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Within the framework of nonrelativistic QCD (NRQCD) factorization formalism, we compute QCD
next-to-next-to-leading order (NNLO) corrections to the helicity amplitudes as well as the decay width
of Z — H +y, where H can be 7,(Q = c¢,b),J/y, or T. In addition, we resum the next-to-leading
logarithms (NLL) of m2/ sz to all orders of ay for the leading-twist helicity amplitude by employing
the light-cone factorization approach. It is worth mentioning that we obtain the analytic expressions of
the truncated NLL at a2. We find that the O(a;) corrections are around 10% for 57, and Y productions,
however insignificant for J/y and #, productions. The O(a?2) corrections are moderate for charmonium
production, while very small for bottomonium production. Moreover, it is found that the NLL
resummation can considerably alter the NRQCD prediction, especially for J/y production. Combining
the NRQCD and light-cone computation, we make phenomenological predictions on the decay widths
and branching fractions. In addition, we investigate the dependence of the theoretical results on the
heavy quark mass, and find the branching fraction of Z — H +y monotonically decreases as my

increases.
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I. INTRODUCTION

It is an ideal platform to study the interplay between
perturbative and nonperturbative QCD through the radia-
tive decay of the Z boson to a quarkonium. To date,
experimentalists have made many attempts to search for
such processes [1-3], yet have failed to find any signals.
In recent years, several high-luminosity lepton colliders,
such as ILC [4], FCC-ee [5], and CEPC [6], have been
proposed to run at the Z pole mass for a period of time. It
will undoubtedly provide an opportunity to accumulate a
large number of Z bosons, thus increasing the chances to
probe rare decay processes.

The exclusive processes Z — quarkonium + y have been
extensively studied on the theoretical side, with the earliest
computations dating back to the 1980s [7]. In Ref. [8],
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Luchinsky studied these processes at lowest order in «;
and v? in both the nonrelativistic QCD (NRQCD) [9] and
light-cone (LC) factorization formalisms [10,11], where v
represents the typical velocity of the heavy quark in
the quarkonium rest frame. In Ref. [12], Wang et al
obtained the analytic expressions of the amplitudes for
Z — quarkonium + y in the leading-power LC approxima-
tion at next-to-leading order (NLO) in a,. Furthermore,
Huang et al. presented calculations of the rates for
Z — V +y accurate up to the leading-power LC approxi-
mation at NLO both in o and » [13], where V denotes a
vector quarkonium. Shortly afterwards, the resummation of
the leading logarithms (LL) of m/m, for the decay width
of Z — V 4y was carried out [14]. Bodwin et al. further
considered the resummation of logarithms of m%/ m2Q for

the O(a) corrections as well as the O(v?) corrections [15].
A combination of the next-to-leading logarithms (NLL)
resummation and NLO fixed-order results was carried out
for 7y + y production in Ref. [16]. The decay widths for
Z — Y (nS) +y have been calculated up to NLO in a;
based on the NRQCD, which are proposed to determine the
Zbb coupling [17]. Very recently, the decay widths of Z
boson radiative decays to a P-wave quarkonium have been
computed accurately up to next-to-next-to-leading order
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(NNLO) in a, based on the NRQCD and LL resummation
based on the LC approach [18]. Moreover, the cross
sections of eTe~ — quarkonium + y at Z factories have
been computed in Refs. [19-21]. It is worth mentioning
that some efforts toward the NNLO perturbative corrections
to ete” — quarkonium + y at B factories have been made
in Refs. [22-24] in recent years.

In this work, we investigate the radiative decay of the Z
boson to a quarkonium H (H can be 5y, J/y or T) by
including both the NNLO perturbative corrections and the
NLL resummation. We first compute the helicity ampli-
tudes at NNLO in a, and leading order (LO) in v within
the framework of NRQCD. To reduce the ambiguity in
choosing the energy scale and uncertainty from the higher-
order corrections arising from the large logarithms of
m3/mg, we employ the LC formalism [25] to refactorize
the NRQCD short-distance coefficients (SDCs) and utilize
the celebrated Efremov-Radyushkin-Brodsky-Lepage
(ERBL) equation [10,26] to resum the large logarithms
of m7/m7. Concretely, we will perform the NLL resum-
mation for the leading-twist helicity amplitudes, i.e.,
resuming both the & In"(m3/mg) and o' In" (m3/mg)
to all orders of a;.

The paper is organized as follows. In Sec. II, we present
the theoretical framework to compute the decay widths of
Z — H +y. In Sec. III, we employ the NRQCD formalism
to factorize the helicity amplitudes, introduce the procedure
and techniques to compute the SDCs, and present the
results of the helicity SDCs at various perturbative levels.
Section IV is devoted to the LC factorization for the
leading-twist helicity SDCs. In addition, resummation
of the NLL is formulated and explicitly carried out. The
analytic expressions of the truncated NLL at a? are also
obtained. A detailed phenomenological analysis is per-
formed in Sec. V. Finally, we summarize in Sec. VI. In
Appendix A, we construct the helicity projectors. In
Appendix B, the explicit expressions for the Brodsky-
Lepage (BL) kernels are given. In Appendix C, we present
some useful convolution formulas.

