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Relativistic second-order spin hydrodynamics: An entropy-current analysis
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We present a new derivation of Israel-Stewart-like relativistic second-order dissipative spin hydro-
dynamic equations using the entropy current approach. In our analysis, we consider a general energy-
momentum tensor with symmetric and antisymmetric parts. Moreover, the spin tensor, which is not
separately conserved, has a simple phenomenological form that is antisymmetric only in the last two
indices. Apart from the evolution equations for energy density, fluid flow, and spin density, we also find
relaxation-type dynamical equations for various dissipative currents. The latter are consistently derived
within the second-order theory as gradient corrections to the energy-momentum and spin tensors. We argue
that this approach correctly reproduces the corresponding Navier-Stokes limit of spin hydrodynamic
equations. Throughout our analysis, the spin chemical potential is considered an O(d) quantity in the
hydrodynamic gradient expansion and reduces to thermal vorticity in the global equilibrium. New
coefficients appearing in the generalized spin hydrodynamic equations are undetermined and can only be
evaluated within a proper underlying microscopic theory of a given system.
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I. INTRODUCTION

In noncentral relativistic heavy-ion collisions, the average
spin polarization of hadrons (e.g., A hyperons) is observed
along the global axis of rotation of the produced matter [ 1-9].
This result may suggest that constituents’ spin in the hyperons
is coordinated in a specific direction, implying that the
quark-gluon plasma (QGP) contains nontrivial vortical struc-
tures [10,11], which in turn might be caused by the significant
amount of orbital angular momentum produced in such
collisions [12,13]. This phenomenon mimics the Barnett
effect [14,15] which displays the macroscopic effect of a
quantum spin. Various theoretical approaches have been
explored to model the vortical structure of a QCD plasma,
e.g., hydrodynamic approach [16-24], relativistic kinetic
theory [25-44], effective Lagrangian approach [45-48],
quantum statistical density operators [49-54], holo-
graphy [55,56], etc. Considering the triumphs of the relativ-
istic dissipative hydrodynamic frameworks in relativistic
heavy-ion phenomenology [57-59], several extensions of
relativistic hydrodynamics with spin degrees of freedom for
the vortical fluids attracted a lot of attention. The spin
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hydrodynamic frameworks have a crucial role to play in
understanding the collective spin dynamics of relativistic
strongly interacting plasma because they may link quantum
mechanical features of matter with hydrodynamics.

To model the collective spin dynamics in relativistic
spin hydrodynamic frameworks, in addition to the usual
hydrodynamic quantities, e.g., the energy-momentum ten-
sor (T*), one also introduces the 3-rank spin tensor
(§*v) [25]. The additional equations of motion resulting
from the conservation of the system’s total angular momen-
tum provide information about the dynamical evolution of
the spin tensor. One of the fundamental conceptual diffi-
culties in formulating a theory of relativistic dissipative spin
hydrodynamics is the problem of “pseudogauge transfor-
mations.” Pseudogauge transformations imply that the
forms of the energy-momentum tensor and spin tensor are
not unique. In particular, for any energy-momentum tensor
T* satisfying the conservation equation, i.e., 9,T" =0,
one can construct an equivalent energy-momentum tensor
T'" by adding the divergence of an antisymmetric tensor,
namely 7" = T* + 9,®"* [33,60,61]. Note that if ®*** is
antisymmetric in the last two indices then T is also
conserved. The same construction of the spin tensor can
also be obtained without affecting the conservation of the
total angular momentum. Different pseudogauge choices do
not affect the conservation of total angular momentum or
energy-momentum, nor do these transformations have any
impact on the global charges (i.e., the global energy, linear
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momentum, and angular momentum). Various pseudogauge
choices, e.g., the canonical, Belinfante-Rosenfeld [62-64],
de Groot-van Leeuwen-van Weert [65], Hilgevoord-
Wouthuysen [66,67] forms and their implications on the
spin hydrodynamic framework are intensely debated in
recent literature [17,18,20,33,53,68,69].

Without going into a specific microscopic theory, a model-
independent dissipative spin hydrodynamic framework can
be obtained using thermodynamic consideration, which
implies that for a dissipative system, entropy must be
produced. This simple but rather powerful physical principle
has been implemented very rigorously to obtain the Navier-
Stokes-like theory of dissipative spin hydrodynamic frame-
work [16,17,20]. In this framework, the energy-momentum
tensor consists of symmetric as well as antisymmetric
components. Moreover, following the earlier works of
Weyssenhoff and Raabe [70], one considers a simple phe-
nomenological form of the spin tensor, which is only anti-
symmetric in the last two indices S — yAsH 116,17,20].
Here u# represents the timelike fluid flow four-vector, and S*¥
represents the spin density in analogy with the number
density. A linear stability analysis for this phenomenological
first-order spin hydrodynamic framework has been performed
in Refs. [71,72]. These analyses show that in the fluid rest
frame, the first-order spin hydrodynamic equations are
generally unstable under linear perturbation [71]. This is a
rather interesting result because the instability manifests itself
even in the fluid rest frame, and the source of this instability is
the spin equation of state that relates the spin density tensor
(8*) to the spin chemical potential (@*). Strictly speaking, it
has been argued that only the spin density perturbation
components 5S” are responsible for the instabilities.
Also an independent analysis of this framework for a boost
invariant system indicates unstable behavior in the
evolution of the temperature (7) and the spin chemical
potential (o) [73]. These instabilities can be generic and
the first-order (Navier-Stokes limit) spin-hydrodynamic
framework can be highly pathological. Second-order dis-
sipative hydrodynamic frameworks have been argued to be
free of stability as well as causality issues [74—82]. We expect
that such features will also remain intact for second-order spin
hydrodynamic frameworks. Such observation motivates us to
go beyond the first-order theory.

In this paper, we construct a new second-order Israel-
Stewart-like spin hydrodynamic framework using the
entropy current analysis [83-86]. Some efforts have
been already made to derive the second-order spin hydro-
dynamic equations from an underlying microscopic theory
[87,88] using spin-kinetic equations. Such a kinetic-theory
approach explicitly uses spin-dependent collision terms and
is based on the moment method of kinetic equation. In this
article, we follow an alternative model-independent way
based on the entropy current analysis to derive the second-
order spin hydrodynamic equations [83]. Various second-
order hydrodynamic theories for “spinless” fluid, e.g., the

Muller-Israel-Stewart approach [83,89,90], Denicol-Niemi-
Molnar-Rischke approach [91,92], Baier-Romatschke-Son-
Starinets-Stephanov approach [93], Chapman-Enskog
approach [94-96] etc., have been routinely used to explain
the heavy-ion collision data. Although different second-
order hydrodynamic theories can have a similar structure,
they are not exactly the same which is reflected in the
hydrodynamic evolution, particularly where the gradients
are large [97]. Such differences crucially affect their appli-
cation to explain the heavy ion collision data. These
differences may also become evident for second-order spin
hydrodynamic frameworks. The present calculation can be
considered as a complementary method to the kinetic theory
approach to obtain spin hydrodynamic equations.

After this brief introduction, in Sec. II we discuss the
Navier-Stokes theory of dissipative spin hydrodynamics
using the entropy current analysis. Once the Navier-Stokes
theory is defined we next move to the construction of the
second-order Israel-Stewart theory of dissipative spin
hydrodynamics in Sec. III. Finally, in Sec. IV we conclude
our results with an outlook.

