμ − 4ωμνuνÞ þ ϕμνðΩμν þ 2βΔα

μΔβ
νωαβÞ

− 2Φuα∇βðβωαβÞ − τμβðsÞuα
�
ΔγμΔρβ þ ΔγβΔμρ −

2

3
ΔγρΔμβ

�
∇γðβωαρÞ

− τμβðaÞuαðΔγμΔβρ − ΔμρΔβγÞ∇γðβωαρÞ − ΘμαβΔαδΔβρΔμγ∇γðβωδρÞ þ ∂μQμ: ðD4Þ

APPENDIX E: EXPLICIT EXPRESSIONS FOR D, Aμ, Bμ, Cμν, Eμν, F , Gμν, Hμν, AND Iαμν

The first step in deriving the following scalars, vectors, and tensors starts by taking the partial derivative ofQμ in Eq. (20).
Note that the partial derivative of the parameters ai, ãi, bi, b̃i, and ci is not zero. The next step is to collect all terms having
common dissipative current. In such a process, one can encounter terms of two different dissipative currents, for example,
πμνhν∇μb2. For that, we have introduced the constants l and l̃ such that

πμνhν∇μb2 ¼ lhππμνhν∇μb2 þ ð1 − lhπÞπμνhν∇μb2: ðE1Þ

Following the above procedure we obtain

D ¼ a1Πθ þ ΠDa1 þ 2a1DΠþ ð1 − lΠhÞhμ∇μb1 − b1ð1 − l̃ΠhÞhμDuμ þ b1∇μhμ þ lΠqqμ∇μb4

− l̃Πqb4qμDuμ þ b4∇μqμ þ lΘΠΘαμνΔαμ∇νc3 − l̃ΘΠc3ΔαμΘαμνDuν þ c3Δαβ∇μΘαβμ: ðE2Þ

Aμ ¼ a3hμθ þ hμDa3 þ 2a3Dhμ þ lΠhΠ∇μb1 þ b1∇μΠ − b1 l̃ΠhΠDuμ þ lπhπλμ∇λb2 þ b2∇λπ
λμ

− b2 l̃πhπλμDuλ þ lϕhϕλμ∇λb3 þ b3∇λϕ
λμ − b3 l̃ϕhϕλμDuλ þ lΦhΦ∇μb̃1 þ b̃1∇μΦ − b̃1l̃ΦhΦDuμ

þ lτshτ
λμ
ðsÞ∇λb̃2 þ b̃2∇λτ

λμ
ðsÞ − b̃2 l̃τshτ

λμ
ðsÞDuλ þ lτahτ

λμ
ðaÞ∇λb̃3 þ b̃3∇λτ

λμ
ðaÞ − b̃3l̃τahτ

λμ
ðaÞDuλ: ðE3Þ

Bμ ¼ a4qμθ þ qμDa4 þ 2a4Dqμ þ ð1 − lΠqÞΠ∇μb4 þ b4∇μΠ − b4ð1 − l̃ΠqÞΠDuμ þ ð1 − lπqÞπλμ∇λb5

þ b5∇λπ
λμ − b5ð1 − l̃πqÞπλμDuλ þ lϕqϕλμ∇λb6 þ b6∇λϕ

λμ − b6 l̃ϕqϕλμDuλ þ lΦqΦ∇μb̃4 þ b̃4∇μΦ

− b̃4l̃ΦqΦDuμ þ lτsqτ
λμ
ðsÞ∇λb̃5 þ b̃5∇λτ

λμ
ðsÞ − b̃5l̃τsqτ

λμ
ðsÞDuλ þ lτaqτ

λμ
ðaÞ∇λb̃6 þ b̃6∇λτ

λμ
ðaÞ − b̃6l̃τaqτ

λμ
ðaÞDuλ: ðE4Þ

Cμν ¼ a2θπμν þ πμνDa2 þ 2a2Dπμν þ ð1 − lπhÞhðν∇μÞb2 − b2ð1 − l̃πhÞhðνDuμÞ þ b2∇ðμhνÞ

