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We propose a scheme to identify the region for the hadron-quark phase transition in cold dense strong
interaction matter (neutron star matter) to take place with astronomical observations. To study the property
of the first-order phase transition in the matter, we take the sound speed as the interpolation objective to
construct the equation of state of the matter involving the hadron and quark coexisting phase. We show the
feature of the sound speed in the matter with two conservation charges and a first-order phase transition.
With the maximum mass, the tidal deformability and the radius of neutron stars being taken as calibration
quantities, the baryon chemical potential region for the phase transition to occur is constrained to a narrow
range, and the most probable value of the phase transition chemical potential is found.
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I. INTRODUCTION

Research on the phase structure of strong interaction
matter has attracted great attention for decades. It is generally
believed that at low temperature and density, the basic degree
of freedom of strong interaction matter is the color-singlets,
i.e., hadrons, while at high temperature and/or high density,
the quarks deconfine from hadrons and become the basic
degree of freedom.The phase transition fromhadron to quark
matter is usually referred to as hadron-quark phase transition,
or simply QCD phase transition.
At low density and high temperature, the QCD phase

transition has been understood well both theoretically and
experimentally. On theoretical side, the lattice QCD, the
Dyson-Schwinger (DS) equation approach, the functional
renormalization group (FRG) approach and many effective
models have made great progress which shows that the
phase evolution in case of the physical quark mass is in fact
a crossover but not finite-order phase transition (see, e.g.,
Refs. [1–11]). On the experimental side, one can generate

such kind of matter with relativistic heavy ion collisions
(RHICs) in laboratory.
However, for theQCDmatter in low temperature and high

density (i.e., cold dense matter), the theoretical situation is
more severe, since the first-principle lattice QCD simulation
is not adaptable because of the notorious sign problem,
and reliable experimental data are required to calibrate the
calculations in the framework of the DS equation approach
and the FRG approach. The density and chemical potential
for the phase transition to take place is then still not known.
There are even debates on whether there exists a phase
transition. Although DS equation, FRG and effective model
calculations indicate that there should be a first-order phase
transition in the region [3,5,6,9,10,12–15], there are also
arguments that the transition should be a smooth crossover,
i.e., no phase transition at all [16–18]. And on experimental
side, the corresponding density is far beyond the capability of
current terrestrial experiments.
A complementary method besides the RHIC experiments

is the observation of dense astronomical objects, especially
those for compact stars. Neutron star is one of the most
compact object in the universe, and it is very likely that the
density inside neutron star is so large that there exists a
hadron-quark phase transition [17,19–22]. When the phase
transition occurs inside neutron stars, the equation of state
(EoS) of the matter will be changed, and so do the mass-
radius relation and the maximum mass of the stars. There
have already been several neutron stars with large mass
observed [23–31], which requires that the EoS should be
stiff. The gravitational wave from binary neutron star
merger also provides important information about the
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EoS [32–34]. From the gravitational wave, it is found that
the tidal deformability of the star should be small, and
hence the EoS should be rather soft. Also, recent NICER
provides significant information for the profile of the
neutron star [30,31,35,36]. These indicate that astronomical
observations have provided strict constraints on the EoS.
For example, in Refs. [37,38], the EoS from nB ¼ 1.1ns to
μB ≤ 2.6 GeV have been constrained to a rather narrow
range, where ns is the nuclear saturation density. We then
take these recent observation data to identify the phase
transition and the chemical potential (density) region for
the phase transition to occur.
Because of the lack of fundamental approach to provide

the EoS of the matter involving the hadron-quark phase
transitions, one usually take the way that describes the
hadron matter and the quark matter separately via respec-
tive approach, and combine them together to get the
complete EoS in the whole density region (with hadron
matter, hybrid matter, quark matter, separately). It has been
known that the most widely used construction schemes are
the Maxwell construction and the Gibbs construction [19].
Both of these schemes describe a first-order phase tran-
sition. The Maxwell construction gives a violent phase
transition with a density gap, i.e., the EoS is not continuous.
The Gibbs construction, on the other hand, gives first-order
phase transition with two conservation charges, and the
phase transition is milder. Under Gibbs construction, the
EoS is continuous but not smooth.
In order to describe a crossover, the 3-window construc-

tion was proposed [17,39–42], and the corresponding EoS is
expected to be continuous and smooth. The 3-window
construction can also help reduce the uncertainties of hadron
and quark models in the phase transition region, as will be
discussed in detail in Sec. II B.
Apart from those constructions with models, there have

been schemes which directly construct EoS without con-
cerning the underlying model, for example the segmented
polytropic EoS [37].
It has also been known that the sound speed (SS) is

closely related to the EoS, and has been used in the study on
neutron stars. For example, the phase transition signal in
neutron star oscillations is studied with SS [43–45], and
neutron star measurements have been taken to provide
insights of the SS in intermediate density [46]. The SS can
then serve as a significant criterion for the phase transition.
For example, under Maxwell construction, there will be a
density range with vanishing SS, and there will be
discontinuities in SS under Gibbs construction. Under
3-window construction, however, the SS should be con-
tinuous and smooth everywhere.
There have already been studies which construct the SS

in cold dense matter. In Refs. [47–49], the authors used
a “constant speed of sound construction” which assumes
that the SS for quark matter is a constant, and the phase
transition is described with a density gap of the EoS.

This corresponds to a violent first-order phase transition
similar to theMaxwell construction. In Refs. [50,51], the SS
is constructed using a smooth Gaussian function, which
indicates a crossover, similar to the 3-window construction.
The SS can also be constructed using piecewise linear
function, which includes the most possibilities, as has been
done in Refs. [38,52]. In this way, the SS is continuous but
not smooth, which means that the phase transition is neither
first-order nor crossover. However, if the number of seg-
mentations is large enough, this construction can approach to
crossover. Also, as argued in Ref. [38], this construction
scheme canmimic theMaxwell construction closely enough.
However, in the above-mentioned progress on the SS

construction, there is no attempt to mimic the phase
transition with two conservation charges, i.e., the phase
transition described by Gibbs construction. For Gibbs
construction, there should be two discontinuities in the
SS as a function of density, and SS is not vanishing between
these two discontinuities. Some examples of such SS can
be found in Fig. 4 of Ref. [53] and Fig. 6 of Ref. [44].
We then in this paper develop a scheme to construct the

SS and the EoS of the matter involving hadron-quark phase
transition and two conservation charges, and make use of
them to calculate the properties of compact stars. The
construction takes the baryon chemical potential (density)
as the parameter to label the phase transition. In this way,
the uncertainties of hadron and quark approaches in phase
transition region can be absorbed into the uncertainties of
the phase transition chemical potential. With the mass, the
radius and the tidal deformability of the stars being taken as
calibrations to exclude the inappropriate parameters, we
extract then the most probable baryon chemical potential
region for the hadron-quark phase transition to happen in
the cold dense matter with two conservation charges.
The paper is organized as follows. In Sec. II, we describe

our new method to construct the EoS of the cold compact
star matter involving the hadron-quark phase transition,
where in Sec. II A, we introduce the basic feature of the
phase transitions with two conservation charges, and talk
about the necessity to develop a new construction scheme
in Sec. II B. The detail of our new construction scheme
is described in Sec. II C. In Sec. III, we implement our
proposed construction to calculate the property of compact
star, and take the astronomical observations to constrain the
EoS of the matter as well as the possible range for the phase
transition to take place. In Sec. IV, we give a summary and
remark.