In this manuscript, the symmetric and antisymmetric parts
of atensor X are denoted as X') = X ) = (XH + X /2
and X’(‘Z) = Xl = (xm — X" /2, respectively. We use the
metric tensor of the signature g, = diag(+1,-1,-1,-1)
and the totally antisymmetric Levi-Civita tensor with the
sign convention €°'?* = —¢(,3 = 1. The fluid four-velocity
u* satisfies the normalization condition w*u, = 1. The
projector orthogonal to u/ is defined as A" = ¢* — u*u”;
by definition A*"u, = 0. Projection orthogonal to u* of a
four-vector X* is represented as X* = A*X,. Traceless
and symmetric projection operator orthogonal to u* is
denoted as X = NEXT = 3 (A Ay + A pAY —
2 A DG) X Similarly, X = APIXD =1 (a0 ,A%
—A# ﬂA”(,)X"ﬁ denotes the antisymmetric projection oper-
ator orthogonal to u*. The partial derivative operator can be
decomposed into two parts, one along the flow direction and
the other orthogonal to it, i.e., 9, = u,D +V,. Here D =
utd, denotes the comoving derivative, and V, = A,%9,, is
orthogonal to u*, i.e., uﬂV" = (. The expansion rate is
defined as 0 = 9, u".

I1. FIRST-ORDER RELATIVISTIC DISSIPATIVE
SPIN HYDRODYNAMICS

A. Macroscopic conservation laws

Phenomenological derivation of hydrodynamics for a
spin-polarized fluid is based on the conservation of energy-
momentum tensor 7# and total angular momentum tensor
Jel 125,26],

'For simplicity, we assume that the system has no other
conserved currents.
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9, T =0, (1)

9, = 2T,

+ 0,8 = 0. (2)
The total angular momentum tensor, J#¥ = L#¥ 4 §4¥ js
the sum of the spin part, S*r and the orbital part,
L = 2xT%] In principle, T#* and $** can be obtained
from a more fundamental energy-momentum tensor oper-
ator and spin operator of the underlying quantum field
theory system. Utilizing Noether’s theorem from the
perspective of the quantum field theory of Dirac fermions,
the microscopic canonical energy-momentum tensor is in
general asymmetric, and the corresponding spin tensor is
totally antisymmetric [98]. We expect that the symmetry
properties of various microscopic currents will also be
preserved at the macroscopic level. Due to the pseudogauge
transformation, T#* and S$** are not unique. Using the
arbitrariness in defining the energy-momentum tensor and
the spin tensor, for phenomenological studies, one often
uses an asymmetric energy-momentum tensor and a
spin tensor that is only antisymmetric in the last two
indices [70]. The dissipative spin hydrodynamic frame-
work with the phenomenological form of the spin tensor
has been discussed in Refs. [16,17]. Moreover, it can be
shown that the phenomenological spin-hydrodynamic
framework with the spin tensor which is antisymmetric
only in the last two indices can be obtained from a pro-
perly defined canonical spin-hydrodynamic framework
with totally antisymmetric spin tensor using a proper
pseudogauge transformation [20]. In this work, we will
first overview the first-order dissipative phenomeno-
logical spin-hydrodynamic framework by considering the
following forms of the energy-momentum tensor and spin
tensor,

T = Tlo) + Ty + Tli)

= ’(‘g> 4+ 2hHyt) 4o - 2gut v, (3)

S = S + S = uts + S (4)

The leading order contribution T’(g) in Eq. (3) has the form
of the perfect fluid energy-momentum tensor,

T’('g) = eutu’ — pA", (5)
where ¢ is the energy density and p is the equilibrium
pressure. The most general expression of 7% can contain
terms that are symmetric as well as antisymmetric under the
u <> v exchange. Therefore, we decompose the dissipative
part of the energy-momentum tensor T’(‘ {’ ) into a symmetric

part T?fs) =2hyY) £ # and an antisymmetric part
T’(lfa) = 2gu”) 4 . The vector h* represents the heat

flow, while 7#* is the symmetric part of the dissipative
correction such that 7#* = 7#*¥ + I1A**. The tensor 7** (the
traceless part of 7#¥) is the shear stress tensor and IT is the
bulk pressure. Analogously, ¢* and ¢** are the antisym-
metric dissipative corrections. These dissipative currents
satisfy the following conditions: h*u, =0, ©*u, =0,
q"u, =0, ¢"u,=0, =7% and P =—-P".
According to the hydrodynamic gradient expansion &, p,
and u# scale as O(d°) or O(1). But h*, g*, 7, and ¢* scale
as O(d). The tensor S = —S* in Eq. (4) can be
interpreted as the spin density, S* = u,;$**, in analogy
to the number density [16,17,20]. Consequently, the spin
density is a leading order term in the hydrodynamic
gradient expansion, i.e., S* ~O(1). The first-order dis-

sipative correction S?’l‘;’ satisfies uﬁSf’]‘;’ = 0. Note that in

general, uﬂS?lla)ﬂ # 0, but due to the matching condition
where $# can be identified as the equilibrium spin density

we consider u”S’(‘;’Sﬁ = 0. The same matching condition also

identifies ¢ as the equilibrium energy density, i.e.,

T’Zf)uﬂuy = 0. Using Egs. (3) and (4) back into Egs. (1)

and (2) we obtain spin hydrodynamic equations,

De + (e + p)0 = —0- h + h*Du, + ©**d,u, — 0 - q — q"Du, + ¢"*o,u,,
=2h"Du, —V - (q + h) + 7 0,u, + $**0,u,, (6)

(8 + p)Du(l _ V(zp — —(l’l . a)ua _ hae _ AuUDhD _ A(lyaﬂ,[;w _ (q . a)u(l + q119+ A(zDqu _ A(lya”¢ﬂy,
— _(q + h) . vua + (qa _ ha)e + A(IUDql/ _ AaUthz _ Arzyaﬂr/,w _ A(Jtl/aﬂ(ﬁ/w7 (7)

0,(u*S") + 0;S{Y = —

(M

2(q"u — q'u' + ). (8)
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Due to the difficulty in specifying the flow velocity, frame
choices are crucial in the setting of dissipative hydro-
dynamics.” In standard hydrodynamics (spinless fluid) a
natural hydrodynamic frame choice is the Landau frame,
T*u, = eu* with only a symmetric energy-momentum
tensor. This implies ## = 0. But in the spin hydrodynamic
frameworks in general due to the presence of an antisym-
metric component, one has two alternatives: (1) we can
apply the Landau frame choice but only in the symmetric
part of 7#. This implies that #* = 0. (2) Instead of
applying the Landau frame condition only to the symmetric
part of the 7", we can also include the antisymmetric
part. In that case, we obtain #* 4 g = 0. This immediately
implies that we can have A* and ¢* nonvanishing but
satisfying together the Landau condition. In this paper, we
will keep the discussions general without imposing any
specific frame condition, unless otherwise stated.

B. Thermodynamic relations

In the presence of dynamical spin degrees of freedom, the
laws of thermodynamics can be generalized to [16,17,20]

et+p=Ts+ waﬂSaﬂ,
de =Tds + waﬂdS”’ﬁ,
dp = sdT + S dw,p. 9)

Here, T is the temperature, s is the entropy density, and @
can be interpreted as the spin chemical potential conjugated
to the spin density S such that % = dp/dw,; at a fixed
temperature 7. The spin chemical potential is defined as a
hydrodynamic variable in analogy with the chemical poten-
tial and distinguishes spin hydrodynamic frameworks from
the standard hydrodynamic theories. However, there is a
fundamental difference between these quantities. The
chemical potential is only allowed in hydrodynamics if
the corresponding current is conserved, e.g., baryon chemi-
cal potential in the presence of a conserved baryon current.
But the presence of spin chemical potential does not
necessarily imply the conservation of macroscopic spin

*The energy-momentum tensor 7# can typically have 16
independent components in four dimensions. In dissipative
hydrodynamics, these 16 components correspond to
g p,u W " 11, ¢, and ¢*. Due to the equation of state,
the variables ¢ and p together give only one unknown, while u*,
h*, and ¢* have three independent degrees of freedom due to the
conditions w'u, = 1, h”u” =0, and q"u, = 0. Both #** and ¢*"
are orthogonal to u#. But 7 is symmetric and traceless. Hence, it
has only five independent degrees of freedom. The tensor ¢** is
antisymmetric, hence it has three independent components. The
bulk pressure IT is just a scalar representing one degree of
freedom. This counting summarizes to 19 independent com-
ponents in the 7# rather than 16. Therefore we have the freedom
to eliminate 3 degrees of freedom. The so-called frame choice
or the definition of u* reduces the number of independent
components to 16.

current. In the language of the quantum statistical density
operator framework [52], in local thermal equilibrium, the
spin chemical potential can only be considered as a
Lagrange multiplier [99]. However, in global equilibrium,
in the presence of an antisymmetric component of the
energy-momentum tensor, the spin chemical potential can
be shown to be related to the thermal vorticity, w,, =
—3(0,8, — 0,$,) [99]. Here p* = pu* and f is the inverse
temperature field.