II. THEORETICAL FRAMEWORK
FOR DECAY WIDTH

Applying the helicity amplitude formalism to analyze the
hard exclusive production process proves to be convenient.
The unpolarized decay widths of Z - H +y can be
expressed in terms of helicity amplitudes

11 12P

e A, (1a)

N(Z=mng+7) = 32my 8z my

(Z - J/y(Y) +7y)
11 12

Iy J/p (T
32mZ 8 my (2|A i |2 + 2|A0,/1/( )|2), (lb)

where |P| denotes the magnitude of the H spatial
momentum:

where my refers to the mass of the quarkonium H, and the
Killen function is defined via A(x,y,z) = x*> + y* + 22—
2xy — 2xz — 2yz. Afl ,, represents the helicity amplitude of
Z — H(4;) +y(4,) with 4; and 4, being the helicities of
the H and outgoing photon respectively. To deduce (1), we
have applied the parity invariance [27] to relate different
helicity amplitude

Iy (T
A

(3)

A =AY, AU _p D),

J/w(T
1.1 Ao,llII( /=

Obviously, there are one independent helicity amplitude for
1o production, and two for J/y or T.

In the limit of mgy < my, the helicity amplitude A},
satisfies the asymptotic behavior

A?Mz o rlthal, (4)

where r = mg/my. In (4), one power of r originates from
the large momentum transfer which are required for the
heavy-quark pair to form the heavy quarkonium with small
relative momentum, and the other powers arise from the
helicity selection rule in perturbative QCD [28,29].

To obtain the decay width, it is crucial to work out each
helicity amplitude, which is the chief task of this work. Z
boson interacts with quark-antiquark pair through the tree-
level weak interaction as

QJ/”(

I'CZQQ = l QA}’S)QZ”, (5)

where ¢ is the weak coupling in SU(2), x U(1), electro-
weak gauge theory, gy = 1-8s%,/3 and g4 = 1 for the
up-type quark, and gy = —1 + 4s%,/3 and g, = —1 for the
down-type quark. Here we have defined sy = sin 6y, and
cw = cos Oy, where 0y, signifies the Weinberg angle.

The Z boson can decay to n, + y through the vectorial
interaction, while decay to J/y () + y through the axial-
vectorial interaction. For simplicity, it is convenient to
explicitly extract the electroweak coupling from the helicity
amplitudes:

1l 9ggveeg
A,lﬁ,lz =72 cw A/IIQ,/IZ’ (6a)
J/w (Y ggaee J/w (T
A,l/,yzlz( )= dc QAA/U/{Z( g (6b)
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III. NRQCD COMPUTATION

A. The NRQCD factorization

According to the NRQCD factorization formalism [9],
the helicity amplitude Aﬁf 4, can be factorized into

e Oln
2mHC/I A \/WzmQ (7)

The nonrelativistically normalized long-distance matrix
elements (LDME?s) are

(O)y = [(H|yx]0)], (8)

for 19, and

(O = [(H|yw" (6 - €4)x|0). ©)

for J /y or Y, where " and y denote the Pauli spinor fields
creating a heavy quark and antiquark in NRQCD respec-
tively, and ey represents the polarization vector of J/y
or Y. The dimensionless SDC Cf} ,» signifying the pertur-
bative contribution, can be evaluated either through the
standard matching procedure or the method of region [30].
In this work, we use the latter to compute these SDCs. The
asymptotic behavior of the helicity SDCs can be straight-
forwardly deduced from (4) and (7)

CH . o il (10)

142

by noting that (O), « sz/z.

It is convenient to expand the SDCs in powers of a;

H __ ~H0) A H,(l) 04
Cn=0C {1 +;Cﬂl,ﬂz ﬂ_<4 Czl 42 +7Hln

Q

+Creg/1 /12+Cnonregﬁ Ay :| —|—O((l%), (11)

<
-

where pp and p, indicate the renormalization scale and
factorization scale respectively, o = (11/3)Cy —(4/3)T pn;
is the one-loop coefficient of the QCD f function, where n s
is the number of active quark flavors. The explicit In u%
term is deduced from the renormalization-group invari-
ance. yy represents the anomalous dimension associated
with the NRQCD bilinear currents carrying the quantum
number 'S, or 3§, [31]:

c,C C2

v, = =7 (% + TF) g (12a)
c,C Cc2

]/3Sl = —77.'2 (% + ?F) . (12b)

The occurrence of InyZ is demanded by the NRQCD
factorization. Note that the yy Iny3 terms in (11) exactly
cancel the u, dependence of the NRQCD matrix element,
so that the helicity amplitudes/decay widths are indepen-
dent of u,. For convenience, we have classified the two-
loop Feynman diagrams into two groups, the “regular” and

the “nonregular.” Some representative Feynman diagrams

H.(2)

reg,A,4» and

are illustrated in Fig. 1. Correspondingly, C
H,(2)
nonreg, 1,4,

regular part and nonregular part, respectively.

in (11) represent the contributions from the

B. The SDCs through O(a?)

We briefly outline the calculation. We begin with the
quark-level process for Z — QQ + y. The package FeynArts
[32] is employed to generate the Feynman diagrams and the
corresponding Feynman amplitudes through order O(a?).
We utilize the spin projectors to enforce QQ in 'S, for Mo
and 3, for J /y or T, and employ the packages FeynCalc [33]
and FormLink [34] to obtain the hadron-level amplitudes
order by order in a,. The helicity amplitudes are evaluated
with the aid of the helicity projectors, which are constructed

in Appendix A.
‘V\'\N\.<' AW

(d) only for J/¥(Y)
NNLO(nonregular)

&

(c) only for ng

NNLO(regular)

FIG. 1.