II. CONSTRUCTING THE HADRON-QUARK
PHASE TRANSITION IN HYBRID STAR MATTER

A. First-order phase transition with
two conservation charges

In hybrid star matter, there are two conservation charges,
namely the baryon number and the electric charge number.
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Therefore, we need two chemical potentials to identify the
state of the matter, which are usually referred to as the
baryon chemical potential μB and the charge chemical
potential μQ. In hadron phase, we have μB ¼ μn and
μQ ¼ −μe, where μn, μe is the chemical potential for
neutron, electron, respectively. In quark phase, we have
μB ¼ μu þ 2μd, where μu, μd is the chemical potential of u,
d quark, respectively.
Since the pressure of the matter is governed by two

chemical potentials, it appears as a surface in p − μB − μe
space, for both the hadron phase and the quark phase. It has
been known that the relativistic mean field model (RMF)
[54,55] is a successful theory in describing the properties of
hadronmatter in the density region relevant in compact stars
[19,20].And theDyson-Schwinger (DS) equation approach,
almost uniquely, the scheme which includes both confine-
ment and chiral symmetry breaking [56], is successful in
describing hadron properties and QCD phase transitions
(see, e.g., Refs. [2–6,57–60], especially for the high density
(baryon chemical potential) region where the lattice QCD
simulation does not work well due to the so-called “sign
problem” [61]. Details of the description of the hadron and
the quark approaches are represented in the Appendix. We
then take the RMF with TW-99 parametrization [62] (with-
out the inclusion of hyperons) to calculate the hadron
surface, and implement the DS equation approach of
QCD described in Refs. [63,64] with α ¼ 2 to describe
the quark surface. The obtained results are shown in Fig. 1 as
an illustration of the hadron and the quark surfaces.
It is well known that, as the phase transition happens, the

Gibbs condition should be satisfied, i.e., the chemical

potentials (μB, μe) and the pressure (p) should be the same
in the two phases. Therefore, the phase transition should
only happen on the cross line of the two surfaces, which
corresponds to the blue solid line shown in Fig. 1. At low
and high baryon chemical potential, since the hybrid star
matter should be charge neutral, the hadron and the quark
surfaces degenerate to the charge neutral lines. On the blue
line, however, the hadron and the quark matter can be both
charged as long as their charges could be canceled.
Fig. 1 shows distinctly that, with the increasing of baryon

chemical potential, the pressure of the matter changes along
the red dotted line, until the red dotted line intersects with
the blue line, and the phase transition begins. The pressure
then changes along the blue line. As the blue line intersects
with the orange line, the phase transition ends, and the
pressure changes along the orange line of quark matter.
On these lines, both the p and the μe can be represented

by μB, and the first order derivative of the pressure is

dp
dμB

¼ ∂p
∂μB

þ ∂p
∂μe

dμe
dμB

: ð1Þ

At the intersection point of the red dotted line and the blue
line (denoted by blue balls in Fig. 1), the derivative
dμe=dμB is not continuous since the connection of the
two lines is not smooth. However, since ∂p=∂μe is zero on
the red line because of the charge neutral requirement, the
first order derivative of the pressure is continuous on this
cross point. The second order derivative d2p=dμ2B, however,
is not continuous on the phase transition point, and the
square of the sound speed

c2s ¼
dp
dε

¼ dp=dμB
μBd2p=dμ2B

; ð2Þ

is not continuous at this point. The same goes for the
intersection point of the blue and orange lines. The general
characteristic of the sound speed squared as a function of
baryon chemical potential can be shown in Fig. 2.
It is known that, when the baryon chemical potential is

barely beyond the proton mass, the matter is in hadron
phase, and the SS increases monotonically with the
increasing of baryon chemical potential. At some critical
chemical potential μ0 (e.g., here μ0 ¼ 1.23 GeV), the quark
matter begins to appear, and the sound speed squared
gets discontinuous. At another critical chemical potential
μ1 (e.g., here μ1 ¼ 1.63 GeV), the SS involves another
gap where hadron matter disappears completely and the
hadron-quark phase transition ends. And in case of the
chemical potential μ > μ1, the c2s increases monotonously
and approaches the conformal limit 1=3. As for the c2sðμBÞ
in the region μ0 < μB < μ1, one still does not have any
concrete knowledge. It is just what we take as the objective
to construct the EoS of the matter involving the hadron-
quark phase transition.

FIG. 1. Calculated function surface of the pressure in terms of
the two chemical potentials of the hadron phase without including
hyperons (pink) and that of the quark phase (green). The red
dotted line on the pink surface corresponds to charge neutral
hadron matter states, and the solid orange line on the green
surface corresponds to charge neutral quark matter states. The
blue solid line is the cross line of the two surfaces, and the two
blue balls correspond to the points where the blue line intersects
with the red dashed line and the solid orange line, respectively.
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B. Maxwell, Gibbs and 3-window constructions

In order for the hadron-quark phase transition described
above to happen, the hadron surface and the quark surface
must have a cross line, and the intersection line must also
intersect with the charge neutral lines on both surfaces.
In practice, it is not necessary (and in many cases, not

possible) to calculate the whole p − μB − μe surfaces. What
we need to calculate are the charge neutral lines for both
hadron and quark phases, and project the obtained results
onto the p-μB plane. In Fig. 3, we present an example for
such a projection.
It has been well known that, at low density, hadron phase

is the stable phase. The pressure of the hadron phase should
then be larger than that of the quark phase. At high density,
the quark phase should have larger pressure to be more
stable. Therefore, for the phase transition to happen, there
must be a cross point for the p − μB curves of the two
phases. The cross point, ðp0; μB;0Þ, is just the phase
transition point in Maxwell construction.
Under the Maxwell construction, the matter with baryon

chemical potential μB ≤ μB;0 can be consequently described
by hadron model, while the matter with μB > μB;0 can be
described by quark model. To manifest the phase transition,
one usually take into account the following Eq. (3).

p ¼ pHθðμB;0 − μBÞ þ pQθðμB − μB;0Þ;
ε ¼ εHθðμB;0 − μBÞ þ εQθðμB − μB;0Þ; ð3Þ

where pH, εH is the pressure, the energy density for hadron
matter, and pQ, εQ is the pressure, the energy density for
quark matter, respectively. The θðxÞ is the usual step
function.