Apart from the presence of spin chemical potential, the
hydrodynamic gradient ordering of spin-related quantities
appearing in Eq. (9) was discussed earlier. Fixing the
hydrodynamic gradient ordering of w® is not straightfor-
ward. Since it is expected that in global equilibrium the spin
chemical potential can be expressed in terms of thermal
vorticity @,,, it is rather natural to consider & ~ O(0).
But such a conclusion is only applicable if the energy-
momentum tensor is asymmetric [99]. This is a nontrivial
aspect of the spin hydrodynamic framework as compared to
the standard hydrodynamic frameworks for spinless fluids.
In standard hydrodynamics, the derivative correction terms
vanish at global equilibrium. But all gradient terms do not
vanish in global equilibrium if we consider the most
generalized flow configuration, which is also true for spin
hydrodynamics. Using the framework of the quantum
statistical density operator, it can be shown that the most
general flow configuration in global equilibrium must
fulfill the following conditions [100]:

aﬂﬂl/ + al/ﬂ/l =0, ﬂv = bv + ’(lexi,

1
. = _E(aﬂﬁy - 0,p,) = constant. (10)

Hv

Here p# = pu*, p = 1/T, b, is a constant four-vector. The
2-rank antisymmetric tensor w*” is the thermal vorticity,
and one can clearly observe that it scales as () in the
hydrodynamic gradient expansion. Thus, a generic global
equilibrium allows for O(9) terms in the flow configura-
tion. Consequently, the gradient ordering of the spin
chemical potential @** is a contentious issue in the setting
of spin hydrodynamics and has serious ramifications for the
formulation of the spin hydrodynamic framework. A
natural question could be raised here on how to connect
S ~QO(1) and w,, ~O(d) when their hydrodynamic
gradient orders do not match. This was recently discussed
in Ref. [73] as a new spin equation of state was constructed
to match the gradient orders of S and @ without any
further assumptions. Nonetheless, one can also consider
different hydrodynamic gradient ordering of spin chemical
potential, particularly when the energy-momentum tensor
is symmetric. A spin hydrodynamic framework was dis-
cussed in Ref. [19] where the spin chemical potential is
considered the leading order [O(1)] in gradient order
expansion. In this paper, we will only consider the spin
hydrodynamic framework with @** ~ O(9).
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C. Constitutive relations for dissipative currents
in the Navier-Stokes limit

We observe that while there are in total 22 independent
components of 7% and S, Egs. (6)—(8) constitute only 10
equations for the 10 independent variables 7', u#, and w**.

Note that the hydrodynamic ordering of the term 6AS?’I‘;’ in

Eq. (8) is higher than the rest of the terms. Therefore, for
Apv
(ql) )
However, to close Egs. (6)—(8), we still have to provide
additional equations of motion for different dissipative
currents. This eventually reduces to finding constitutive
relations satisfied by the tensors h#, ¢, I, ##**, and ¢** in
terms of T, u#, and w"*. Such constitutive relations can be
obtained using the condition that, for a dissipative system,
the entropy is no longer a conserved quantity but rather will
be produced [16,83]. The mathematical form of the entropy
current within the framework of dissipative fluid dynamics
is, a priori, not known. As a result, it is not trivial to obtain
its evolution equation. However, one can proceed by first
constructing the definition of the entropy current in the
absence of derivative correction terms, i.e.,

the first-order dissipative theory, we can neglect S

st = ﬁyT/Z(l)/) + ﬂﬂp - ﬂﬂwaﬂsaﬁ' (1 1)

Note that such a definition of equilibrium entropy current
correctly reproduces equilibrium thermodynamic relation
(9) if we identify s* = su¥, where s is the equilibrium
entropy density. For an interacting fluid, we can generalize
the definition of entropy current given above to incorporate
dissipative terms. The nonequilibrium entropy current
ansatz up to first order in hydrodynamic gradient expan-
sion, i.e., in the Navier-Stokes (NS) limit can be written as

ks = BT + B'p = Py
= BTl + BT + P = P oggS? — gy,
= s+ p,T7]), + 0(0°), (12)

where we make use of the equilibrium entropy current s*
defined in Eq. (11). By imposing the second law of
thermodynamics, i.e., a,,s’gs >0, for Eq. (12), we can
obtain the constitutive relations of the various dissipative
currents [16,20],

I = (0, (13)

W = —k(Du* — BVAT), (14)

¢" = A(Du" + BVIT — 4ot u,), (15)
= 2not (16)

P = y(Q" + Qﬁw<u><v>) — 77(2V[ﬂu”] + 4w(u><V>), (17)

Here, all transport coefficients are positive, i.e., k > 0,
A>0,7>0,{>0,and y > 0. We define y = fy/2, " =
Vi) —10Am = NEVul, Qv = VI = Af AL,
and @ = AF*A¥ ¢ .. In these equations, all the terms
on the right-hand side are of order O(9) in hydro-
dynamic gradient expansion. Equations (14)—(17) show
explicitly that at this level, the number of state variables
T,ut, o perfectly matches the number of dynamical
equations (6)—(8). Note that if A =0 and y = 0, then all
the dissipative currents associated with the antisymmetric
part of the energy-momentum tensor vanish. In this limit, if
we consider the Landau frame choice, i.e., i* = 0, then
nonvanishing dissipative currents are 7 and I1. Moreover,
if we set @ = 0, then the spin tensor also decouples from
the theory. This is the NS limit giving rise to the standard
hydrodynamics of spinless fluid. Unfortunately, this first-
order spin hydrodynamic framework can be shown to be
pathological as it can give rise to instabilities under linear
perturbations [71,72]. This is not a desired feature for a
hydrodynamic theory, particularly for phenomenological
applications.

III. TOWARD SECOND-ORDER SPIN
HYDRODYNAMICS

A. Entropy current for the second-order theory

Historically, it is also well known that even for the
spinless fluid, the relativistic NS theory is ill-defined
because it can contain instabilities when perturbed around
an arbitrary global equilibrium. The relativistic NS theory
is unstable in the sense that small departures from equi-
librium at one instant of time will diverge exponentially
with time. The timescale of these instabilities can be short,
which may affect the time evolution of the system [75,101].
We emphasize that in the comoving frame or in the rest
frame, Landau’s theory of dissipative hydrodynamics (for
spinless fluid) is stable. However, the generic instability
manifests itself in a Lorentz-boosted frame. Subsequently,
it has been argued that such instabilities are intrinsically
related to the acausal nature of the NS theory [82]. Since the
NS equations are not intrinsically hyperbolic, they allow for
perturbations that propagate at an infinite speed. These
fundamental problems provide overwhelming motivation
to prohibit the practical application of relativistic NS
theory. To incorporate dissipative effects consistently in
fluid dynamics without violating causality, second-order
theories are constructed, e.g., Israel-Stewart (IS) theory, etc.
The IS second-order theory contains new parameters
compared to the NS theory. Kinetic theory calculations
have been used to show that these new parameters are
nonvanishing and if these parameters are chosen appropri-
ately then the dynamical equations governing the evolution
of linear perturbations form a hyperbolic system of equa-
tions. Second-order dissipative hydrodynamic frameworks
for spinless fluid have been argued to be free of stability
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and causality issues [74—82] which makes IS theory more
acceptable as a viable hydrodynamic theory. We expect that
such features will also remam intact for second-order spin
hydrodynamic frameworks.? Similarly to the NS theory
here we also follow the entropy current analysis to derive
the second-order spin hydrodynamic equations. In this
approach once again we start with the entropy current
for an arbitrary nonequilibrium state near equilibrium [83],