Some representative Feynman diagrams for the process Z — H +y up to O(a?).
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It is well known that, in dimensional regularization, the
anticommutation relation {y#, 75} and the cyclicity of Dirac
trace cannot be satisfied simultaneously. In practical
computation, the naive-ys scheme [35], which keeps the
anticommutation relation {y#,ys}, is frequently applied. In
this scheme, spurious anomaly, which spoils chiral sym-
metry and hence gauge invariance, can be avoided. Because
of the lack of the cyclicity of the trace, one must fix a
reading point for a fermion loop with an odd number of ys.
In this work, we will select the vertex of the Z boson as the
reading point for the Feynman diagram in Fig. 1(d), and the
final state quarkonium as the reading point for the other
Feynman diagrams. For more details, we refer the readers
to Ref. [18].

At lowest order in v, we neglect the relative momentum
in QQ pair prior to carrying out the loop integration,
which amounts to directly extracting the SDCs from the
hard loop region [30]. With the aid of the packages
Apart [36] and FIRE [37], we can reduce the loop
integrals into linear combinations of master integrals
(MIs). Finally, we end up with 6 one-loop Mls, and
around 320 two-loop MIs, which are evaluated by the
powerful package AMFlow [38-42].

After implementing the on-shell renormalization scheme
for the heavy quark mass and field strength [43,44], and the
MS renormalization scheme for the QCD coupling, the UV
pole is exactly eliminated, while an uncanceled single IR
pole still remains, which can be factored into the NRQCD
LDME, so that the SDC becomes IR finite.

It is straightforward to obtain the LO helicity SDCs:

The analytic expressions of CZ’&? can also be readily
obtained. Instead of presenting the cumbersome expressions,

we list their asymptotic expansions in the limit of r — 0:

1 2 . In?2
C5" =522 =3)In(= +ie) = 5 =3+ +1n2,
(14a)

2

ey ~3In(=r +ie) =3 -2In2. (14b)

2 2
Ty 1 P s 2 In2
cylytH )25(2ln2—3)ln( R
(14c)

where the real part of (14a) is consistent with that in
Refs. [12,45], and the expression of (14c¢) is consistent with
that in Ref. [12].

It becomes much more challenging to deduce the
analytical expressions for all the encountered two-loop
MlIs. In this work, we are content with high-precision
numerical results. To perform the numerical computation,
we take m; = 91.1876 GeV from the particle data group
(PDG) [46], and the charm quark and bottom quark pole
masses to be m,. = 1.69 GeV and m,;, = 4.80 GeV, which
are converted from the MS masses . (7.) = 1.28 GeV
and m,,(m;,) = 4.18 GeV [46] at two-loop level by use of
the package RunDec [47]. The numerical values of the
various helicity SDCs are tabulated in Table I. For
reference, we explicitly keep the n;, n., and n;, dependence
for the SDCs, where n; denotes the number of light quark

Cng-(O) —2v6 (13a) flavors, and n. = 1 and n,;, = 1 signify the numbers of the
0.1 ' charm and bottom quarks respectively. The dependence of
the theoretical results on the heavy quark mass will be
J/'l/ _ .I/y/
Cy. = 4V6r =-2v6. (13b) investigated in Sec. V.
TABLE I. NRQCD predictions to the various helicity SDCs. For simplicity, we define the symbols f; = Cfé = z:giz N qV qV =
9y

63__182 SSJV, fi= qV = - 2 i“;;”, and f, = 244 qdzl"/ = li igfa’, where g% and ¢¢, correspond to the values of gy for up-type quark and down type
- v
quark, respectlvely.
1 2) 2)
H (}'1 s }'2) Cﬁ, .>/12 Cieg A1,do Cl(mnreg Ao
ne (0,1) 1.035-1.679i —60.56 + 27.66i — (0.88 + 0.74i)n;  —(2.52 —4.28i)n. + (0.70 — 1.26i) fn, —(5.06 — 0.99:)f,
+(0.02 = 0.75i)n, — (0.05 + 0.77i)n,
J/w (1, 1) 0929-2.088; —59.12+40.50i — (0.36 + 1.12i)n; 1.51 + 1.49:
+(0.17 — 1.12i)n. — (0.07 + 1.15i)n,
0,1) 0.122-1.684i  —=50.17 + 28.13i — (0.54 + 0.74i)n, 1.42 + 1.56i