However, if we look at the p − μB − μe space in Fig. 1
more carefully, the Maxwell construction corresponds to a
sudden jump from the charge neutral line of hadron phase
to the charge neutral line of quark phase, i.e., the electron
chemical potentials of the two phases are not the same at
μB;0 and the phase transition condition (equal pressure and
equal chemical potential) is actually not satisfied.
In order for the phase transition condition to be satisfied,

the phase should evolve along the cross line of the hadron
and quark surfaces in Fig. 1, which is projected as the red
dotted line in Fig. 3. This red dotted line then describes the
mixed phase where hadron matter and quark matter coexist.
We notice that this mixed phase is exactly the same as we
get from usual Gibbs construction, except that instead of
the whole hadron and quark surfaces, only the points on
the cross line are included. The usual equation for Gibbs
construction reads:

pHðμB; μeÞ ¼ pQðμB; μeÞ;
ð1 − χÞnHc ðμB; μeÞ ¼ −χnQc ðμB; μeÞ; ð4Þ

where nHc , n
Q
c is the charge density for hadron matter, quark

matter, respectively. χ is the quark volume fraction to be
determined. Then, the energy density of the mixed phase is:

ε ¼ ð1 − χÞεH þ χεQ: ð5Þ

Both Maxwell and Gibbs constructions have been widely
used and succeeded in constructing hybrid starswhich satisfy
astronomical constraints (see, e.g., Refs. [19,20,53,65–67]
and many others). However, there are cases where they are

FIG. 3. Calculated pressure as a function of baryon chemical
potential for different phases. The black solid line corresponds to
the hadron matter where only proton and neutron (and lepton) are
included, the gray dahsed line corresponds to the hadron matter
which includes also hyperons, and the blue solid line corresponds
to the quark matter. The red dotted line is the projection of the
cross line in Fig. 1. The model we use are all described in the
Appendix.

FIG. 2. General behavior of the sound speed squared as a
function of baryon chemical potential. The hadron matter
(composing of protons, neutrons and leptons) is described with
the TW-99 model in the RMF theory, the quark matter is
described with the DS equation of QCD with α ¼ 2. The c2s
of the mixed phase is obtained with Eq. (2) whose input is the
EoS gained with the Gibbs construction.
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not adaptable. For example, in Fig. 3, the gray dashed line
corresponds to the hadron matter with the inclusion of
hyperons, and it does not intersect with the quark line in
the cases μB ≲ 1.6 GeV.Anaive speculation by eye seems to
suggest that there will be a cross point at larger chemical
potential, but the hadron model, such as the RMF, will break
down at such a large density and there will be no physical
solution to the equations.
This problem should not be regarded as a flaw of the

construction, but instead is due to the inappropriate
application. One knows well that hadron models are
calibrated by experiment at low density, and are unreliable
at high densities. Similarly, the quark models should only
be adopted in high density region, and approach the
asymptotic freedom with the increasing of the density.
They should then not be implemented at low densities. At
intermediate density where the phase transition takes place,
both the hadron model and quark approach lose their
accuracy. Therefore, even if the pðμBÞ curves of the two
phases do not intersect, it does not mean that the phase
transition will be prohibited.
In order to overcome the above-mentioned inaccuracy

problem, the 3-window construction was proposed
[17,39–42]. In the spirit of 3-window construction, one
can get the EoS of the matter in the middle density region
for the two phases to coexist by interpolating the results of
the hadron and the quark models. There have been several
ways to do the interpolation. For example, in Ref. [39], the
energy density is interpolated with weight function f�:

ε ¼ f−εH þ fþεQ;

f� ¼ 1

2

�
1� tanh

�
nB − n̄

Γ

��
; ð6Þ

where nB is the baryon number density, n̄ and Γ is the
parameter for the weight function. The pressure and
chemical potential can then be derived with general
thermodynamical relations.
However, these interpolation schemes assume that the

transition from hadron to quark matter is a crossover, and
have not yet taken into account the characteristics of the
first–order phase transition which has been proposed to
happen in cold dense strong interaction matter with con-
tinuum field theory of QCD (see, e.g., Refs. [3–6,9,10] and
others). Since the 3-window construction can be viewed as a
generalization of Gibbs construction, where the quark
volume fraction is actually a special kind of weight function,
it is possible to find a way which combine the advantages of
both the methods.
In this paper, by inspiration of the Maxwell, Gibbs and

3-window construction, we propose a new construction
scheme which describes a first-order phase transition with
two conservation charges, while avoiding using the hadron
and quark model in intermediate density region where they
are not reliable enough.

C. Sound speed construction

In the spirit of 3-window construction, we propose a new
scheme to interpolate the EoS in the phase transition region.
Using this method, the large uncertainties of hadron and
quark theories will be absorbed into the uncertainties of the
construction parameters. We will see that the chemical
potentials labeling the phase transition region can be taken
as the construction parameters. Then, it will be easier to
constrain the phase transition chemical potentials directly
from astronomical observations, instead of constraining
them indirectly through the constraints on hadron/quark
theory parameters.
In order to address the first-order phase transition with

two conservation charges, we make use of the variation
feature of the SS to construct the EoS. It has been known
that the speed of sound in hadron matter at low density and
that in quark matter at high density can be calculated with
quite high precision via the respective approach. In this
work, we take the RMF model for hadron matter, and DS
equation approach of QCD for quark matter. Inspired by the
result obtained via the Gibbs construction, illustrated in
Fig. 2, we construct the square of SS in the middle density
region for the hadron and quark phases to coexist with a
polynomial function:

c2MðμBÞ ¼
XN
n¼0

anμnB; ð7Þ

where fang are parameters to be fixed. The phase transition
region is denoted as μ0 ≤ μB ≤ μ1, where μ0, μ1 correspond
to the beginning, the ending of the phase transition,
respectively.
After constructing the SS as a function of baryon

chemical potential we can calculate the EoS of the matter
by solving the ordinary differential equations (ODEs):