Sis =BT + P'p = PaogyS' + Q"
=B.T(o) + P = ProgS™ + BT — PouyS(y + 0",
:Sﬁs_ﬁwaﬂsl(lla)ﬂ_FQﬂ- (18)

Here sig contains the first-order corrections [O(d)]. The
term ﬁwaﬂS’(‘f’)ﬁ is second order [O(d%)] in the hydrody-
namic gradient expansion. Such a term does not appear in
the NS limit, see Eq. (12). Novel information about new
spin dissipative currents is embedded in S?’]‘ ;’ [Eq. (4)]. The
term Q* is a general four-vector containing terms up to
second order [O(d?)]. However, the form of Q* is not
completely arbitrary as it contains all second-order terms
composed of h#, 7, 11, g*, ¢**, and S’(‘f”)ﬂ . The form of Q¥
is constrained by the condition that entropy is maximum in

|

O = uw'(ay TP + ayn*my, + ash*hy + asq’q; + as¢™¢y,) + ut (a; @ + 5127( V(s T 6137’1

the equilibrium state. Contracting Eq. (18) with u* we
immediately obtain sig —s = u, 0", where s;5 = u,slg.
The condition that s;g <s implies u,0" <0 (see
Appendix A for details). Before we introduce the most
general expression of Q# we first express S’(‘]“)ﬂ in terms of
irreducible tensors. Recall that the first-order correction to
the spin tensor satisfies uMS’(‘;’)ﬁ = 0 and it is antisymmetric

in the last two indices. Therefore, the most general
decomposition of S’(({} in terms of irreducible tensors takes

the form [102] (see Appendix B)

S/(tla)ﬁ — 2ulaArP @ + 2u[“1’&ﬂ)} + 2u[‘11’(f; + 0. (19)

The new dissipative currents related to spin @, r" r" (@)
and ©"% are of first order in derivative expansion (9( ).
The currents satisfy the following properties: uﬂr" -
u, Tl = w, &P =0, o =l A =~k =0,
eH = —®”/’" O = O U, ®”"ﬁ =0, and ug @”"/’ 0.
Now we can express Q" in terms of all p0551ble second-

order combinations of dissipative currents respecting the
constraint u - Q <0,

aw T 4,0'70,,,)

+ (b IR + byrt by + b3 hy, + byIlg" + b5t q, + bed* q,)

+ (b, D" + Ezr’(ff)hy + byt by, + by®gt + Esrﬁf) q, + be?”
+ (3071 Ay TT + 10,5 + 5O Ay ® + 6Oz ),5) +

We define a;, a, b;, b;, and ¢; to be dimensionful
coefficients. While it is clear that due to u-Q <0 the
a(a) coefficients have definite signatures with a; <0,
aZSO, 61320, a420, a5§O, CNI] SO, &QSO, 513§0,
a, > 0, there are no such sign constraints on b;, b;, or c;.
Although a kinetic theory approach may indicate the sign of
these coefficients.

B. Evolution equations

We argued that for the NS theory the dissipative currents
h, g*, #, I, and ¢* can be expressed in terms of
fundamental hydrodynamic variables 7, wu”, and /.
This conclusion is obtained wusing the condition
6ﬂs’§s > 0. But for the second-order theory, various

*In the present calculation we develop the second-order theory
for spin hydrodynamics. Its stability and causality properties
require extensive investigation which we will address in future
works.

v 4) + (10 + 07 ) 0p)
(C7®(lﬂﬂ¢af)’ + C8®(lﬁuf(a)‘l/})' (20)

|

dissipative currents are considered independent variables.
This is evident from the fact that we have constructed
second-order terms in sjg in terms of these dissipative
currents. Therefore, to close the hydrodynamic equations,
we also need the evolution equation for these dissipative
currents, which can be obtained using the condition that
d,ss > 0. Taking the divergence of sjg and using spin-
hydrodynamic equations, it can be shown that (see
Appendix C for details)

9usis = (1) (9,8, + 2pwy,)

+0,B,TH ) = 0 (Poag)S(] + 9,00 (21)

Notice that for the global equilibrium condition S?’f’)ﬁ =0,

Q" = 0. Moreover, d,sig = 0 implies the most general
global equilibrium conditions (10), i.e., the spin chemical

potential converges to thermal vorticity, i.e., ®,, —
gw,w with B, = u,/T satisfying the Killing condition
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o,p,) = 0.* Using the explicit expressions for T’(‘IDS), T’(‘i’a), and S’(’f')ﬁ , Eq. (21) can be written as (see Appendix D for
details)

0,sts = —ph*(BV, T — Du,,) + pn*c,, + P10 — pg" (BV, T + Du,, — 4w, u*) + $" (Q,, + 2w )
= 20UV (Pwy,) — 21'4* u* A"V, (Bw,,) — 27”/’ “A[”' V,(Bwrg,) = ©,us ACANP AV (Bws,) + 0,0, (22)

up Y 1z
[
As a last step, we need to investigate the term d,Q" Al = A% A U A% =0, (25)
which can be done using the expression of Q¥ given in
Eq. (20). A straightforward calculation gives Bl@) = Aab Bﬂ; Uy Bl =0, (26)

a’l o' = ha-Aa + Q(IBQ + ﬂaf)’caﬁ + 11D + d)aﬁgaﬂ

1 2
HY " v M MU .
+OF + T?ﬁ ga,, + Tl(lf) Hep + @aﬁyIaﬁ”. (23) C( Aaﬂc (A A%p+ ApAY, 3 AgpA )C/w’

a —0- af _
In the above equations, scalars D and F, vectors Ay and Clapy =01 ¢"Clap) =0, (27)

Bg, and tensors C,,, €,,, G, H,y» and 7,5 are defined in

Appendix E. Note that the dissipative fluxes multiplying & Al ]g El( A LAYy — AV AFR)E
o . . . (o)) [a/}] 2 a= p a= p)Cpws

these quantities satisfy the following properties: 4# and g*

are orthogonal to u*, 7* and f(‘;’) are also orthogonal to u*  u,E) =0, (28)

as well as symmetric and traceless, ¢** and T’(‘;’) are
= A"”g

s

orthogonal to u* as well as antisymmetric, ®* is anti- Glap) = 1, G =0, gaﬂg<aﬂ> =0, (29)

symmetric in the last two indices and orthogonal to the
fluid flow in all the indices. Using these properties Eq. (23) 1 v y
Hap) = [(,ﬁ]H =5 (A AV — AV A ) H

s

can be expressed as
JH) =0, 30
0,0" = hy AW 4 g, B 4 7,,C L TID 4 puele) " (30)
+OF + T((l;ﬂ) Glap) + T((lf)H o)) + O /j71<a><ﬁ> o, T BYr) = Aau APy APT 5 u, 0P = 0;
(24) uﬂI<a><ﬂ>(7> =0; uy1<a><ﬁ><7> =0. (31)

The quantities A, B@, ¢, glefl), Gah) @) and  Using Eq. (24) in Eq. (22) the full form of the divergence of
TP satisfy the following constraints: entropy current in the second-order theory can be written as

6Ms’fs = —ph(pV,T — Du, — TAy) + pr*(0,, + TCy) + PO + TD) — pg"(pV,T + Du,, — 4w, u* — TB,)

+ ¢”U(QW + Zﬂa)(ﬂ)(,,) + 5([}41,])) + @[—ZM“Vﬁ(ﬂwaﬂ) + .7:} + 11(45,5) [—2MU’AIZZV}, (ﬂa)ap) + gwﬁ)]

+ ) [2u ALY, (Bory) + )] + O [~ 8%, Ay AV, (Boos,) + Ly i) (32)