—(0.06 + 0.75i)n, —

n, (0,1) —=0.127-1.628; —46.21 + 13.95i —

(0.40 4 0.77i)n,,
(1.17 4+ 0.130)n,,

(7.07 = 2.89i)f n. — (0.74 — 4.07i)n, —(3.37 — 0.87i) f>

+(0.72 = 0.14i)n, — (0.25 + 0.16i)n,,

T (1,1) —-0454-2.065i —37.76+22.93i—

(0.87 + 0.37i)n;,

—1.47 - 1.50i

+(0.81 = 0.38i)n, — (0.30 + 0.40i)n,,

0, 1) -0.985-1.665i —35.71 + 15.10i —

(0.85 4 0.14i)n;,

—1.43 — 1.56i

+(0.83 = 0.15i)n, — (0.33 + 0.17i)n,
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IV. LC FACTORIZATION FOR THE where the hard-kernel Ty and the leading-twist LC dis-
LEADING-TWIST SDCS tribution amplitude (LCDA) qAﬁH are perturbatively calcu-
A. The LC factorization lable around the scale m; and mg, respectively. Up to

O(ay), have th i
Besides the NRQCD factorization formalism, we can (a,), we have the expansions

also employ the LC factorization framework to calculate
the decay amplitude for Z — H + y at the leading twist. By
following the spirit of Ref. [25], the LC factorization
formula for the SDC is written as

ag(p)
47

T4 (x,mz. 1), (16a)

H — 1.0) -1 R . () »
Cor=Cor ¢H(x,mQ,,u)=¢g))(x)—|— 4(7[)¢2)(x,mg,y). (16b)
1 A
:Cgi(O)A deH(x,mZ,y)(j)H(x,mQ,/t)+(9(m2Q/m%),

(15)
|

The explicit hard-kernels and LCDAs up to O(ay) are
given in [12] as!

T (x) = —, (17a)
(1) Cr < < my 2% 1 22 1n ¥
Tp (x,mz,ﬂ):m [3+2xInX + 2xInx] lnﬂ—z—m + xIn“X + XIn“x + (8A — 1)[xInX + xInx] =95, (17b)

Py (x) = 6(x - 1/2), (17¢)

by (x.mg.p) = CrO(1 — 2x){ [(4x +1§—x2x> (lanQ(lﬂiin)z - 1)]+ + [(11_67);;)2} . + A[16X]+}

+ (x < %)+ Cp(4A - 6)5(x — 1/2) (17d)
for H = ny,
T (comyp) = (18
VoA Te 4xx’
(1) Cr P my - -
Ty (x,mz, p) = [3+42xInx +2xInx]( In— — iz | + xIn?X + XIn’x — [XInX + xInx] -9 5, (18b)
XX U
P (x) = 6(x = 1/2), (18¢)
2 —_
A — Cr0(1 -2 PR a ~1 RLUC NN
¢V ()C,mQ,,M) F ( )C) x+1_2x nm2Q(1—2x)2 ++ (1—2)6)2 . [ x]+
+(x < ¥) = 8Cpd(x — 1/2), (18d)

for H=J/y and Y. Here x = | — x and A = 0O for the NDR scheme and A = 1 for the HV scheme. Note that the terms
proportional to §(x — 1/2) in J)g) actually contribute to the one-loop corrections to decay constants fp .

'For convenience, we normalize K¥ equal to 1 at tree-level. Here we adjust the normalizations for hard kernels and LCDAs given
in [12] correspondingly.
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B. The NLL resummation with the ERBL equation

The leading twist LCDAs of quarkonia obey the cel-
ebrated ERBL equation [26,48]

d 1 R
ﬂzaﬁb n(x.mg.p) = /) dyVy(x,y;a,(u)pu (v, mo, ),

(19)
with the BL kernel expanded in «
Vi (x,ysas(p))
= By y) + ( jf:)) V) + o (20)

The BL kernel at the lowest order of a, given in [26,48] for
a pseudoscalar meson is the same as that for a longitudi-
nally polarized vector meson

=V (xy). (21)
|

Vi (x,y)

(1) Viu(a, a(p)
UH(/"P‘O)_1+/ day H(a‘)+/

A (ﬂO)

a(po) Blay)

while their BL kernels at O(«
from each other by [54]

2) given in [49-53] differ

1 1 ”
Ve (xy) = Vi (e y) = A(8CH(ry)],). (22)
where A = 0 for the NDR scheme and A = 1 for the HV
scheme. The explicit expressions of these BL kernels are
summarized in Appendix B.