∂nB
∂μB

¼ nB
μBc2sðμBÞ

;
∂p
∂μB

¼ nB; ð8Þ

which are just simply the thermodynamic relations. The
initial condition is

nBðμ0Þ ¼ nHðμ0Þ; pðμ0Þ ¼ pHðμ0Þ; ð9Þ

where nH and pH is the baryon number density and the
pressure calculated via the hadron model.
Similarly, concerning the phase equilibrium condition,

we have another boundary condition:

pðμ1Þ ¼ pQðμ1Þ; nBðμ1Þ ¼ nQðμ1Þ; ð10Þ

where pQ and nQ is the pressure, the baryon number
density of the quark matter, respectively. The construction
requires N þ 3 parameters (N þ 1 for the polynomial
function, and 2 for the boundary chemical potentials).
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After taking Eq. (10) to constrain the parameters, onlyN þ 1
parameters are independent.
Instead of directly using fang, we choose a set of sound

speed squared c2s;ðiÞ, as free parameters. Each sound speed

squared corresponds to a certain chemical potential, μðiÞB ,

where i ¼ 1;…; N − 1. We require that μðiÞB be evenly
distributed in the range ðμ0; μ1Þ. For example, for N ¼ 2,

μð1ÞB ¼ ðμ0 þ μ1Þ=2, and for N ¼ 3, we have μð1ÞB ¼
μ0 þ 1

3
ðμ1 − μ0Þ, and μð2ÞB ¼ μ0 þ 2

3
ðμ1 − μ0Þ. Therefore,

the free parameters are: μ0, μ1 and c2s;ð1Þ;…; c2s;ðN−1Þ.
In our calculation, the ranges of these parameters are set as:

0.938≤μ0≤1.5GeV, 1.2GeV≤ μ1 ≤ 2.0GeV, 0≤c2s;ðiÞ<
1.0. The range of the sound speed squared is set with the
causality and stability (see, e.g., Refs. [46,50,53]). The lower
bound of μ0 is proposed by considering naively the appear-
ance of nuclear matter. The other bounds of the chemical
potential are preset arbitrarily, but wewill see later that these
ranges are irrelevant since they will be further narrowed
down by astronomical observations. We randomly choose
these parameters from their corresponding ranges and con-
struct the sound speed squared, then integrate Eq. (8) to get
the EoS in each case.We do this for 200000 times, andget the
values for the SS and EoS for each set of parameters.
Before applying astronomical restrictions, some param-

eter sets should be automatically abandoned. The parameter
sets with μ0 > μ1 will not be used, since it is physically
meaningless. Also, it is necessary to require that at chemical
potential μ0 and μ1, the SS ofmixed phase is smaller than that
of the hadron phase, the quark phase, respectively, as shown
in Fig. 2. The parameter sets which do not satisfy this
requirement will be abandoned. The reason can be seen from
Fig. 3. In order for themixedphase to be favored, itmust have
a larger pressure than both hadron and quark phase in the
range μ0 < μB < μ1. Since the pressure p and its first order
derivative dp=dμB is continuous at the phase transition
chemical potentials, the mixed phase must have a larger
second order derivative to have a larger pressure. Then, from
Eq. (2),we can see that this larger secondorder derivativewill
lead to a smaller sound speed squared.

III. NUMERICAL CALCULATION,
RESULTS, AND DISCUSSIONS

After having the energy density ε and pressure p of the
cold dense matter, we can calculate the mass-radius relation
of the compact star by solving the TOV equation (see, e.g.,
Ref. [19])

dp
dr

¼ −
mε

r2
ð1þ p=εÞð1þ 4πr3p=mÞ

1 −m=r
;

dm
dr

¼ 4πr2ε;

where we have taken the G ¼ 1 unit.

The tidal deformability Λ of the star can be related to the
star’s mass M and radius R as

Λ ¼ 2

3
k2

�
R
M

�
5

;

where k2 is the tidal love number of the compact star, which
can be calculated as [68,69]

k2 ¼
8

5
β5z½6βð2 − yRÞ þ 6β2ð5yR − 8Þ þ 4β3ð13 − 11yRÞ

þ 4β4ð3yR − 2Þ þ 8β5ð1þ yRÞ þ 3z lnð1 − 2βÞ�−1;

where β ¼ M=R is the compactness parameter,

z≡ ð1 − 2βÞ2ð2 − yR þ 2βðyR − 1ÞÞ;

and yR ¼ yðr ¼ RÞ where yðrÞ is calculated by solving the
equation

dy
dr

¼ −
y2

r
−

y − 6

r − 2m
− rQ;

with

Q ¼ 4π
ð5 − yÞεþ ð9þ yÞpþ ðεþ pÞ=c2s

1 − 2m=r

−
�
2ðmþ 4πr3pÞ
rðr − 2mÞ

�
2

: ð11Þ

Since astronomical observations have provided the
maximum mass, the tidal deformability and other informa-
tion of the stars, we then take these observations to
constrain our constructed EoS.
Since neutron stars with masses over 2M⊙ have been

observed (see, e.g., Refs. [23,24] and others), we should
exclude the constructed EoSs which result in a maximum
mass less than 2M⊙. The detection of gravitational wave
also sets the upper limit of the maximum mass of neutron
stars, so we require that the maximum mass is not larger
than 2.16M⊙ [30,31,70–72].
Based on the information provided by the gravitational

wave detection for the tidal deformability Λ, we require
Λ1.4 < 800 for a 1.4M⊙ neutron star according to Ref. [32],
and Λ1.4 > 120 according to Ref. [37].
The radius of the neutron star is closely related to their

tidal deformability. However, the possible radius can still
vary in a large range for some given Λ [73]. Therefore, we
also take the radius to constrain our construction. Since
we still do not have the model independent result for
the neutron star radius, and neither the observations, we
implement R ∈ ð9.9; 13.6Þ km for 1.4M⊙ neutron star
according to Ref. [37] to constrain the EoS.
After constraining the mass, radius and tidal deform-

ability, the baryon chemical potential region for the
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hadron-quark phase transition to occur can be constrained
by the astronomical observations.