“Naive identification of either global or local equilibrium states only using the condition d,sjg = 0 is not conclusive. However, if one
uses the Boltzmann kinetic equation, then one can distinguish between local and global equilibrium. Although global equilibrium can be
argued to be a solution to the Boltzmann kinetic equation, local equilibrium does not necessarily satisfy the kinetic equation. If we
consider a massive Boltzmann gas, the kinetic equation for the equilibrium distribution function [f.q = exp(—p* p”)], ie. p'0,feq =0
immediately implies 9,8, + 9,8, = 0. This is known as the Killing equation/Killing condition. We emphasize that p*d,f.q = 0 is
strictly valid in global equilibrium without introducing any additional assumptions (see Ref. [99] and references therein). Since the
Killing equation, i.e., d,4, + d,, = 0 is one of the characteristics of the global equilibrium state, we may identify a thermodynamic
state in global equilibrium if it at least satisfies the Killing condition. The kinetic equation can also give constant thermal vorticity as
another condition for global equilibrium if one considers nonlocal interactions, as analyzed in Ref. [31]. A similar conclusion can also be
drawn if we consider Zubarev’s approach or the nonequilibrium statistical operator method (see Ref. [100] and references therein). In the
present manuscript, since we recover the most general conditions for global equilibrium using d,sjs = 0, we identify the condition
d,sts = 0 as a condition for global equilibrium. If one identifies d,s{g = 0 as a local equilibrium condition, one will get the Killing
equation satisfied by an arbitrary local equilibrium state, which will be in contradiction to results obtained from the Boltzmann equation
or Zubarev’s approach. Therefore, we do not consider 0ﬂs’1‘5 = 0 as the local equilibrium condition.
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Similarly to the NS theory the condition 9, sig > 0 gives us
the following relations involving various dissipative cur-
rents appearing in the energy-momentum tensor:

=0+ TD) (33)

W = —k(Du* — pVFT + T AW) (34)

q" = A(Du¥ + pVFT — 4o u, — TB¥)  (35)
" = 2n(e" 4 TCH)) (36)

P = (Y + 2p0W) 4 g, (37)

Analogous relations for various dissipative currents appear-
ing in the spin tensor can be expressed as

@ =y (=2u"VP (Pwg) + F) (38)
f(‘g =, [_ u® <Nu APP 4 ATPAPH — % AP Auﬁ)
x V., (fw,,) + g<ﬂﬁ>] (39)

T#ﬂ

o =13 [—us (A APP — A”ﬁA””)VJ,(ﬂa)ap) + H([ﬂﬂ])} (40)

O = —ya[-AMAP AN (feoy,) + TWOP]. (41)

Here yy, y», y». and y, are new spin-transport coefficients.’
Using Egs. (33)-(41), in Eq. (32) we obtain the following
condition:

p p p Po 1

T prp g Ly ) ) LA
'y Aq 61,,4-2?7 ﬂ””+§ +yqb D

+—1 CI>2+—1 ¥ +—1 ¥ _L 00,5 >0
7 P OREOR OO oy ap 2 V-

(42)

This immediately implies that «k >0, A >0, >0, { >0
y>0,,20,y,>0, y3 >0, and y4, > 0. We emphasize
that the presence of D, AW B ) and WD) in
Egs. (33)—-(37) shows that for the second-order theory the
constitutive relations of I1, k*, ¢#, #**, and ¢** are not
simply expressed by Egs. (14)—(17) in terms of basic
hydrodynamic variables, T, u#, and @*”. Therefore in
the second-order theory II, h*, ¢, #**, and ¢** should
be considered as independent hydrodynamic variables
along with 7, u*, and @"*. The evolution equation of
new hydrodynamic variables can be obtained from
Eqgs. (33)-(37). Using explicit expressions of D, A%,
B, ¢ and £ we can write the evolution equations
of different dissipative currents as

I1 1 -
DI1 + — = —2— LHH + a1H¢9 + HDCZ] + (1 - lnh)hﬂvﬂbl - b] (1 — lnh)hﬂDuﬂ + blvﬂl’lﬂ + lnqqﬂvﬂb4
n ap
- ?quétqﬂDuﬂ + b4vﬂqﬂ + l®H®aﬂyAaﬂvyc3 - Z@Hc3Aay®am/Duv + C3Aaivu®aﬂ”]v (43)
h* 1 3 y)
DhW) + — = ~5 [B(Du* — BVHFT) + azh*6 + h*Day + Iy, [IV#b, + by VI — b, Iy, TIDu¥ + 1,7V b,
Th as

+ bzAﬂyvlﬂM - bﬂ,,hﬂ’l”Du,l + l¢h¢’1”V,1b3 + b3AMle¢M - b37¢h¢lﬂDul + lq,hCDV”i)l

-I— EIV”(I) —_ BIZQh¢Duﬂ + l,‘\hrﬁ_’:)v,léz + EzA”yvlTﬁl) —_ EZ’ZT‘\.hT

+ E3A”UV,11?Z) - E3zrah7?g)Duﬂ]7

q.u

':f)Du,l + lehT?f:)v/153

(44)

1
Dg¥ + 1 = 2 [B(BVIT + Du* — 4/ u,) — asq"0 — q*Day — (1 — I, )TIIV¥by — b, VHII

Ty

+ b4(l - 7Hq)HDl/lﬂ - (1 —_ l”q>ﬂ'lﬂvib5 —_ bSA”,/V,IﬂM + bs(l - ’Zﬂq)ﬂ'/lﬂDl/l/{ - l¢q¢ﬂﬂvlb6

*It is worth mentioning that expressions similar to the first terms appearing on the right-hand side in Eqs. (38)—(41) were also obtained
using the first-order spin hydrodynamic approach considering the spin chemical potential leading order [O(1)] in hydrodynamic
gradient expansion [19]. However, such formalism [19] is intrinsically different from our approach of formulating the first-order spin
hydrodynamics [20,71,73] as we consider @,,, ~ O(0). In our formalism, the derivative corrections to the spin tensor Egs. (38)-(41) do
not contribute to the Navier-Stokes theory. This is one of the novel features of our spin hydrodynamic theory, where the nontrivial
contribution of the dissipative parts of the spin tensor starts to contribute to the entropy current at the second order and beyond. Finally to
avoid any confusion, Egs. (38)—(41) are dynamical equations, i.e., they contain the currents and their spacetime derivatives. Therefore,
one should not get confused with the naive gradient counting at this level where all terms of Eqs. (38)—(41) are not of second order in
gradients. As we will see later, this feature will allow us to recover the Naiver-Stokes spin-hydrodynamic equations [20,71,73].
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— b AN, + bl s, ¢ Du, — 1¢qq>VﬂB4 — by V*® + bylp,Du — | Y‘,rﬁf\,‘)vlips

- Z)SAMDVﬁT?f;) + 557 ( >DI/£/1 Vﬁb6 b6Aﬂ Vl‘r + b6l7 o ( )Dlzt/l], (45)
pv 1 .
pa) 17— 50 [Bo™ + a, 07" + 7 Da, + (1 — L, )h¥*V¥) by — by(1 — 1)K Du¥)
Tr as
+ by V¥R + 1%V bs — 1,,bsq“ Du?) + bsV¥g¥) + 19,047V ¢,
- 7@7164@ po) aDMa + C4va® H a}’ (46)
v 1 -
D)) + - 5o (@ + 2p0)¥)) + as0p + pDas + (1= 1) hVH by = by(1 =Ty )hDu) + N
T¢ ds
+ (1 - l¢ )q["V"]b -b (1 - 7(}5!]) [DDM”] + b6A[’w V[o’qﬂ + l@(p@/{m}viCl - l@¢C1® HY D”,I
+ 3 ALIV,00% + ko OV 07 — koycr@0 D, + oy ALY V,0144), (47)
In the above equations, the relaxation times of various dissipative quantities are defined as 7 = —2a1C T>0,