The formal solution can be

éH(xva’/‘) = [Un(p, o) * 4311]()‘» mQ,,uo), (23)

where the evolution kernel is

ay(u) Vv
Uy (p, po) =Pexp {/( ”) da ﬂh(’fxa;)}, (24)
a, (o s

with P standing for the ordering on a, which can be
expanded in form of the Dyson series

V ) ag
day, H(asl)*/ !
a,

Blan) S “ Blag) T 25)

and the “x” denotes the appropriate convolution over the light-fractions. Therefore, we have the renormalization
group improved SDCs for Z — o +y and Z — J/yw(Y) +y at the leading power of expansion in NRQCD

factorization as

1 .
K = A dxTy(x,mz,mz)Up(mz, mg)pu(x,mg, mg) + O(sz/m%) (26)

1. The truncated NLL resumed SDCs

The explicit truncation of the perturbative expansion of Uy up to O(a?) is

Up (o) w1+ 2227

4z /,50 4z

2 1 2
(), 1w SV (M> <21 2’; V9V 4 g VH)+ln%Vg)>. (27)
0

0

Here we have used the RG evolution of the strong coupling «,(u) at the NLL level

(1) = a (o) [1 + 2

and its perturbative expansion

ag(u) = ag(po) {1 ko) (ﬁo hl/;) ’ (

4 5

%)y —+ A (“’iﬁ“) In ﬂ—j_l, (28)
afiﬂ )> (ﬂoln — B 1n z> +O(a )} (29)

014021-6
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With the useful convolutions listed in Appendix C, we

explicitly
m2
Cr [(3 —-21n2) (1n22 - m)

=1 + -
Qo
as(mZ)

2
-+ < dn > CF{ |:CF<1I'122 81112—?-‘[-

+ [er(5e0

3
—C, =
(5

for H = ng, and

ay(my)

JCPNLL _
47

4 5
—§1n32 —|—§ﬂ2 In2 + 6In?2 +

(

/CV NLL __

= KCPNLL 4 EL”Z) Cpl~41n2] + (

for H = J/¥(T). Note that the ys-scheme dependences of
the hard-kernel Tp and LCDA qAﬁp cancel with each other
eventually in the above expansion of KN as it should.

2. The NLL resummation to all orders with the
Gegenbauer polynomial expansion

The resummation of the LL to all orders of «, are
commonly done with the assists of the Gegenbauer poly-
nomials by noticing such polynomials are the eigenfuctions
of the BL kernel at the lowest order of a,. The NLL
resummation to all orders of @, can be also done in a similar
way by considering the nondiagonal part in VS)(x, y).

The Gegenbauer expansion of the LCDA at twist-2 is

—x)c¥Px-1), (32)

with C5/? (x) being the order 3/2 Gegenbauer polyno-
mials, and the Gegenbauer moments

Brrnl) = 4(2n+3) /l dxC£l3/2)(2x_ 1)&H(xva,/4)-

(n+1)(n+2) Jo
(33)

qAﬁH‘n (1) can have the similar perturbative expansion in a;

around the scale m as b (x, Mo, ).
Solving the ERBL equation in the Gegenbauer moments
space, we have formally

n) = Z UZk(/"v/"O)ng,k(/"O)’

k=0

(34)

+1n22+31n2—7;—9]

4 2 1

T

Ay mZ) 2
4

have the truncation of the NLL resumed SDCs up to O(a?)

2

2
mz

2
mo

2) 4o 23— 21n2)]1n2

5, 51 [, 2 9
2111‘12—5” —7—21ﬂ(1n2—81n2—g+§))
2 2
g@}+m, (30)
Mo

n "2 {C2 [4In22 — 41n2] —
Q

4CepyIn2} +---,  (31)

in which the matrix-elements of the NLL evolution
kernel in the Gegenbauer moments space Uf , are given
in Ref. [55].

Similarly, we have the Gegenbauer expansion for the
hard-kernels

2 4 2n + 3)
(. my. Z ( e T L) CP 2x - 1),
(35)
with
! (3/2)
TH,n(:u) = d.X'X(l _x)c”l (2)( - ])TH('X’ mZuu)'
0
(36)

Ty, (u) can have the similar perturbative expansion in a;
around the scale my as Ty (x,my, u).
Hence, we can get

= > Tualm)U (mz, mg)py (mg).  (37)
n=0 k=0

Specifically, we have

KH — jcH©0.0) 4 % a;(mz )ICHIO as(m )ICHOI (38)
4n 4r '
where

=> > Ty () U (o) §) (o). (39)

n=0 k=0
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TABLE II. Squared leading-twist SDCs |C§{ 1 | at various levels of accuracy. We take pp = m, and u, = 1 GeV.

H LO LO+LL LO+NLL NLO NLO+LL NLO+NLL NNLO NNLO+LL NNLO+NLL
Ne 24.0 35.0 23.1 26.0 28.3 23.1 22.8 23.9 19.9
Jly 240 35.0 19.0 243 26.6 19.0 22.0 23.0 17.6
ny 24.0 314 22.6 239 25.0 225 234 23.9 222
T 24.0 314 19.8 223 235 19.8 21.7 222 19.9

It is worth mentioning that ¥ is indeed independent of
the ys-scheme used in calculations of the hard-kernel 7'p

and LCDA 43;) as well as prl), as the authors of Ref. [16]
indicated.

C. The SDCs by combining the NRQCD prediction
and the L.C resummation

We proceed to compute the leading-twist SDCs by
combining the NRQCD prediction and the LC resumma-
tion. To avoid double counting, one should subtract a In" r
terms from the NRQCD prediction for the LL resumma-
tion, and subtract both the o’ In" r and &’*! In” r terms for
the NLL resummation.