A. For quadratic construction

We first take a quadratic function to construct the sound
speed squared, that is, taking N ¼ 2 in Eq. (7).
In Fig. 4, we show the μ0 dependence of the number of

the EoSs satisfying several kinds of astronomical con-
straints. The hadron matter is described with the RMF
model with the inclusion of hyperons, the quark matter is
described with the DS equation approach of QCD, and the
mixed phase region is constructed using the SS interpola-
tion introduced in Sec. II C with a quadratic function. We
show the number of the EoSs without any astronomical
constraints with red bars, those satisfying the requirement
120 < Λ1.4 < 800, R1.4 ∈ ð9.9; 13.6Þ km with blue bars,
those with further constraint Mmax > 2M⊙ with yellow
bars, and the ones with much further requirement 2M⊙ <
Mmax < 2.16M⊙ in green bars. Although the parameters
are taken randomly in the corresponding ranges, the red
bars which label the number of the EoSs without any
astronomical constraint shown in Fig. 4 is not uniformly
distributed. This is because when μ0 is too large, there are
possibilities for μ0 > μ1, or the construction cannot satisfy
the boundary condition in Eq. (10).
From Fig. 4, one can find easily that, although the

constraints on the tidal deformability and the radius reduce
the number of the EoSs for different values of the μ0, they
do not change the range of the μ0. Meanwhile, the lower
limit of the maximum mass reduces the upper limit of the
μ0, but the upper limit of the maximum mass does not
change the range of μ0.

After taking into account all the astronomical
constraints, the range of μ0 is constrained to be
μ0 ≤ 1.12 GeV, which corresponds to a baryon number
density n0 ≤ 3.16ns, where ns ¼ 0.153 fm−3 is the satu-
ration nuclear matter density. However, the lower limit of
μ0 is only 0.938 GeV, corresponding to nearly zero baryon
number density which is consistent with the DS equation
result given in Ref. [5].
Since our initial parameters are randomly distributed in

their corresponding ranges, the number of theEoSs should be
proportional to the probability distribution. The distribution
of the green bar is very similar to the normal distribution,
except that there is no data points for μ0 < 0.938 GeV.
The normal distribution has the form:

pðμ ≤ x ≤ μþ dμÞ

≡ fðμ;E; σÞdμ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðμ − EÞ2

2σ2

�
dμ; ð12Þ

where pðμ ≤ x ≤ μþ dμÞ is the probability for a data to be
in the range (μ, μþ dμ), E and σ is the expectation value
and the standard deviation, respectively.
By integrating the normal distribution function, we get

the probability for a data to be in the range ð−∞; μÞ:

Pðx ≤ μÞ ¼
Z

μ

−∞
fðx;E; σÞdx ¼ 1

2

�
1þ erf

�
μ − Effiffiffi

2
p

σ

��

≡ Fðμ;E; σÞ: ð13Þ

Since we need to neglect all the data with
x ≤ μc ¼ 0.938 GeV, we should then reformulate the
function as:

Pðμc ≤ x ≤ μÞ ¼ FðμÞ − FðμcÞ
1 − FðμcÞ

≡ F̄ðμÞ: ð14Þ

Using function F̄ to fit the dataset of μ0, we can get E and
σ with the least square fitting. The distribution function
then follows fðμ0;E; σÞ which is defined in Eq. (12)
(except for the cutoff).
The fitted fðμ0;E; σÞ is displayed in Fig. 4 with pink

dashed line. The most probable value of the μ0 is
hμ0i ¼ E ¼ 1.00 GeV, with the standard fitting error being
5.3 × 10−5 GeV. This most probable chemical potential
corresponds to a baryon number density 1.64ns at which
the nucleons in the matter begin to overlap with each
other [74].
Similar analysis has been carried out on μ1, the baryon

chemical potential corresponding to the ending of the
hadron–quark phase transition. The obtained μ1 dependence
of the number of EoSs is shown in Fig. 5.As can be seen from
the figure, after applying the astronomical constraints, the
range of the μ1 is assigned as 1.42 ≤ μ1 ≤ 1.65 GeV,
corresponding to a baryon number density range

FIG. 4. Calculated μ0 dependence of the number of constructed
EoSs with several kinds of astronomical constraints. In the
construction, the hadron matter is described with the TW-99
model in the framework of the RMF with nucleons and hyperons,
and the quark matter is described via the DS equation approach of
QCD with α ¼ 2.
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6.13 ≤ n1=ns ≤ 11.14. As the same as done for μ0, we fit
the distribution of EoSs with a normal distribution function,
and find that the most probable chemical potential is
hμ1i ¼ 1.53 GeV, where the standard fitting error is
2.7 × 10−5 GeV. This chemical potential corresponds to
baryon density hn1i ¼ 8.22ns.
We have shown above that astronomical observations

can constrain the chemical potential region of the phase
transition. However, the values of the astronomical observ-
ables, e.g., the mass, the tidal deformability and the radius
have not yet been fixed concretely in observations, and
different studies give distinct results. Therefore, we repeat
the above described analyzing process with different
astronomical constraints, and for each set of the constraints,
we consider two different cases: hyperons appear or do not
appear in the hadron matter. The obtained main character-
istics of the results are listed in Table I.
The first set of Table I gives the result we have just

described above. The notation Nq, NYq refers to the case

that the hadron matter sector does not include, or includes
hyperons, respectively. Comparing the results with and
without hyperons, one can observe that the upper limit of
the μ0 decreases after including hyperons. The second set
lists the result when a larger upper limit of the maximum
mass of a star is taken. It is evident that, the lower limit of
the μ1 reduces a lot, no matter whether hyperons are
included. The third set shows the result under a larger
lower limit of the tidal deformability. It manifests clearly
that the upper limits of the μ1 is reduced. Meanwhile, the
upper limit of the μ0 is also reduced when hyperons are
included. The fourth set shows the result under a smaller
radius range. One can notice from the data that the upper
limit of the μ1 is reduced, but the change is smaller
comparing to the second and the third set. This means
that the constraints from the mass and the tidal deform-
ability is more stringent.
The obtained result under the most strict astronomical

constraints is given in the last set of Table I. It is apparent
that the regions of the μ0 and the μ1 are narrowed down
correspondingly. Furthermore, under these constraints, the
most probable beginning and ending chemical potentials
are hμ0i ¼ 1.09 GeV, hμ1i ¼ 1.50 GeV in the case without
hyperons, and hμ0i ¼ 0.99 GeV and hμ1i ¼ 1.50 GeV
when hyperons are included. It indicates that the chemical
potential corresponding to the ending of the hadron–quark
phase transition is not influenced much by the inclusion of
hyperons under such an astronomical circumstance, but the
chemical potential corresponding to the beginning of the
phase transition is reduced obviously by hyperons.