7, = 2a3kT 20, 7, =2a4AT 20, 1, = —4anT >0, and 7, = —2asy > 0. Moreover we define Dh") = A¥ DhY,
Dg¥) = A* ,Dg*, Dr') = AlEDa, and D)) A[’” Dqﬁ“/’ The dissipative currents appearing in the spin tensor
also satisfy similar relaxation type equations,

o 1 ~ = -
D(I) + — = —2T [—2u“Vﬁ(ﬂwaﬁ) + ZI]GCI) + (I)Dgl] + (1 - lq)h)h#vﬂb] - (1 - lq)h)blh”DMM + blvﬂl’lﬂ
To a
+ (1= lon)q"Vyubs — (1 = Loy )bagq" Duy, + bsV,.q" + log®™ Ay, Vs
- lG)HCS Aa”@!lﬂl/Duy +cs aﬁv”@(lﬂﬂ]’ (48)
e 450 __ L[ amar 1 amam — 2awam v 4,07 + 7 Da
T(x) + : i _E —Uu + - 5 y(ﬁwap) + az (T) + (9) a2
+ (1 - l,sh)h<”V">l~72 - Bz(l - hl’.[sh>h<ﬂDl/£D> + Bszh’/) + (l - lqu)quy)Bs
- (1 - erq)Bs(,I(ﬂDMU) + l~75v<"q”> + l@TXG)W”MV,lcﬁ - 7@75C6®<ﬂy>lDul + C6Vﬁ®<’“’>i s (49)
), *a ! 7
Dr + === [~u (AF AP — A AN (Bar,,) + @307 + T Das + (1 - I, ,)h*VH b,
Tru as

= bs(1 = T D + by APV + (1= 1, )g* VWb = be(1 ~1,,,)q" Du®

+ I;GAU‘D]V[aqﬂ] + l@ @MWV}LCZ - 7@.[ C2®ﬁm}Dl/lA + CzAP;;]]v/{®/1aﬂ + k@TGQ[W/MVACS

— ko, csO Du; + Al V@1, (50)
(@) (u) (v) e 1 NN auy apy AL
D@ -l- o = —E[ A A A V (ﬂa)(;/,) + Cl49® + @ Da4 + (1 - l@(/)¢ V C

—(1- l@,/,)clgb””Du“ + | A" AP AN e + (1 = l@Ta)T’(‘Z)V“cz

( CoT(y DU + QA% AP AN 7 g + (1 = lon) TTIA®K VY ¢y
— (1 = Ion)csTTA¥ DY 4 3 A®WVATT + (1 — lgg ) PA VA s

(

(

|
—
|
~
©]
=
8
~—

1 = lgg)cs@A DU 4 cs AWVID 4 (1 = lg, )2 W Ve,
1 = log)can™ Du) + e, A AP AV (7 + (1 —z@,x)f(s) Vies
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— (1 - 7@1S>C6Ta[ﬂDuv] + C6AaaAﬂbAyCV[CT(S)ab] + (1 - k®¢)¢“["vy]c7

(s)

— (1 = kog)erd™Dul + ;8% A AV by + (1 = ke, )70y Ve

-(1- l}@,a)cgf((l‘E’;Du”} + cg A" AFP AV N 74 - (51)

|
In the above equations, Dréf )” ) = A’;;Drﬁf), DTE%D])E equations. Note that Egs. (43)—(47) contain terms of
AW} DT{(Z})’ DO@W®) = AsaArb AeD@ , . Various spin- ~ O(0) and O(d*) on both sides.' But this is not true for
relaxation times can be identified as zq = —2dy; > 0, Egs. (48)~(51). The right-hand sides of Eqgs. (48)-(51) do

T, = =20y, 20,7, = —2a3y3 > 0,and 79 = 2a4y4 > 0.
In comparison to the first-order spin hydrodynamics, one of
the most important features of the second-order theory is
the presence of relaxation times corresponding to various
dissipative currents. The timescales within which dissipa-
tive currents respond to hydrodynamic gradients are rep-
resented by these relaxation times. These relaxation times
are expected to make the second-order theory free from any
problems appearing from acausality and hydrodynamic
instability. However, such an important feature of the
second-order theory comes at a price. With respect to
the first-order theory, there are more parameters or trans-
port coefficients in the second-order theory.6 Although
Eqgs. (43)—(47) and Eqgs. (48)—(51) are all relaxation type
equations, there is a striking difference between these

®So far, we have discussed the evolution of various hydro-
dynamic variables apart from the spin chemical potential. Finally,
we make some comments on the dynamical evolution of the spin
chemical potential. In the Navier-Stokes limit, the evolution
equation of @ can be obtained using Eq. (8) and a specific form
of the spin equation of state. Note that in the Navier-Stokes limit g*
and " can be expressed in terms of @*¥ and gradients of other
hydrodynamic variables, i.e., temperature and fluid four-velocity
[Egs. (15) and (17)]. Also in this limit, one can ignore S?’l‘; .
However, for the second-order theory, ¢* and ¢** are dynamical
variables satistying their own evolution equation, Egs. (45) and (47),
respectively. Moreover, for the second-order theory, the dissipative

part of the spin tensor S?’f)” also needs to be included. Therefore,

in principle, one can express the evolution equation of @** using
Egs. (8), (45), (47), and (48)—(51). In order to get such an equation,
we must fix the spin equation of state. In the absence of
a microscopic theory, one cannot uniquely define the relation
between S$* and w". So far in the literature, different spin
equations of state have been considered, e.g., S*¥ ~ @** [23] and

S~ o [\ |0 g [73]. 1tis evident that these two different spin

equations of state, along with Egs. (8), (45), (47), and (48)—(51) will
eventually give rise to a different evolution of the spin chemical
potential. Since the form of the spin equation of state is itself an open
problem in this field (e.g., see Ref. [73] for some discussion), we
restrict ourselves from writing down any specific dynamical
equation for the spin chemical potential. Note that the dynamical
evolution of the spin chemical potential using these two spin
equations of states for first-order spin hydrodynamic equations
has been previously investigated for a boost-invariant system.
However, in the present article, we only focus on the theoretical
development, and phenomenological studies using different spin
equations of states will be addressed in forthcoming publications.

not contain terms of the order O(0). This is because the
dissipative parts of the spin tensor do not contribute to the
entropy current analysis at the Navier-Stokes limit where
all the dissipative currents are expressed as O(d) terms. To
check the consistency of the formalism, it is natural to look
for the Navier-Stokes limit of the second-order theory. This
can be achieved by ignoring all second-order terms in the
hydrodynamic gradient expansion in Eqs. (43)—(51). In this
limit, we retrieve back the constitutive relation of various
dissipative currents associated with the energy-momentum
tensor, e.g., from Eq. (43) we find, after ignoring all O(d?)
terms,

__ o,
=g PO =20 (52)

Similarly constitutive relations for #*, ¢#, #*¥, ¢** can be
obtained from Egs. (44), (45), (46), and (47) respectively.
These expressions will match Eqs. (14)—-(17). However
if we ignore all O(d%) terms in Egs. (48)~(51) then
we observe that ®=0+0(0%), ;) =0+0(),

r’(’Z) =0+ 0(0%), % =0+ O(0%). This immediately
implies that at the Navier-Stokes limit, gradient correction
terms to the spin tensor do not contribute to the entropy

production, and S‘(’f’)’“ can only be obtained for the second-

order theory.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we show a new derivation of the second-
order dissipative spin hydrodynamic equations. This
formulation is based on the positivity of the entropy
production for a dissipative system. We consider an
energy-momentum tensor which is asymmetric and the
spin tensor has a simple phenomenological form where it is
only antisymmetric in the last two indices. One can retrieve
the correct Navier-Stokes limit as well as global equilib-
rium conditions. Our calculations can be used to study
macroscopic spin evolution and possibly it will help us to
solve the puzzle related to the longitudinal polarization of
Lambda particles in a dynamical way. But this requires a
proper numerical implementation of spin hydrodynamic
equations along with appropriate initial conditions and
hadronic freeze-out. One immediate future task would be to
study the stability and causality analysis to pin down the
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region of applicability of this theory. Some of us in
Ref. [71] argued that even in the fluid rest frame, first-
order spin hydrodynamic frameworks can exhibit instabil-
ities (in the linear regime). Interestingly, the stability in spin
hydrodynamics crucially depends on the spin equation of
state. Moreover, from our prior knowledge of relativistic
hydrodynamics, instability may also emerge due to aca-
suality [72,103]. Therefore, we expect that in spin hydro-
dynamics, not only the structure of the dynamical equations
but also the spin equation of state can affect the causal and
stable behavior of hydrodynamic perturbations around
global equilibrium. Although the second-order theory is
expected to give rise to hyperbolic equations, it is not
certain how these theories will eliminate any instability
appearing due to the spin equation of state. The spin
equation of state is not presently constrained by any
observable; therefore, there could be many different pos-
sibilities. It may further turn out that only some specific
spin equations of state along with the second-order equa-
tions give rise to a causal and stable theory. Such possibil-
ities need to be extensively explored, and any comment on
the causal structure of second-order spin hydrodynamics at
this point will be rather inconclusive.