It is convenient to introduce the following symbols

ciit = ¢! O 0, (40a)
CHNLL = e O, (40b)
clhitt=cy OcHLL, (40c)
CHNLL = ¢l O N (40d)

where KANLL can be found in (30) and (31), and KCH-LL
signify the sum of a”In" r terms in KHNLL. Thus, we
formally have

HLO+(N)LL _ »HLO »H.(N)LL
Co.} =Coi —Coy

H,(N)LL
LG (41a)

HNLO-(N)LL »H,(N)LL
C +(N) :Cgl,lNLO _CO,I( )

0,1 (41b)

H.(N)LL
al + CO,I £

H NNLO-+(N)LL i ~H (N)LL H.(N)LL
Co,1 N :Cg.iNNLO_COJ( ) ’az JFCo,l( ) , (41c¢)

where the superscripts “LO,” “NLO,” and “NNLO” indi-
cate the NRQCD SDCs accurate up to O(a?), O(al), and

O(a?) respectively, and (Njg’ ~1<N)LL
éOHi(N)LL up to O(a?).

« indicates the truncated

With m, = 1.69 GeV and m;, = 4.8 GeV, we enumerate
the squared SDCs at various levels of accuracy in Table II.
Note that the strong coupling constant a,(m,) is evaluated
through the running formula (28). To accelerate the con-
vergence, we employ the Abel-Padé approach [56] to sum
the series in (39).

From Table II, we find that the LL resummation can
significantly improve the LO NRQCD prediction, however
only slightly alter the higher order predictions. It can be
explained by that some dominant o In" r contributions
have already been included in the higher order NRQCD
SDCs, i.e., the O(a; In r) contribution has been included in
the O(a,) NRQCD SDC, and the O(a? In? ) contribution
have been included in the O(a?) NRQCD SDC.

To be contrary, the effect of the NLL resummation does
not become weaker as the perturbative order increases, e.g.,
the difference between NNLO + NLL and NNLO is as
large as that between NLO + NLL and NLO. Furthermore,
unlike the case for LL resummation, we find the difference
between the NLL resummation K7 and its truncated
expansion KN actually does not decrease from one-
loop to two-loop accuracy. The crucial reason is that we
evaluate the value of a;(my) in (38) by the running
formula (28), while obtain its truncated expression
ICHNLL by employing (29). The values of ag(mg) are
quite different when using (28) and (29), for example
a,(m,.) = 0.297 by (28) and a,(m,) = 0.228 by (29).”

Since contribution from the NLL resummation is con-
siderable even at two-loop order, particularly for J/w
production, the NLL resummation is important to improve
the theoretical predictions.

V. PHENOMENOLOGY

In phenomenological analysis, we take s%, = 0.231,
m, = 91.1876 GeV, the total decay width of the Z boson
I'; =2.4952 GeV [46], and fix the running QED coupling
a(my) = 1/128.943 [57]. The default value of u is chosen

g = mz/+/2 and we have varied pg from my/2 to my to

*By taking m, = 1.69 GeV, m; =91.1876 GeV, and a,(m) =
0.1181, we obtain the values of K//¥(©.0) x//v(1.0) ang k//v(0.1)
to be 1.217, —10.555 —4.227i and —9.673, respectively. As a
comparison, if expanding K’//¥ in powers of a;, and truncating
11w 00) to O(a?), KW (1L0) and KC//¥(0) to O(a), we obtain the
values of the three quantities to be 1.203, —10.658 — 4.909i, and
—8.657 respectively.
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estimate the theoretical uncertainties in computing the
NNLO perturbative corrections. In addition, we approxi-
mate the NRQCD LDMEs at u, =1 GeV by the
Schrodinger radial wave function at the origin

N, N,
(O),. P = (O),, I = P IRi5,.2(0)]* = EPR 0.81 GeV?,
(42a)
N, N,
(O (O A Ry O = A x 6.477 Geve,

(42b)

where the radial wave functions at the origin are evaluated
from Buchmiiller-Tye (BT) potential model [58].

By taking the heavy quark pole masses m, = 1.69 GeV
and m;, = 4.80 GeV, we tabulate the unpolarized decay
widths and branching fractions for Z — H + y at various
levels of accuracy in Table III. Since the axial-vectorial
interaction of Zcc¢ is roughly three times larger than
the vectorial interaction, the branching fraction for Z —
J/w +y is much larger than that for Z - 5. +y. In
addition, the O(a,) corrections are negligible for J/y
and 7, production, while can reach 10% for the other two
channels. The O(a?) corrections are moderate for the
charmonium production, however are small for the botto-
monium production. Moreover, we find the NLL

TABLE III.

resummation can considerably alter the NRQCD predic-
tions, particularly for Z — J/y + y. It is worth noting that
the uncertainty from the renormalization scale up is
inconsiderable. To be honest, we must emphasize that
different choice of the values of the LDMEs [58-63] may
largely affect the theoretical predictions.