B. For cubic construction

In previous subsection, we have shown the results with
the EoS which generates the SS with a quadratic function in
the mixed phase region, i.e., taking N ¼ 2 in Eq. (7), and
find the most probable value for the phase transition to take
place. To further verify our result, we will consider the

FIG. 5. The same as Fig. 4 except that this is for the μ1
dependence.

TABLE I. Constrained quantities featuring the hadron-quark phase transition under different astronomical observations. The
composition Nq, NYq refers to the case that the hadron matter sector does not include, or includes hyperons, respectively. The baryon
chemical potentials are in the unit of GeV, and the baryon number densities are in the unit of ns.

Astronomical observations Constrained Range of the quantities

Mmax (M⊙) Λ1.4 R1.4 (km) Composition μ0max n0max hμ0i hn0i μ1 min μ1max n1 min n1max hμ1i hn1i

2–2.16 120–800 9.9–13.6 Nq 1.32 4.11 1.00 1.57 1.42 1.66 6.06 11.37 1.52 8.07
NYq 1.12 3.16 1.00 1.57 1.42 1.65 6.13 11.14 1.53 8.22

2–2.35 120–800 9.9–13.6 Nq 1.32 4.11 1.00 1.57 1.31 1.66 4.57 11.36 1.50 7.64
NYq 1.12 3.16 0.99 1.38 1.31 1.65 4.56 11.14 1.50 7.59

2–2.16 344 [75]–800 9.9–13.6 Nq 1.32 4.11 1.08 2.39 1.42 1.58 6.06 9.25 1.50 7.62
NYq 1.05 2.31 0.99 1.35 1.42 1.59 6.13 9.52 1.49 7.39

2–2.16 120–800 10.62–12.83 [76]
Nq 1.32 4.11 1.04 1.99 1.42 1.61 6.06 10.13 1.51 7.84
NYq 1.12 3.16 1.01 1.63 1.42 1.63 6.13 10.72 1.52 8.07

2–2.16 344–580 [77] 10.4-11.9 [78]
Nq 1.34 4.26 1.09 2.51 1.44 1.58 6.54 9.35 1.50 7.70
NYq 1.05 2.30 0.99 1.36 1.45 1.58 6.56 9.24 1.50 7.53
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cubic interpolation function for the SS in the mixed phase
region, i.e., taking N ¼ 3 in Eq. (7) in this subsection.
Taking the same technique described in Sec. III A, we

can find the most probable values of the baryon chemical
potential region for the hadron-quark phase transition to
happen under the cubic SS interpolation. The obtained
results and the comparison with those via the quadratic
interpolation are shown in Table II.
From the Table II, one can observe evidently that the

most probable values labeling the baryon chemical poten-
tial region for the phase transition to take place is only very
slightly changed by increasing the power of the interpolat-
ing function. This fact indicates that with our construction
scheme, the region of the baryon chemical potential for the
hadron-quark phase transition to take place (i.e., for the two
phases to coexist) can be totally determined by astronomi-
cal observations, regardless of the detail of the construction.

IV. SUMMARY AND REMARKS

In this paper, we propose a scheme to interpolate the
hadron and the quark models to construct a complete EoS
for the compact star matter involving hadron-quark phase
transition. We show the characteristic of the SS in the
matter with two conservation charges and a first-order
phase transition, and take it as the objective to be
interpolated. To describe the hadron matter we take the
RMF model with the TW-99 parameters, and for the quark
matter we implement the DS equation approach of QCD.
With the astronomical observations such as the maximum

mass of the neutron star, the radius and the tidal deformability
of the star withM ¼ 1.4M⊙ being taken as calibrations, the
baryon chemical potentials which correspond to the begin-
ning and the ending of the hadron-quark phase transition are
constrained to a quite small range. Meanwhile, the distribu-
tion of the phase transition chemical potentials can be fitted
with the normal distribution, and themost probable values of
the phase transition chemical potential and baryon number
density are found. The obtained results agree with the ones
given via effective field theory of QCD very well.
We have also looked over the effect of the maximum

mass, the radius, and the tidal deformability on the phase

transition chemical potentials by varying the calibration
ranges of the observables. It shows that a narrower range
of the astronomical values indeed leads to a narrower rangeof
the phase transition chemical potential. With the most strict
observation constraints, the most probable values of the
hadron-quark phase transition chemical potential and the
baryondensity are: hμ0i ¼ 0.99 GeVand hμ1i ¼ 1.50 GeV,
i.e., hn0i ¼ 1.36ns and hn1i ¼ 7.53ns.
In order to verify the interpolation scheme, we compared

the results obtained with the quadratic and the cubic
interpolation functions. The results agree with each other
excellently, indicating that our construction scheme is
reliable.
Even though the phase transition chemical potentials

have not yet been constrained to concrete values exactly
now due to the astronomical observations having not
provided exact values for the calibration quantities, we
have shown that the presently proposed scheme to deter-
mine the baryon chemical potential region for the hadron-
quark phase transition to occur is efficient and found the
most probable values. With future detections, the maximum
mass, the tidal deformability, and the radius of neutron stars
can be measured with higher accuracy, the range of the
phase transition chemical potentials can be determined
more precisely.
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APPENDIX: APPROACHES DESCRIBING THE
HADRON MATTER AND THE QUARK MATTER

In order to study the phase transition in compact star
matter, one usually has to take approaches for hadron
matter and quark matter separately. We describe then the
approaches we take in this work in this appendix.

1. Relativistic mean field theory for hadron matter

For hadron matter, we adopt relativistic mean field (RMF)
theory [19,54,55,62]. The Lagrangian of the RMF reads:

L ¼ LB þ Llep þ LM þ Lint; ðA1Þ

where LB is the Lagrangian of free baryons.
In this work, we consider the baryon octet p, n, Λ, Σ�;0

and Ξ−;0 for baryons. The corresponding Lagrangian is
written as

TABLE II. A comparison between the obtained results of the
hμ0i, hμ1i and their errors (in unit GeV) via the quadratic and
cubic interpolation functions. The astronomical constraints
implemented are: 2.0 ≤ M ≤ 2.16M⊙, 120 ≤ Λ ≤ 800 and
9.9 ≤ R ≤ 13.6 km. The “err” columns list the standard error
for the fitting of truncated normal distribution.