Although we have obtained relaxation timelike hydro-
dynamic equations, we still lack a proper understanding of
the microscopic theory. This is manifested in large numbers
of unknown transport coefficients and relaxation times.
Note that a dissipative hydrodynamic theory captures the
long-wavelength and long-time behavior of a system close
to equilibrium. On the other hand, transport coefficients
encode microscopic physics at a length scale smaller than
the scale where hydrodynamic variables/quantities are
defined. The estimation of various relaxation times and
transport coefficients is very important for phenomeno-
logical applications. Only a microscopic theory approach
to spin hydrodynamics where one obtains a spin-
hydrodynamic equation using a kinetic theory description
can bridge this problem. Finding an equivalent kinetic
theory approach without further assumptions will be a good
direction to explore as a future task.
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APPENDIX A: CONSTRAINT ON THE

FORM OF 0o*
Contracting the second-order entropy current (18) with
the fluid four-velocity, and using the fact that uﬂS’(‘f')ﬁ =0,
we get

”MSIIJS = ”ﬂslltls + MHQ”' (Al)

Substituting the form of syq (12) in the above equation,
we have

u,sis = uy[s* + BT + O(%)] + u, 0",

= u,s" +u, 0" (A2)
Utilizing the perfect-fluid energy-momentum tensor (5),
and replacing the form of the entropy current s* (11)
we find

”ﬂs’IlS = uu(ﬁva([(l)/) +ﬂﬂp _ﬂ”waﬂsaﬁ) + u/,tQ”?
= uﬂ[ﬁv(‘g + p)uﬂuy _ﬂypglw +ﬂﬂp _ﬂﬂwaﬂsaﬁ]
+u, 0%,

=pl(e+p)— a)aﬂSaﬁ] +u, 0". (A3)

Finally, using the generalized first law of thermodynamics
(9), we obtain

u,stg = s + u, O". (A4)
Employing the fact that entropy is maximum in equilib-
rium, we obtain the constraint on Q¥, i.e.,

u, 0" < 0. (A5)

APPENDIX B: DECOMPOSITION OF AN
ARBITRARY 3-RANK TENSOR
ANTISYMMETRIC IN LAST TWO INDICES

Let us consider an arbitrary three-rank tensor ¢@**
antisymmetric in the last two indices. Employing the
decomposition of its first index into the parts transverse
and parallel to four-velocity, one has

P = Galp™ = (g + A )
— Mﬂ}/ﬂy + Aﬁa(ﬁa/w

= w4 i, (BI)

Here we define the antisymmetric tensor as y** = u,¢p™".
This immediately implies that F* = u,y*" satisfies
F-u =0. In the next step, we proceed with the decom-
position of y*¥
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g gﬂpyp” = (M”Mp + Aﬂp)ypv = uﬂFV + y<ﬂ>v
= W'FY + gl/py<ﬂ>ﬂ = utF" + (u”up + A”p)VW’)

= uhFv + u”up}/<”>p + }/<”><”>. (B2)

It can be easily shown that u”upy<">p =
7" has the form

—u”F*. Therefore,

},;w = UHFY — u'FH 4+ y<ﬂ><’/> (B3)
Now, let us consider the last term in Eq. (B1),
¢<ﬁ>/w = gupqs(lnw = (uﬂup 4 Aﬂp)¢<l>p
E— uﬂ(p(l)ﬂv + oA (B4)
Defining u,¢”* = —£* implies u;=* = 0. Therefore,
P = pA Wy _ i
= gzqf,(i)(ﬂ)a — yHTA
= ¢ V) + utu ¢ — utxw
= W) Ly s, (B5)

Using Egs. (B2) and (BS) in Eq. (B1) we obtain,

P =ur (U F¥ —uV F* + 7,</4><v>) P Yy Y e ¢<ﬁ> (u){v)
(B6)
Here we can introduce S* = utF" — u’F* + y<”><”>.

Noticing that $* is an antisymmetric tensor that can also
|

SIIJS = ﬂuT/w + pﬂ” - ﬁwaﬂsﬂaﬂ + Q”
= 0,815 = T"0,p, + p,0,T" + 9,(pp")
= 0,(PB") + Tl 0B, — S(0) 0, (Pwy) +

To obtain the last line of the above equation we used the
hydrodynamic equations (1) and (2). Moreover, using
thermodynamic relations it can be easily shown that

aﬂ(pﬂ”) + Tl(l(l)/)auﬂu - Sl(l((;)ﬁaﬂ (ﬁwa/)’) = 0’ (CZ)

which, when used in Eq. (C1), leads to Eq. (21), i.e.,

aMs/IlS (0.8, + 2ﬂwﬂb) W 1a) + TW ﬂﬂy

— 81770, (Bwas) + 9,0". (C3)

- Sﬂaﬂa (ﬂa)(lﬂ)
( yﬂv + zﬁwﬂu)Tﬂy ) + le yﬂv Sﬂa

be decomposed as S* = utk” — u'r* + e u, w4, with u -
k=0 and u-w =0, we identify F¥ =« and y"® =
e"”“/’uaa)ﬂ [104]. Since X/ is asymmetric (not antisym-
metric) and orthogonal to #* it can also be decomposed into
symmetric (2’(‘;’)) and antisymmetric (Z’(‘Z)) parts. The
symmetric part can be further decomposed into a trace
(X) and a traceless part )
following expression:

). Finally, we obtain the

¢ﬂ;w — u/ISm/ +
+ (“”Eéi? _ uﬂz(’?;’)) + (u”ZAZ) _ uﬂzf(lz)) + D)

(s (
(B7)

(u* A —yt AM)E

One may check that the number of degrees of freedom
(DOF) matches for the quantities on both sides of the above
equation. The tensor ¢** has in total 24 DOF. At the same
time, S has 6 DOF, and X is a scalar, hence it has only one
DOF. ZE’; )” ) is symmetric, traceless, and orthogonal to the
fluid flow vector, hence it has 5 DOF, while Z?‘Z) is
antisymmetric and transverse to the fluid flow, hence it
has 3 DOF. Finally, ¢ ®®) is antisymmetric in the last

two indices and orthogonal to flow vector in all indices,
hence it has only 9 DOF.