It is intriguing to compare our theoretical prediction on
the branching fraction with that from the LC models in
literature. In Table III, we list the LC predictions from
Refs. [8] and [14] in the fifth column and sixth column
respectively. In Ref. [8], the authors take the same LCDA
for . and J/y, which was obtained at 4 = m,. in Ref. [64]
inspired by the QCD sum rule. In Ref. [14], the authors
assumed the LCDA for J/y and T at 4 = 1 GeV to be of
Gaussian form. Different LCDA corresponds to the differ-
ent internal quark motion assumption. In spite of having
very different nonperturbative inputs, we find our NNLO +
NLL prediction for 7. production is consistent with the
result from Ref. [8], and our prediction for T production
roughly agrees with the result from Ref. [14]. On the other
hand, our prediction for J/y production is a bit smaller
than the values from both references. The distinct LCDA
input and the considerable NLL resummation effect mainly
account for the difference. There is no doubt that the
ambiguity in choosing LCDA can cause large uncertainties.

We proceed to investigate the dependence of the theo-
retical results on the heavy quark mass. In Fig. 2, we plot
the branching fraction for Z — H + y as a function of m

Unpolarized decay widths and branching fractions for Z — H + y at various levels of accuracy. For

comparison, the LC predictions from Refs. [8] and [14] are also listed in the fifth column and sixth column
respectively. The two uncertainties in the fifth column arise from uncertainties of the leptonic decay constant of
charmonium and the LCDA parameters, respectively. The three uncertainties in the sixth column originate from the
factorization scale dependence, the quarkonium decay constants, and the LCDA parameters, respectively.

Channel Order Lot (€V) Br(x107) Br(x107) [8] Br(x1077) [14]
Zon.+7 LO 29.1 1.7
NLO 31.7 12.7 )
, , 94+1+0.1
NNLO 273404 10,9702
NNLO + NLL 23.8+04 9.5103
NLO 200.6 80.4 +1.4+2.043.9
N 1788421 71.6:09 88 +9+09 80211 4+2043¢
NNLO + NLL 143.5+12 57.5%08
Z—=n,+y LO 65.9 264
NLO 65.5 26.3
NNLO 64.0102 25.6%01
NNLO + NLL 607192 24,370
NLO 129.2 51.8
NNLO 125.6104 50.3507 SO0
NNLO + NLL 115.4704 463703
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Br(Z->ne+y)(x107°)
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mp(GeV)

Br(Z-J/yw+y)(x107%)

Br(Z->Y+y)(x107°)

NNLO+NLL \

4.6 4.7 4.8 4.9
mp(GeV)

451

4.5

FIG. 2. Branching fraction for Z — H +y as a function of m,. The green band denotes the uncertainty from .

at various levels of accuracy. We find that the branching
fraction monotonically decreases as m increases.

Finally, we estimate signal events at the future super Z
factories, such as the Z-factory mode in CEPC, where the Z
boson yield can reach 7 x 10'" [6]. It is expected that
there will be around 5 x 10* J/y or T and 10* 5, events
produced through Z — H+y. The J/w or T can be
reconstructed through their leptonic decays, thus providing
several thousands of y£Z events. It is promising to search
these two channels. However, due to the lack of a clean
decay mode for 7y, the experimental measurement of
Z — ng +y would be quite challenging.

VI. SUMMARY

In summary, we have computed the O(a,) and O(a?)
corrections to the helicity amplitudes and decay widths
for Z— H +y by applying the NRQCD factorization
approach. It is found that the O(a,) corrections are
moderate for 7. and T productions, however tiny for
J/w and n,, productions. The O(a?) corrections are con-
siderable for charmonium production, while small for
bottomonium production. In addition, we find that the
branching fraction for J/y production is much larger than
that for 7. production.

The NLL of mj/mj in the leading-twist SDCs are
resummed to all orders of a, by employing the celebrated
ERBL equation. We find that the NLL resummation can
considerably alter the NRQCD prediction, particularly for
J /y production, so that the NLL resummation is important
to improve the theoretical prediction. We also find the
branch fraction for Z — H + y monotonically decreases as
m increases. In addition, we compare our predictions on
the branching fractions with these from the LC models in
literature. We find our prediction for 7, production is
consistent with Ref. [8], our prediction for T production
is slightly smaller than Ref. [14], and our prediction for
J/y is a bit smaller than Ref. [14].

It is expected that there will be around 5 x 10* J/yr or T
events produced through Z boson radiative decay at the
future super Z factories. Therefore it seems that the
observation prospects of Z — H +y are promising in
the future.
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APPENDIX A: CONSTRUCTION OF HELICITY
PROJECTORS

In this appendix, we present the various helicity projec-

tors Pﬁﬂz used to compute the helicity amplitudes in

Sec. III. The technique in the following is similar to that
in Refs. [65,66].