Composition Construct hμ0i err. μ0 hμ1i err. μ1

N
Quadratic 1.00 3.7 × 10−4 1.52 2.7 × 10−5

Cubic 0.99 4.1 × 10−4 1.54 2.2 × 10−5

NY
Quadratic 1.00 5.4 × 10−5 1.53 2.7 × 10−5

Cubic 1.00 5.4 × 10−5 1.54 2.0 × 10−5
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LB ¼
X
i

Ψ̄iðiγμ∂μ −miÞΨi: ðA2Þ

LM is the Lagrangian of mesons, which reads

LM ¼ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

4
ωμνω

μν −
1

2
m2

ωωμω
μ

−
1

4
ρμνρμν −

1

2
m2

ρρμρμ; ðA3Þ

where σ, ωμ, and ρμ are the isoscalar-scalar, isoscalar-
vector, and isovector-vector meson field, respectively, with
ωμν ¼ ∂μων − ∂νωμ, ρμν ¼ ∂μρν − ∂νρμ.
The Lint in Eq. (A1) is the Lagrangian describing the

interactions between baryons which are realized by
exchanging the mesons:

Lint ¼
X
B

gσBΨ̄BσΨB − gωBΨ̄Bγμω
μΨB

− gρBΨ̄BγμτB · ρμΨB; ðA4Þ

where giB for i ¼ σ, ω, ρ are the coupling strength
parameters between baryons and mesons, which depend
on the baryon density.
For nucleons, the coupling constants are

giNðρBÞ ¼ giNðρsatÞfiðxÞ; for i ¼ σ;ω; ρ;

where ρB is the baryon density, ρsat is the saturation density
of nuclear matter and x ¼ ρB=ρsat. The density function can
be written as [62]:

fiðxÞ ¼ ai
1þ biðxþ diÞ2
1þ ciðxþ diÞ2

; for i ¼ σ;ω;

fρðxÞ ¼ exp ½−aρðx − 1Þ�;

where the value of parameters ai, bi, ci, di and giNðρsatÞ and
mi are listed in Table III.
For hyperons, we represent them with the relation

between the hyperon coupling and the nucleon coupling
as: χσ ¼ gσY

gσN
, χω ¼ gωY

gωN
, χρ ¼ gρY

gρN
. On the basis of hypernuclei

experimental data, we choose them as those in
Refs. [19,79]: χσ ¼ 0.7, χω ¼ χρ ¼ 0.783.

The Llep is the Lagrangian for leptons, which are treated
as free fermions:

Llep ¼
X
l

Ψ̄lðiγμ∂μ −mlÞΨl; ðA5Þ

and we include only the electron and muon in this work.
The field equations can be derived by differentiating the

Lagrangian. Under RMF approximation, the system is
assumed to be in the static, uniform ground state. The partial
derivatives of the meson fields vanish, except that the
0-component of the vector meson and the 3rd-component
of the isovector meson survive and can be replaced with the
corresponding expectation values. The field equations of the
mesons are then:

m2
σσ ¼

X
B

gσBhΨ̄BΨBi; ðA6Þ

m2
ωω0 ¼

X
B

gωBhΨ̄Bγ0ΨBi; ðA7Þ

m2
ρρ03 ¼

X
B

gρBhΨ̄Bγ0τ3BΨBi; ðA8Þ

where τ3B is the 3rd-component of the isospin of baryon B.
The equation of motion (EoM) of the baryon is

½γμði∂μ − ΣμÞ − ðmB − gσBσÞ�ΨB ¼ 0; ðA9Þ

where

Σμ ¼ gωBωμ þ gρBτB · ρμ þ ΣR
μ :

The ΣR
μ is called the “rearrange” term, which appears

because of the density-dependence of the coupling con-
stant, and reads

ΣR
μ ¼ jμ

ρ

�
∂gωB
∂ρ

Ψ̄Bγ
νΨBων þ

∂gρB
∂ρ

Ψ̄Bγ
ντB · ρνΨB

− ∂gσB
∂ρ

Ψ̄BΨBσ

�
; ðA10Þ

where jμ ¼ Ψ̄BγμΨB is the baryon current.
Under the EoM in Eq. (A9), the baryons behave as

quasiparticles with effective mass

m�
B ¼ mB − gσBσ; ðA11Þ

and effective chemical potential:

μ�B ¼ μB − gωBω0 − gρBτ3Bρ03 − ΣR
μ : ðA12Þ

TABLE III. Parameters of the mesons and their couplings
(taken from Ref. [62]).

Meson i σ ω ρ

miðMeVÞ 550 783 763
giNðρsatÞ 10.72854 13.29015 7.32196
ai 1.365469 1.402488 0.515
bi 0.226061 0.172577
ci 0.409704 0.344293
di 0.901995 0.983955
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One can then get the baryon (number) density:

ρB ≡ hΨ̄Bγ
0ΨBi ¼ γB

Z
d3k
ð2πÞ3 ¼ γB

k3FB
6π2

; ðA13Þ

where kFB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2B −m�2

B

p
is the Fermi momentum of the

particle, γB ¼ 2 is the spin degeneracy. And the scalar
density is

ρsB ≡ hΨ̄BΨBi ¼ γB

Z
d3k
ð2πÞ3

m�
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm�2
B

p

¼ γB
m�

B

4π2

�
kFBμ�i −m�2

B ln

�
kFB þ μ�B

m�
B

��
: ðA14Þ

The density of a kind of leptons can be expressed as the
same as that for baryons, except that the effective mass and
the effective chemical potential should be replaced with the
corresponding mass and chemical potential of the lepton:

ρl ¼
k3Fl
3π2

; ðA15Þ

where k2Fl ¼ μ2l −m2
l for l ¼ e−; μ−.

The matter in the star composed of hadrons should be in
β-equilibrium. Since there are two conservation charge
numbers: the baryon number and the electric charge
number, all the chemical potential can be expressed with
the neutron chemical potential and the electron chemical
potential:

μi ¼ Bμn −Qμe; ðA16Þ

where B and Q is the baryon number, electric charge
number for the particle i, respectively.
Then, combining Eqs. (A6)–(A8), and (A10)–(A16),

together with the charge neutral condition:

ρp þ ρΣþ ¼ ρe þ ρμ− þ ρΣ− þ ρΞ− ;

one can determine the ingredients and the properties of the
hadron matter with any given baryon density ρB.
The EoS of the hadron matter can be calculated from the

energy-momentum tensor:

Tμν ¼
X
ϕi

∂L
∂ð∂μϕiÞ

∂
νϕi − gμνL: ðA17Þ

The energy density ε is

ε¼hT00i¼
X
i¼B;l

εiþ
1

2
m2

σσ
2þ1

2
m2

ωω
2
0þ

1

2
m2

ρρ
2
03; ðA18Þ

where the contribution of the baryon B to the energy
density is

εB ¼ γB

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

B

q

¼ γB
4π2

�
2μ�3B kFB −m�2

B μ�BkFB −m�4
B ln

�
μ�B þ kFB

m�
B

��
:

ðA19Þ

The contribution of the leptons to the energy density can
be written in the similar form as baryons with a spin
degeneracy parameter γl ¼ 2, except that the effective mass
and effective chemical potential should be replaced with
those of the leptons, respectively.
As for the pressure of the system, we can determine that

with the general formula:

P ¼
X
i

μiρi − ε: ðA20Þ

2. Dyson-Schwinger equation approach
for quark matter

For quark matter, we adopt the Dyson-Schwinger (DS)
equation approach ofQCD (see, e.g., Refs. [2,4,6,57,80,81]).
The DSE approach is a continuum field approach of QCD
which includes both the confinement and the dynamical
chiral symmetry breaking features simultaneously [56], and
is successful in describingQCDphase transitions and hadron
properties (see, e.g., Refs. [2–6,15,57,60,82–84]).
The starting point of the DS equation approach is the

stability of the quark, the gluon and the ghost fields. The
truncated one can be written as the quark gap equation:

Sðp; μÞ−1 ¼ Z2½iγ · pþ iγ4ðp4 þ iμÞ þmq� þ Σðp; μÞ;
ðA21Þ

where Sðp; μÞ is the quark propagator, Σðp; μÞ is the
renormalized self-energy of the quark:

Σðp; μÞ ¼ Z1

Z
Λ d4q
ð2πÞ4 g

2ðμÞDρσðp − q; μÞ

×
λa

2
γρSðq; μÞΓa

σðq; p; μÞ; ðA22Þ

where
R Λ is the translationally regularized integral, Λ is the

regularization mass-scale. gðμÞ is the strength of the cou-
pling,Dρσ is the dressed gluon propagator, Γa

σ is the dressed
quark-gluon interaction vertex, λa is the Gell-Mann matrix,
and mq is the current mass of the quark. For simplicity, the
currentmass of u and d quark is now taken to be zero, and the
current mass of s quark to be 115 MeV, by fitting the kaon
mass in vacuum [63]. Z1;2 are the renormalization constants.
At finite chemical potential, the quark propagator can be

decomposed according to the Lorentz structure as:
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Sðp; μÞ−1 ¼ iγ · pAðp2; pu; μ2Þ þ Bðp2; pu; μ2Þ
þ iγ4ðp4 þ iμÞCðp2; pu; μ2Þ; ðA23Þ

with u ¼ ð0; iμÞ. A complete decomposition should include
another term proportional to σμν, but this term can be
omitted in all practical calculations, since its contribution is
extremely small.
At zero chemical potential, a commonly used ansatz for

the dressed gluon propagator and the dressed quark-gluon
interaction vertex is

Z1g2Dρσðp − qÞΓa
σðq; pÞ

¼ Gððp − qÞ2ÞDfree
ρσ ðp − qÞ λ

a

2
Γσðq; pÞ; ðA24Þ

where

Dfree
ρσ ðk≡ p − qÞ ¼ 1

k2

�
δρσ −

kρkσ
k2

�
;

Gðk2Þ is the effective interaction introduced in the model,
and Γσ is the quark-gluon interaction vertex.
For the interaction part, we adopt the Gaussian type

effective interaction (see, e.g., Refs. [58,63,81,82,85,86]):

Gðk2Þ
k2

¼ 4π2D
ω6

k2e−k
2=ω2

;

where D and ω are the parameters of the model. In our
present work we take ω ¼ 0.5 GeV and D ¼ 1.0 GeV2 as
the same as in Refs. [59,63,64,87,88]. In case of finite
chemical potential, an exponential dependence of the G on
the chemical potential was introduced in Ref. [63] as:

Gðk2; μÞ
k2

¼ 4π2D
ω6

e−αμ
2=ω2

k2e−k
2=ω2

; ðA25Þ

where α is the parameter controlling the rate for the quark
matter to approach the asymptotic freedom. It is evident
that, when α ¼ 0, it is the same as that at zero chemical
potential; when α ¼ ∞, the effective interaction is zero and
corresponds to the case of bag models. We adopt such a
model in our present calculations, and for simplicity, we
take the same interaction for each flavor of the quarks.
For the quark–gluon interaction vertex, Ref. [89] has

calculated the properties of quark matter with different
vertex models and shown that the vertex effect can be
absorbed into the variation of the parameter α. We then
in this work adopt only the rainbow approximation
Γσðq; pÞ ¼ γσ . In our previous work [64], we have shown
that when α ¼ 2, the maximum mass of the hybrid star can
be larger than 2M⊙. We take then now α ¼ 2.
With the above equations, we can get the quark propa-

gator, and derive the EoS of the quark matter in the same
way as taken in Refs. [3,5,6,15,82,90].

The number density of quarks as a function of its
chemical potential is

nqðμÞ ¼ 6

Z
d3p
ð2πÞ3 fqðjpj; μÞ;

where fq is the distribution function and reads

fqðjpj; μÞ ¼
1

4π

Z
∞

−∞
dp4trD½−γ4Sqðp; μÞ�;

where the trace is for the spinor indices.
The pressure of each flavor of quark at zero temperature

can be obtained by integrating the number density:

PqðμqÞ ¼ Pqðμq;0Þ þ
Z

μq

μq;0

nqðμÞdμ: ðA26Þ

The total pressure of the quark matter is the sum of the
pressure of each flavor of quark:

PQðμu; μd; μsÞ ¼
X

q¼u;d;s

P̃qðμqÞ − BDS; ðA27Þ

P̃qðμqÞ≡
Z

μq

μq;0

nqðμÞdμ; ðA28Þ

BDS ≡ −
X

q¼u;d;s

Pqðμq;0Þ: ðA29Þ

Theoretically, the starting point of the integral μq;0 can be
any value, in this work we take μq;0 ¼ 0. For the value of
BDS, we adopt the “steepest-descent” approximation and
implement BDS ¼ 90 MeV=fm3 as the same as taken in
previous works [63,82,89,91].
The quark matter in a compact star should also be in

β-equilibrium and electric charge neutral, so we have:

μd ¼ μu þ μe ¼ μs;

2ρu − ρd − ρs
3

− ρe − ρμ− ¼ 0:

And we have the baryon density and chemical potential as:

ρB ¼ 1

3
ðρu þ ρd þ ρsÞ;

μB ¼ μu þ 2μd: ðA30Þ

Therefore, we can calculate the properties of the quark
matter with any given baryon chemical potential μB or
baryon density ρB.
In this paper, we take ρQ ¼ ρB to denote the baryon

density in quark matter.
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