APPENDIX C: DERIVATION OF EQ. (21)

We start with the entropy current given in Eq. (18),

- ﬁw(z}a Sﬂ(lﬁ + a Qﬂ
/

0u(Pwag) +9,0".  (CI)

APPENDIX D: DERIVATION OF EQ. (22)
We start with Eq. (21),
aMSIIIS ( /tﬂl/ + Zﬂw;w)T,w ) + Tﬂlvs yﬂu
— 810, (Bwy) + 9, 0"
=2pw,, T”” )+ T”” 0By + T’“’ 10uBy
- S’(;’)ﬁaﬂ (ﬁa)aﬂ) +0,0". (D1)

Using the explicit form of T’(‘fs> and T’(‘fa) it has been

already shown in Ref. [20] the first three terms in the above
equation can be expressed as
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2pw,, T’w )+ T’“’ ﬂﬁv + T’“’ ﬂﬂy = —ph*(pV,T — Du,) + pr**c,, + p110 — pg* (VT + Du,, — 4w,,u")
+ P (L, + ZﬁA"”Aﬂvwaﬂ). (D2)
Here we defined Q,, = A"”A/}y()[aﬂﬁ] = ﬂV[ﬂ u,). The tensor 6, = V(ﬂ Uy — %G’AW is traceless, i.e. o, = 0, and orthogonal
to the fluid four velocity, i.e. 0*u, = 0 = ¢*“u,. Now let us consider the fourth term in Eq. (D1),
a a a a P a
85400, (Pwog) = —(2u AD + 207D + 20l 1 ©@%F)0, (fwr,y)
= —2u[’1A”/’]<DVﬂ (ﬂw(zﬂ) - ZM[{IT;(lf)] v,u (ﬂa)(lﬁ) - 2u[ar€lf; vﬂ (ﬁw(lﬂ) - @M(l/jvﬂ (ﬁwaﬂ)
a a p a 4 Q
= —2Pu vﬂ(ﬂwaﬁ) —2u T?{)vﬂ(ﬂwaﬂ) —2u T!{L{)vﬂ(ﬂwaﬂ) -0 ﬂVﬂ(ﬂwaﬂ)

2
= —2®uavﬂ(ﬂa)aﬁ) — Tup(s)lt <ArﬂApﬂ + ATBAHP — gAJ’ﬂAllﬂ> y(ﬂwap)

= Tup(a)lt u (AT APP — AR APV ,(Pwg,) — O A“‘sAﬂF’AWV},(ﬂwép). (D3)

nop

Using Egs. (D2) and (D3) in Eq. (D1) we find
aﬂs’;S = —ph*(pV,T — Du,) + pr*c,, + p110 — pg* (VT + Du, — 4w, u”) + ¢ (Q,, + ZﬂA“ﬂAﬂDa)aﬁ)
2
— ZQ)u“Vﬂ(ﬂwaﬂ) — Ty U” <N"N’ﬂ + ATBARP — 3 NpAuﬁ) vywwap)

— T, a(NuAﬂp — AW APV y(ﬁwap) -0

g AN NI (Barg,) + 0, 0. (D4)

APPENDIX E: EXPLICIT EXPRESSIONS FOR D, A*, B, C*, &*, F, G*, H", AND T

The first step in deriving the following scalars, vectors, and tensors starts by taking the partial derivative of Q¥ in Eq. (20).
Note that the partial derivative of the parameters a;, a;, b;, b., and ¢, is not zero. The next step is to collect all terms having
common dissipative current. In such a process, one can encounter terms of two different dissipative currents, for example,
7,,h*VFb,. For that, we have introduced the constants / and 1 such that

ﬂ”yl’lyv’llb = lh,[n',wh”V"lb + (1 - lhﬂ)ﬂ”yhyvﬂbz. (El)
Following the above procedure we obtain

D = Cl]H9 + HDCI] + 2Cl]DH + (1 - l]‘[h)]’lﬂvﬂbl - b (1 _7Hh)h”Du + b V h# + lnqqﬂvﬂb4
— Ingbaq"Duy, + bV, q" + lon®™ A,V ¢35 — loric3 A, 0% Du,, + c30,5V, 0% (E2)

AM = a3h"9 + h”Da3 + 2Cl3DhM + lm,HV”bl + blV”H — bIZHhHDM” + lﬂhﬂlﬂvlbz + bzvlﬂ"lﬂ
- b;l;rhﬂjbﬂDl/t;L + l¢hg{)1"vlb3 + b3v;b¢'1ﬂ - b;7¢h¢’1”Du,1 + lq)h(DV”Bl + B Vﬂq) - Z] Zq)hq)Dl/t”
+ ZTShT/(lf)vllgz + Ezv/ﬂ'( - bzlr hT( )DM}L + l‘r hT Vib3 + b3v/17,' - b3lT hT( )Dul (E3)

B = a4q"0 + ¢"Day + 2a,Dg" + (1 = Iy, )TIV#by + by VFIT — by(1 — 7Hq)HDu” + (1 = Lyy) 7%V ;b5
+ bsvlﬂ'ﬂ” - bs(l - 7,,q)ﬂ’1”Du,1 + l¢q¢’1”v,1b6 + b6v1¢'1ﬂ - b67¢q¢’“‘Du,1 + lq,q(DV”iu + E4V”¢)

- Z]47q)qq)DM” + lquT?f)vll;s + Z)SVAT% - ESZTSqT?t{)Dul + lTaqT?Z)vAlsﬁ + Bﬁv/ﬂ:ﬁ:) - ZJG?THQT?Z)D’/M’ (E4)

C" = a0 + 7 Day + 2a, D" + (1 = 1,)h*NWby — by (1 = 1, )k Dut) + b,V *#h)
+ 1,yq"VPbs — 1,,b5q"Dut) + b5V ") + 1,00V c; — Ig,c, 0¥ Du, + ¢,V 00, (E5)
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EM = asOp" + ¢**Das + 2asD* + (1 — 1y, )WV by — by(1 = 14,)h D) + b3 ViknY)
+ (1 - l(/,q)q[”vﬂ}l% - b6(1 - 7¢q)q[1/DuM] + b6v[f‘q"] + l@(/)®’1””v,1c1 - Z@¢C1®&MDDM;L
+ C3Vﬁ®lﬂy + k@4,®[f‘”]’1v,1c7 - ]‘;@)(/,Cﬁ(‘DWVMDM;L + C7V,1®WM. (E6)

F = a,0® + ®Da, + 2a,D® + (1 — lg,)W*V by — (1 = Igy)by i Duy, + bV, 1 + (1 — lo,) "V, by

— (1 =lgy)bsg" Du, + b4V ,q" + loo®* A,V c5 — loncs A, 0% Du, + c5A,;V,07. (E7)

au ap

g’“’ = 51261’(':) + r‘(':)Dle + 2212DT’(J:I) + (1 - l.[l‘h)h(vvﬂ)i?z - l~72(1 - Z,L.Xh)h(DDMM) + Z)zv(ﬂhv)
+ (1 - lfyq)q(yvﬂ)és - (1 - ‘Z,[xq)l~75q(DDM”) + B5V<”q”) + l@TSG(/vaAC(, - Z@TSC6®('“DMDM,1 + C6V,1®(””M. (Eg)

M = 301, + 7y Day + 24Dty + (1= L )W VM by — bs(1 =1, )W Dur! + b3 VA
+ (1 =1, ,)q" Vb — bs(1 — 1, ,)g"Du? + bsVIig + lg, @4V c; — I, c,0#Du,
+ 6, V,0% + kg, OFIV, 4 — kg, cg@F P Duy + ¢ V011, (E9)
I = @,00™ + @™ Day + 2a,DO + (1 — lgy) Ve, — (1 = loy)c1" Du® + ¢, Vo
+ (1= log, )7s) Vs = (1 = lo, eyt Du® + ¢, Vor(l + (1 = lon)TIA“H V¢
— (1 = Ton) s TTA¥ DY 4 3 AWVATT + (1 = I )PAWVH e — (1 = Tgg ) cs DAY D]
+ csAUVID + (1 = I, )7 W Ve, — (1 = Tg, ) can®™Du? + ¢, Va®! + (1 - l@,“)rzp)‘vy] Co

— (1 — 7@TS)C6T(IWDMD] + C6V[DT((T)] + (1 - k@(f,)(ﬁ“[f‘vl’]ﬁ — (1 — I}@¢)C7¢a[ﬂDHU] + C7V[D¢aﬂ]

()

(a

+ (1 = kor, )T Vs — (1 = ey, szl Du) + ¢ VEr(t).
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