For convenience, we introduce two auxiliary longi-
tudinal vectors,

Q-pP

1
LY =— (P —=—0"|, Al
= (7% ) (A1)
1 P- Q My py(x
7 p—— pr - “). (Alb
v P <mzm1/.,/(r) my 0 (Alb)

where P and Q denote the momenta of the H meson and Z

We present all the 3 helicity projectors

(ng)nv _ HUpO P A2
PO,I 2mz|P| € Qp ) ( a)
(J/y(D))pva i H vapo
— LEerroQ P A2b
7)1,1 2mZ|P| 7€ Q/) o ( )
Ve _ L g4 vpo
Po.i = ZmZ|P|LJ/'/’(T>€ﬂ "”Q,P, (A2c¢)

If expressing the amplitudes of Z — H(4;) +y(4,) as

Alno) — (’lQ)eye*y
AW = AGY D ehemers o (A2d)
we can obtain the helicity amplitude through
Agv — P (no)uv A/w ),
A((){I/W(T» _ p((){l/w( ))MWAL{/{IW(T))’
A(I{I/W(T)) _ PE{{”"T”"”“AL%"’W. (A2e)

APPENDIX B: THE EXPLICIT EXPRESSIONS
FOR THE BL KERNELS

The BL kernels at the one- and two-loop level have been
given in [10,26] and [49-53], respectively. For the non-

boson, respectively. The longitudinal vectors satisfy  singlet evolution up to O(a?), we have the BL kernels
L50, = Lﬁ/w( Py =0. | explicitly [53]
Vi (ry) = Vi (ry) = 2Ck[o(x. )], (Bla)
Ve (x.y) = Vv (x.y) = BACHBo[v* (x.v)],. (B1b)
v B Po Cy
v (x,y) =4Cp|CpVp(x,y) —jv/i(x,y) — | Cr 5 Velxy)| . (Blc)
+
where
_ - 1
0(3) = S0y =) + 0= with Fxy) = (14 ), (B2)
and
Vielx,y) = 6( ){(4 2@(2)>f+3x <3f x) >~ (f=F)In>In (1 x) <f+ >ln x}
x.y)=0(y-x)q (7~ = |5f =5 )= (f=f)ln=In(1-= -
g 3 y 27 25) 7y y y y
X=X
—i_lnx(1+1nx—21n5c)+{ } (B3a)
2y y=y
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Vpe3) = ix) + 2 0(x3) + 0°(x.), (B3b)
Ve(xy) = 20%(x, ) + g v(x.y) +0(y —x)H(x,y) + 0(x — y)H(x. y), (B3c)

with £ = f(x,y), f = f(x,5) and

v(x,y) :9(y—x)fln§+9(x—y)]_‘ln§, (B4a)
v (x,y) :e(y—x)§+9(x—)’)§» (B4b)
H(x,y) = 2[f(Liy(¥) + InylnX) — fLiy(5)]. (B4c)
Ax3) =2 (7= 7)(Lia(1=2) 4 310 ) 4 F(L(5) = Lis(o) = Inyin) . (B4d)
In the above, x =1 —x and y = | — y. The+ distribution is defined through

[ astvela = [ asvielsm - g0l (B5a)

0 0

| |

[ s, = [ arlgtx) - gV, (Bsb)

0 0

for any test function g(x).

APPENDIX C: SOME USEFUL CONVOLUTIONS

With the explicit expressions of the hard-kernel T (x, my, 1), the LCDA ¢y (x, mg, ) and the BL kernel Vg)’l) (x,y), for
H =ngy, we have

1 A
| P =1, (Cla)
0
1 ~
| a7y O . )d) 0) = €3 - 21m2), (Clb)
1 R 2
/O dxdydzTY (x) VO (x,y) VO (y, 2)¢¥ (2) = C2 (21n22 ~16In2 — % + 9) , (Clc)
at the level of LLs,
1 ~
i dxdyT' ) ()Y (y) = Cp(In22 = 8AIn2 +In2 — iz(3 —21n2) — 9), (C2a)
! (0 3(1) 7’
A dxdyTp’ (x)pp’ (y) = Cp <8A In2+2In2 - §> , (C2b)
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at the level of NLO, and

1 R 2 4 2
/ dxdyT® () VO (x, y)dL (y) = €2 [8A(ln2—ln22) -3((3) + 37 1n2—21n22—%—61n2 , (C3a)
0

! 1)/ A1 (0) 20y o[y 2 s, T > _ 2 _

dxdyTy ()VO (x.3)dy" (¥) = C}|5¢(3) = 5I0°2 + TIn2 4+ 4In°2 + 231n2 - 27 + 8A(In*2 ~ In2)
0

].[2
—iﬂ(21n22—?—161n2+9>}, (C3b)

[ sy v ) 0) = ¢ {cF (2000 +
0

A ODNW

2 4 2 n’
—gln 2 +4In 2+4ln2+?(21n2—1)

71.2

+Cy (—36(3) +=In2+ 1) +/30<1+——1n22—gln2> —8ﬂ0Aln2], (C3c¢)

3

2 6

at the level of NLLs, where A = 0 for the NDR scheme, and A = 1 for the HV scheme. One can see in the truncated
expansion of the resumed SDC in Eq. (30), the A-dependence vanishes at each order of «; as it should. The corresponding

convolutions for H = J/¥(Y) can be obtained similarly.
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