þ lπqqðν∇μÞb5 − l̃πqb5qðνDuμÞ þ b5∇ðμqνÞ þ lΘπΘðμνÞα∇αc4 − l̃Θπc4ΘðμνÞαDuα þ c4∇αΘðμνÞα: ðE5Þ
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Eμν ¼ a5θϕμν þ ϕμνDa5 þ 2a5Dϕμν þ ð1 − lϕhÞh½ν∇μ�b3 − b3ð1 − l̃ϕhÞh½νDuμ� þ b3∇½μhν�

þ ð1 − lϕqÞq½ν∇μ�b6 − b6ð1 − l̃ϕqÞq½νDuμ� þ b6∇½μqν� þ lΘϕΘλμν∇λc1 − l̃Θϕc1ΘλμνDuλ

þ c3∇λΘλμν þ kΘϕΘ½μν�λ∇λc7 − k̃Θϕc7Θ½μν�λDuλ þ c7∇λΘ½μν�λ: ðE6Þ

F ¼ ã1θΦþΦDã1 þ 2ã1DΦþ ð1 − lΦhÞhμ∇μb̃1 − ð1 − l̃ΦhÞb̃1hμDuμ þ b̃1∇μhμ þ ð1 − lΦqÞqμ∇μb̃4

− ð1 − l̃ΦqÞb̃4qμDuμ þ b̃4∇μqμ þ lΘΦΘαμνΔαμ∇νc5 − l̃ΘΠc5ΔαμΘαμνDuν þ c5Δαβ∇μΘαβμ: ðE7Þ

Gμν ¼ ã2θτ
μν
ðsÞ þ τμνðsÞDã2 þ 2ã2DτμνðsÞ þ ð1 − lτshÞhðν∇μÞb̃2 − b̃2ð1 − l̃τshÞhðνDuμÞ þ b̃2∇ðμhνÞ

þ ð1 − lτsqÞqðν∇μÞb̃5 − ð1 − l̃τsqÞb̃5qðνDuμÞ þ b̃5∇ðμqνÞ þ lΘτsΘ
ðμνÞλ∇λc6 − l̃Θτsc6Θ

ðμνÞλDuλ þ c6∇λΘðμνÞλ: ðE8Þ

Hμν ¼ ã3θτ
μν
ðaÞ þ τμνðaÞDã3 þ 2ã3DτμνðaÞ þ ð1 − lτahÞh½ν∇μ�b̃3 − b̃3ð1 − l̃τahÞh½νDuμ� þ b̃3∇½μhν�

þ ð1 − lτaqÞq½ν∇μ�b̃6 − b̃6ð1 − l̃τaqÞq½νDuμ� þ b̃6∇½μqν� þ lΘτaΘ
λμν∇λc2 − l̃Θτac2Θ

λμνDuλ

þ c2∇λΘλμν þ kΘτaΘ
½μν�λ∇λc8 − k̃Θτac8Θ

½μν�λDuλ þ c8∇λΘ½μν�λ: ðE9Þ

Iαμν ¼ ã4θΘαμν þ ΘαμνDã4 þ 2ã4DΘαμν þ ð1 − lΘϕÞϕμν∇αc1 − ð1 − l̃ΘϕÞc1ϕμνDuα þ c1∇αϕμν

þ ð1 − lΘτaÞτμνðaÞ∇αc2 − ð1 − l̃ΘτaÞc2τμνðaÞDuα þ c2∇ατμνðaÞ þ ð1 − lΘΠÞΠΔα½μ∇ν�c3

− ð1 − l̃ΘΠÞc3ΠΔα½μDuν� þ c3Δα½μ∇ν�Πþ ð1 − lΘΦÞΦΔα½μ∇ν�c5 − ð1 − l̃ΘΦÞc5ΦΔα½μDuν�
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